高考圆锥曲线中的最值和范围问题的专题
专题23 圆锥曲线中的最值、范围问题 微点1 圆锥曲线中的最值问题试题及答案

例7.
7.已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为− .记M的轨迹为曲线C.
(1)求C的方程,并说明C是什么曲线;
(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.
(i)证明: 是直角三角形;
最值问题不仅解答题中分量较大,而且客观题中也时常出现.
一、常用方法
解决圆锥曲线中的最值问题,常见的方法有:
(1)函数法:一般需要找出所求几量的函数解析式,要注意自变量的取值范围.求函数的最值时,一般会用到配方法、均值不等式或者函数单调性.
(2)方程法:根据题目中的等量关系建立方程,根据方程的解的条件得出目标量的不等关系,再求出目标量的最值.
题型三、与向量有关的最值问题
例6.
6.如图,已知椭圆C1: + =1(a>b>0)的右焦点为F,上顶点为A,P为椭圆C1上任一点,MN是圆C2:x2+(y-3)2=1的一条直径,在y轴上截距为3- 的直线l与AF平行且与圆C2相切.
(1)求椭圆C1的离心率;
(2)若椭圆C1的短轴长为8,求 · 的最大值.
题型二、与角度有关的最值问题
例5.
5.在平面直角坐标系 中,椭圆 : 的离心率为 ,焦距为 .
(Ⅰ)求椭圆 的方程;
(Ⅱ)如图,动直线 : 交椭圆 于 两点, 是椭圆 上一点,直线 的斜率为 ,且 , 是线段 延长线上一点,且 , 的半径为 , 是 的两条切线,切点分别为 .求 的最大值,并求取得最大值时直线 的斜率.
专题23 圆锥曲线中的最值、范围问题 微点1 圆锥曲线中的最值问题
专题23圆锥曲线中的最值、范围问题
2025高考数学一轮复习-圆锥曲线中的最值、范围问题-专项训练【含解析】

课时过关检测(五十四)圆锥曲线中的最值、范围问题【原卷版】1.在平面直角坐标系中,圆O 交x 轴于点F 1,F 2,交y 轴于点B 1,B 2.以B 1,B 2为顶点,F 1,F 2分别为左、右焦点的椭圆E (1)求椭圆E 的标准方程;(2)设经过点(-2,0)的直线l 与椭圆E 交于M ,N 两点,求△F 2MN 面积的最大值.2.已知抛物线C :y 2=4x ,点F 是C 的焦点,O 为坐标原点,过点F 的直线l 与C 相交于A ,B 两点.(1)求向量OA ―→与OB ―→的数量积;(2)设FB ―→=λAF ―→,若λ∈[9,16],求l 在y 轴上的截距的取值范围.3.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,E 的左顶点为A ,上顶点为B ,点P 在椭圆上,且△PF 1F 2的周长为4+23.(1)求椭圆E 的方程;(2)若直线l :y =kx +m (k ≠0)与椭圆交于不同的两点M ,N ,且线段MN 的垂直平分线过定点G (1,0),求k 的取值范围.4.已知椭圆E :x 2a 2+y 2b 21(a >b >0)的左、右焦点分别为F 1,F 2,椭圆E 的离心率为32,且通径长为1.(1)求E 的方程;(2)直线l 与E 交于M ,N 两点(M ,N 在x 轴的同侧),当F 1M ∥F 2N 时,求四边形F 1F 2NM 面积的最大值.课时过关检测(五十四)圆锥曲线中的最值、范围问题【解析版】1.在平面直角坐标系中,圆O 交x 轴于点F 1,F 2,交y 轴于点B 1,B 2.以B 1,B 2为顶点,F 1,F 2分别为左、右焦点的椭圆E (1)求椭圆E 的标准方程;(2)设经过点(-2,0)的直线l 与椭圆E 交于M ,N 两点,求△F 2MN 面积的最大值.解:(1)由已知可得,椭圆E 的焦点在x 轴上.设椭圆E的标准方程为x2a2+y2b2=1(a>b>0),焦距为2c,则b=c,∴a2=b2+c2=2b2,∴椭圆E的标准方程为x22b2+y2b2=1.又椭圆E,∴12b2+12b2=1,解得b2=1.∴椭圆E的标准方程为x22+y2=1.(2)由于点(-2,0)在椭圆E外,所以直线l的斜率存在.设直线l的斜率为k,则直线l:y=k(x+2),设M(x1,y1),N(x2,y2).k(x+2),y2=1,消去y得,(1+2k2)x2+8k2x+8k2-2=0.由Δ>0得0≤k2<12,从而x1+x2=-8k21+2k2,x1x2=8k2-21+2k2,∴|MN|=1+k2|x1-x2|=21+k22-4k2(1+2k2)2.∵点F2(1,0)到直线l的距离d=3|k|1+k2,∴△F2MN的面积为S=12|MN|·d=3k2(2-4k2)(1+2k2)2.令1+2k2=t,则t∈[1,2),∴S=3(t-1)(2-t)t2=3-t2+3t-2t2=3-1+3t-2t2=3当1t=34即t[1,S有最大值,S max=324,此时k=±66.∴当直线l的斜率为±66时,可使△F2MN的面积最大,其最大值324.2.已知抛物线C:y2=4x,点F是C的焦点,O为坐标原点,过点F的直线l与C相交于A,B两点.(1)求向量OA―→与OB―→的数量积;(2)设FB―→=λAF―→,若λ∈[9,16],求l在y轴上的截距的取值范围.解:(1)设A,B两点的坐标分别为(x1,y1),(x2,y2).由题意知直线l的斜率不可能为0,F(1,0),设直线l的方程为x=my+1.=my+1,2=4x,得y2-4my-4=0,Δ=16m2+16>0,1+y2=4m,1y2=-4.∴OA―→·OB―→=x1x2+y1y2=y21y2216+y1y2=1616-4=-3.∴向量OA―→与OB―→的数量积为-3.(2)由(1)1+y2=4m,1y2=-4.∵FB―→=λAF―→,∴y2=-λy1.将y2=-λy11+y2=4m,1y2=-4,1-λ)y1=4m,λy21=-4,-λ)2y21=16m2,λy21=-4,∴(1-λ)2-λ=-4m2,∴4m2=(1-λ)2λ=λ+1λ-2.令f(λ)=λ+1λ-2,易知f(λ)在[9,16]上单调递增,∴4m2∈649,22516,∴m2∈169,22564,∴m∈-158,-43∪43,158.∴l在y轴上的截距-1m的取值范围为-34,-815∪815,34.3.已知椭圆E:x2a2+y2b2=1(a>b>0)的离心率为32,E的左顶点为A,上顶点为B,点P在椭圆上,且△PF1F2的周长为4+23.(1)求椭圆E的方程;(2)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M,N,且线段MN的垂直平分线过定点G(1,0),求k的取值范围.解:(1)a+2c=4+23,=ca=32,=2,=3,则b2=a2-c2=1,∴椭圆E的方程为x24+y2=1.(2)设M(x1,y1),N(x2,y2),弦MN的中点D(x0,y0),kx+m,y2=1,消去y整理得,(1+4k2)x2+8kmx+4m2-4=0,∵直线l:y=kx+m(k≠0)与椭圆交于不同的两点,∴Δ=64k2m2-4(1+4k2)(4m2-4)>0,即m2<1+4k2,1+x2=-8km1+4k2,1·x2=4m2-41+4k2,则x0=x1+x22=-4km1+4k2,y0=kx0+m=m1+4k2,所以直线DG的斜率为k DG=y0x0-1=-m4km+1+4k2,又由直线DG和直线MN垂直可得-m4km+1+4k2·k=-1,则m=-1+4k23k,代入m2<1+4k2可得<1+4k2,即k2>15,解得k>55或k<-55.故所求k∞4.已知椭圆E:x2a2+y2b21(a>b>0)的左、右焦点分别为F1,F2,椭圆E的离心率为32,且通径长为1.(1)求E的方程;(2)直线l与E交于M,N两点(M,N在x轴的同侧),当F1M∥F2N时,求四边形F1F2NM 面积的最大值.解:(1)c2,=2,=1,=3,故椭圆的方程为x24+y2=1.(2)假设M,N两点在x轴上侧,如图所示,延长MF1交E于点M0,由F1M∥F2N知M0与N关于原点对称,从而有|F1M0|=|F2N|,由(1)可知F1(-3,0),F2(3,0),设M(x1,y1),M0(x2,y2),设MF1的方程为x=my-3,由my-3,y2=1得(m2+4)y2-23my-1=0,Δ=12m2+4(m2+4)>0,故1+y2=23mm2+4,1y2=-1m2+4.设F1M与F2N的距离为d,四边形F1F2NM的面积为S,则S=12(|F1M|+|F2N|)d=12(|F1M|+|F1M0|)d=12|MM0|d=S△MF2M0,又因为S△MF2M0=12·|F1F2|·|y1-y2|=12×23×|y1-y2|=3(y1+y2)2-4y1y2=3·12m2(m2+4)2+4m2+4=43m2+1m2+4=43m2+1+3m2+1≤4323=2,当且仅当m2+1=3m2+1,即m=±2时,等号成立,故四边形F1F2NM面积的最大值为2.。
圆锥曲线的最值定值范围经典题型

圆锥曲线最值/范围/定值/定点问题一、圆锥曲线的最值问题方法1:定义转化法①根据圆锥曲线的定义列方程;②将最值问题转化为距离问题求解.例1、已知点F是双曲线x24-y212=1的左焦点,定点A的坐标为(1,4),P是双曲线右支上的动点,则|PF|+|P A|的最小值为________.方法2:数形结合(切线法)当所求的最值是圆锥曲线上的点到某条直线的距离的最值时:①求与直线平行的圆锥曲线的切线;②求出两平行线的距离即为所求的最值.例2、求椭圆x22+y2=1上的点到直线y=x+23的距离的最大值和最小值,并求取得最值时椭圆上点的坐标.方法3:参数法(函数法)①选取合适的参数表示曲线上点的坐标;②求解关于这个参数的函数最值例3、在平面直角坐标系xOy中,点P(x,y)是椭圆x23+y2=1上的一个动点,则S=x+y的最大值为________.方法4:基本不等式法①将最值用变量表示.②利用基本不等式求得表达式的最值.例4、求椭圆x23+y2=1内接矩形ABCD面积的最大值.二、圆锥曲线的范围问题方法1:曲线几何性质法①由几何性质建立关系式;②化简关系式求解.例1、已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线中ac的取值范围是________.方法2:判别式法当直线和圆锥曲线相交、相切和相离时,分别对应着直线和圆锥曲线方程联立消元后得到的一元二次方程的判别式大于零、等于零、小于零 ① 联立曲线方程,消元后求判别式;②根据判别式大于零、小于零或等于零结合曲线性质求解.例2、在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q . (1)求k 的取值范围;(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A ,B ,是否存在常数m ,使得向量OP →+OQ →与AB →共线?如果存在,求m 值;如果不存在,请说明理由.三、圆锥曲线的定值、定点问题 方法1:特殊到一般法根据特殊情况能找到定值(或定点)的问题① 根据特殊情况确定出定值或定点;②对确定出来的定值或定点进行一般情况的证明.例1、已知双曲线C :x 2-y 22=1,过圆O :x 2+y 2=2上任意一点作圆的切线l ,若l 交双曲线于A ,B 两点,证明:∠AOB 的大小为定值.方法2:引进参数法定值、定点是变化中的不变量,引入参数找出与变量与参数没有关系的点(或值)即是定点(或定值).① 引进参数表示变化量;②研究变化的量与参数何时没有关系,找到定值或定点例2、如图所示,曲线C 1:x 29+y 28=1,曲线C 2:y 2=4x ,过曲线C 1的右焦点F 2作一条与x 轴不垂直的直线,分别与曲线C 1,C 2依次交于B ,C ,D ,E 四点.若G 为CD 的中点、H 为BE 的中点,证明|BE |·|GF 2||CD |·|HF 2|为定值.一、圆锥曲线的最值问题答案:例1解析 如图所示,根据双曲线定义|PF |-|PF ′|=4, 即|PF |-4=|PF ′|.又|P A |+|PF ′|≥|AF ′|=5, 将|PF |-4=|PF ′|代入,得|P A |+|PF |-4≥5,即|P A |+|PF |≥9,等号当且仅当A ,P ,F ′三点共线, 即P 为图中的点P 0时成立,故|PF |+|P A |的最小值为9.故填9. 例2.解 设椭圆的切线方程为y =x +b , 代入椭圆方程,得3x 2+4bx +2b 2-2=0. 由Δ=(4b )2-4×3×(2b 2-2)=0,得b =±3.当b =3时,直线y =x +3与y =x +23的距离d 1=62,将b =3代入方程3x 2+4bx +2b 2-2=0,解得x =-233,此时y =33,即椭圆上的点⎝ ⎛⎭⎪⎫-233,33到直线y =x +23的距离最小,最小值是62; 当b =-3时,直线y =x -3到直线y =x +23的距离d 2=362,将b =-3代入方程3x 2+4bx +2b 2-2=0,解得x =233,此时y =-33,即椭圆上的点⎝ ⎛⎭⎪⎫233,-33到直线y =x +23的距离最大,最大值是362. 例3 解析 因为椭圆x 23+y 2=1的参数方程为⎩⎨⎧x =3cos φy =sin φ,(φ为参数).故可设动点P 的坐标为(3cos φ,sin φ),其中0≤φ<2π.因此S =x +y =3cos φ+sin φ=2⎝ ⎛⎭⎪⎫32cos φ+12sin φ=2sin ⎝ ⎛⎭⎪⎫φ+π3,所以,当φ=π6时,S 取最大值2.故填2. 二、圆锥曲线的范围问题答案:例1.解析 根据双曲线定义|PF 1|-|PF 2|=2a ,设|PF 2|=r , 则|PF 1|=4r ,故3r =2a ,即r =2a 3,|PF 2|=2a3.根据双曲线的几何性质,|PF 2|≥c -a ,即2a 3≥c -a ,即c a ≤53,即e ≤53.又e >1, 故双曲线的离心率e 的取值范围是⎝ ⎛⎦⎥⎤1,53.故填⎝ ⎛⎦⎥⎤1,53.例2.解 (1)由已知条件,知直线l 的方程为y =kx +2,代入椭圆方程,得x 22+(kx +2)2=1,整理得⎝ ⎛⎭⎪⎫12+k 2x 2+22kx +1=0.①由直线l 与椭圆有两个不同的交点P 和Q ,得Δ=8k 2-4⎝ ⎛⎭⎪⎫12+k 2=4k 2-2>0,解得k <-22或k >22,即k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫22,+∞.(2)设P (x 1,y 1),Q (x 2,y 2),则OP →+OQ →=(x 1+x 2,y 1+y 2).由方程①,知x 1+x 2=-42k 1+2k 2.②又y 1+y 2=k (x 1+x 2)+22=221+2k 2.③由A (2,0),B (0,1),得AB→=(-2,1).所以OP →+OQ →与AB →共线等价于x 1+x 2=-2(y 1+y 2), 将②③代入,解得k =22.由(1)知k <-22或k >22, 故不存在符合题意的常数k .三、圆锥曲线的定值、定点问题答案:例1.证明 当切线的斜率不存在时,切线方程为x =±2. 当x =2时,代入双曲线方程,得y =±2, 即A (2,2),B (2,-2),此时∠AOB =90°, 同理,当x =-2时,∠AOB =90°.当切线的斜率存在时,设切线方程为y =kx +b , 则|b |1+k2=2,即b 2=2(1+k 2). 由直线方程和双曲线方程消掉y , 得(2-k 2)x 2-2kbx -(b 2+2)=0, 由直线l 与双曲线交于A ,B 两点. 故2-k 2≠0.设A (x 1,y 1),B (x 2,y 2). 则x 1+x 2=2kb2-k 2,x 1x 2=-(b 2+2)2-k 2,y 1y 2=(kx 1+b )(kx 2+b )=k 2x 1x 2+kb (x 1+x 2)+b 2 =-k 2b 2-2k 22-k 2+2k 2b 22-k 2+2b 2-k 2b 22-k 2=2b 2-2k 22-k 2,故x 1x 2+y 1y 2=-b 2-22-k 2+2b 2-2k 22-k 2=b 2-2(1+k 2)2-k 2,由于b 2=2(1+k 2),故x 1x 2+y 1y 2=0,即OA →·OB →=0,∠AOB =90°.综上可知,若l 交双曲线于A ,B 两点,则∠AOB 的大小为定值90°. 例2.证明 由题意,知F 1(-1,0),F 2(1,0), 设B (x 1,y 1),E (x 2,y 2),C (x 3,y 3),D (x 4,y 4), 直线y =k (x -1),代入x 29+y 28=1,得8⎝ ⎛⎭⎪⎫y k +12+9y 2-72=0,即(8+9k 2)y 2+16ky -64k 2=0,则y 1+y 2=-16k 8+9k 2,y 1y 2=-64k 28+9k 2.同理,将y =k (x -1)代入y 2=4x ,得ky 2-4y -4k =0, 则y 3+y 4=4k ,y 3y 4=-4, 所以|BE |·|GF 2||CD |·|HF 2|=|y 1-y 2||y 3-y 4|·12|y 3+y 4|12|y 1+y 2|=(y 1-y 2)2(y 1+y 2)2·(y 3+y 4)2(y 3-y 4)2=(y 1+y 2)2-4y 1y 2(y 1+y 2)2·(y 3+y 4)2(y 3+y 4)2-4y 3y 4=(-16k )2(8+9k 2)2+4×64k 28+9k 2(-16k )2(8+9k 2)2·⎝ ⎛⎭⎪⎫4k 2⎝ ⎛⎭⎪⎫4k 2+16=3为定值.。
高三总复习数学课件 圆锥曲线中的最值、范围问题

[针对训练]
1.已知点F1,F2依次为双曲线C:
x2 a2
-
y2 b2
=1(a>0,b>0)的左、右焦点,且
|F1F2|=6,B1(0,-b),B2(0,b).
由 k2≥0 可得―F1→M·―F1→N∈-1,72. 综上可知,―F1→M·―F1→N 的取值范围是-1,72.
[方法技巧] 圆锥曲线中取值范围问题的常用解法
(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值 范围.
(2)利用已知参数的范围,求新参数的范围,解决这类问题的核心是建立两 个参数之间的等量关系.
(1)若a= 5,以d =(3,-4)为方向向量的直线l经过B1,求F2到l的距离;
(2)若双曲线C上存在点P,使得―B1→P ·―B2→P =-2,求实数b的取值范围. 解:(1)依题意,2c=6,则b= 9-5=2, 则双曲线C:x52-y42=1,B1(0,-2),F2(3,0). 设直线l:4x+3y+m=0, 将B1(0,-2)代入解得m=6, 此时l:4x+3y+6=0,
1 4k
x,∴
N
6,-23k
.联立
x2+4y2=4, y=-41kx,
得x2=
16k2 1+4k2
,即x
2 M
=
16k2 1+4k2
,∵|OM|2=
|ON|·|OE|,∴11+6k42k2=-12+4k4mk2,∴m=-23k,∴直线l的方程为y=kx-23,过
定点
23,0.易知当定点与点H(0,1)的连线与直线l垂直时,d取得最大值
圆锥曲线专题:最值与范围问题的6种常见考法(解析版)

圆锥曲线专题:最值与范围问题的6种常见考法一、圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:1、几何法:通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;2、代数法:把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.二、最值问题的一般解题步骤三、参数取值范围问题1、利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;2、利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;3、利用隐含的不等关系建立不等式,从而求出参数的取值范围;4、利用已知的不等关系构造不等式,从而求出参数的取值范围;5、利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.题型一距离与长度型最值范围问题【例1】已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,焦距为2,点E 在椭圆上.当线段2EF 的中垂线经过1F 时,恰有21cos EF F ∠.(1)求椭圆的标准方程;(2)直线l 与椭圆相交于A 、B 两点,且||2AB =,P 是以AB 为直径的圆上任意一点,O 为坐标原点,求||OP 的最大值.【答案】(1)2212x y +=;(2)max ||OP 【解析】(1)由焦距为2知1c =,连结1EF ,取2EF 的中点N ,线段2EF 的中垂线经过1F 时,1||22EF c ∴==,221212cos ,.1,F N EF F F N F F ∠∴∴-2122,2EF a EF EF a ∴=-∴=+=∴由所以椭圆方程为2212x y +=;(2)①当l 的斜率不存在时,AB 恰为短轴,此时||1OP =;②当l 的斜率存在时,设:l y kx m =+.联立2212x y y kx m ⎧+=⎪⎨⎪=+⎩,得到222(21)4220k x kmx m +++-=,∴△2216880k m =-+>,122421km x x k -+=+,21222221m x x k -=+.21AB x x =-=2==,化简得2222122k m k +=+.又设M 是弦AB 的中点,121222()221my y k x x m k +=++=+∴()2222222241,,||212121km m k M OM k k k m -+⎛⎫= ⎪⎝⎭+⋅++,∴()()()222222222412141||22212221k k k OM k k k k +++=⋅=++++,令2411k t += ,则244||43(1)(3)4t OM t t t t===-++++∴||1OM =- (仅当t =,又||||||||1OP OM MP OM +=+2k =时取等号).综上:max ||OP =【变式1-1】已知抛物线21:4C y x =的焦点F 也是椭圆22222:1(0)x y C a b a b+=>>的一个焦点,1C 与2C 的公共弦长为3.(1)求椭圆2C 的方程;(2)过椭圆2C 的右焦点F 作斜率为(0)k k ≠的直线l 与椭圆2C 相交于A ,B 两点,线段AB 的中点为P ,过点P 做垂直于AB 的直线交x 轴于点D ,试求||||DP AB 的取值范围.【答案】(1)22143x y +=;(2)1(0,)4【解析】(1)抛物线21:4C y x =的焦点F 为(1,0),由题意可得2221c a b =-=①由1C 与2C 关于x 轴对称,可得1C 与2C 的公共点为2,33⎛± ⎝⎭,可得2248193a b +=②由①②解得2a =,b ,即有椭圆2C 的方程为22143x y+=;(2)设:(1)l y k x =-,0k ≠,代入椭圆方程,可得2222(34)84120k x k x k +-+-=,设1(A x ,1)y ,2(B x ,2)y ,则2122834kx x k +=+,212241234k x x k -=+,即有()312122286223434k ky y k x x k k k k -+=+-=-=++,由P 为中点,可得22243()3434k kP k k -++,,又PD 的斜率为1k -,即有222314:3434k k PD y x k k k ⎛⎫--=-- ++⎝⎭,令0y =,可得2234k x k=+,即有22034k D k ⎛⎫⎪+⎝⎭可得2334PD k ==+又AB ==2212(1)34k k +=+,即有DP AB =,由211k +>,可得21011k <<+,即有104<,则有||||DP AB 的取值范围为1(0,)4.【变式1-2】已知曲线C 上任意一点(),P x y2=,(1)求曲线C 的方程;(2)若直线l 与曲线C 在y 轴左、右两侧的交点分别是,Q P ,且0OP OQ ⋅=,求22||OP OQ +的最小值.【答案】(1)2212y x -=;(2)8【解析】(1)设())12,F F ,2=,等价于12122PF PF F F -=<,∴曲线C 为以12,F F 为焦点的双曲线,且实轴长为2,焦距为故曲线C 的方程为:2212y x -=;(2)由题意可得直线OP 的斜率存在且不为0,可设直线OP 的方程为()0y kx k =≠,则直线OQ 的方程为1=-y x k ,由2212y x y kx ⎧-=⎪⎨⎪=⎩,得222222222x k k y k ⎧=⎪⎪-⎨⎪=⎪-⎩,所以()2222221||2k OP x y k+=+=-,同理可得,()2222212121||1212k k OQ k k⎛⎫+ ⎪+⎝⎭==--,所以()()()22222222211111||||22121k k k OP OQ k k -+-++===++()()22222222112222228||||OQ OP OP OQ OP OQOP OQ OP OQ ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥+=++=++≥+= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,当且仅当2OP OQ ==时取等号,所以当2OP OQ ==时,22||OP OQ +取得最小值8.【变式1-3】已知抛物线()2:20E x py p =>的焦点为F ,过点F 且倾斜角为3π的直线被E 所截得的弦长为16.(1)求抛物线E 的方程;(2)已知点C 为抛物线上的任意一点,以C 为圆心的圆过点F ,且与直线12y =-相交于,A B两点,求FA FB FC ⋅⋅的取值范围.【答案】(1)24x y =;(2)[)3,+∞【解析】(1)由抛物线方程得:0,2p F ⎛⎫ ⎪⎝⎭,可设过点F 且倾斜角为3π的直线为:2py =+,由222p y x py⎧=+⎪⎨⎪=⎩得:220x p --=,由抛物线焦点弦长公式可得:)12122816y y p x x p p ++=++==,解得:2p =,∴抛物线E 的方程为:24x y =.(2)由(1)知:()0,1F ,准线方程为:1y =-;设AFB θ∠=,圆C 的半径为r ,则2ACB θ∠=,FC CA CB r ===,1133sin 2224AFBSFA FB AB AB θ∴=⋅=⋅=,又2sin AB r θ=,3FA FB r ∴⋅=;由抛物线定义可知:11c CF y =+≥,即1r ≥,333FA FB FC r ∴⋅⋅=≥,即FA FB FC ⋅⋅的取值范围为[)3,+∞.题型二面积型最值范围问题20y -=与圆O 相切.(1)求椭圆C 的标准方程;(2)椭圆C 的上顶点为B ,EF 是圆O 的一条直径,EF不与坐标轴重合,直线BE 、BF 与椭圆C 的另一个交点分别为P 、Q ,求BPQ 的面积的最大值及此时PQ 所在的直线方程.【答案】(1)2219x y +=;(2)()max278BPQ S=,PQ 所在的直线方程为115y x =±+【解析】20y -=与圆O相切,则1b =,由椭圆的离心率223c e a ==,解得:29a =,椭圆的标准方程:2219x y +=;(2)由题意知直线BP ,BQ 的斜率存在且不为0,BP BQ ⊥,不妨设直线BP 的斜率为(0)k k >,则直线:1BP y kx =+.由22119y kx x y =+⎧⎪⎨+=⎪⎩,得22218911991k x k k y k -⎧=⎪⎪+⎨-⎪=⎪+⎩,或01x y =⎧⎨=⎩,所以2221819,9191k k P k k ⎛⎫-- ⎪++⎝⎭.用1k -代替k ,2229189,9k k Q k k ⎛⎫-+ ⎝+⎪⎭则21891k PB k ==+2189BQ k==+,22222111818162(1)22919(9)(19)BPQ k k k S PB BQ k k k k +=⋅=⋅=++++△342221162()162()99829982k k k k k k k k ++==++++,设1k k μ+=,则21621622764829(2)89BPQ S μμμμ∆==≤+-+.当且仅当649μμ=即183k k μ+==时取等号,所以()max278BPQ S=.即21128(()49k k kk-=+-=,1k k -=直线PQ的斜率222222291911191918181010919PQk k k k k k k k k k k k k ---+-⎛⎫++===-= ⎪⎝⎭--++PQ所在的直线方程:1y =+.【变式2-1】在平面直角坐标系xOy 中,ABC 的周长为12,AB ,AC 边的中点分别为()11,0F -和()21,0F ,点M 为BC 边的中点(1)求点M 的轨迹方程;(2)设点M 的轨迹为曲线Γ,直线1MF 与曲线Γ的另一个交点为N ,线段2MF 的中点为E ,记11NF O MF E S S S =+△△,求S 的最大值.【答案】(1)()221043x y y +=≠;(2)max 32S =【解析】(1)依题意有:112F F =,且211211262MF MF F F ++=⨯=,∴121242MF MF F F +=>=,故点M 的轨迹C 是以()11,0F -和()21,0F 为焦点,长轴长为4的椭圆,考虑到三个中点不可共线,故点M 不落在x 上,综上,所求轨迹方程:()221043x y y +=≠.(2)设()11,M x y ,()22,N x y ,显然直线1MF 不与x 轴重合,不妨设直线1MF 的方程为:1x ty =-,与椭圆()221043x y y +=≠方程联立整理得:()2234690t y ty +--=,()()22236363414410t t t ∆=++=+>,112634t y y t +=+,1129034y y t =-<+,11111122NF O S F y y O ==△,112122211112222MF E MF F S S F F y y ==⋅=△△,∴()()1112122111Δ22234NF O MF E S S S y y y y t =+=+=-=⋅=+△△令()2344u t u =+≥,则()S u ϕ====∵4u ≥,∴1104u <≤,当114u =,即0=t 时,∴max 32S =,∴当直线MN x ⊥轴时,∴max 32S =.【变式2-2】已知双曲线()222210x y a a a-=>的右焦点为()2,0F ,过右焦点F 作斜率为正的直线l ,直线l 交双曲线的右支于P ,Q 两点,分别交两条渐近线于,A B 两点,点,A P 在第一象限,O 为原点.(1)求直线l 斜率的取值范围;(2)设OAP △,OBP ,OPQ △的面积分别是OAP S △,OBP S △,OPQS ,求OPQ OAP OBPS S S ⋅△△△的范围.【答案】(1)()1,+∞;(2)).【解析】(1)因为双曲线()222210x y a a a-=>的右焦点为()2,0F ,故2c =,由222c a a =+得22a =,所以双曲线的方程为,22122x y -=,设直线l 的方程为2x ty =+,联立双曲线方程得,()222222121021420Δ0120t x y t y ty t x ty y y ⎧⎧-≠⎪-=⎪⇒-++=⇒>⇒<⎨⎨=+⎪⎪⋅<⎩⎩,解得01t <<,即直线l 的斜率范围为()11,k t=∈+∞;(2)设()11,P x y ,渐近线方程为y x =±,则P 到两条渐近线的距离1d ,2d 满足,22111212x yd d-⋅==而21221AAxy x tx ty yt⎧⎧=⎪⎪=⎪⎪-⇒⎨⎨=+⎪⎪=⎪⎪-⎩⎩,OA==21221BBxy x tx ty yt⎧⎧=⎪⎪=-⎪⎪+⇒⎨⎨=+-⎪⎪=⎪⎪+⎩⎩,OB==所以12122112221OAP OBPS S OA d OB d d dt⋅=⋅⋅⋅=-△△由()2222214202x y t y tyx ty⎧-=⇒-++=⎨=+⎩,12OPQ OFP OFQ P QS S S OF y y=+=-△△△所以,OPQOAP OBPSS S=⋅△△△,∵01t<<,∴)2OPQOAP OBPSS S∈⋅△△△.【变式2-3】已知抛物线()2:20E y px p=>的焦点为F,P为E上的一个动点,11,2⎛⎫⎪⎝⎭Q与F在E的同一侧,且PF PQ+的最小值为54.(1)求E的方程;(2)若A点在y轴正半轴上,点B、C为E上的另外两个不同点,B点在第四象限,且AB,OC互相垂直、平分,求四边形AOBC的面积.(人教A版专题)【答案】(1)2y x=;(2)【解析】(1)作出E的准线l,方程为2px=-,作PR l⊥于R,所以PR PF=,即PR PQ+的最小值为54,因为11,2⎛⎫⎪⎝⎭Q与F在E的同一侧,所以当且仅当P,Q,R三点共线时PR PQ+取得最小值,所以5124p+=,解得0.5p=,所以E的方程为2y x=;(2)因为AB,OC互相垂直、平分,所以四边形AOBC是菱形,所以BC x⊥轴,设点()0,2A a,所以2BC a=,由抛物线对称性知()2,B a a-,()2,C a a,由AO OB =,得2a=a =所以菱形AOBC 的边AO =23h a ==,其面积为3S AO h =⋅==题型三坐标与截距型最值范围问题【例3】已知双曲线C :()222210,0x y a b a b-=>>过点(),渐近线方程为12y x =±,直线l 是双曲线C 右支的一条切线,且与C 的渐近线交于A ,B 两点.(1)求双曲线C 的方程;(2)设点A ,B 的中点为M ,求点M 到y 轴的距离的最小值.【答案】(1)2214x y -=;(2)2【解析】(1)由题设可知2281112a b b a ⎧-=⎪⎪⎨⎪=⎪⎩,解得21a b =⎧⎨=⎩则C :2214x y -=.(2)设点M 的横坐标为0M x >当直线l 斜率不存在时,则直线l :2x =易知点M 到y 轴的距离为2M x =﹔当直线l 斜率存在时,设l :12y kx m k ⎛⎫=+≠± ⎪⎝⎭,()11,A x y ,()22,B x y ,联立2214x y y kx m ⎧-=⎪⎨⎪=+⎩,整理得()222418440k x kmx m -+++=,()()222264164110k m k m ∆=--+=,整理得2241k m =+联立2204x y y kx m ⎧-=⎪⎨⎪=+⎩,整理得()22241840k x kmx m -++=,则122288841km km k x x k m m+=-=-=--,则12402Mx x kx m +==->,即0km <则222216444Mk x m m==+>,即2M x >∴此时点M 到y 轴的距离大于2;综上所述,点M 到y 轴的最小距离为2.【变式3-1】若直线:l y =22221(0,0)x y a b a b -=>>的一个焦点,且与双曲线的一条渐近线平行.(1)求双曲线的方程;(2)若过点B (0,b )且与x 轴不平行的直线和双曲线相交于不同的两点M ,N ,MN 的垂直平分线为m ,求直线m 与y 轴上的截距的取值范围.【答案】(1)2213x y -=;(2)(4,)+∞.【解析】(1)直线323:33l y =-过x 轴上一点(2,0),由题意可得2c =,即224a b +=,双曲线的渐近线方程为b y x a=±,由两直线平行的条件可得b a =1a b ==,即有双曲线的方程为2213x y -=.(2)设直线1(0)y kx k =+≠,代入2213x y -=,可得22(13)660k x kx ---=,设1122(,),(,)M x y N x y ,则12122266,1313k x x x x k k +==--,MN 中点为2231,1313kk k ⎛⎫ --⎝⎭,可得MN 的垂直平分线方程为221131313k y x k k k ⎛⎫-=-- ⎪--⎝⎭,令0x =,可得2413y k =-,由223624(13)0k k ∆=+->,解得232k <,又26031k <-,解得231k <,综上可得,2031k <<,即有2413k -的范围是(4,)+∞,可得直线m 与y 轴上的截距的取值范围为(4,)+∞.【变式3-2】已知动圆C 过定点(2,0)A ,且在y 轴上截得的弦长为4,圆心C 的轨迹为曲线Γ.(1)求Γ的方程:(2)过点(1,0)P 的直线l 与F 相交于,M N 两点.设PN MP λ=,若[]2,3λ∈,求l 在y 轴上截距的取值范围.【答案】(1)24y x =;(2)⎡-⎣【解析】(1)设(,)C x y ,圆C 的半径为R ,则()()22222220R x x y =+=-+-整理,得24y x=所以Γ的方程为24y x =.(2)设1122(,),(,)M x y N x y ,又(1,0)P ,由PN MP λ=,得()()22111,1,x y x y λ-=--21211(1)x x y y λλ-=-⎧∴⎨=-⎩①②由②,得12222y y λ=,∵2211224,4y x y x ==∴221x x λ=③联立①、③解得2x λ=,依题意有0λ>(2,N N ∴-或,又(1,0)P ,∴直线l 的方程为())11y x λ-=-,或())11y x λ-=--,当[2,3]k ∈时,l 在y轴上的截距为21λ-或21λ--,21=[2,3]上是递减的,21λ≤≤-,21λ-≤-≤-∴直线l 在y轴上截距的取值范围为⎡--⎣.【变式3-3】已知两个定点A 、B 的坐标分别为()1,0-和()1,0,动点P 满足AP OB PB ⋅=(O 为坐标原点).(1)求动点P 的轨迹E 的方程;(2)设点(),0C a 为x 轴上一定点,求点C 与轨迹E 上点之间距离的最小值()d a ;(3)过点()0,1F 的直线l 与轨迹E 在x 轴上方部分交于M 、N 两点,线段MN 的垂直平分线与x 轴交于D 点,求D 点横坐标的取值范围.【答案】(1)24y x =;(2)(),22a a d a a ⎧<⎪=⎨≥⎪⎩;(3)()3,+∞【解析】(1)设(),P x y ,()1,AP x y =+,()1,0OB =,()1,PB x y =--,()1101AP OB x y x ⋅=+⨯+⨯=+,B P =AP OB PB ⋅=,则1x +,所以2222121x x x x y ++=-++,即24y x =.(2)设轨迹E :24y x =上任一点为()00,Q x y ,所以2004y x =,所以()()222200004CQ x a y x a x =-+=-+()()20200220x a x a x =--+≥,令()()()220000220g x x a x a x =--+≥,对称轴为:2a -,当20a -<,即2a <时,()0g x 在区间[)0,∞+单调递增,所以00x =时,()0g x 取得最小值,即2min 2CQ a =,所以min CQ a =,当20a -≥,即2a ≥时,()0g x 在区间[)0,2a -单调递减,在区间[)2,a -+∞单调递增,所以02x a =-时,()0g x 取得最小值,即()22min 2244CQ a a a =--+=-,所以minCQ =,所以(),22a a d a a ⎧<⎪=⎨≥⎪⎩(3)当直线l 的斜率不存在时,此时l :0x =与轨迹E 不会有两个交点,故不满足题意;当直线l 的斜率存在时,设l :1y kx =+,()11,M x y 、()22,N x y ,代入24y x =,得2+14y y k =⨯,即2440ky y -+=,所以124y y k +=,124y y k =,121212211242y y y y x x k k k k k--+-+=+==-,因为直线l 与轨迹E 在x 轴上方部分交于M 、N 两点,所以0∆>,得16160k ->,即1k <;又M 、N 两点在x 轴上方,所以120y y +>,120y y >,即40k>,所以0k >,又1k <,所以01k <<,所以MN 中点1212,22x x y y ++⎛⎫⎪⎝⎭,即2212,kk k ⎛⎫- ⎪⎝⎭,所以垂直平分线为22121y x k k k k ⎛⎫-=--+ ⎝⎭,令0y =,得222111152248x k k k ⎛⎫=-+=-+ ⎪⎝⎭,因为01k <<,所以11k >,所以21115248x k ⎛⎫=-+ ⎪⎝⎭在11k >时单调递增,所以22111511522134848k ⎛⎫⎛⎫-+>-+= ⎪ ⎪⎝⎭⎝⎭,即3x >,所以D 点横坐标的取值范围为:()3,+∞.题型四斜率与倾斜角最值范围问题【例4】设12F F 、分别是椭圆2214x y +=的左、右焦点.(1)若P 是该椭圆上的一个动点,求125=4PF PF ⋅-,求点P 的坐标;(2)设过定点(0,2)M 的直线l 与椭圆交于不同的两点A 、B ,且AOB ∠为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.【答案】(1)⎛ ⎝⎭;(2)2,2⎛⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭.【解析】(1)由题意知,2,1,a b c ===所以())12,F F ,设(,)(0,0)P m n m n >>,则22125(,),)34PF PF m n m n m n ⋅=-⋅-=+-=-,又2214m n +=,有222214534m n m n ⎧+=⎪⎪⎨⎪+-=-⎪⎩,解得1m n =⎧⎪⎨=⎪⎩,所以P ;(2)显然0x =不满足题意,设直线l 的方程为2y kx =+,设()()1122,,A x y B x y ,,22221(14)1612042x y k x kx y kx ⎧+=⎪⇒+++=⎨⎪=+⎩,22(16)4(41)120k k ∆=-+⨯>,解得234k >,①1212221612,4141k x x x x k k +=-=++,则212121212(2)(2)2()4y y kx kx k x x k x x =++=+++,又AOB ∠为锐角,则cos 0AOB ∠>,即0OA OB ⋅>,12120x x y y +>,所以21212121212(1)2()4x x y y y y k x x k x x +==++++2222212(1)1624(4)40414141k k k k k k k +⋅-=-+=>+++,解得204k <<,②由①②,解得322k -<<或322k <<,所以实数k的取值范围为(2,-.【变式4-1】已知椭圆:Γ22221(0x y a b a b +=>>)的左焦点为F ,其离心率22e =,过点F垂直于x 轴的直线交椭圆Γ于P ,Q两点,PQ (1)求椭圆Γ的方程;(2)若椭圆的下顶点为B ,过点D (2,0)的直线l 与椭圆Γ相交于两个不同的点M ,N ,直线BM ,BN 的斜率分别为12,k k ,求12k k +的取值范围.【答案】(1)2212x y +=;(2)()1211,,2222k k ⎛⎫⎛+∈-∞⋃-⋃+∞⎪ ⎝⎭⎝【解析】(1)由题可知2222222c e a bPQ a a b c⎧==⎪⎪⎪==⎨⎪=+⎪⎪⎩,解得11a b c ⎧=⎪=⎨⎪=⎩.所以椭圆Γ的方程为:2212x y +=.(2)由题可知,直线MN 的斜率存在,则设直线MN 的方程为(2)y k x =-,11(,)M x y ,22(,)N x y .由题可知2212(2)x y y k x ⎧+=⎪⎨⎪=-⎩,整理得2222(21)8820k x k x k +-+-=22222(8)4(21)(81)8(21)0k k k k ∆=--+-=-->,解得22k ⎛∈- ⎝⎭.由韦达定理可得2122821k x x k +=+,21228221k x x k -=+.由(1)知,点(0,1)B -设椭圆上顶点为A ,(0,1)A ∴,12DA k k ≠=-且12DB k k ≠=,∴()()1212121212211111k x k x y y k k x x x x -+-++++=+=+()()()221221228121212228212k k k x x k k k k x x k -⋅-++=+=+-+()242111212,,221212122k k k k k k ⎛⎫⎛=-==-∈+∞⋃-∞⋃ ⎪ +++⎝⎭⎝∴12k k +的取值范围为()11,,2222⎛⎫⎛-∞⋃-⋃+∞ ⎪ ⎝⎭⎝.【变式4-2】)已知椭圆1C 的方程为22143x y +=,双曲线2C 的左、右焦点分别为1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点.(1)求双曲线2C 的方程;(2)若直线:2l y kx =+与双曲线2C 恒有两个不同的交点A 和B ,且1OA OB ⋅>(其中O 为原点),求k 的取值范围.【答案】(1)2213y x -=(2)(()1,1-【解析】(1)由题,在椭圆1C 中,焦点坐标为()1,0-和()1,0;左右顶点为()2,0-和()2,0,因为双曲线2C 的左、右焦点分别为1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点,所以在双曲线2C 中,设双曲线方程为22221x ya b-=,则221,4a c ==,所以2223b c a =-=,所以双曲线2C 的方程为2213y x -=(2)由(1)联立22213y kx y x =+⎧⎪⎨-=⎪⎩,消去y ,得()223470k x kx -++=①;消去x ,得()2223121230k y y k -+-+=②设()()1122,,,A x y B x y ,则12,x x 为方程①的两根,12,y y 为方程②的两根;21212227123,33k x x y y k k -+⋅=⋅=--,21212227123133k OA OB x x y y k k -+⋅=⋅+⋅=+>--,得23k >或21k <③,又因为方程①中,()22216384k k k ∆=-4⨯7-=-12+>0,得27k <④,③④联立得k的取值范围(()1,1⋃-⋃【变式4-3】已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值.【答案】(1)24y x =;(2)最大值为13.【解析】(1)抛物线2:2(0)C y px p =>的焦点,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,由题意,该抛物线焦点到准线的距离为222p p p ⎛⎫--== ⎪⎝⎭,所以该抛物线的方程为24y x =;(2)[方法一]:轨迹方程+基本不等式法设()00,Q x y ,则()00999,9PQ QF x y ==--,所以()00109,10P x y -,由P 在抛物线上可得()()200104109y x =-,即20025910y x +=,据此整理可得点Q 的轨迹方程为229525=-y x ,所以直线OQ 的斜率000220001025925910OQ y y y k y x y ===++,当00y =时,0OQ k =;当00y ≠时,0010925OQ k y y =+,当00y >时,因为0092530y y +≥,此时103OQ k <≤,当且仅当00925y y =,即035y =时,等号成立;当00y <时,0OQ k <;综上,直线OQ 的斜率的最大值为13.[方法二]:【最优解】轨迹方程+数形结合法同方法一得到点Q 的轨迹方程为229525=-y x .设直线OQ 的方程为y kx =,则当直线OQ 与抛物线229525=-y x 相切时,其斜率k 取到最值.联立2,29,525y kx y x =⎧⎪⎨=-⎪⎩得22290525k x x -+=,其判别式222940525⎛⎫∆=--⨯= ⎪⎝⎭k ,解得13k =±,所以直线OQ 斜率的最大值为13.题型五向量型最值范围问题【例5】在平面直角坐标系xOy 中,已知双曲线221:142x y C -=与椭圆222:142x y C +=,A ,B分别为1C 的左、右顶点,点P 在双曲线1C 上,且位于第一象限.(1)直线OP 与椭圆2C 相交于第一象限内的点M ,设直线PA ,PB ,MA ,MB 的斜率分别为1k ,2k ,3k ,4k ,求1234k k k k +++的值;(2)直线AP 与椭圆2C 相交于点N (异于点A ),求AP AN ⋅的取值范围.【答案】(1)0;(2)()16,+∞【解析】(1)方法1:设直线():0OP y kx k =>,联立22142y kxx y =⎧⎪⎨-=⎪⎩,消y ,得()22124k x -=,所以20120k k >⎧⎨->⎩,解得202k <<,设()()1111,0,0P x y x y >>,则11x y ⎧=⎪⎪⎨⎪=⎪⎩,所以P ⎛⎫.联立22142y kxx y =⎧⎪⎨+=⎪⎩,消y ,得()22124k x +=,设()()2222,0,0M x y x y >>,则22x y ⎧=⎪⎪⎨⎪=⎪⎩,所以M ⎛⎫.因为()2,0A -,()2,0B ,所以211111221112821124224412k y y x y k k k x x x k k-+=+===-+---,222223422222821124224412ky y x y k k k x x x k k ++=+==--+--+,所以1234110k k k k k k ⎛⎫+++=+-= ⎪⎝⎭.方法2设()()1111,0,0P x y x y >>,()()2222,0,0M x y x y >>,因为()2,0A -,()2,0B ,所以11111221112224y y x yk k x x x +=+=-+-,22223422222224y y x yk k x x x +=+=-+-.因为点P 在双曲线1C 上,所以2211142x y -=,所以221142x y -=,所以1121x k k y +=.因为点Q 在椭圆线2C 上,所以2222142x y +=,所以222242x y -=-,所以2342x k k y +=-.因为O ,P ,M 三点共线,所以1212y y x x =,所以121234120x x k k k k y y +++=-=.(2)设直线AP 的方程为2y kx k =+,联立22224y kx k x y =+⎧⎨-=⎩,消y ,得()()22222184210k x k x k -+++=,解得12x =-,2224212k x k +=-,所以点P 的坐标为222424,1212k k k k ⎛⎫+ ⎪--⎝⎭,因为点P 位于第一象限,所以222420124012k k k k ⎧+>⎪⎪-⎨⎪>⎪-⎩,解得202k <<,联立22224y kx k x y =+⎧⎨+=⎩,消y ,得()()22222184210k x k x k +++-=,解得32x =-,2422412kx k -=+,所以点N 的坐标为222244,1212k k k k ⎛⎫- ++⎝⎭,所以()22222224161422444221212121214k k k k kAP AN AP AN k k k k k +⎛⎫⎛⎫+-⋅=⋅=--+⋅= ⎪⎪-+-+-⎝⎭⎝⎭,设21t k =+,则312t <<,所以22161616314(1)48384t tAP AN t t t t t ⋅===---+-⎛⎫-+ ⎪⎝⎭.因为函数3()4f x x x=+在区间31,2⎛⎫⎪⎝⎭上单调递增,所以当312t <<时,3748t t <+<,所以30841t t ⎛⎫<-+< ⎪⎝⎭,所以1616384t t >⎛⎫-+ ⎪⎝⎭,即16AP AN ⋅>,故AP AN ⋅的取值范围为()16,+∞.【变式5-1】已知O为坐标原点,椭圆2222:1(0)x yC a ba b+=>>的离心率为3,且经过点P.(1)求椭圆C的方程;(2)直线l与椭圆C交于A,B两点,直线OA的斜率为1k,直线OB的斜率为2k,且1213k k=-,求OA OB⋅的取值范围.【答案】(1)22193x y+=;(2)[3,0)(0,3]-.【解析】(1)由题意,223611caa b⎧=⎪⎪⎨⎪+=⎪⎩,又222a b c=+,解得3,a b==所以椭圆C为22193x y+=.(2)设()()1122,,,A x yB x y,若直线l的斜率存在,设l为y kx t=+,联立22193y kx tx y=+⎧⎪⎨+=⎪⎩,消去y得:()222136390+++-=k x ktx t,22Δ390k t=+->,则12221226133913ktx xktx xk-⎧+=⎪⎪+⎨-⎪=⎪+⎩,又12k k=121213y yx x=-,故121213=-y y x x且120x x≠,即2390-≠t,则23≠t,又1122,y kx t y kx t=+=+,所以()()()222222222121212221212122691133939313-+++++-+==+=+==---+k t tkx t kx t kt x x ty y t kkk ktx x x x x x tk,整理得222933=+≥t k,则232≥t且Δ0>恒成立.221212121212222122393333133313--⎛⎫⋅=+=-==⋅=⋅=-⎪+⎝⎭t tOA OB x x y y x x x x x xk t t,又232≥t,且23≠t,故2331[3,0)(0,3)⎛⎫-∈-⎪⎝⎭t.当直线l的斜率不存在时,2121,x x y y==-,又12k k=212113-=-yx,又2211193x y+=,解得2192x=则222111233⋅=-==OA OB x y x.综上,OA OB ⋅的取值范围为[3,0)(0,3]-.【变式5-2】已知双曲线22221(00)x y C a b a b-=>>:,的离心率为2,F 为双曲线的右焦点,直线l 过F 与双曲线的右支交于P Q ,两点,且当l 垂直于x 轴时,6PQ =;(1)求双曲线的方程;(2)过点F 且垂直于l 的直线'l 与双曲线交于M N ,两点,求MP NQ MQ NP ⋅⋅+的取值范围.【答案】(1)2213y x -=;(2)(],12-∞-【解析】(1)依题意,2c a =,当l 垂直于x 轴时,226b PQ a==,即23b a =,即223c a a -=,解得1a =,b =2213y x -=;(2)设:2PQ l x my =+,联立双曲线方程2213y x -=,得:()22311290m y my -++=,当0m =时,()()()()2,3,2,3,0,1,0,1P Q M N --,12MP NQ MQ NP ⋅+⋅=-,当0m ≠时,设()()()()11223344,,,,,,,P x y Q x y M x y N x y ,因为直线PQ 与双曲线右支相交,因此1229031y y m =<-,即m ⎛⎫⎛∈⋃ ⎪ ⎝⎭⎝⎭,同理可得234293m y y m =-,依题意()()MP NQ MF FP NF FQ MF NF FP FQ =+⋅+=⋅+⋅⋅,同理可得,()()MQ NP MF FQ NF FP MF NF FP FQ =+⋅+⋅=⋅+⋅,而()212342111FP FQ MF NF m y y y y m ⎛⎫⋅+⋅=+++ ⎪⎝⎭,代入122931y y m =-,234293m y y m =-,()()()()()()222242224222919118163633133103133m m m m m FP FQ MF NF m m m m m m ++-+++⋅+⋅=+==----+--,分离参数得,2429663103m FP FQ MF NF m m ⋅+⋅=---+,因为3333m ⎛⎫⎛∈⋃ ⎪ ⎝⎭⎝⎭,当210,3m ⎛⎫∈ ⎪⎝⎭时,由22110,3m m ⎛⎫+∈+∞ ⎪⎝⎭,()22966,61310FP FQ MF NF m m ⋅+⋅=-∈-∞-⎛⎫+- ⎪⎝⎭,所以()()2,12MP NQ MQ N FP FQ MF NF P ⋅=⋅+⋅∈∞-⋅-+,综上可知,MP NQ MQ NP ⋅⋅+的取值范围为(],12-∞-.【变式5-3】已知抛物线()2:20E x py p =>的焦点为F ,直线4x =分别与x 轴交于点P ,与抛物线E 交于点Q ,且54QF PQ =.(1)求抛物线E 的方程;(2)如图,设点,,A B C 都在抛物线E 上,若ABC 是以AC 为斜边的等腰直角三角形,求AB AC ⋅uu u r uuu r的最小值.【答案】(1)24x y =;(2)32【解析】(1)设点()04,Q y ,由已知000216524py p y y =⎧⎪⎨+=⎪⎩,则8102p p p +=,即24p =.因为0p >,则2p =,所以抛物线E 的方程是24x y =.(2)设点()222312123123,,,,,444x x x A x B x C x x x x ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,直线AB 的斜率为()0k k >,因为AB BC ⊥,则直线BC 的斜率为1k-.因为AB BC =,则1223x x x x -=-,得()2312x x k x x -=-,①因为22121212444x x x x k x x -+==-,则124x x k +=,即124x k x =-,②因为223223231444x x x x k x x -+-==-,则234x x k +=-,即324x x k =--③将②③代入①,得()2242420x k k x k+--=,即()()322212120k k x k kk-+---=,则()()32211k xk k -=+,所以()()()()22222122··cos 451421AB AC AB AC AB x x k k x k ︒===-+=-+()()()()()2332222411614111k k k k k k k k ⎡⎤-+⎢⎥=-+=++⎢⎥⎣⎦因为212k k +≥,则()22214k k +≥,又()22112k k++≥,则()()3222121k k k +≥+,从而()()3222121kk k +≥+当且仅当1k =时取等号,所以AB AC 的最小值为32.题型六参数型最值范围问题【例6】已知点()()1122,,,M x y N x y 在椭圆222:1(1)xC y a a+=>上,直线,OM ON 的斜率之积是13-,且22212x x a +=.(1)求椭圆C 的方程;(2)若过点()0,2Q 的直线与椭圆C 交于点,A B ,且(1)QB t QA t =>,求t 的取值范围.【答案】(1)2213x y +=;(2)(]1,3【解析】(1)椭圆方程改写为:2222x a y a +=,点()()1122,,,M x y N x y 在椭圆上,有222211a y a x =-,222222a y a x =-,两式相乘,得:()()()222222222241142122122a a a y y a x a x x x x x --==-++,由22212x x a +=,得222212241a y y x x =,由直线,OM ON 的斜率之积是13-,得121213y y x x =-,即222212129y y x x =,∴49a =,23a =,椭圆C 的方程为:2213x y +=.(2)过点()0,2Q 的直线若斜率不存在,则有()0,1A ,()0,1B -,此时3t =;当过点()0,2Q 的直线斜率存在,设直线方程为2y kx =+,由22213y kx x y =+⎧⎪⎨+=⎪⎩,消去y ,得()22131290k x kx +++=,直线与椭圆C 交于点,A B 两点,∴()2221249(13)36360k k k ∆=-⨯⨯+=->,得21k >设()()1122,,,A x y B x y '''',(1)QB t QA t =>,21x x t '='由韦达定理12122121212(1)13913k x x t x k x x tx k ''''-⎧+==+⎪⎪+⎨⎪⋅+'='=⎪⎩,消去1x ',得()229131441t k t ⎛⎫=+ ⎪⎝⎭+,由21k >,2101k<<,∴()2311641t t <<+,由1t >,解得13t <<,综上,有13t <≤,∴t 的取值范围为(]1,3【变式6-1】已知A 、B 分别是椭圆2222:1(0)x y C a b a b+=>>的左右顶点,O 为坐标原点,=6AB ,点2,3⎛⎫⎪⎝⎭5在椭圆C 上.过点()0,3P -,且与坐标轴不垂直的直线交椭圆C 于M 、N 两个不同的点.(1)求椭圆C 的标准方程;(2)若点B 落在以线段MN 为直径的圆的外部,求直线的斜率k 的取值范围;(3)当直线的倾斜角θ为锐角时,设直线AM 、AN 分别交y 轴于点S 、T ,记PS PO λ=,PT PO μ=,求λμ+的取值范围.【答案】(1)22195x y +=;(2)227,,1,332k ⎛⎫⎛⎫⎛⎫∈-∞-⋃⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(3)4,23⎛⎫ ⎪⎝⎭【解析】(1)因为=6AB ,所以=3a ;又点2,3⎛⎫ ⎪⎝⎭5在图像C 上即()22252319b⎛⎫⎪⎝⎭+=,所以b 所以椭圆C 的方程为22195x y +=;(2)由(1)可得()3,0B ,设直线3l y kx =-:,设11(,)M x y 、22(,)N x y ,由22=-3=195y kx x y ⎧⎪⎨+⎪⎩得22(59)54360k x kx +-+=,22(54)436(59)0k k ∆=-⨯⨯+>解得23k >或23k <-①∵点()3,0B 在以线段MN 为直径的圆的外部,则0BM BN ⋅>,又12212254+=5+936=5+9k x x k x x k ⎧⎪⎪⎨⎪⎪⎩②211221212(3,)(3,)(1)3(1)()180BM BN x y x y k x x k x x ⋅=--=+-+++>,解得1k <或72k >由①②得227,,1,332k ⎛⎫⎛⎫⎛⎫∈-∞-⋃⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)设直线3l y kx =-:,又直线的倾斜角θ为锐角,由(2)可知23k >,记11(,)M x y 、22(,)N x y ,所以直线AM 的方程是:()1133y y x x =++,直线AN 的方程是:()2233y y x x =++.令=0x ,解得113+3y y x =,所以点S 坐标为1130,+3y x ⎛⎫ ⎪⎝⎭;同理点T 为2230,+3y x ⎛⎫⎪⎝⎭.所以1130,3+3y PS x ⎛⎫=+ ⎪⎝⎭,2230,3+3y PT x ⎛⎫=+ ⎪⎝⎭,()0,3PO =.由PS PO λ=,PT PO μ=,可得:11333+3y x λ+=,22333+3y x μ+=,所以1212233y yx x λμ+=++++,由(2)得1225495k x x k +=+,1223695x k x =+,所以()()()1212121212122311333338229kx x k x x kx kx x x x x x x λμ--++-+-+=++=+++++()222254231189595254936369595k k k k k k k k ⎛⎫⋅+-- ⎪++⎝⎭=+⎛⎫++ ⎪++⎝⎭21012921k k k +=-⨯+++()()2110291k k +=-⨯++101291k =-⨯++,因为23k >,所以5131,0315k k +><<+,10142,2913k ⎛⎫-⨯+∈ ⎪+⎝⎭,故λμ+的范围是4,23⎛⎫⎪⎝⎭.【变式6-2】设A ,B 为双曲线C :22221x y a b-=()00a b >>,的左、右顶点,直线l 过右焦点F 且与双曲线C 的右支交于M ,N 两点,当直线l 垂直于x 轴时,AMN 为等腰直角三角形.(1)求双曲线C 的离心率;(2)已知4AB =,若直线AM ,AN 分别交直线1x =于P ,Q 两点,若()0D t ,为x 轴上一动点,当直线l 的倾斜角变化时,若PDQ ∠为锐角,求t 的取值范围.【答案】(1)2;(2){2t t <-或}4t >【解析】(1)由双曲线C :22221x y a b-=()00a b >>,可得:右焦点(),0F c ,将x c =代入2222:1(0,0)x y C a b a b -=>>中,2by a=±,当直线l 垂直于x 轴时,AMN 为等腰直角三角形,此时AF FM =,即2b ac a+=,整理得:220a ac b +-=,因为222b c a =-,所以2220a ac c +-=,方程两边同除以2a 得:220e e +-=,解得:2e =或1-(舍去),所以双曲线C 的离心率为2;(2)因为24AB a ==,所以2a =,因为2c e a ==,解得4c =,故22212b c a =-=,所以双曲线的方程为221412x y -=,当直线l 的斜率存在时,设直线l 的方程为:()4y k x =-,与双曲线联立得:()22223816120kxk x k -+--=,设()()1122,,,M x y N x y ,则212283k x x k +=-,212216123k x x k +=-,则()()()221212121244416y y k x x k x x x x =--=-++⎡⎤⎣⎦222221612321633k k k k k ⎛⎫+=-+ ⎪--⎝⎭22363k k -=-,因为直线l 过右焦点F 且与双曲线C 的右支交于,M N 两点,所以22121222816124,433k k x x x x k k ++=>=>--,解得:23k >,直线()11:22y AM y x x =++,则1131,2y P x ⎛⎫ ⎪+⎝⎭,同理可求得:2231,2y Q x ⎛⎫⎪+⎝⎭,所以11,213y D x P t ⎪+⎛⎫=- ⎝⎭,22,213y D x Q t ⎪+⎛⎫=- ⎝⎭,因为PDQ ∠为锐角,所以()()12221192202D y y x Q t x P D t ⋅=+-+>++,即()1122122109224y y x x x t x t +-+++>+,所以22222221203693161216433k k k k t k t k -⨯-++--+++>-所以21290t t +-->即()219t ->,解得2t <-或4t >;当直线l 的斜率不存在时,将4x =代入双曲线可得6y =±,此时不妨设()()4,6,4,6M N -,此时直线:2AM y x =+,点P 坐标为()1,3,同理可得:()1,3Q -,所以()1,3DP t =-,()1,3DQ t =--,因为PDQ ∠为锐角,所以2280DP DQ t t ⋅=-->,解得2t <-或4t >;综上所述,t 的取值范围{2t t <-或}4t >【变式6-3】22122:1y x C a b-=上的动点P 到两焦点的距离之和的最小值为22:2(0)C x py p =>的焦点与双曲线1C 的上顶点重合.(1)求抛物线2C 的方程;(2)过直线:(l y a a =为负常数)上任意一点M 向抛物线2C 引两条切线,切点分别为AB ,坐标原点O 恒在以AB 为直径的圆内,求实数a 的取值范围.【答案】(1)24x y =;(2)40a -<<.【解析】(1)由已知:双曲线焦距为,则长轴长为2,故双曲线的上顶点为(0,1),即为抛物线焦点.∴抛物线2C 的方程为24x y =;(2)设(,)M m a ,2111(,)4A x x ,2221(,)4B x x ,故直线MA 的方程为211111()42y x x x x -=-,即21142y x x x =-,所以21142a x m x =-,同理可得:22242a x m x =-,∴1x ,2x 是方程242a xm x =-的两个不同的根,则124x x a =,2212121()416OA OB x x x x a a ∴⋅=+=+,由O 恒在以AB 为直径的圆内,240a a ∴+<,即40a -<<.。
高考数学圆锥曲线中的最值与范围专题

高考数学圆锥曲线中的最值与范围专题一、整理方法 提升能力圆锥曲线中的最值与范围问题的类型较多,解法灵活多变,但总体上主要有以下3种方法:方法1:几何法.若题目的条件或结论能明显体现几何特征及意义,则考虑利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解.方法2:代数法.把所求的量表示为某个(某些)参数的函数解析式,然后利用函数方法、不等式方法等进行求解.对于大多数题目来说,主要是选择一个参数去表示所求的量,从而把问题转化为求函数的值域问题.由于引进的参数往往不只一个,所以解题时通常涉及到消参问题.如果用两个参数去表示所求的量(不能通过消参留下一个未知数),则往往考虑使用均值不等式.方法3:不等式(组)法.由题目所给的条件寻找所求量满足的不等式(组),通过该不等式(组)的求解得到所求量的最值或取值范围.上述三种方法中,方法1主要在小题中体现,解答题中以方法2最为常见.例1 已知抛物线C 的顶点为()0,0O ,焦点为()0,1F .(1)求抛物线C 的方程;(2)过点F 作直线交抛物线C 于A 、B 两点,若直线AO 、BO 分别交直线l :2y x =-于M 、N 两点,求MN的最小值.例2 设椭圆22213x y a +=(3a >)的右焦点为F ,右顶点为A .已知113e OF OA FA +=,其中O 为原点,e 为椭圆的离心率.(1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF HF ⊥,且MOA MAO ∠≤∠,求直线l 的斜率的取值范围.例3 已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k (0k >)的直线交E 于A 、M 两点,点N 在E 上,MA NA ⊥.(1)当4t =,AM AN =时,求△AMN 的面积;(2)当2AM AN =时,求k 的取值范围.二、练习巩固 整合提升练习1:如图,设抛物线22y px =(0p >)的焦点为F ,抛物线上的点A 到y 轴的距离等于1AF -.(1)求p 的值;(2)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M ,求M 的横坐标的取值范围.练习2:椭圆M :22221x y a b+=(0a b >>)3,直线x a =±和y b =±所围成的矩形ABCD 的面积为8.(1)求椭圆M 的标准方程;(2)设直线l :y x m =+(m ∈R )与椭圆M 有两个不同的交点P 、Q ,l 与矩形ABCD 有两个不同的交点S 、T ,求PQST 的最大值及取得最大值时m 的值.练习3:如图,点()0,1P -是椭圆1C :22221x y a b +=(0a b >>)的一个顶点,1C 的长轴是圆2C :224x y +=的直径.1l 、2l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于A 、B 两点,2l 交椭圆1C 于另一点D .(1)求椭圆1C 的方程;(2)求△ABD 面积取最大值时直线1l 的方程.练习4:如图,O 为坐标原点,椭圆1C :22221x y a b+=(0a b >>)的左右焦点分别为1F 、2F ,离心率为1e ;双曲线2C :22221x y a b-=的左右焦点分别为3F 、4F ,离心率为2e ,已知123e e =,且2431F F =. (1)求1C 、2C 的方程;(2)过1F 点作1C 的不垂直于y 轴的弦AB ,M 为AB 的中点,当直线OM 与2C 交于P 、Q 两点时,求四边形APBQ 面积的最小值.。
圆锥曲线中的范围、最值、证明问题 专题

圆锥曲线中的范围、最值、证明问题[压轴大题突破练][明晰考情] 1.命题角度:直线与圆锥曲线的位置关系是高考必考题,范围、最值问题是高考的热点;圆锥曲线中的证明问题是常见的题型.2.题目难度:中高档难度.考点一 直线与圆锥曲线方法技巧 对于直线与圆锥曲线的位置关系问题,一般要把圆锥曲线的方程与直线方程联立来处理.(1)设直线方程,在直线的斜率不确定的情况下要分斜率存在和不存在两种情况进行讨论,或者将直线方程设成x =my +b (斜率不为0)的形式.(2)联立直线方程与曲线方程并将其转化成一元二次方程,利用方程根的判别式或根与系数的关系得到交点的横坐标或纵坐标的关系.(3)一般涉及弦长的问题,要用到弦长公式|AB |=1+k 2·|x 1-x 2|或|AB |=1+1k 2·|y 1-y 2|. 1.已知动点M (x ,y )到点F (2,0)的距离为d 1,动点M (x ,y )到直线x =3的距离为d 2,且d 1d 2=63.(1)求动点M (x ,y )的轨迹C 的方程;(2)过点F 作直线l :y =k (x -2)(k ≠0)交曲线C 于P ,Q 两点,若△OPQ 的面积S △OPQ =3(O 是坐标原点),求直线l 的方程. 解 (1)结合题意,可得d 1=(x -2)2+y 2,d 2=|x -3|. 又d 1d 2=63,即(x -2)2+y 2|x -3|=63,化简得x 26+y 22=1. 因此,所求动点M (x ,y )的轨迹C 的方程是x 26+y 22=1.(2)联立方程组⎩⎪⎨⎪⎧x 26+y 22=1,y =k (x -2),消去y ,得(1+3k 2)x 2-12k 2x +12k 2-6=0.设点P (x 1,y 1),Q (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=12k 21+3k 2,x 1x 2=12k 2-61+3k2,Δ>0.于是,弦|PQ |=(x 1-x 2)2+(y 1-y 2)2=1+k 2⎝ ⎛⎭⎪⎫12k 21+3k 22-4·12k 2-61+3k 2 =26(k 2+1)1+3k 2, 点O 到直线l 的距离d =|2k |1+k2.由S △OPQ =3,得12×|2k |1+k 2×26(k 2+1)1+3k 2=3,化简得,k 4-2k 2+1=0, 解得k =±1,且满足Δ>0,即k =±1符合题意. 因此,所求直线的方程为x -y -2=0或x +y -2=0.2.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,右焦点为F (1,0).(1)求椭圆E 的标准方程;(2)设点O 为坐标原点,过点F 作直线l 与椭圆E 交于M ,N 两点,若OM ⊥ON ,求直线l 的方程.解 (1)依题意可得⎩⎪⎨⎪⎧1a =22,a 2=b 2+1,解得⎩⎪⎨⎪⎧a =2,b =1.∴椭圆E 的标准方程为x 22+y 2=1.(2)设M (x 1,y 1),N (x 2,y 2),①当MN 垂直于x 轴时,直线l 的方程为x =1,设直线与椭圆E 的交点坐标为M ⎝⎛⎭⎫1,22,N ⎝⎛⎭⎫1,-22,此时OM 不垂直于ON ,不符合题意; ②当MN 不垂直于x 轴时,设直线l 的方程为y =k (x -1).联立得方程组⎩⎪⎨⎪⎧x 22+y 2=1,y =k (x -1),消去y 得(1+2k 2)x 2-4k 2x +2(k 2-1)=0,Δ>0显然成立. ∴x 1+x 2=4k 21+2k 2,x 1x 2=2(k 2-1)1+2k 2. ∴y 1y 2=k 2[x 1x 2-(x 1+x 2)+1]=-k 21+2k 2.∵OM ⊥ON ,∴OM →·ON →=0. ∴x 1x 2+y 1y 2=k 2-21+2k 2=0,∴k =±2.故直线l 的方程为2x ±y -2=0.3.(2017·天津)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线y 2=2px (p >0)的焦点,F 到抛物线的准线l 的距离为12.(1)求椭圆的方程和抛物线的方程;(2)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (点B 异于点A ),直线BQ 与x 轴相交于点D .若△APD 的面积为62,求直线AP 的方程. 解 (1)设点F 的坐标为(-c ,0),依题意,得c a =12,p 2=a ,a -c =12,解得a =1,c =12,p =2,于是b 2=a 2-c 2=34.所以椭圆的方程为x 2+4y 23=1,抛物线的方程为y 2=4x .(2)设直线AP 的方程为x =my +1(m ≠0),与直线l 的方程x =-1联立,可得点P ⎝⎛⎭⎫-1,-2m , 故点Q ⎝⎛⎭⎫-1,2m . 将x =my +1与x 2+4y 23=1联立,消去x ,整理得(3m 2+4)y 2+6my =0,解得y =0或y =-6m3m 2+4.由点B 异于点A ,可得点B ⎝⎛⎭⎪⎫-3m 2+43m 2+4,-6m 3m 2+4, 由Q ⎝⎛⎭⎫-1,2m ,可得直线BQ 的方程为 ⎝ ⎛⎭⎪⎫-6m 3m 2+4-2m (x +1)-⎝ ⎛⎭⎪⎫-3m 2+43m 2+4+1⎝⎛⎭⎫y -2m =0, 令y =0,解得x =2-3m 23m 2+2,故点D ⎝ ⎛⎭⎪⎫2-3m 23m 2+2,0.所以|AD |=1-2-3m 23m 2+2=6m 23m 2+2.又因为△APD 的面积为62, 故12×6m 23m 2+2×2|m |=62, 整理得3m 2-26|m |+2=0, 解得|m |=63,所以m =±63. 所以直线AP 的方程为3x +6y -3=0或3x -6y -3=0. 考点二 圆锥曲线中的范围、最值问题方法技巧 求圆锥曲线中范围、最值的主要方法(1)几何法:若题目中的条件和结论能明显体现几何特征和意义,则考虑利用图形性质数形结合求解.(2)代数法:若题目中的条件和结论能体现一种明确的函数关系,或者不等关系,或者已知参数与新参数之间的等量关系等,则利用代数法求参数的范围.4.已知椭圆E :x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA .(1)当t =4,|AM |=|AN |时,求△AMN 的面积; (2)当2|AM |=|AN |时,求k 的取值范围.解 (1)设M (x 1,y 1),则由题意知y 1>0.当t =4时,椭圆E 的方程为x 24+y 23=1,A (-2,0).由|AM |=|AN |及椭圆的对称性知,直线AM 的倾斜角为π4.因此直线AM 的方程为y =x +2.将x =y -2代入x 24+y 23=1,得7y 2-12y =0,解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)由题意知t >3,k >0,A (-t ,0),设M (x 1,y 1), 将直线AM 的方程y =k (x +t )代入x 2t +y 23=1,得(3+tk 2)x 2+2t ·tk 2x +t 2k 2-3t =0. 由x 1·(-t )=t 2k 2-3t 3+tk 2,得x 1=t (3-tk 2)3+tk 2,故|AM |=|x 1+t |1+k 2=6t (1+k 2)3+tk 2.由题设,直线AN 的方程为y =-1k (x +t ),故同理可得|AN |=6kt (1+k 2)3k 2+t.由2|AM |=|AN |,得23+tk 2=k3k 2+t, 即(k 3-2)t =3k (2k -1),当k =32时上式不成立,因此t =3k (2k -1)k 3-2.t >3等价于k 3-2k 2+k -2k 3-2=(k -2)(k 2+1)k 3-2<0,即k -2k 3-2<0. 由此得⎩⎪⎨⎪⎧ k -2>0,k 3-2<0或⎩⎪⎨⎪⎧k -2<0,k 3-2>0,解得32<k <2.因此k 的取值范围是(32,2).5.已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程. 解 (1)设F (c ,0),由条件知,2c =233,得c = 3.又c a =32,所以a =2,b 2=a 2-c 2=1. 故E 的方程为x 24+y 2=1.(2)当l ⊥x 轴时不合题意,故设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2). 将y =kx -2代入x 24+y 2=1,得(1+4k 2)x 2-16kx +12=0. 当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2=8k ±24k 2-34k 2+1.从而|PQ |=k 2+1|x 1-x 2|=4k 2+14k 2-34k 2+1.又点O 到直线PQ 的距离d =2k 2+1.所以△OPQ 的面积S △OPQ =12·d ·|PQ |=44k 2-34k 2+1.+4t当且仅当t =2,即k =±72时等号成立,且满足Δ>0.所以当△OPQ 的面积最大时,l 的方程为2y ±7x +4=0.6.已知O 为坐标原点,M (x 1,y 1),N (x 2,y 2)是椭圆x 24+y 22=1上的点,且x 1x 2+2y 1y 2=0,设动点P 满足OP →=OM →+2ON →. (1)求动点P 的轨迹C 的方程;(2)若直线l :y =x +m (m ≠0)与曲线C 交于A ,B 两点,求△OAB 面积的最大值. 解 (1)设点P (x ,y ),则由OP →=OM →+2ON →, 得(x ,y )=(x 1,y 1)+2(x 2,y 2), 即x =x 1+2x 2,y =y 1+2y 2. 因为点M ,N 在椭圆x 24+y 22=1上,所以x 21+2y 21=4,x 22+2y 22=4.故x 2+2y 2=(x 21+4x 22+4x 1x 2)+2(y 21+4y 22+4y 1y 2) =(x 21+2y 21)+4(x 22+2y 22)+4(x 1x 2+2y 1y 2)=20+4(x 1x 2+2y 1y 2).又因为x 1x 2+2y 1y 2=0,所以x 2+2y 2=20, 所以动点P 的轨迹C 的方程为x 2+2y 2=20.(2)将曲线C 与直线l 的方程联立,得⎩⎪⎨⎪⎧x 2+2y 2=20,y =x +m ,消去y 得3x 2+4mx +2m 2-20=0.因为直线l 与曲线C 交于A ,B 两点,设A (x 3,y 3),B (x 4,y 4), 所以Δ=16m 2-4×3×(2m 2-20)>0. 又m ≠0,所以0<m 2<30, x 3+x 4=-4m3,x 3x 4=2m 2-203.又点O 到直线AB :x -y +m =0的距离d =|m |2, |AB |=1+k 2|x 3-x 4|=(1+k 2)[(x 3+x 4)2-4x 3x 4]=2×⎝ ⎛⎭⎪⎫16m 29-4×2m 2-203= 169(30-m 2), 所以S △OAB =12169(30-m 2)×|m |2=23×m 2(30-m 2)≤23×m 2+(30-m 2)2=52, 当且仅当m 2=30-m 2,即m 2=15时取等号,且满足Δ>0. 所以△OAB 面积的最大值为5 2. 考点三 圆锥曲线中的证明问题方法技巧 圆锥曲线中的证明问题是转化与化归思想的充分体现.无论证明什么结论,要对已知条件进行化简,同时对要证结论合理转化,寻求条件和结论间的联系,从而确定解题思路及转化方向.7.(优质试题·全国Ⅰ) 设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB . (1)解 由已知得F (1,0),l 的方程为x =1. 由已知可得,点A 的坐标为⎝⎛⎭⎫1,22或⎝⎛⎭⎫1,-22. 又M (2,0),所以AM 的方程为y =-22x +2或y =22x - 2. 即x +2y -2=0或x -2y -2=0.(2)证明 当l 与x 轴重合时,∠OMA =∠OMB =0°. 当l 与x 轴垂直时,OM 为AB 的垂直平分线, 所以∠OMA =∠OMB .当l 与x 轴不重合也不垂直时,设l 的方程为y =k (x -1)(k ≠0),A (x 1,y 1),B (x 2,y 2), 则x 1<2,x 2<2,直线MA ,MB 的斜率之和 k MA +k MB =y 1x 1-2+y 2x 2-2.由y 1=kx 1-k ,y 2=kx 2-k ,得 k MA +k MB =2kx 1x 2-3k (x 1+x 2)+4k(x 1-2)(x 2-2).将y =k (x -1)代入x 22+y 2=1,得(2k 2+1)x 2-4k 2x +2k 2-2=0,由题意知Δ>0恒成立, 所以x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1.则2kx 1x 2-3k (x 1+x 2)+4k =4k 3-4k -12k 3+8k 3+4k2k 2+1=0,从而k MA +k MB =0, 故MA ,MB 的倾斜角互补. 所以∠OMA =∠OMB . 综上,∠OMA =∠OMB .8.(优质试题·大庆质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为23,且C 过点⎝⎛⎭⎫3,12. (1)求椭圆C 的方程;(2)设B 1,B 2分别是椭圆C 的下顶点和上顶点,P 是椭圆上异于B 1,B 2的任意一点,过点P 作PM ⊥y 轴于M ,N 为线段PM 的中点,直线B 2N 与直线y =-1交于点D ,E 为线段B 1D 的中点,O 为坐标原点,求证:ON ⊥EN . (1)解 由题设知焦距为23,所以c = 3. 又因为椭圆过点⎝⎛⎭⎫3,12, 所以代入椭圆方程得3a 2+14b 2=1,因为a 2=b 2+c 2,解得a =2,b =1,故所求椭圆C 的方程是x24+y 2=1.(2)证明 设P (x 0,y 0),x 0≠0,则M (0,y 0),N ⎝⎛⎭⎫x 02,y 0. 因为点P 在椭圆C 上,所以x 204+y 20=1.即x 20=4-4y 20. 又B 2(0,1),所以直线B 2N 的方程为y -1=2(y 0-1)x 0x .令y =-1,得x =x 01-y 0,所以D ⎝⎛⎭⎫x 01-y 0,-1.又B 1(0,-1),E 为线段B 1D 的中点, 所以E ⎝⎛⎭⎫x 02(1-y 0),-1.所以ON →=⎝⎛⎭⎫x 02,y 0,EN →=⎝⎛⎭⎫x 02-x 02(1-y 0),y 0+1. 因为ON →·EN →=x 02⎣⎡⎦⎤x 02-x 02(1-y 0)+y 0(y 0+1)=x 204-x 204(1-y 0)+y 20+y 0=1-4-4y 204(1-y 0)+y 0=1-y 0-1+y 0=0,所以ON →⊥EN →,即ON ⊥EN .9.(优质试题·咸阳模拟)已知A (-2,0),B (2,0),点C 是动点,且直线AC 和直线BC 的斜率之积为-34.(1)求动点C 的轨迹方程;(2)设直线l 与(1)中轨迹相切于点P ,与直线x =4相交于点Q ,且F (1,0),求证:∠PFQ =90°.(1)解 设C (x ,y ),则依题意得k AC ·k BC =-34,又A (-2,0),B (2,0),所以有y x +2·y x -2=-34(y ≠0),整理得x 24+y 23=1(y ≠0),即为所求轨迹方程.(2)证明 方法一 由题意知,直线l 的斜率存在,设直线l :y =kx +m ,与3x 2+4y 2=12联立得,3x 2+4(kx +m )2=12,即(3+4k 2)x 2+8kmx +4m 2-12=0,依题意得Δ=(8km )2-4(3+4k 2)(4m 2-12)=0, 即3+4k 2=m 2,∴x 1+x 2=-8km3+4k 2,得x 1=x 2=-4km3+4k 2,∴P ⎝ ⎛⎭⎪⎫-4km 3+4k 2,3m 3+4k 2,而3+4k 2=m 2,得P ⎝ ⎛⎭⎪⎫-4k m ,3m ,又Q (4,4k +m ),F (1,0), 则FP →·FQ →=⎝⎛⎭⎫-4km -1,3m ·(3,4k +m )=0, 知FP →⊥FQ →, 即∠PFQ =90°.方法二 设P (x 0,y 0),则曲线C 在点P 处切线PQ : x 0x 4+y 0y 3=1,令x =4,得Q ⎝⎛⎭⎪⎫4,3-3x 0y 0, 又F (1,0),∴FP →·FQ →=(x 0-1,y 0)·⎝⎛⎭⎪⎫3,3-3x 0y 0=0,知FP →⊥FQ →,即∠PFQ =90°.典例 (12分)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且点⎝⎛⎭⎫3,12在椭圆C 上. (1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b 2=1,P 为椭圆C 上任意一点,过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q . ①求|OQ ||OP |的值;②求△ABQ 面积的最大值. 审题路线图基本量法求得椭圆C 的方程(2)①P 在C 上,Q 在E 上――→P ,O ,Q 共线设坐标代入方程―→求出|OQ ||OP |②直线y =kx +m 和椭圆E 的方程联立――→通法研究判别式Δ并判断根与系数的关系→ 用m ,k 表示S △OAB →求S △OAB 最值―――――――→利用①得S △ABQ和S △OAB的关系得S △ABQ 的最大值 规范解答·评分标准 解 (1)由题意知3a 2+14b2=1.又a 2-b 2a =32, 解得a 2=4,b 2=1.所以椭圆C 的方程为x 24+y 2=1.…………………………………………2分(2)由(1)知椭圆E 的方程为x 216+y 24=1.①设P (x 0,y 0),|OQ ||OP |=λ(λ>0),由题意知Q (-λx 0,-λy 0).因为x 204+y 20=1,又(-λx 0)216+(-λy 0)24=1,即λ24⎝⎛⎭⎫x 204+y 20=1, 所以λ=2,即|OQ ||OP |=…………………………………………………………………………2.5分②设A (x 1,y 1),B (x 2,y 2). 将y =kx +m 代入椭圆E 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-16=0, 由Δ>0,可得m 2<4+16k 2,(*) 则有x 1+x 2=-8km1+4k 2,x 1x 2=4m 2-161+4k 2. 所以|x 1-x 2|=416k 2+4-m 21+4k 2.…………………………………………………………………8分因为直线y =kx +m 与y 轴交点的坐标为(0,m ),1+4k 1+4k =2⎝ ⎛⎭⎪⎫4-m 21+4k 2m 21+4k 2.……………………………………………………………………9分 设m 21+4k 2=t ,将y =kx +m 代入椭圆C 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-4=0, 由Δ≥0,可得m 2≤1+4k 2.(**) 由(*)和(**)可知0<t ≤1, 因此S =2(4-t )t =2-t 2+4t ,……………………………………………………………10分故0<S ≤23,当且仅当t =1,即m 2=1+4k 2时取得最大值2 3.………………………11分 由①知,△ABQ 的面积为3S ,所以△ABQ 面积的最大值为6 3.…………………………12分 构建答题模板[第一步] 求曲线方程:根据基本量法确定圆锥曲线的方程;[第二步] 联立消元:将直线方程和圆锥曲线方程联立,得到方程Ax 2+Bx +C =0,然后研究判别式,利用根与系数的关系;[第三步] 找关系:从题设中寻求变量的等量或不等关系;[第四步] 建函数:对范围最值类问题,要建立关于目标变量的函数关系;[第五步] 得范围:通过求解函数值域或解不等式得目标变量的范围或最值,要注意变量条件的制约,检查最值取得的条件.1.(优质试题·全国Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程. 解 (1)由题意得F (1,0),l 的方程为y =k (x -1)(k >0). 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0.Δ=16k 2+16>0,故x 1+x 2=2k 2+4k2.所以|AB |=|AF |+|BF |=(x 1+1)+(x 2+1)=4k 2+4k 2.由题意知4k 2+4k 2=8,解得k =-1(舍去)或k =1.因此l 的方程为x -y -1=0.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3), 即y =-x +5.设所求圆的圆心坐标为(x 0,y 0),则⎩⎨⎧y 0=-x 0+5,(x 0+1)2=(x 0-y 0-1)22+16,解得⎩⎪⎨⎪⎧ x 0=3,y 0=2或⎩⎪⎨⎪⎧x 0=11,y 0=-6.因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144.2.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点.若AC →·DB →+AD →·CB →=8,O 为坐标原点,求△OCD 的面积.解 (1)因为过焦点且垂直于x 轴的直线被椭圆截得的线段长为433,所以2b 2a =433.因为椭圆的离心率为33,所以c a =33, 又a 2=b 2+c 2,可解得b =2,c =1,a = 3.所以椭圆的方程为x 23+y22=1.(2)由(1)可知F (-1,0), 则直线CD 的方程为y =k (x +1).联立⎩⎪⎨⎪⎧y =k (x +1),x 23+y 22=1,消去y 得(2+3k 2)x 2+6k 2x +3k 2-6=0. 设C (x 1,y 1),D (x 2,y 2),所以x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2.又A (-3,0),B (3,0), 所以AC →·DB →+AD →·CB →=(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1) =6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2 =6+2k 2+122+3k 2=8,解得k =±2.从而x 1+x 2=-6×22+3×2=-32,x 1x 2=3×2-62+3×2=0.所以|x 1-x 2|=(x 1+x 2)2-4x 1x 2=⎝⎛⎭⎫-322-4×0=32, |CD |=1+k 2|x 1-x 2|=1+2×32=332.而原点O 到直线CD 的距离d =|k |1+k 2=21+2=63, 所以△OCD 的面积S =12|CD |×d =12×332×63=324.3.(优质试题·全国Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0). (1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+F A →+FB →=0.证明:|F A →|,|FP →|,|FB →|成等差数列,并求该数列的公差.(1)证明 设A (x 1,y 1),B (x 2,y 2),则x 214+y 213=1,x 224+y 223=1. 两式相减,并由y 1-y 2x 1-x 2=k ,得x 1+x 24+y 1+y 23·k =0.由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m .①由题设得0<m <32,故k <-12.(2)解 由题意得F (1,0).设P (x 3,y 3),则 (x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0). 由(1)及题设得x 3=3-(x 1+x 2)=1, y 3=-(y 1+y 2)=-2m <0. 又点P 在C 上,所以m =34,从而P ⎝⎛⎭⎫1,-32,|FP →|=32, 于是|F A →|=(x 1-1)2+y 21=(x 1-1)2+3⎝⎛⎭⎫1-x 214=2-x 12. 同理|FB →|=2-x 22.所以|F A →|+|FB →|=4-12(x 1+x 2)=3.故2|FP →|=|F A →|+|FB →|,即|F A →|,|FP →|,|FB →|成等差数列. 设该数列的公差为d ,则2|d |=||FB →|-|F A →||= 12|x 1-x 2|=12(x 1+x 2)2-4x 1x 2.②将m =34代入①得k =-1,所以l 的方程为y =-x +74,代入C 的方程,并整理得7x 2-14x +14=0.故x 1+x 2=2,x 1x 2=128,代入②解得|d |=32128.所以该数列的公差为32128或-32128.4.(优质试题·河南八市测评)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,点M ⎝⎛⎭⎫3,32在椭圆C 上.(1)求椭圆C 的方程;(2)若不过原点O 的直线l 与椭圆C 相交于A ,B 两点,与直线OM 相交于点N ,且N 是线段AB 的中点,求△OAB 面积的最大值.解 (1) 由椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,点M ⎝⎛⎭⎫3,32在椭圆C 上,得⎩⎪⎨⎪⎧c a =12,(3)2a 2+(3)24b 2=1,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a 2=4,b 2=3.所以椭圆C 的方程为x 24+y 23=1.(2)易得直线OM 的方程为y =12x .当直线l 的斜率不存在时,AB 的中点不在直线y =12x 上,故直线l 的斜率存在.设直线l 的方程为y =kx +m (m ≠0),与x 24+y 23=1联立消y ,得(3+4k 2)x 2+8kmx +4m 2-12=0,所以Δ=64k 2m 2-4(3+4k 2)(4m 2-12) =48(3+4k 2-m 2)>0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km3+4k 2,x 1x 2=4m 2-123+4k 2. 由y 1+y 2=k (x 1+x 2)+2m =6m 3+4k2, 所以AB 的中点N ⎝ ⎛⎭⎪⎫-4km 3+4k 2,3m 3+4k 2,因为N 在直线y =12x 上,所以-4km 3+4k 2=2×3m 3+4k 2,解得k =-32, 所以Δ=48(12-m 2)>0,得-23<m <23,且m ≠0, |AB |=1+⎝⎛⎭⎫322|x 2-x 1|=132·(x 1+x 2)2-4x 1x 2=132·m 2-4×m 2-33=39612-m 2,又原点O 到直线l 的距离d =2|m |13, 所以S △OAB =12×39612-m 2×2|m |13=36(12-m 2)m 2≤36(12-m 2+m 2)24=3,当且仅当12-m 2=m 2,即m =±6时等号成立, 符合-23<m <23,且m ≠0, 所以△OAB 面积的最大值为 3.。
高考数学专题复习:圆锥曲线中的最值(范围)问题

[解] (1)由题意知 M(0,-4),F0,p2 ,圆 M 的半径 r=1,所以|MF|-r=4,即
p 2
+4-1=4,解得 p=2.
(2)由(1)知,抛物线方程为 x2=4y,
由题意可知直线 AB 的斜率存在,设 Ax1,x421
,Bx2,x422
,直线 AB 的方程为
y=kx+b,
联立得yx=2=k4xy+,b, 消去 y 得 x2-4kx-4b=0, 则 Δ=16k2+16b>0 (※),x1+x2=4k,x1x2=-4b,
寻找不等关系的突破口 (1)利用判别式来构造不等式,从而确定所求范围; (2)利用已知参数的取值范围,求新参数的范围,解这类问题的核心是在两个参数 之间建立相等关系; (3)利用隐含的不等关系,从而求出所求范围; (4)利用已知不等关系构造不等式,从而求出所求范围; (5)利用函数值域的求法,确定所求范围.
联立方程x42+y2=1, 得(m2+4)y2+8my+12=0. 由 Δ=64m2-48(m2+4)>0,得 m2>12, 所以 y1y2=m21+2 4 .
λ=|MA|·|MB|= m2+1 |y1|· m2+1 |y2|
=(m2+1)·|y1y2|=12(mm2+2+41) =121-m23+4 . 由 m2>12,得 0<m23+4 <136 ,所以349 <λ<12.
已知椭圆 C:xa22
+by22
=1(a>b>0)的离心率 e=
3 2
,直线 x+
3
y-1=0 被以椭圆 C
的短轴为直径的圆截得的弦长为 3 .
(1)求椭圆 C 的方程;
(2)过点 M(4,0)的直线 l 交椭圆于 A,B 两个不同的点,且 λ=|MA|·|MB|,求 λ 的取值
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考专题圆锥曲线中的最值和范围问题★★★高考要考什么
1 圆锥曲线的最值与范围问题
(1)圆锥曲线上本身存在的最值问题:
①椭圆上两点间最大距离为2a(长轴长).
②双曲线上不同支的两点间最小距离为2a(实轴长).
③椭圆焦半径的取值范围为[a-c,a+c],a-c与a+c分别表示椭圆焦点到椭圆上的点的最小距离与最大距离.
④抛物线上的点中顶点与抛物线的准线距离最近.
(2)圆锥曲线上的点到定点的距离的最值问题,常用两点间的距离公式转化为区间上的二次函数的最值问题解决,有时也用圆锥曲线的参数方程,化为三角函数的最值问题或用三角形的两边之和(或差)与第三边的不等关系求解.
(3)圆锥曲线上的点到定直线的距离的最值问题解法同上或用平行切线法.
(4)点在圆锥曲线上(非线性约束条件)的条件下,求相关式子(目标函数)的取值范围问题,常用参数方程代入转化为三角函数的最值问题,或根据平面几何知识或引入一个参数(有几何意义)化为函数进行处理.
(5)由直线(系)和圆锥曲线(系)的位置关系,求直线或圆锥曲线中某个参数(系数)的范围问题,常把所求参数作为函数,另一个元作为自变量求解.
与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决:
(1)结合定义利用图形中几何量之间的大小关系;
(2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围;
(3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围。
(4)利用代数基本不等式。
代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思;
(5)结合参数方程,利用三角函数的有界性。
直线、圆或椭圆的参数方程,它们的一个共同特点是均含有三角式。
因此,它们的应用价值在于:
①通过参数θ简明地表示曲线上点的坐标;
②利用三角函数的有界性及其变形公式来帮助求解诸如最值、范围等问题;
(6)构造一个二次方程,利用判别式0。
★★★突破重难点
【练习】1、 点A (3,2)为定点,点F 是抛物线y 2=4x 的焦点,点P 在抛物线
y 2=4x 上移动,若|PA|+|PF|取得最小值,求点P 的坐标。
若A (1,3)为定点,点F 是抛物线y 2=4x 的焦点,点P 在抛物线y 2=4x 上移动,若|PA|+d|取得最小值,其中d 是点P 到准线的距离,求点P 的坐标 2.已知A (3,2)、B (-4,0),P
是椭圆x y 22
259
1+=上一点,则|PA |+|PB|的
最大值为( )
A .10
B .105-
C .105+
D .1025+
3.已知双曲线22
1169
x y -=,过其右焦点F 的直线l 交双曲线于AB ,若|AB |=5,则
直线l 有( )
A .1条
B .2条
C .3条
D .4条
4.已知点P 是抛物线y 2=4x 上一点,设P 到此抛物线的准线的距离为d 1, 到直线x +2y+10=0的距离为d 2,则d 1+d 2的最小值为 ( )
A .5
B .4
C (
D )
115
. 5.抛物线y 2=2x 上到直线x-y +3=0距离最短的点的坐标为__________ 2
1(,1)
例题1、若点O 和点F 分别为椭圆x 24+y 2
3=1的中心和左焦点,点P 为椭圆上的
任意一点,则OP →·FP →的最大值为( )
A .2
B .3
C .6
D .8
练习、已知点M (-2,0),N (2,0),动点P 满足条件
||||PM PN -=记动点P 的轨迹为W .
(Ⅰ)求W 的方程;
(Ⅱ)若A ,B 是W 上的不同两点,O 是坐标原点,求OA OB ⋅u u u r u u u r
的最小值.
(2014·新课标全国卷Ⅰ] 已知点A (0,-2),椭圆E :x 2a 2+y 2
b
2=1(a >b >0)的
离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为23
3,O 为坐标原点.
(1)求E 的方程;
(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求
l 的方程.
例题2、已知动点Q 与两定点(-2,0),(2,0)连线的斜率的乘积为-1
2
,点
Q 形成的轨迹为M .
(1)求轨迹M 的方程;
(2)过点P (-2,0)的直线l 交M 于A ,B 两点,且PB →=3PA →,平行于AB 的直线与M 位于x 轴上方的部分交于C ,D 两点,过C ,D 两点分别作CE ,DF 垂直x 轴于E ,F 两点,求四边形CEFD 面积的最大值.
例题3、如图,点P (0,-1)是椭圆C 1:x 2a 2+y 2
b
2=1(a >b >0)
的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径.l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,
l 2交椭圆C 1于另一点D .
(1)求椭圆C 1的方程;
(2)求△ABD 面积取最大值时直线l 1的方程.
【例4】已知椭圆22
22:1(0)x y C a b a b
+=>>过点(,22A -,离心率为2,点12,F F 分
别为其左右焦点.
(1)求椭圆C 的标准方程;
(2)若24y x =上存在两个点,M N ,椭圆上有两个点,P Q 满足2,,M N F 三点共线,
2,,P Q F 三点共线,且PQ MN ⊥,求四边形PMQN 面积的最小值.
,例题5,已知椭圆C :122
22=+b
y a x (a >b >0)的离心率为,36短轴一个端点到右
焦点的距离为3。
(Ⅰ)求椭圆C 的方程;
(Ⅱ)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为2
3
,求△AOB 面积的最大值。
,例题6已知椭圆2
2:12
x E y +=的右焦点为F ,过F 作互相垂直的两条直线分别与
E 相交于,A C 和,B D 四点.(1)四边形ABCD 能否成为平行四边形,请说明理由;
(2)求四边形ABCD 面积的最小值.
例7、在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2
b
2=1(a >b >0)的离心率e =
23
,且椭圆C 上的点到点Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程;
(2)在椭圆C 上,是否存在点M (m ,n ),使得直线l :mx +ny =1与圆O :x 2
+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及对应的△OAB 的面积;若不存在,请说明理由.
,例题8如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为1
2
,其左焦点到点P (2,1)的
距离为10,不过原点O 的直线l 与C 相交于A ,B 两点,且线段AB 被直线OP
平分.
(1)求椭圆C 的方程;
(2)求△ABP 面积取最大值时直线l 的方程
考点2 范围、最值问题与平面向量的交汇
【例9】设F 1,F 2分别是椭圆x 2
4
+y 2=1的左、右焦点.
(1)若P 是该椭圆上的一个动点,求PF
1→·PF 2→的最大值和最小值;
(2)设过定点M (0,2)的直线l 与椭圆交于不同的两点A ,B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率的取值范围.
【例10】已知椭圆C :()22
2210x y a b a b
+=>>,其右焦点()1,0F ,离心率为2.
(Ⅰ)求椭圆C 的标准方程;
(Ⅱ)已知直线0x y m -+=与椭圆C 交于不同的两点,A B ,且线段AB 的中点不在圆225
9
x y +=内, 求m 的取值范围.。