活性污泥处理系统的工艺
活性污泥法工艺流程
活性污泥法工艺流程活性污泥法是一种常见的污水处理工艺,用途广泛,能够有效地去除废水中的有机物、氮、磷等污染物。
下面将介绍活性污泥法的工艺流程。
活性污泥法的工艺流程主要包括污水处理、生物反应器处理和二沉池沉淀三个步骤。
首先是污水处理阶段。
原污水经过预处理后,进入到生物反应器。
预处理包括去除大颗粒物、沉淀物和油脂等,可以通过格栅过滤、沉淀池等设备完成。
经过预处理的污水进入生物活性污泥处理系统。
生物反应器是活性污泥法的核心部分。
在反应器中,将活性污泥与污水充分混合。
活性污泥是一种富含细菌和其他微生物的混合物,其中的微生物可以以有机物为食物,通过生物降解将其转化为无害物质。
在反应器中,污水中的有机物通过微生物的代谢和降解作用,被转化为二氧化碳和水等无害物质。
同时,微生物中的吸附作用也可以去除废水中的重金属离子等其他污染物。
整个反应过程需要控制氧气供应、温度、pH值等参数,以保证微生物的正常生长和活性。
最后是二沉池沉淀阶段。
经过生物反应器处理的污水会进入二沉池,通过静置的方式,使沉淀剂和污泥充分接触,利用重力沉淀原理,使污泥沉降到底部。
上层清水则通过泄流的方式排出。
沉淀的污泥可以通过连续流出或间歇流出的方式排出系统,经过后续处理对排出的污泥进行脱水、干化等处置。
值得注意的是,活性污泥法工艺流程中的每个环节都需要对工艺参数进行严格的监控和调节,以确保系统的稳定运行和水质的达标排放。
其中,反应器的温度、水质、氧气供应等参数的控制是非常关键的。
此外,定期对污泥进行抽样分析,对微生物种群和活性进行监测,通过适当的调整和补充,保持良好的生物降解能力。
同时,对沉淀池的沉淀效果进行检测和评估,及时清理和疏通,防止污泥淤积和溢流造成的系统故障。
总之,活性污泥法是一种成熟有效的污水处理工艺。
通过科学的工艺流程和严格的监控控制,可以高效地去除废水中的污染物,实现水环境的保护和回收利用。
活性污泥法处理污水的工艺流程
活性污泥法处理污水的工艺流程活性污泥法是一种常用的污水处理方法,适用于处理高浓度有机物的工业废水和城市污水。
其工艺流程主要包括预处理、曝气池、二沉池、回流池、污泥浓缩等步骤。
首先是预处理阶段,污水经过格栅除杂器进行初步的固体物和大颗粒物的筛除,随后进入沉砂池,通过重力沉降将污水中的沙土和颗粒物进一步去除,净化水质。
然后是曝气池阶段。
污水从预处理后进入曝气池,曝气池内投加一定量的活性污泥,活性污泥中的微生物利用有机物进行生长和繁殖,完成有机物的降解过程。
同时,曝气池内通过曝气装置注入空气,提供氧气供微生物呼吸和有机物降解需要的气体,促进微生物代谢活动。
接下来是二沉池阶段。
曝气池中的混合液经过一定时间的停留,微生物降解的有机物被固定在活性污泥颗粒表面形成污泥颗粒,受到重力作用迅速沉降到二沉池的底部。
在二沉池内,污泥和污水进行分离,废水从上方流出,而底部沉降的活性污泥再次回流到曝气池,为下一轮降解提供新的微生物。
然后是回流池阶段。
回流池位于活性污泥法污水处理系统的中间位置,污泥从二沉池中抽取一部分经过处理后回流到曝气池中。
回流池起到稳定活性污泥浓度的作用,同时也可以通过调整回流比例控制曝气池中的活性污泥负荷,保持污水处理系统的平稳运行。
最后是污泥浓缩阶段。
随着废水处理过程中活性污泥的不断积累,废水中的有机物不断被降解,形成大量的污泥。
污泥浓缩是为了使回流的活性污泥浓度适中,防止浓度过高影响废水处理效果。
污泥浓缩可以采用压滤、浓缩污泥泵等方式进行。
总之,活性污泥法是一种高效的污水处理工艺,通过多个阶段的处理和调节,可以有效去除污水中的有机物和颗粒物,提高水质,减少环境污染。
在实际应用中,还可以根据不同的废水特性和处理要求进行工艺优化和改进,以达到更好的处理效果。
活性污泥法处理工艺12种方法分析
活性污泥法处理工艺12种方法分析1.均质好氧处理:将废水和污泥充分混合,提高废水中的氧气浓度。
这种方法适用于高浓度有机污染物的处理,但需要消耗大量的能源。
2.好氧/厌氧处理:将废水先在好氧条件下处理,然后在厌氧条件下处理。
好氧处理可降解大部分有机物,厌氧处理可进一步降解残余有机物。
这种方法适用于高浓度有机污染物和难降解有机污染物的处理。
3.好氧/好氧处理:将废水先在好氧条件下处理,然后在另一个好氧环境中进行处理。
这种方法适用于高浓度有机污染物和有机物质的处理,可以提高废水的处理效果。
4. 上流anaerobic/好氧处理:将废水先在厌氧条件下处理,然后在好氧条件下处理。
这种方法适用于高浓度有机污染物和难降解有机污染物的处理。
5.小区间好氧处理:将废水分成几个小区间进行好氧处理,可以减少废水中的应激反应,提高废水的处理效果。
6.好氧/厌氧/好氧处理:将废水依次在好氧、厌氧和好氧条件下处理,可以提高废水的处理效果,适用于高浓度有机污染物和难降解有机污染物的处理。
7.好氧/造粒处理:通过维持污泥中的菌群结构,形成颗粒状的污泥,提高废水中有机物的去除效率。
这种方法适用于高浓度有机污染物的处理。
8.外加剂处理:向废水中加入外加剂,如营养物质、微生物、酶等,以促进有机物的降解。
这种方法适用于难降解有机污染物的处理。
9.温度控制处理:控制废水处理过程中的温度,可以提高废水中有机物的去除效率。
这种方法适用于低温条件下的废水处理。
10.进水调节处理:对进水中的COD/N/P比例进行调节,可以改善废水处理的效果,提高污泥的活性。
11.吸附填料处理:在活性污泥法中加入吸附填料,如生物膜或生物滤料,可以提高废水中有机物的降解效率。
12.气浮技术处理:将废水中的浮性物质通过气浮的方式分离,可以提高废水的处理效果。
这种方法适用于废水中的悬浮物较多的情况。
综上所述,活性污泥法的12种处理方法各有优劣,可以根据不同废水的特性和处理需求选择适合的方法进行处理。
污水处理之活性污泥处理工艺
污水处理之活性污泥处理工艺废水生物处理借助环境工程和化学工程的手段和方法,以微生物作用为主体开发出了种种用于控制和治理水污染治理的新方法。
代表:活性污泥法、生物膜法、厌氧处理法、生物脱氮、除磷等工艺技术。
所谓“好氧”:是指这类生物必须在有分子态氧气(02)的存在下,才能进行正常的生理生化反应。
所谓“厌氧”:是能在无分子态氧存在的条件下,能进行正常的生理生化反应的生物。
有机污染物好氧微生物处理的一般途径废水好氧生物处理过程中有机物的代谢及微生物的合成,可用下列基本图式来表示:1914年在英国建成第一座活性污泥污水处理试验厂是目前城市污水处理的主要方法。
■曝气池中污泥浓度一般控制在2—3g∕1.,废水浓度高时采用较高数值;■废水在曝气池中的停留时间(HRT)常采用4-8h,视废水中有机物浓度而定;■回流污泥量约为进水流量的25%—50%左右;■B0D和悬浮物去除率都很高,达到90%—95%左右。
2.作用原理:普通活性污泥法是依据废水的自净作用原理发展而来的。
3.不足之处:■对水质变化的适应能力不强;■所供的氧不能充分利用,因为在曝气池前端废水水质浓度高、污泥负荷高、需氧量大,而后端则相反,但空气往往沿池长均匀分布,这就造成前端供氧量不足、后端供氧量过剩的情况。
■因此,在处理同样水量时,同其他类型的活性污泥法相比,曝气池相对庞大、占地多、能耗费用高。
阶段曝气法也称为多点进水活性污泥法,它是普通活性污泥法的一个简单的改进,可克服普通活性污泥法供氧同需氧不平衡的矛盾。
曝气池容积同普通活性污泥法比较可以缩小30%左右,但其出水差于普通活性污泥法。
克服普通活性污泥法曝气池中供氧、需氧不平衡另一个改进方法是将曝气池的供氧沿活性污泥推进方向逐渐减少,这即为渐减曝气法。
该工艺曝气池中有机物浓度随着向前推进不断降低、污泥需氧量也不断下降、曝气量相应减少。
吸附再生活性污泥法系根据废水净化的机理,污泥对有机污染物的初期高速吸附作用,将普通活性污泥法作相应改进发展而来。
废水好氧生物处理工艺-——活性污泥法
式中: x——每日的污泥增长量(kgVSS/d);= Qw·Xr Q ——每日处理废水量(m3/d);
a、b经验值的获得:
(1) 对于生活污水或相近的工业废水: a = 0.5~0.65,b = 0.05~0.1; (2) 对于工业废水,则:
合成纤维废水
0.38
0.10
含酚废水
0.55
0.13
制浆与造纸废水
0.76
0.016
制药废水
0.77
酿造废水
0.93
工业废水
a
b
亚硫酸浆粕废水
0.55
0.13
a、b经验值的获得:
(3)通过小试获得:
可改写为:
a
b
QSr/VXv(kgBOD/kgVSS.d)
x/VXv(1/d)
一、活性污泥法的工艺流程
回流污泥
二次 沉淀池
废水
曝气池
初次 沉淀池
出水
空气
剩余活性污泥
活性污泥系统的主要组成
曝气池:反应的主体,有机物被降解,微生物得以增殖; 二沉池:1)泥水分离,保证出水水质; 2)浓缩污泥,保证污泥回流,维持曝气池内的污泥浓度。 回流系统:1)维持曝气池内的污泥浓度; 2)回流比的改变,可调整曝气池的运行工况。 剩余污泥: 1)去除有机物的途径之一; 2)维持系统的稳定运行 供氧系统:为微生物提供溶解氧
在条件一定时, 较稳定; 对于处理城市污水的活性污泥系统,一般为0.75~0.85
4、活性污泥的性能指标:
(3)污泥沉降比(SV) (Sludge Volume) 定义:将曝气池中的混合液在量筒中静置30分钟,其沉淀污泥与原混合液的体积比,一般以%表示; 功能:能相对地反映污泥数量以及污泥的凝聚、沉降性能,可用以控制排泥量和及时发现早期的污泥膨胀; 正常范围: 2030%
活性污泥法工艺流程
活性污泥法工艺流程
《活性污泥法工艺流程》
活性污泥法是一种常用的废水处理技术,通过微生物在污泥中的作用,将废水中的有机物质和氮、磷等污染物去除,达到排放标准。
活性污泥法工艺流程主要包括预处理、曝气、初沉、曝气、后处理等步骤。
首先是预处理阶段,废水需要经过网格筛、沉砂池等设备去除大颗粒杂物和固体颗粒。
接下来是曝气阶段,将预处理后的水泵送至曝气槽内,通过曝气设备向水中通入空气或氧气,促进微生物的生长和活动。
在氧气的作用下,微生物利用有机物质进行生长和繁殖,同时也对有机物质进行降解。
随后是初沉阶段,将曝气槽内的废水送至初沉池中,利用重力沉降的原理,让悬浮固体和一部分生物污泥沉淀到池底,形成污泥浆和清水两部分。
清水继续流向下一个曝气池进行处理,而污泥浆则定期进行排出和回流处理。
接下来是再次曝气阶段,将初沉后的水再次送进曝气池,经过曝气处理后,水中的有机物质和氮、磷等污染物得到更进一步的去除。
最后是后处理阶段,将再次曝气后的水进行最后的处理和消毒,以确保废水达到排放标准。
活性污泥法工艺流程通过不断的曝气和微生物降解,使得废水中的有机物质得到有效去除,达到环境排放标准。
该工艺流程简单易行,且效果稳定,因而被广泛应用于废水处理领域。
干货|史上最全的活性污泥处理工艺的传统工艺
干货|史上最全的活性污泥处理工艺的传统工艺污水活性污泥处理工艺开创100年来,通过污水处理的生产实践,已在城市污水处理技术领域稳占一席之地,在技术上更是取得了大幅度的进步。
活性污泥工艺是污水活性污泥处理工艺技术的核心,本文收录了12种在20世纪30~40年代城市污水处理热潮中涌现出来的效果优异的活性污泥传统工艺,仅供大家参考。
一、普通活性污泥工艺普通活性污泥工艺又称传统活性污泥工艺,是活性污泥废水生物处理系统的传统方式。
系统由曝气池、二沉池和污泥回流管线及设备三部分组成。
经预处理技术处理后的原污水,从活性污泥反应器—曝气池的首端进入池内,由二沉池回流的回流污泥也同步注入。
污水与回流污泥形成的混合液在池内里呈推流式流态向前流动,流至池的末端、流出池外进入二沉池。
流入二沉池的混合液,经沉淀分离处理,活性污泥与被处理水分离。
处理后的水排出系统,分离后的污泥进入污泥泵站,在那里,污泥进行分流,一定量的污泥作为回流污泥,通过污泥回流系统,回流至曝气池首端,多余的剩余污泥则排出系统。
【优点】(1)有机物在曝气池内的降解经历了第一阶段的吸附和第二阶段的代谢的完整过程,活性污泥也经历了对数增长、减速增长、内源呼吸的完整生长周期;(2)对一般城市污水的处理效果好,BOD去除率可达到90%以上;(3)适合用于处理净化程度高和稳定程度要求较高的污水。
【缺点】(1)曝气池首端有机污染物负荷高,耗氧速度也高,为了避免由于缺氧形成厌氧状态,进水有机物负荷不宜过高。
为达到一定的去污能力,需要曝气池容积大,占用土地较多,基建费用高;(2)好氧速度沿池长是变化的,而供氧速度难于与其相吻合、适应,在池前段可能出现好氧速度高于供氧速度的现象,池后段又可能出现溶解氧过剩的现象;(3)对进水水质、水量变化的适应性较低,运行效果易受水质、水量变化的影响。
二、阶段曝气活性污泥工艺阶段曝气活性污泥工艺又称分段进水活性污泥工艺或多段进水活性污泥工艺,是针对传统活性污泥工艺存在的弊端进行了一些改革的运行方式。
活性污泥法的工艺流程和运行方式
活性污泥法的工艺流程和运行方式在近几十年来,活性污泥法处理工艺得到了较快的发展,出现了多种活性污泥法工艺流程和运行方式,如普通曝气法、阶段曝气法、生物吸附-降解法、序批式活性污泥法等。
1、传统活性污泥法⑴工艺流程传统活性污泥法的工艺流程是:经过初次沉淀池去除粗大悬浮物的废水,在曝气池与污泥混合,呈推流方式从池首向池尾流动,活性污泥微生物在此过程中连续完成吸附和代谢过程。
曝气池混合液在二沉池去除活性污泥混合固体后,澄清液作为净化液出流。
沉淀的污泥一部分以回流的形式返回曝气池,再起到净化作用,一部分作为剩余污泥排出。
⑵曝气池及曝气设备曝气池为推流式,有单廊道和多廊道形式,当廊道为单数时,污水进出口分别位于曝气池的两端;当廊道数为双数时,则位于同侧。
曝气池的进水和进泥口均采用淹没式,由进水闸板控制,以免形成短流。
出水可采用溢流堰或出水孔,通过出水孔的流速要小些,以免破坏污泥絮状体。
廊道长一般在50〜70m,最长可达100m,有效水深多为4〜6m,宽深比1〜2,长宽比一般为5〜10。
鼓风曝气池中的曝气设备,通常安置在曝气池廊道的一侧。
⑶活性污泥法系统运行时的控制参数主要控制参数包括:曝气池内的溶解氧、回流污泥量和剩余污泥排放量。
①溶解氧的浓度;②回流污泥量;③剩余污泥排放量的确定⑷传统活性污泥法的特点:①优点:工艺相对成熟、积累运行经验多、运行稳定;有机物去除效率高,B0D5的去除率通常为90%〜95% ;曝气池耐冲击负荷能力较低;适用于处理进水水质比较稳定而处理程度要求高的大型城市污水处理厂;②缺点:需氧与供氧矛大,池首端供氧不足,池末端供氧大于需氧,造成浪费;传统活性污泥法曝气池停留时间较长,曝气池容积大、占地面积大、基建费用高,电耗大;脱氧除磷效率低,通常只有10%〜30%。
阶段曝气法(多类进水法)针对普通活性污泥法的BOD负荷在池首过高的缺点,将废水沿曝气池长分数处注入,即形成阶段曝气法,它与渐减曝气法类似,只是将进水按流程分若干点进入曝气池,使有机物分配较为均匀,解决曝气池进口端供氧不足的现象,使池内需氧与供氧较为平衡。
活性污泥的三大工艺是什么
活性污泥的三大工艺是什么活性污泥技术是一种废水处理工艺,通过微生物的活性污泥对污水中的有机物进行降解和去除,达到净化废水的目的。
活性污泥技术包括以下三个主要的工艺:1. 均质处理工艺:均质处理工艺是活性污泥技术的第一步,其目的是将污水中的固体物质进行去除和分解。
该工艺一般采用机械方法对污水进行搅拌和混合,使得污水中的颗粒物质分散均匀,方便微生物的降解和去除。
均质处理工艺能够有效去除污水中的悬浮物、悬浊物、颗粒物等固体物质,同时也能够将大颗粒物质分解成小颗粒,提高后续工艺的效果。
2. 活性处理工艺:活性处理工艺是活性污泥技术的核心步骤,通过调节好水质、温度、氧气、搅拌等条件,使得污水中的有机物质被微生物降解和去除。
该工艺主要靠微生物的代谢活动对有机污染物进行分解,产生二氧化碳、水和微生物自身,达到去除污水有机物和提高水质的目的。
在活性处理工艺中,污泥中的活性微生物会在氧气供应充足、温度适宜、均匀搅拌的情况下,降解有机污染物,从而将污水中的有机物质去除。
3. 分离处理工艺:分离处理工艺是活性污泥技术的最后一步,其主要目的是将经过活性处理后的污泥与水进行分离。
分离后的清水可以由系统排出或者再利用,而污泥则需要进行处理和回收利用。
分离处理工艺可以通过离心机、压滤机、湿氧化等方法对活性污泥进行分离。
经过分离处理后,清水具有达标排放的条件,而污泥则可以进一步进行处理,例如厌氧消化、堆肥等,使得污泥得到资源化利用,同时减少环境污染。
总的来说,活性污泥技术的三大工艺包括均质处理、活性处理和分离处理。
这些工艺相互配合,共同完成了废水处理的过程,实现了废水的净化和资源化利用。
通过不断优化和改进这些工艺,可以提高废水处理的效率和质量,保护环境,促进可持续发展。
活性污泥法的常用工艺
活性污泥法的常用工艺
活性污泥法是一种生物处理技术,常用工艺有以下几种:
1. A/O(Anoxic/Oxic)反硝化-好氧法: 在反硝化区域,除去氧化还原态氮,使其释放出氮气;而在好氧区域,则利用活性污泥群落对机械、生物、化学污染物进行氧化作用,转化为能被微生物吞噬的生物质;
2. SBR(Sequencing Batch Reactor)序批反应器法:是用于分类处理废水的一种工艺,它将处理系统分离成一系列间隔的单元,使废水在不同的处理阶段接受不同的处理操作,例如曝气、沉淀、排出、消化、沉淀等;
3. MBR(Membrane Bio-Reactor)膜生物反应器法:是活性污泥法和膜技术的结合,将废水在活性污泥反应和膜过滤两个过程中同时完成,从而提高出水质量,使水变得更加清澈透明,同时达到更好的污水处理效果,减少一定的反应时间;
4. MBF(Membrane Bio-Filtration)膜生物过滤法:纤维素滤料为载体,同时通过位于滤料中的微生物附着于滤媒表面,接触废水分子,使污染物和微生物进行氧化还原反应,从而达到净化废水的目的。
污水处理活性污泥的工作原理操作流程
污水处理活性污泥的工作原理操作流程活性污泥是一种常用的污水处理方法,通过生物降解作用将有机物转化为无机物,从而达到净化水体的目的。
本文将介绍污水处理活性污泥的工作原理和操作流程。
一、工作原理活性污泥处理工艺基于微生物的生物降解作用,通过活性污泥中的微生物,将有机物转化为无机物。
活性污泥是指在池塘、水池等环境中培养起来的富含微生物的污泥。
这些微生物通过吸附、吸附有机物以及分解有机物产生的废物等多种方式进行生物降解。
当进水流入活性污泥池时,最初的处理过程是初级沉淀。
在此过程中,重质悬浮物会沉淀到污泥底部,形成污泥层。
接下来,进水流经过曝气处理,曝气器将气体以气泡形式送入水中,气泡与水中的微生物接触,提供生存所需的氧气。
在曝气处理过程中,微生物吸附并分解进水中的有机物,将其转化为二氧化碳、水和其他无机物。
同时,污水中的氨氮也会被微生物利用,转化为氮气。
这些微生物被称为活性污泥,它们可在水中形成一种浑浊状的混合物。
随后,处理过的水经过二次沉淀,沉淀后的浑浊物沉积到污泥底部,而澄清的水则从池面流出,完成了污水的初步净化。
至此,活性污泥处理工艺的主要工作原理就介绍完毕。
二、操作流程活性污泥处理工艺的实际操作流程包括进水、初级沉淀、曝气、二次沉淀和出水等过程。
1. 进水:将待处理的污水通过管道引入活性污泥处理系统。
2. 初级沉淀:进水在初级沉淀池中停留一段时间,沉淀出重质悬浮物,并形成污泥层。
此过程可以有效去除污水中的大颗粒悬浮物。
3. 曝气:进水经过初步沉淀后,进入活性污泥池。
在此过程中,通过曝气器将气体送入水中,提供活性污泥生长所需的氧气,同时也促进微生物对污水中有机物的降解作用。
4. 二次沉淀:经过曝气处理后的水流经二次沉淀池,沉淀出活性污泥和其他悬浮物。
二次沉淀池中的污泥层会进一步减少水中的悬浮物,使得出水更为清澈。
5. 出水:经过二次沉淀后,处理过的水会从池面流出,此时水体已经得到初步净化。
以上是对活性污泥处理工艺的操作流程进行了简要的介绍。
活性污泥法系统的工艺参数及活性污泥质量
活性污泥法系统的工艺参数及活性污泥质量作者/来源:管理员发表时间:2012-8-20 19:01:221.系统的工艺参数活性污泥工艺是一个复杂的工程生物系统,描述这个系统的工艺参数分为三大类:第一类足曝气池的工艺参数,主要包括曝气池水力停留时间、活性污泥浓度、活性污泥的有机负荷;第二类是关于二沉池的工艺参数,主要包括二沉池内的混合液停留时问、水力表面负荷、出水堰的堰板溢流负荷、污泥层深度、固体表面负荷;第三类是关于整个工艺系统的参数,包括人流水质水量、回流污泥量和回流比、回流污泥浓度、剩余污泥排放量、污泥龄c以上参数相互之间联系紧密,任一参数的变化都会影响到其他参数。
(l)人流水质、水量人流污水量Q必须充分利用所设置的计量设施准确计量,它是整个活性污泥系统运行控制的基础oQ的计量不准确,必然导致运行控制的某些失误。
人流水质也直接影响到运行控制。
传统活性污泥工艺的主要目标是降低污水中的BODs,因此,人流污水的BODs必须准确测定,它是工艺调控的一个基础数据。
(2)回流污泥量与回流比回流污泥量是从二沉池补充到曝气池的污泥量,常用Q表示。
Q是活性污泥法系统的一个重要的控制参数,通过有效调节Q,可以改变工艺运行状态,保证运行的正常。
回流比是回流污泥量与人流污水量之比,常用尺表示R= Qr/Q (11 -1)保持R的相对恒定,是一种重要的运行方式。
回流比R也可以根据实际运行需要加以调整。
传统活性污泥工艺的R一般在250/0一IOOc}fo之间。
(3)混合液悬浮固体和回流污泥悬浮固体混合液悬浮固体是指混合液中的悬浮固体的浓度,通常用MLSS表示。
MLSS近似表示曝气池内活性微生物的浓度,是运行管理的一个重要控制参数。
当人流污水的BOD增高时,一般应提高MLSS,即增大曝气池内的微生物量,来处理增多了的有机污染物c实际测得的MLSS是混合液的滤过性残渣,包括活性污泥絮体内的活性微生物量、非活性的有机物和无机物,因此MLSS值实际比活性微生物的浓度值大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
活性污泥处理系统的工艺典型的污泥处理工艺流程,包括四个处理或处置阶段。
第一阶段为污泥浓缩,主要目的是使污泥初步减容,缩小后续处理构筑物的容积或设备容量;第二阶段为污泥消化,使污泥中的有机物分解;第三阶段为污泥脱水,使污泥进一步减容;第四阶段为污泥处置,采用某种途径将最终的污泥予以消纳。
以上各阶段产生的清液或滤液中仍含有大量的污染物质,因而应送回到污水处理系统中加以处理。
以上典型污泥处理工艺流程,可使污泥经处理后,实现“四化”:
(1)减量化:由于污泥含水量很高,体积很大,且呈流动性。
经以上流程处理之后,污泥体积减至原来的十几分之一,且由液态转化成固态,便于运输和消纳。
(2)稳定化:污泥中有机物含量很高,极易腐败并产生恶臭。
经以上流程中消化阶段的处理以后,易腐败的部分有机物被分解转化,不易腐败,恶臭大大降低,方便运输及处置。
(3)无害化:污泥中,尤其是初沉污泥中,含有大量病原菌、寄生虫卵及病毒,易造成传染病大面积传播。
经过以上流程中的消化阶段,可以杀灭大部分的姻虫卵、病原菌和病毒,大大提高污泥的卫生指标。
(4)资源化:污泥是一种资源,其中含有很多热量,其热值在10000~15000kJ/kg (干泥)之间,高于煤和焦炭。
另外,污泥中还含有丰富的氮磷钾,是具有较高肥效的有机肥料。
通过以上流程中的消化阶段,可以将有机物转化成沼气,使其中的热量得以利用,同时还可进一步提高其肥效。
污泥浓缩常采用的工艺有重力浓缩、离心浓缩和气浮浓缩等。
污泥消化可分成厌氧消化和好氧消化两大类。
污泥脱水可分为自然干化和机械脱水两大类。
常用的机械脱水工艺有带式压滤脱水、离心脱水等。
污泥处置的途径很多,主要有农林使用、卫生填埋、焚烧和生产建筑材料等。
以上为典型的污泥处理工艺流程,在各地得到了普遍采用。
但由于各地的条件不同,具体情况也不同,尚有一些简化流程。
当污泥采用自然干化方法脱水时,可采用以下工艺流程: 污泥—→污泥浓缩—→干化场—→处置
也可进一步简化为:
污泥—→干化场—→处置
当污泥处置采用卫生填埋工艺时。
可采用以下流程:
污泥—→浓缩—→脱水—→卫生填埋
我国早期建成的处理厂中,尚有很多厂不采用脱水工艺,直接将湿污泥用做农肥,工艺流程如下::
污泥—→污泥浓缩—→污泥消化—→农用
污泥—→污泥浓缩—→农用
污泥—→农用
国外很多处理厂采用焚烧工艺,其中很多不设消化阶段,流程如下:
污泥—→浓缩—→脱水—→焚烧
省去消化的原因,是不降低污泥的热值,使焚烧阶段尽量少耗或不耗另外的燃料。
污泥处理的新技术
为避免污水处理厂污泥对环境的二次污染,各国政府及研究机构对污泥的最终处置问题十分重视并根据各国的国情制定出污泥处置的法规和具体方案。
大部分欧洲国家的污泥以填埋为主;美国和英国的污泥以农用为主;日本的污泥则以焚烧为主;总之,污泥农用和陆地填埋是大多数国家污泥处置的两种最主要方法,农用和陆地填埋方案的选择很大程度上取决于各国政府有关的法律法规和污染控制状况;同时也与国家的大小和农业发展情况有关。
近年来,随着污泥农用标准(如合成有机物和重金属含量)的日益严格,许多国家,如德国、意大利、丹麦等污泥农用的比例不断降低,而污泥填埋的比例增加。
但也有一些国家,如美国、英国和日本等污泥农用的比例增加,填埋的比例减少。
近十年来,世界各国污泥处理涌现了许多新技术,最集中的有以下几个方面。
1、污泥熔化
为了减少污泥体积和利用其中的重金属黏结作用,日本曾开展污泥熔化技术研究,但还不十分深入。
污泥熔化处理也是污泥热化学处理方法的一种。
污泥熔化技术是把污泥加热至1300~1500℃,使污泥中有机物燃烧,其残留物质可用来制作玻璃、钢铁、建筑材料等。
2、两相消化
目前,新型的污水污泥处理工艺如高温酸化-中温甲烷化两相厌氧消化等不断出现,并逐步被应用。
边兴玉等采用污水污泥两相厌氧消化工艺,将产酸相和产甲烷相分别置于各自的反应器中,形成各自的相对优势微生物种群,提高了整个消化过程的处理效果和稳定性。
VSS(挥发性悬浮颗粒物)去除率比中温传统工艺提高50%以上,比高温传统工艺提高35%左右。
高温酸化0.5d后,中温甲烷化8•5d,可达到中温传统法20d的处理效果,节省了时间。
另外,灭菌效果优于中温传统法,产甲烷反应器保持较高的缓冲能力,对挥发性酸积累的抵御和耐冲击负荷的能力强。
3、污泥制油
污泥制油是把含水率为65%的干泥在隔绝空气下,加热升温450℃,在催化剂作用下把污泥中有机物转化为碳氢化合物,最大转化率取决于污泥组成和催化剂的种类,正常200~300L(油)/t(干泥)的产率,其性质与柴油相似。
加拿大正在进行中试试验,澳大利亚Perth 也正在建造利用热化学方法将污泥制油的工厂。
4、污泥湿式氧化(wet air oxidation简称WAO)
湿式氧化法是在高温(125℃~320℃)和高压(0.5~20MPa)条件下,以空气中的氧作为氧化剂,在液相中将有机物分解为二氧化碳、水等无机物或小分子有机物的化学过程。
由于剩余污泥在物质结构上与高浓度有机废水十分相似,因此这种方法也可用于处理剩余污泥。
剩余污泥的湿式氧化法处理是湿式氧化法最成功的应用领域,目前有50%以上的湿式氧化装置应用于剩余污泥的处理。
5、臭氧剩余污泥减量化
这一工艺是由日本的H•Yasui等学者提出的。
此工艺中,剩余污泥的消化与污水处理在同一个曝气池中同时进行。
工艺分成两个过程,一个是臭氧氧化过程,另一个是生物降解过程。
从二沉池中沉下来的污泥,一部分直接回流到曝气池中,另一部分则是先进行臭氧处理然后再回流到曝气池。
污泥经过臭氧处理后,能够提高其生物降解性,在曝气池中与污水同时进行生物处理。
而且在经臭氧处理后,将有一部分污泥(1/3)被无机化。
因此,只要操作适当,可以使污水处理过程中净增污泥量与无机化污泥量相等,从而可以达到无剩余污泥的目的。
6、超声波处理剩余污泥
超声波通常是指频率为的20kHz~10MHz的声波。
当其声强增加到一定的数量时,会对其传播中的媒质产生影响,使媒质的状态、组成、功能和结构等发生变化,通称为超声效应。
超声波与媒质作用的机制可分为热机制、机械机制和空化机制,超声波主要通过空化机制实现对剩余污泥的处理。
7、高速生物反应器
高速生物反应器技术是在利用土壤处理污泥的基础上发展起来的。
利用土壤中的微生物处理污泥,由于系统是开放的,因而会受到气温和土壤湿度的影响,使土壤利用的时间和区域受到一定的限制。
11水本2班张馨月。