高考圆锥曲线中的最值和范围问题的专题

合集下载

专题23 圆锥曲线中的最值、范围问题 微点1 圆锥曲线中的最值问题试题及答案

专题23  圆锥曲线中的最值、范围问题  微点1  圆锥曲线中的最值问题试题及答案
题型四、与面积有关的最值问题
例7.
7.已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为− .记M的轨迹为曲线C.
(1)求C的方程,并说明C是什么曲线;
(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.
(i)证明: 是直角三角形;
最值问题不仅解答题中分量较大,而且客观题中也时常出现.
一、常用方法
解决圆锥曲线中的最值问题,常见的方法有:
(1)函数法:一般需要找出所求几量的函数解析式,要注意自变量的取值范围.求函数的最值时,一般会用到配方法、均值不等式或者函数单调性.
(2)方程法:根据题目中的等量关系建立方程,根据方程的解的条件得出目标量的不等关系,再求出目标量的最值.
题型三、与向量有关的最值问题
例6.
6.如图,已知椭圆C1: + =1(a>b>0)的右焦点为F,上顶点为A,P为椭圆C1上任一点,MN是圆C2:x2+(y-3)2=1的一条直径,在y轴上截距为3- 的直线l与AF平行且与圆C2相切.
(1)求椭圆C1的离心率;
(2)若椭圆C1的短轴长为8,求 · 的最大值.
题型二、与角度有关的最值问题
例5.
5.在平面直角坐标系 中,椭圆 : 的离心率为 ,焦距为 .
(Ⅰ)求椭圆 的方程;
(Ⅱ)如图,动直线 : 交椭圆 于 两点, 是椭圆 上一点,直线 的斜率为 ,且 , 是线段 延长线上一点,且 , 的半径为 , 是 的两条切线,切点分别为 .求 的最大值,并求取得最大值时直线 的斜率.
专题23 圆锥曲线中的最值、范围问题 微点1 圆锥曲线中的最值问题
专题23圆锥曲线中的最值、范围问题

2025高考数学一轮复习-圆锥曲线中的最值、范围问题-专项训练【含解析】

2025高考数学一轮复习-圆锥曲线中的最值、范围问题-专项训练【含解析】

课时过关检测(五十四)圆锥曲线中的最值、范围问题【原卷版】1.在平面直角坐标系中,圆O 交x 轴于点F 1,F 2,交y 轴于点B 1,B 2.以B 1,B 2为顶点,F 1,F 2分别为左、右焦点的椭圆E (1)求椭圆E 的标准方程;(2)设经过点(-2,0)的直线l 与椭圆E 交于M ,N 两点,求△F 2MN 面积的最大值.2.已知抛物线C :y 2=4x ,点F 是C 的焦点,O 为坐标原点,过点F 的直线l 与C 相交于A ,B 两点.(1)求向量OA ―→与OB ―→的数量积;(2)设FB ―→=λAF ―→,若λ∈[9,16],求l 在y 轴上的截距的取值范围.3.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,E 的左顶点为A ,上顶点为B ,点P 在椭圆上,且△PF 1F 2的周长为4+23.(1)求椭圆E 的方程;(2)若直线l :y =kx +m (k ≠0)与椭圆交于不同的两点M ,N ,且线段MN 的垂直平分线过定点G (1,0),求k 的取值范围.4.已知椭圆E :x 2a 2+y 2b 21(a >b >0)的左、右焦点分别为F 1,F 2,椭圆E 的离心率为32,且通径长为1.(1)求E 的方程;(2)直线l 与E 交于M ,N 两点(M ,N 在x 轴的同侧),当F 1M ∥F 2N 时,求四边形F 1F 2NM 面积的最大值.课时过关检测(五十四)圆锥曲线中的最值、范围问题【解析版】1.在平面直角坐标系中,圆O 交x 轴于点F 1,F 2,交y 轴于点B 1,B 2.以B 1,B 2为顶点,F 1,F 2分别为左、右焦点的椭圆E (1)求椭圆E 的标准方程;(2)设经过点(-2,0)的直线l 与椭圆E 交于M ,N 两点,求△F 2MN 面积的最大值.解:(1)由已知可得,椭圆E 的焦点在x 轴上.设椭圆E的标准方程为x2a2+y2b2=1(a>b>0),焦距为2c,则b=c,∴a2=b2+c2=2b2,∴椭圆E的标准方程为x22b2+y2b2=1.又椭圆E,∴12b2+12b2=1,解得b2=1.∴椭圆E的标准方程为x22+y2=1.(2)由于点(-2,0)在椭圆E外,所以直线l的斜率存在.设直线l的斜率为k,则直线l:y=k(x+2),设M(x1,y1),N(x2,y2).k(x+2),y2=1,消去y得,(1+2k2)x2+8k2x+8k2-2=0.由Δ>0得0≤k2<12,从而x1+x2=-8k21+2k2,x1x2=8k2-21+2k2,∴|MN|=1+k2|x1-x2|=21+k22-4k2(1+2k2)2.∵点F2(1,0)到直线l的距离d=3|k|1+k2,∴△F2MN的面积为S=12|MN|·d=3k2(2-4k2)(1+2k2)2.令1+2k2=t,则t∈[1,2),∴S=3(t-1)(2-t)t2=3-t2+3t-2t2=3-1+3t-2t2=3当1t=34即t[1,S有最大值,S max=324,此时k=±66.∴当直线l的斜率为±66时,可使△F2MN的面积最大,其最大值324.2.已知抛物线C:y2=4x,点F是C的焦点,O为坐标原点,过点F的直线l与C相交于A,B两点.(1)求向量OA―→与OB―→的数量积;(2)设FB―→=λAF―→,若λ∈[9,16],求l在y轴上的截距的取值范围.解:(1)设A,B两点的坐标分别为(x1,y1),(x2,y2).由题意知直线l的斜率不可能为0,F(1,0),设直线l的方程为x=my+1.=my+1,2=4x,得y2-4my-4=0,Δ=16m2+16>0,1+y2=4m,1y2=-4.∴OA―→·OB―→=x1x2+y1y2=y21y2216+y1y2=1616-4=-3.∴向量OA―→与OB―→的数量积为-3.(2)由(1)1+y2=4m,1y2=-4.∵FB―→=λAF―→,∴y2=-λy1.将y2=-λy11+y2=4m,1y2=-4,1-λ)y1=4m,λy21=-4,-λ)2y21=16m2,λy21=-4,∴(1-λ)2-λ=-4m2,∴4m2=(1-λ)2λ=λ+1λ-2.令f(λ)=λ+1λ-2,易知f(λ)在[9,16]上单调递增,∴4m2∈649,22516,∴m2∈169,22564,∴m∈-158,-43∪43,158.∴l在y轴上的截距-1m的取值范围为-34,-815∪815,34.3.已知椭圆E:x2a2+y2b2=1(a>b>0)的离心率为32,E的左顶点为A,上顶点为B,点P在椭圆上,且△PF1F2的周长为4+23.(1)求椭圆E的方程;(2)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M,N,且线段MN的垂直平分线过定点G(1,0),求k的取值范围.解:(1)a+2c=4+23,=ca=32,=2,=3,则b2=a2-c2=1,∴椭圆E的方程为x24+y2=1.(2)设M(x1,y1),N(x2,y2),弦MN的中点D(x0,y0),kx+m,y2=1,消去y整理得,(1+4k2)x2+8kmx+4m2-4=0,∵直线l:y=kx+m(k≠0)与椭圆交于不同的两点,∴Δ=64k2m2-4(1+4k2)(4m2-4)>0,即m2<1+4k2,1+x2=-8km1+4k2,1·x2=4m2-41+4k2,则x0=x1+x22=-4km1+4k2,y0=kx0+m=m1+4k2,所以直线DG的斜率为k DG=y0x0-1=-m4km+1+4k2,又由直线DG和直线MN垂直可得-m4km+1+4k2·k=-1,则m=-1+4k23k,代入m2<1+4k2可得<1+4k2,即k2>15,解得k>55或k<-55.故所求k∞4.已知椭圆E:x2a2+y2b21(a>b>0)的左、右焦点分别为F1,F2,椭圆E的离心率为32,且通径长为1.(1)求E的方程;(2)直线l与E交于M,N两点(M,N在x轴的同侧),当F1M∥F2N时,求四边形F1F2NM 面积的最大值.解:(1)c2,=2,=1,=3,故椭圆的方程为x24+y2=1.(2)假设M,N两点在x轴上侧,如图所示,延长MF1交E于点M0,由F1M∥F2N知M0与N关于原点对称,从而有|F1M0|=|F2N|,由(1)可知F1(-3,0),F2(3,0),设M(x1,y1),M0(x2,y2),设MF1的方程为x=my-3,由my-3,y2=1得(m2+4)y2-23my-1=0,Δ=12m2+4(m2+4)>0,故1+y2=23mm2+4,1y2=-1m2+4.设F1M与F2N的距离为d,四边形F1F2NM的面积为S,则S=12(|F1M|+|F2N|)d=12(|F1M|+|F1M0|)d=12|MM0|d=S△MF2M0,又因为S△MF2M0=12·|F1F2|·|y1-y2|=12×23×|y1-y2|=3(y1+y2)2-4y1y2=3·12m2(m2+4)2+4m2+4=43m2+1m2+4=43m2+1+3m2+1≤4323=2,当且仅当m2+1=3m2+1,即m=±2时,等号成立,故四边形F1F2NM面积的最大值为2.。

圆锥曲线的最值定值范围经典题型

圆锥曲线的最值定值范围经典题型

圆锥曲线最值/范围/定值/定点问题一、圆锥曲线的最值问题方法1:定义转化法①根据圆锥曲线的定义列方程;②将最值问题转化为距离问题求解.例1、已知点F是双曲线x24-y212=1的左焦点,定点A的坐标为(1,4),P是双曲线右支上的动点,则|PF|+|P A|的最小值为________.方法2:数形结合(切线法)当所求的最值是圆锥曲线上的点到某条直线的距离的最值时:①求与直线平行的圆锥曲线的切线;②求出两平行线的距离即为所求的最值.例2、求椭圆x22+y2=1上的点到直线y=x+23的距离的最大值和最小值,并求取得最值时椭圆上点的坐标.方法3:参数法(函数法)①选取合适的参数表示曲线上点的坐标;②求解关于这个参数的函数最值例3、在平面直角坐标系xOy中,点P(x,y)是椭圆x23+y2=1上的一个动点,则S=x+y的最大值为________.方法4:基本不等式法①将最值用变量表示.②利用基本不等式求得表达式的最值.例4、求椭圆x23+y2=1内接矩形ABCD面积的最大值.二、圆锥曲线的范围问题方法1:曲线几何性质法①由几何性质建立关系式;②化简关系式求解.例1、已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线中ac的取值范围是________.方法2:判别式法当直线和圆锥曲线相交、相切和相离时,分别对应着直线和圆锥曲线方程联立消元后得到的一元二次方程的判别式大于零、等于零、小于零 ① 联立曲线方程,消元后求判别式;②根据判别式大于零、小于零或等于零结合曲线性质求解.例2、在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q . (1)求k 的取值范围;(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A ,B ,是否存在常数m ,使得向量OP →+OQ →与AB →共线?如果存在,求m 值;如果不存在,请说明理由.三、圆锥曲线的定值、定点问题 方法1:特殊到一般法根据特殊情况能找到定值(或定点)的问题① 根据特殊情况确定出定值或定点;②对确定出来的定值或定点进行一般情况的证明.例1、已知双曲线C :x 2-y 22=1,过圆O :x 2+y 2=2上任意一点作圆的切线l ,若l 交双曲线于A ,B 两点,证明:∠AOB 的大小为定值.方法2:引进参数法定值、定点是变化中的不变量,引入参数找出与变量与参数没有关系的点(或值)即是定点(或定值).① 引进参数表示变化量;②研究变化的量与参数何时没有关系,找到定值或定点例2、如图所示,曲线C 1:x 29+y 28=1,曲线C 2:y 2=4x ,过曲线C 1的右焦点F 2作一条与x 轴不垂直的直线,分别与曲线C 1,C 2依次交于B ,C ,D ,E 四点.若G 为CD 的中点、H 为BE 的中点,证明|BE |·|GF 2||CD |·|HF 2|为定值.一、圆锥曲线的最值问题答案:例1解析 如图所示,根据双曲线定义|PF |-|PF ′|=4, 即|PF |-4=|PF ′|.又|P A |+|PF ′|≥|AF ′|=5, 将|PF |-4=|PF ′|代入,得|P A |+|PF |-4≥5,即|P A |+|PF |≥9,等号当且仅当A ,P ,F ′三点共线, 即P 为图中的点P 0时成立,故|PF |+|P A |的最小值为9.故填9. 例2.解 设椭圆的切线方程为y =x +b , 代入椭圆方程,得3x 2+4bx +2b 2-2=0. 由Δ=(4b )2-4×3×(2b 2-2)=0,得b =±3.当b =3时,直线y =x +3与y =x +23的距离d 1=62,将b =3代入方程3x 2+4bx +2b 2-2=0,解得x =-233,此时y =33,即椭圆上的点⎝ ⎛⎭⎪⎫-233,33到直线y =x +23的距离最小,最小值是62; 当b =-3时,直线y =x -3到直线y =x +23的距离d 2=362,将b =-3代入方程3x 2+4bx +2b 2-2=0,解得x =233,此时y =-33,即椭圆上的点⎝ ⎛⎭⎪⎫233,-33到直线y =x +23的距离最大,最大值是362. 例3 解析 因为椭圆x 23+y 2=1的参数方程为⎩⎨⎧x =3cos φy =sin φ,(φ为参数).故可设动点P 的坐标为(3cos φ,sin φ),其中0≤φ<2π.因此S =x +y =3cos φ+sin φ=2⎝ ⎛⎭⎪⎫32cos φ+12sin φ=2sin ⎝ ⎛⎭⎪⎫φ+π3,所以,当φ=π6时,S 取最大值2.故填2. 二、圆锥曲线的范围问题答案:例1.解析 根据双曲线定义|PF 1|-|PF 2|=2a ,设|PF 2|=r , 则|PF 1|=4r ,故3r =2a ,即r =2a 3,|PF 2|=2a3.根据双曲线的几何性质,|PF 2|≥c -a ,即2a 3≥c -a ,即c a ≤53,即e ≤53.又e >1, 故双曲线的离心率e 的取值范围是⎝ ⎛⎦⎥⎤1,53.故填⎝ ⎛⎦⎥⎤1,53.例2.解 (1)由已知条件,知直线l 的方程为y =kx +2,代入椭圆方程,得x 22+(kx +2)2=1,整理得⎝ ⎛⎭⎪⎫12+k 2x 2+22kx +1=0.①由直线l 与椭圆有两个不同的交点P 和Q ,得Δ=8k 2-4⎝ ⎛⎭⎪⎫12+k 2=4k 2-2>0,解得k <-22或k >22,即k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫22,+∞.(2)设P (x 1,y 1),Q (x 2,y 2),则OP →+OQ →=(x 1+x 2,y 1+y 2).由方程①,知x 1+x 2=-42k 1+2k 2.②又y 1+y 2=k (x 1+x 2)+22=221+2k 2.③由A (2,0),B (0,1),得AB→=(-2,1).所以OP →+OQ →与AB →共线等价于x 1+x 2=-2(y 1+y 2), 将②③代入,解得k =22.由(1)知k <-22或k >22, 故不存在符合题意的常数k .三、圆锥曲线的定值、定点问题答案:例1.证明 当切线的斜率不存在时,切线方程为x =±2. 当x =2时,代入双曲线方程,得y =±2, 即A (2,2),B (2,-2),此时∠AOB =90°, 同理,当x =-2时,∠AOB =90°.当切线的斜率存在时,设切线方程为y =kx +b , 则|b |1+k2=2,即b 2=2(1+k 2). 由直线方程和双曲线方程消掉y , 得(2-k 2)x 2-2kbx -(b 2+2)=0, 由直线l 与双曲线交于A ,B 两点. 故2-k 2≠0.设A (x 1,y 1),B (x 2,y 2). 则x 1+x 2=2kb2-k 2,x 1x 2=-(b 2+2)2-k 2,y 1y 2=(kx 1+b )(kx 2+b )=k 2x 1x 2+kb (x 1+x 2)+b 2 =-k 2b 2-2k 22-k 2+2k 2b 22-k 2+2b 2-k 2b 22-k 2=2b 2-2k 22-k 2,故x 1x 2+y 1y 2=-b 2-22-k 2+2b 2-2k 22-k 2=b 2-2(1+k 2)2-k 2,由于b 2=2(1+k 2),故x 1x 2+y 1y 2=0,即OA →·OB →=0,∠AOB =90°.综上可知,若l 交双曲线于A ,B 两点,则∠AOB 的大小为定值90°. 例2.证明 由题意,知F 1(-1,0),F 2(1,0), 设B (x 1,y 1),E (x 2,y 2),C (x 3,y 3),D (x 4,y 4), 直线y =k (x -1),代入x 29+y 28=1,得8⎝ ⎛⎭⎪⎫y k +12+9y 2-72=0,即(8+9k 2)y 2+16ky -64k 2=0,则y 1+y 2=-16k 8+9k 2,y 1y 2=-64k 28+9k 2.同理,将y =k (x -1)代入y 2=4x ,得ky 2-4y -4k =0, 则y 3+y 4=4k ,y 3y 4=-4, 所以|BE |·|GF 2||CD |·|HF 2|=|y 1-y 2||y 3-y 4|·12|y 3+y 4|12|y 1+y 2|=(y 1-y 2)2(y 1+y 2)2·(y 3+y 4)2(y 3-y 4)2=(y 1+y 2)2-4y 1y 2(y 1+y 2)2·(y 3+y 4)2(y 3+y 4)2-4y 3y 4=(-16k )2(8+9k 2)2+4×64k 28+9k 2(-16k )2(8+9k 2)2·⎝ ⎛⎭⎪⎫4k 2⎝ ⎛⎭⎪⎫4k 2+16=3为定值.。

高三总复习数学课件 圆锥曲线中的最值、范围问题

高三总复习数学课件 圆锥曲线中的最值、范围问题
(3)利用已知或隐含的不等关系建立不等式,从而求出参数的取值范围. (4)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从 而确定参数的取值范围.
[针对训练]
1.已知点F1,F2依次为双曲线C:
x2 a2

y2 b2
=1(a>0,b>0)的左、右焦点,且
|F1F2|=6,B1(0,-b),B2(0,b).
由 k2≥0 可得―F1→M·―F1→N∈-1,72. 综上可知,―F1→M·―F1→N 的取值范围是-1,72.
[方法技巧] 圆锥曲线中取值范围问题的常用解法
(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值 范围.
(2)利用已知参数的范围,求新参数的范围,解决这类问题的核心是建立两 个参数之间的等量关系.
(1)若a= 5,以d =(3,-4)为方向向量的直线l经过B1,求F2到l的距离;
(2)若双曲线C上存在点P,使得―B1→P ·―B2→P =-2,求实数b的取值范围. 解:(1)依题意,2c=6,则b= 9-5=2, 则双曲线C:x52-y42=1,B1(0,-2),F2(3,0). 设直线l:4x+3y+m=0, 将B1(0,-2)代入解得m=6, 此时l:4x+3y+6=0,
1 4k
x,∴
N
6,-23k
.联立
x2+4y2=4, y=-41kx,
得x2=
16k2 1+4k2
,即x
2 M

16k2 1+4k2
,∵|OM|2=
|ON|·|OE|,∴11+6k42k2=-12+4k4mk2,∴m=-23k,∴直线l的方程为y=kx-23,过
定点
23,0.易知当定点与点H(0,1)的连线与直线l垂直时,d取得最大值

圆锥曲线专题:最值与范围问题的6种常见考法(解析版)

圆锥曲线专题:最值与范围问题的6种常见考法(解析版)

圆锥曲线专题:最值与范围问题的6种常见考法一、圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:1、几何法:通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;2、代数法:把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.二、最值问题的一般解题步骤三、参数取值范围问题1、利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;2、利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;3、利用隐含的不等关系建立不等式,从而求出参数的取值范围;4、利用已知的不等关系构造不等式,从而求出参数的取值范围;5、利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.题型一距离与长度型最值范围问题【例1】已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,焦距为2,点E 在椭圆上.当线段2EF 的中垂线经过1F 时,恰有21cos EF F ∠.(1)求椭圆的标准方程;(2)直线l 与椭圆相交于A 、B 两点,且||2AB =,P 是以AB 为直径的圆上任意一点,O 为坐标原点,求||OP 的最大值.【答案】(1)2212x y +=;(2)max ||OP 【解析】(1)由焦距为2知1c =,连结1EF ,取2EF 的中点N ,线段2EF 的中垂线经过1F 时,1||22EF c ∴==,221212cos ,.1,F N EF F F N F F ∠∴∴-2122,2EF a EF EF a ∴=-∴=+=∴由所以椭圆方程为2212x y +=;(2)①当l 的斜率不存在时,AB 恰为短轴,此时||1OP =;②当l 的斜率存在时,设:l y kx m =+.联立2212x y y kx m ⎧+=⎪⎨⎪=+⎩,得到222(21)4220k x kmx m +++-=,∴△2216880k m =-+>,122421km x x k -+=+,21222221m x x k -=+.21AB x x =-=2==,化简得2222122k m k +=+.又设M 是弦AB 的中点,121222()221my y k x x m k +=++=+∴()2222222241,,||212121km m k M OM k k k m -+⎛⎫= ⎪⎝⎭+⋅++,∴()()()222222222412141||22212221k k k OM k k k k +++=⋅=++++,令2411k t += ,则244||43(1)(3)4t OM t t t t===-++++∴||1OM =- (仅当t =,又||||||||1OP OM MP OM +=+2k =时取等号).综上:max ||OP =【变式1-1】已知抛物线21:4C y x =的焦点F 也是椭圆22222:1(0)x y C a b a b+=>>的一个焦点,1C 与2C 的公共弦长为3.(1)求椭圆2C 的方程;(2)过椭圆2C 的右焦点F 作斜率为(0)k k ≠的直线l 与椭圆2C 相交于A ,B 两点,线段AB 的中点为P ,过点P 做垂直于AB 的直线交x 轴于点D ,试求||||DP AB 的取值范围.【答案】(1)22143x y +=;(2)1(0,)4【解析】(1)抛物线21:4C y x =的焦点F 为(1,0),由题意可得2221c a b =-=①由1C 与2C 关于x 轴对称,可得1C 与2C 的公共点为2,33⎛± ⎝⎭,可得2248193a b +=②由①②解得2a =,b ,即有椭圆2C 的方程为22143x y+=;(2)设:(1)l y k x =-,0k ≠,代入椭圆方程,可得2222(34)84120k x k x k +-+-=,设1(A x ,1)y ,2(B x ,2)y ,则2122834kx x k +=+,212241234k x x k -=+,即有()312122286223434k ky y k x x k k k k -+=+-=-=++,由P 为中点,可得22243()3434k kP k k -++,,又PD 的斜率为1k -,即有222314:3434k k PD y x k k k ⎛⎫--=-- ++⎝⎭,令0y =,可得2234k x k=+,即有22034k D k ⎛⎫⎪+⎝⎭可得2334PD k ==+又AB ==2212(1)34k k +=+,即有DP AB =,由211k +>,可得21011k <<+,即有104<,则有||||DP AB 的取值范围为1(0,)4.【变式1-2】已知曲线C 上任意一点(),P x y2=,(1)求曲线C 的方程;(2)若直线l 与曲线C 在y 轴左、右两侧的交点分别是,Q P ,且0OP OQ ⋅=,求22||OP OQ +的最小值.【答案】(1)2212y x -=;(2)8【解析】(1)设())12,F F ,2=,等价于12122PF PF F F -=<,∴曲线C 为以12,F F 为焦点的双曲线,且实轴长为2,焦距为故曲线C 的方程为:2212y x -=;(2)由题意可得直线OP 的斜率存在且不为0,可设直线OP 的方程为()0y kx k =≠,则直线OQ 的方程为1=-y x k ,由2212y x y kx ⎧-=⎪⎨⎪=⎩,得222222222x k k y k ⎧=⎪⎪-⎨⎪=⎪-⎩,所以()2222221||2k OP x y k+=+=-,同理可得,()2222212121||1212k k OQ k k⎛⎫+ ⎪+⎝⎭==--,所以()()()22222222211111||||22121k k k OP OQ k k -+-++===++()()22222222112222228||||OQ OP OP OQ OP OQOP OQ OP OQ ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥+=++=++≥+= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,当且仅当2OP OQ ==时取等号,所以当2OP OQ ==时,22||OP OQ +取得最小值8.【变式1-3】已知抛物线()2:20E x py p =>的焦点为F ,过点F 且倾斜角为3π的直线被E 所截得的弦长为16.(1)求抛物线E 的方程;(2)已知点C 为抛物线上的任意一点,以C 为圆心的圆过点F ,且与直线12y =-相交于,A B两点,求FA FB FC ⋅⋅的取值范围.【答案】(1)24x y =;(2)[)3,+∞【解析】(1)由抛物线方程得:0,2p F ⎛⎫ ⎪⎝⎭,可设过点F 且倾斜角为3π的直线为:2py =+,由222p y x py⎧=+⎪⎨⎪=⎩得:220x p --=,由抛物线焦点弦长公式可得:)12122816y y p x x p p ++=++==,解得:2p =,∴抛物线E 的方程为:24x y =.(2)由(1)知:()0,1F ,准线方程为:1y =-;设AFB θ∠=,圆C 的半径为r ,则2ACB θ∠=,FC CA CB r ===,1133sin 2224AFBSFA FB AB AB θ∴=⋅=⋅=,又2sin AB r θ=,3FA FB r ∴⋅=;由抛物线定义可知:11c CF y =+≥,即1r ≥,333FA FB FC r ∴⋅⋅=≥,即FA FB FC ⋅⋅的取值范围为[)3,+∞.题型二面积型最值范围问题20y -=与圆O 相切.(1)求椭圆C 的标准方程;(2)椭圆C 的上顶点为B ,EF 是圆O 的一条直径,EF不与坐标轴重合,直线BE 、BF 与椭圆C 的另一个交点分别为P 、Q ,求BPQ 的面积的最大值及此时PQ 所在的直线方程.【答案】(1)2219x y +=;(2)()max278BPQ S=,PQ 所在的直线方程为115y x =±+【解析】20y -=与圆O相切,则1b =,由椭圆的离心率223c e a ==,解得:29a =,椭圆的标准方程:2219x y +=;(2)由题意知直线BP ,BQ 的斜率存在且不为0,BP BQ ⊥,不妨设直线BP 的斜率为(0)k k >,则直线:1BP y kx =+.由22119y kx x y =+⎧⎪⎨+=⎪⎩,得22218911991k x k k y k -⎧=⎪⎪+⎨-⎪=⎪+⎩,或01x y =⎧⎨=⎩,所以2221819,9191k k P k k ⎛⎫-- ⎪++⎝⎭.用1k -代替k ,2229189,9k k Q k k ⎛⎫-+ ⎝+⎪⎭则21891k PB k ==+2189BQ k==+,22222111818162(1)22919(9)(19)BPQ k k k S PB BQ k k k k +=⋅=⋅=++++△342221162()162()99829982k k k k k k k k ++==++++,设1k k μ+=,则21621622764829(2)89BPQ S μμμμ∆==≤+-+.当且仅当649μμ=即183k k μ+==时取等号,所以()max278BPQ S=.即21128(()49k k kk-=+-=,1k k -=直线PQ的斜率222222291911191918181010919PQk k k k k k k k k k k k k ---+-⎛⎫++===-= ⎪⎝⎭--++PQ所在的直线方程:1y =+.【变式2-1】在平面直角坐标系xOy 中,ABC 的周长为12,AB ,AC 边的中点分别为()11,0F -和()21,0F ,点M 为BC 边的中点(1)求点M 的轨迹方程;(2)设点M 的轨迹为曲线Γ,直线1MF 与曲线Γ的另一个交点为N ,线段2MF 的中点为E ,记11NF O MF E S S S =+△△,求S 的最大值.【答案】(1)()221043x y y +=≠;(2)max 32S =【解析】(1)依题意有:112F F =,且211211262MF MF F F ++=⨯=,∴121242MF MF F F +=>=,故点M 的轨迹C 是以()11,0F -和()21,0F 为焦点,长轴长为4的椭圆,考虑到三个中点不可共线,故点M 不落在x 上,综上,所求轨迹方程:()221043x y y +=≠.(2)设()11,M x y ,()22,N x y ,显然直线1MF 不与x 轴重合,不妨设直线1MF 的方程为:1x ty =-,与椭圆()221043x y y +=≠方程联立整理得:()2234690t y ty +--=,()()22236363414410t t t ∆=++=+>,112634t y y t +=+,1129034y y t =-<+,11111122NF O S F y y O ==△,112122211112222MF E MF F S S F F y y ==⋅=△△,∴()()1112122111Δ22234NF O MF E S S S y y y y t =+=+=-=⋅=+△△令()2344u t u =+≥,则()S u ϕ====∵4u ≥,∴1104u <≤,当114u =,即0=t 时,∴max 32S =,∴当直线MN x ⊥轴时,∴max 32S =.【变式2-2】已知双曲线()222210x y a a a-=>的右焦点为()2,0F ,过右焦点F 作斜率为正的直线l ,直线l 交双曲线的右支于P ,Q 两点,分别交两条渐近线于,A B 两点,点,A P 在第一象限,O 为原点.(1)求直线l 斜率的取值范围;(2)设OAP △,OBP ,OPQ △的面积分别是OAP S △,OBP S △,OPQS ,求OPQ OAP OBPS S S ⋅△△△的范围.【答案】(1)()1,+∞;(2)).【解析】(1)因为双曲线()222210x y a a a-=>的右焦点为()2,0F ,故2c =,由222c a a =+得22a =,所以双曲线的方程为,22122x y -=,设直线l 的方程为2x ty =+,联立双曲线方程得,()222222121021420Δ0120t x y t y ty t x ty y y ⎧⎧-≠⎪-=⎪⇒-++=⇒>⇒<⎨⎨=+⎪⎪⋅<⎩⎩,解得01t <<,即直线l 的斜率范围为()11,k t=∈+∞;(2)设()11,P x y ,渐近线方程为y x =±,则P 到两条渐近线的距离1d ,2d 满足,22111212x yd d-⋅==而21221AAxy x tx ty yt⎧⎧=⎪⎪=⎪⎪-⇒⎨⎨=+⎪⎪=⎪⎪-⎩⎩,OA==21221BBxy x tx ty yt⎧⎧=⎪⎪=-⎪⎪+⇒⎨⎨=+-⎪⎪=⎪⎪+⎩⎩,OB==所以12122112221OAP OBPS S OA d OB d d dt⋅=⋅⋅⋅=-△△由()2222214202x y t y tyx ty⎧-=⇒-++=⎨=+⎩,12OPQ OFP OFQ P QS S S OF y y=+=-△△△所以,OPQOAP OBPSS S=⋅△△△,∵01t<<,∴)2OPQOAP OBPSS S∈⋅△△△.【变式2-3】已知抛物线()2:20E y px p=>的焦点为F,P为E上的一个动点,11,2⎛⎫⎪⎝⎭Q与F在E的同一侧,且PF PQ+的最小值为54.(1)求E的方程;(2)若A点在y轴正半轴上,点B、C为E上的另外两个不同点,B点在第四象限,且AB,OC互相垂直、平分,求四边形AOBC的面积.(人教A版专题)【答案】(1)2y x=;(2)【解析】(1)作出E的准线l,方程为2px=-,作PR l⊥于R,所以PR PF=,即PR PQ+的最小值为54,因为11,2⎛⎫⎪⎝⎭Q与F在E的同一侧,所以当且仅当P,Q,R三点共线时PR PQ+取得最小值,所以5124p+=,解得0.5p=,所以E的方程为2y x=;(2)因为AB,OC互相垂直、平分,所以四边形AOBC是菱形,所以BC x⊥轴,设点()0,2A a,所以2BC a=,由抛物线对称性知()2,B a a-,()2,C a a,由AO OB =,得2a=a =所以菱形AOBC 的边AO =23h a ==,其面积为3S AO h =⋅==题型三坐标与截距型最值范围问题【例3】已知双曲线C :()222210,0x y a b a b-=>>过点(),渐近线方程为12y x =±,直线l 是双曲线C 右支的一条切线,且与C 的渐近线交于A ,B 两点.(1)求双曲线C 的方程;(2)设点A ,B 的中点为M ,求点M 到y 轴的距离的最小值.【答案】(1)2214x y -=;(2)2【解析】(1)由题设可知2281112a b b a ⎧-=⎪⎪⎨⎪=⎪⎩,解得21a b =⎧⎨=⎩则C :2214x y -=.(2)设点M 的横坐标为0M x >当直线l 斜率不存在时,则直线l :2x =易知点M 到y 轴的距离为2M x =﹔当直线l 斜率存在时,设l :12y kx m k ⎛⎫=+≠± ⎪⎝⎭,()11,A x y ,()22,B x y ,联立2214x y y kx m ⎧-=⎪⎨⎪=+⎩,整理得()222418440k x kmx m -+++=,()()222264164110k m k m ∆=--+=,整理得2241k m =+联立2204x y y kx m ⎧-=⎪⎨⎪=+⎩,整理得()22241840k x kmx m -++=,则122288841km km k x x k m m+=-=-=--,则12402Mx x kx m +==->,即0km <则222216444Mk x m m==+>,即2M x >∴此时点M 到y 轴的距离大于2;综上所述,点M 到y 轴的最小距离为2.【变式3-1】若直线:l y =22221(0,0)x y a b a b -=>>的一个焦点,且与双曲线的一条渐近线平行.(1)求双曲线的方程;(2)若过点B (0,b )且与x 轴不平行的直线和双曲线相交于不同的两点M ,N ,MN 的垂直平分线为m ,求直线m 与y 轴上的截距的取值范围.【答案】(1)2213x y -=;(2)(4,)+∞.【解析】(1)直线323:33l y =-过x 轴上一点(2,0),由题意可得2c =,即224a b +=,双曲线的渐近线方程为b y x a=±,由两直线平行的条件可得b a =1a b ==,即有双曲线的方程为2213x y -=.(2)设直线1(0)y kx k =+≠,代入2213x y -=,可得22(13)660k x kx ---=,设1122(,),(,)M x y N x y ,则12122266,1313k x x x x k k +==--,MN 中点为2231,1313kk k ⎛⎫ --⎝⎭,可得MN 的垂直平分线方程为221131313k y x k k k ⎛⎫-=-- ⎪--⎝⎭,令0x =,可得2413y k =-,由223624(13)0k k ∆=+->,解得232k <,又26031k <-,解得231k <,综上可得,2031k <<,即有2413k -的范围是(4,)+∞,可得直线m 与y 轴上的截距的取值范围为(4,)+∞.【变式3-2】已知动圆C 过定点(2,0)A ,且在y 轴上截得的弦长为4,圆心C 的轨迹为曲线Γ.(1)求Γ的方程:(2)过点(1,0)P 的直线l 与F 相交于,M N 两点.设PN MP λ=,若[]2,3λ∈,求l 在y 轴上截距的取值范围.【答案】(1)24y x =;(2)⎡-⎣【解析】(1)设(,)C x y ,圆C 的半径为R ,则()()22222220R x x y =+=-+-整理,得24y x=所以Γ的方程为24y x =.(2)设1122(,),(,)M x y N x y ,又(1,0)P ,由PN MP λ=,得()()22111,1,x y x y λ-=--21211(1)x x y y λλ-=-⎧∴⎨=-⎩①②由②,得12222y y λ=,∵2211224,4y x y x ==∴221x x λ=③联立①、③解得2x λ=,依题意有0λ>(2,N N ∴-或,又(1,0)P ,∴直线l 的方程为())11y x λ-=-,或())11y x λ-=--,当[2,3]k ∈时,l 在y轴上的截距为21λ-或21λ--,21=[2,3]上是递减的,21λ≤≤-,21λ-≤-≤-∴直线l 在y轴上截距的取值范围为⎡--⎣.【变式3-3】已知两个定点A 、B 的坐标分别为()1,0-和()1,0,动点P 满足AP OB PB ⋅=(O 为坐标原点).(1)求动点P 的轨迹E 的方程;(2)设点(),0C a 为x 轴上一定点,求点C 与轨迹E 上点之间距离的最小值()d a ;(3)过点()0,1F 的直线l 与轨迹E 在x 轴上方部分交于M 、N 两点,线段MN 的垂直平分线与x 轴交于D 点,求D 点横坐标的取值范围.【答案】(1)24y x =;(2)(),22a a d a a ⎧<⎪=⎨≥⎪⎩;(3)()3,+∞【解析】(1)设(),P x y ,()1,AP x y =+,()1,0OB =,()1,PB x y =--,()1101AP OB x y x ⋅=+⨯+⨯=+,B P =AP OB PB ⋅=,则1x +,所以2222121x x x x y ++=-++,即24y x =.(2)设轨迹E :24y x =上任一点为()00,Q x y ,所以2004y x =,所以()()222200004CQ x a y x a x =-+=-+()()20200220x a x a x =--+≥,令()()()220000220g x x a x a x =--+≥,对称轴为:2a -,当20a -<,即2a <时,()0g x 在区间[)0,∞+单调递增,所以00x =时,()0g x 取得最小值,即2min 2CQ a =,所以min CQ a =,当20a -≥,即2a ≥时,()0g x 在区间[)0,2a -单调递减,在区间[)2,a -+∞单调递增,所以02x a =-时,()0g x 取得最小值,即()22min 2244CQ a a a =--+=-,所以minCQ =,所以(),22a a d a a ⎧<⎪=⎨≥⎪⎩(3)当直线l 的斜率不存在时,此时l :0x =与轨迹E 不会有两个交点,故不满足题意;当直线l 的斜率存在时,设l :1y kx =+,()11,M x y 、()22,N x y ,代入24y x =,得2+14y y k =⨯,即2440ky y -+=,所以124y y k +=,124y y k =,121212211242y y y y x x k k k k k--+-+=+==-,因为直线l 与轨迹E 在x 轴上方部分交于M 、N 两点,所以0∆>,得16160k ->,即1k <;又M 、N 两点在x 轴上方,所以120y y +>,120y y >,即40k>,所以0k >,又1k <,所以01k <<,所以MN 中点1212,22x x y y ++⎛⎫⎪⎝⎭,即2212,kk k ⎛⎫- ⎪⎝⎭,所以垂直平分线为22121y x k k k k ⎛⎫-=--+ ⎝⎭,令0y =,得222111152248x k k k ⎛⎫=-+=-+ ⎪⎝⎭,因为01k <<,所以11k >,所以21115248x k ⎛⎫=-+ ⎪⎝⎭在11k >时单调递增,所以22111511522134848k ⎛⎫⎛⎫-+>-+= ⎪ ⎪⎝⎭⎝⎭,即3x >,所以D 点横坐标的取值范围为:()3,+∞.题型四斜率与倾斜角最值范围问题【例4】设12F F 、分别是椭圆2214x y +=的左、右焦点.(1)若P 是该椭圆上的一个动点,求125=4PF PF ⋅-,求点P 的坐标;(2)设过定点(0,2)M 的直线l 与椭圆交于不同的两点A 、B ,且AOB ∠为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.【答案】(1)⎛ ⎝⎭;(2)2,2⎛⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭.【解析】(1)由题意知,2,1,a b c ===所以())12,F F ,设(,)(0,0)P m n m n >>,则22125(,),)34PF PF m n m n m n ⋅=-⋅-=+-=-,又2214m n +=,有222214534m n m n ⎧+=⎪⎪⎨⎪+-=-⎪⎩,解得1m n =⎧⎪⎨=⎪⎩,所以P ;(2)显然0x =不满足题意,设直线l 的方程为2y kx =+,设()()1122,,A x y B x y ,,22221(14)1612042x y k x kx y kx ⎧+=⎪⇒+++=⎨⎪=+⎩,22(16)4(41)120k k ∆=-+⨯>,解得234k >,①1212221612,4141k x x x x k k +=-=++,则212121212(2)(2)2()4y y kx kx k x x k x x =++=+++,又AOB ∠为锐角,则cos 0AOB ∠>,即0OA OB ⋅>,12120x x y y +>,所以21212121212(1)2()4x x y y y y k x x k x x +==++++2222212(1)1624(4)40414141k k k k k k k +⋅-=-+=>+++,解得204k <<,②由①②,解得322k -<<或322k <<,所以实数k的取值范围为(2,-.【变式4-1】已知椭圆:Γ22221(0x y a b a b +=>>)的左焦点为F ,其离心率22e =,过点F垂直于x 轴的直线交椭圆Γ于P ,Q两点,PQ (1)求椭圆Γ的方程;(2)若椭圆的下顶点为B ,过点D (2,0)的直线l 与椭圆Γ相交于两个不同的点M ,N ,直线BM ,BN 的斜率分别为12,k k ,求12k k +的取值范围.【答案】(1)2212x y +=;(2)()1211,,2222k k ⎛⎫⎛+∈-∞⋃-⋃+∞⎪ ⎝⎭⎝【解析】(1)由题可知2222222c e a bPQ a a b c⎧==⎪⎪⎪==⎨⎪=+⎪⎪⎩,解得11a b c ⎧=⎪=⎨⎪=⎩.所以椭圆Γ的方程为:2212x y +=.(2)由题可知,直线MN 的斜率存在,则设直线MN 的方程为(2)y k x =-,11(,)M x y ,22(,)N x y .由题可知2212(2)x y y k x ⎧+=⎪⎨⎪=-⎩,整理得2222(21)8820k x k x k +-+-=22222(8)4(21)(81)8(21)0k k k k ∆=--+-=-->,解得22k ⎛∈- ⎝⎭.由韦达定理可得2122821k x x k +=+,21228221k x x k -=+.由(1)知,点(0,1)B -设椭圆上顶点为A ,(0,1)A ∴,12DA k k ≠=-且12DB k k ≠=,∴()()1212121212211111k x k x y y k k x x x x -+-++++=+=+()()()221221228121212228212k k k x x k k k k x x k -⋅-++=+=+-+()242111212,,221212122k k k k k k ⎛⎫⎛=-==-∈+∞⋃-∞⋃ ⎪ +++⎝⎭⎝∴12k k +的取值范围为()11,,2222⎛⎫⎛-∞⋃-⋃+∞ ⎪ ⎝⎭⎝.【变式4-2】)已知椭圆1C 的方程为22143x y +=,双曲线2C 的左、右焦点分别为1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点.(1)求双曲线2C 的方程;(2)若直线:2l y kx =+与双曲线2C 恒有两个不同的交点A 和B ,且1OA OB ⋅>(其中O 为原点),求k 的取值范围.【答案】(1)2213y x -=(2)(()1,1-【解析】(1)由题,在椭圆1C 中,焦点坐标为()1,0-和()1,0;左右顶点为()2,0-和()2,0,因为双曲线2C 的左、右焦点分别为1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点,所以在双曲线2C 中,设双曲线方程为22221x ya b-=,则221,4a c ==,所以2223b c a =-=,所以双曲线2C 的方程为2213y x -=(2)由(1)联立22213y kx y x =+⎧⎪⎨-=⎪⎩,消去y ,得()223470k x kx -++=①;消去x ,得()2223121230k y y k -+-+=②设()()1122,,,A x y B x y ,则12,x x 为方程①的两根,12,y y 为方程②的两根;21212227123,33k x x y y k k -+⋅=⋅=--,21212227123133k OA OB x x y y k k -+⋅=⋅+⋅=+>--,得23k >或21k <③,又因为方程①中,()22216384k k k ∆=-4⨯7-=-12+>0,得27k <④,③④联立得k的取值范围(()1,1⋃-⋃【变式4-3】已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值.【答案】(1)24y x =;(2)最大值为13.【解析】(1)抛物线2:2(0)C y px p =>的焦点,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,由题意,该抛物线焦点到准线的距离为222p p p ⎛⎫--== ⎪⎝⎭,所以该抛物线的方程为24y x =;(2)[方法一]:轨迹方程+基本不等式法设()00,Q x y ,则()00999,9PQ QF x y ==--,所以()00109,10P x y -,由P 在抛物线上可得()()200104109y x =-,即20025910y x +=,据此整理可得点Q 的轨迹方程为229525=-y x ,所以直线OQ 的斜率000220001025925910OQ y y y k y x y ===++,当00y =时,0OQ k =;当00y ≠时,0010925OQ k y y =+,当00y >时,因为0092530y y +≥,此时103OQ k <≤,当且仅当00925y y =,即035y =时,等号成立;当00y <时,0OQ k <;综上,直线OQ 的斜率的最大值为13.[方法二]:【最优解】轨迹方程+数形结合法同方法一得到点Q 的轨迹方程为229525=-y x .设直线OQ 的方程为y kx =,则当直线OQ 与抛物线229525=-y x 相切时,其斜率k 取到最值.联立2,29,525y kx y x =⎧⎪⎨=-⎪⎩得22290525k x x -+=,其判别式222940525⎛⎫∆=--⨯= ⎪⎝⎭k ,解得13k =±,所以直线OQ 斜率的最大值为13.题型五向量型最值范围问题【例5】在平面直角坐标系xOy 中,已知双曲线221:142x y C -=与椭圆222:142x y C +=,A ,B分别为1C 的左、右顶点,点P 在双曲线1C 上,且位于第一象限.(1)直线OP 与椭圆2C 相交于第一象限内的点M ,设直线PA ,PB ,MA ,MB 的斜率分别为1k ,2k ,3k ,4k ,求1234k k k k +++的值;(2)直线AP 与椭圆2C 相交于点N (异于点A ),求AP AN ⋅的取值范围.【答案】(1)0;(2)()16,+∞【解析】(1)方法1:设直线():0OP y kx k =>,联立22142y kxx y =⎧⎪⎨-=⎪⎩,消y ,得()22124k x -=,所以20120k k >⎧⎨->⎩,解得202k <<,设()()1111,0,0P x y x y >>,则11x y ⎧=⎪⎪⎨⎪=⎪⎩,所以P ⎛⎫.联立22142y kxx y =⎧⎪⎨+=⎪⎩,消y ,得()22124k x +=,设()()2222,0,0M x y x y >>,则22x y ⎧=⎪⎪⎨⎪=⎪⎩,所以M ⎛⎫.因为()2,0A -,()2,0B ,所以211111221112821124224412k y y x y k k k x x x k k-+=+===-+---,222223422222821124224412ky y x y k k k x x x k k ++=+==--+--+,所以1234110k k k k k k ⎛⎫+++=+-= ⎪⎝⎭.方法2设()()1111,0,0P x y x y >>,()()2222,0,0M x y x y >>,因为()2,0A -,()2,0B ,所以11111221112224y y x yk k x x x +=+=-+-,22223422222224y y x yk k x x x +=+=-+-.因为点P 在双曲线1C 上,所以2211142x y -=,所以221142x y -=,所以1121x k k y +=.因为点Q 在椭圆线2C 上,所以2222142x y +=,所以222242x y -=-,所以2342x k k y +=-.因为O ,P ,M 三点共线,所以1212y y x x =,所以121234120x x k k k k y y +++=-=.(2)设直线AP 的方程为2y kx k =+,联立22224y kx k x y =+⎧⎨-=⎩,消y ,得()()22222184210k x k x k -+++=,解得12x =-,2224212k x k +=-,所以点P 的坐标为222424,1212k k k k ⎛⎫+ ⎪--⎝⎭,因为点P 位于第一象限,所以222420124012k k k k ⎧+>⎪⎪-⎨⎪>⎪-⎩,解得202k <<,联立22224y kx k x y =+⎧⎨+=⎩,消y ,得()()22222184210k x k x k +++-=,解得32x =-,2422412kx k -=+,所以点N 的坐标为222244,1212k k k k ⎛⎫- ++⎝⎭,所以()22222224161422444221212121214k k k k kAP AN AP AN k k k k k +⎛⎫⎛⎫+-⋅=⋅=--+⋅= ⎪⎪-+-+-⎝⎭⎝⎭,设21t k =+,则312t <<,所以22161616314(1)48384t tAP AN t t t t t ⋅===---+-⎛⎫-+ ⎪⎝⎭.因为函数3()4f x x x=+在区间31,2⎛⎫⎪⎝⎭上单调递增,所以当312t <<时,3748t t <+<,所以30841t t ⎛⎫<-+< ⎪⎝⎭,所以1616384t t >⎛⎫-+ ⎪⎝⎭,即16AP AN ⋅>,故AP AN ⋅的取值范围为()16,+∞.【变式5-1】已知O为坐标原点,椭圆2222:1(0)x yC a ba b+=>>的离心率为3,且经过点P.(1)求椭圆C的方程;(2)直线l与椭圆C交于A,B两点,直线OA的斜率为1k,直线OB的斜率为2k,且1213k k=-,求OA OB⋅的取值范围.【答案】(1)22193x y+=;(2)[3,0)(0,3]-.【解析】(1)由题意,223611caa b⎧=⎪⎪⎨⎪+=⎪⎩,又222a b c=+,解得3,a b==所以椭圆C为22193x y+=.(2)设()()1122,,,A x yB x y,若直线l的斜率存在,设l为y kx t=+,联立22193y kx tx y=+⎧⎪⎨+=⎪⎩,消去y得:()222136390+++-=k x ktx t,22Δ390k t=+->,则12221226133913ktx xktx xk-⎧+=⎪⎪+⎨-⎪=⎪+⎩,又12k k=121213y yx x=-,故121213=-y y x x且120x x≠,即2390-≠t,则23≠t,又1122,y kx t y kx t=+=+,所以()()()222222222121212221212122691133939313-+++++-+==+=+==---+k t tkx t kx t kt x x ty y t kkk ktx x x x x x tk,整理得222933=+≥t k,则232≥t且Δ0>恒成立.221212121212222122393333133313--⎛⎫⋅=+=-==⋅=⋅=-⎪+⎝⎭t tOA OB x x y y x x x x x xk t t,又232≥t,且23≠t,故2331[3,0)(0,3)⎛⎫-∈-⎪⎝⎭t.当直线l的斜率不存在时,2121,x x y y==-,又12k k=212113-=-yx,又2211193x y+=,解得2192x=则222111233⋅=-==OA OB x y x.综上,OA OB ⋅的取值范围为[3,0)(0,3]-.【变式5-2】已知双曲线22221(00)x y C a b a b-=>>:,的离心率为2,F 为双曲线的右焦点,直线l 过F 与双曲线的右支交于P Q ,两点,且当l 垂直于x 轴时,6PQ =;(1)求双曲线的方程;(2)过点F 且垂直于l 的直线'l 与双曲线交于M N ,两点,求MP NQ MQ NP ⋅⋅+的取值范围.【答案】(1)2213y x -=;(2)(],12-∞-【解析】(1)依题意,2c a =,当l 垂直于x 轴时,226b PQ a==,即23b a =,即223c a a -=,解得1a =,b =2213y x -=;(2)设:2PQ l x my =+,联立双曲线方程2213y x -=,得:()22311290m y my -++=,当0m =时,()()()()2,3,2,3,0,1,0,1P Q M N --,12MP NQ MQ NP ⋅+⋅=-,当0m ≠时,设()()()()11223344,,,,,,,P x y Q x y M x y N x y ,因为直线PQ 与双曲线右支相交,因此1229031y y m =<-,即m ⎛⎫⎛∈⋃ ⎪ ⎝⎭⎝⎭,同理可得234293m y y m =-,依题意()()MP NQ MF FP NF FQ MF NF FP FQ =+⋅+=⋅+⋅⋅,同理可得,()()MQ NP MF FQ NF FP MF NF FP FQ =+⋅+⋅=⋅+⋅,而()212342111FP FQ MF NF m y y y y m ⎛⎫⋅+⋅=+++ ⎪⎝⎭,代入122931y y m =-,234293m y y m =-,()()()()()()222242224222919118163633133103133m m m m m FP FQ MF NF m m m m m m ++-+++⋅+⋅=+==----+--,分离参数得,2429663103m FP FQ MF NF m m ⋅+⋅=---+,因为3333m ⎛⎫⎛∈⋃ ⎪ ⎝⎭⎝⎭,当210,3m ⎛⎫∈ ⎪⎝⎭时,由22110,3m m ⎛⎫+∈+∞ ⎪⎝⎭,()22966,61310FP FQ MF NF m m ⋅+⋅=-∈-∞-⎛⎫+- ⎪⎝⎭,所以()()2,12MP NQ MQ N FP FQ MF NF P ⋅=⋅+⋅∈∞-⋅-+,综上可知,MP NQ MQ NP ⋅⋅+的取值范围为(],12-∞-.【变式5-3】已知抛物线()2:20E x py p =>的焦点为F ,直线4x =分别与x 轴交于点P ,与抛物线E 交于点Q ,且54QF PQ =.(1)求抛物线E 的方程;(2)如图,设点,,A B C 都在抛物线E 上,若ABC 是以AC 为斜边的等腰直角三角形,求AB AC ⋅uu u r uuu r的最小值.【答案】(1)24x y =;(2)32【解析】(1)设点()04,Q y ,由已知000216524py p y y =⎧⎪⎨+=⎪⎩,则8102p p p +=,即24p =.因为0p >,则2p =,所以抛物线E 的方程是24x y =.(2)设点()222312123123,,,,,444x x x A x B x C x x x x ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,直线AB 的斜率为()0k k >,因为AB BC ⊥,则直线BC 的斜率为1k-.因为AB BC =,则1223x x x x -=-,得()2312x x k x x -=-,①因为22121212444x x x x k x x -+==-,则124x x k +=,即124x k x =-,②因为223223231444x x x x k x x -+-==-,则234x x k +=-,即324x x k =--③将②③代入①,得()2242420x k k x k+--=,即()()322212120k k x k kk-+---=,则()()32211k xk k -=+,所以()()()()22222122··cos 451421AB AC AB AC AB x x k k x k ︒===-+=-+()()()()()2332222411614111k k k k k k k k ⎡⎤-+⎢⎥=-+=++⎢⎥⎣⎦因为212k k +≥,则()22214k k +≥,又()22112k k++≥,则()()3222121k k k +≥+,从而()()3222121kk k +≥+当且仅当1k =时取等号,所以AB AC 的最小值为32.题型六参数型最值范围问题【例6】已知点()()1122,,,M x y N x y 在椭圆222:1(1)xC y a a+=>上,直线,OM ON 的斜率之积是13-,且22212x x a +=.(1)求椭圆C 的方程;(2)若过点()0,2Q 的直线与椭圆C 交于点,A B ,且(1)QB t QA t =>,求t 的取值范围.【答案】(1)2213x y +=;(2)(]1,3【解析】(1)椭圆方程改写为:2222x a y a +=,点()()1122,,,M x y N x y 在椭圆上,有222211a y a x =-,222222a y a x =-,两式相乘,得:()()()222222222241142122122a a a y y a x a x x x x x --==-++,由22212x x a +=,得222212241a y y x x =,由直线,OM ON 的斜率之积是13-,得121213y y x x =-,即222212129y y x x =,∴49a =,23a =,椭圆C 的方程为:2213x y +=.(2)过点()0,2Q 的直线若斜率不存在,则有()0,1A ,()0,1B -,此时3t =;当过点()0,2Q 的直线斜率存在,设直线方程为2y kx =+,由22213y kx x y =+⎧⎪⎨+=⎪⎩,消去y ,得()22131290k x kx +++=,直线与椭圆C 交于点,A B 两点,∴()2221249(13)36360k k k ∆=-⨯⨯+=->,得21k >设()()1122,,,A x y B x y '''',(1)QB t QA t =>,21x x t '='由韦达定理12122121212(1)13913k x x t x k x x tx k ''''-⎧+==+⎪⎪+⎨⎪⋅+'='=⎪⎩,消去1x ',得()229131441t k t ⎛⎫=+ ⎪⎝⎭+,由21k >,2101k<<,∴()2311641t t <<+,由1t >,解得13t <<,综上,有13t <≤,∴t 的取值范围为(]1,3【变式6-1】已知A 、B 分别是椭圆2222:1(0)x y C a b a b+=>>的左右顶点,O 为坐标原点,=6AB ,点2,3⎛⎫⎪⎝⎭5在椭圆C 上.过点()0,3P -,且与坐标轴不垂直的直线交椭圆C 于M 、N 两个不同的点.(1)求椭圆C 的标准方程;(2)若点B 落在以线段MN 为直径的圆的外部,求直线的斜率k 的取值范围;(3)当直线的倾斜角θ为锐角时,设直线AM 、AN 分别交y 轴于点S 、T ,记PS PO λ=,PT PO μ=,求λμ+的取值范围.【答案】(1)22195x y +=;(2)227,,1,332k ⎛⎫⎛⎫⎛⎫∈-∞-⋃⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(3)4,23⎛⎫ ⎪⎝⎭【解析】(1)因为=6AB ,所以=3a ;又点2,3⎛⎫ ⎪⎝⎭5在图像C 上即()22252319b⎛⎫⎪⎝⎭+=,所以b 所以椭圆C 的方程为22195x y +=;(2)由(1)可得()3,0B ,设直线3l y kx =-:,设11(,)M x y 、22(,)N x y ,由22=-3=195y kx x y ⎧⎪⎨+⎪⎩得22(59)54360k x kx +-+=,22(54)436(59)0k k ∆=-⨯⨯+>解得23k >或23k <-①∵点()3,0B 在以线段MN 为直径的圆的外部,则0BM BN ⋅>,又12212254+=5+936=5+9k x x k x x k ⎧⎪⎪⎨⎪⎪⎩②211221212(3,)(3,)(1)3(1)()180BM BN x y x y k x x k x x ⋅=--=+-+++>,解得1k <或72k >由①②得227,,1,332k ⎛⎫⎛⎫⎛⎫∈-∞-⋃⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)设直线3l y kx =-:,又直线的倾斜角θ为锐角,由(2)可知23k >,记11(,)M x y 、22(,)N x y ,所以直线AM 的方程是:()1133y y x x =++,直线AN 的方程是:()2233y y x x =++.令=0x ,解得113+3y y x =,所以点S 坐标为1130,+3y x ⎛⎫ ⎪⎝⎭;同理点T 为2230,+3y x ⎛⎫⎪⎝⎭.所以1130,3+3y PS x ⎛⎫=+ ⎪⎝⎭,2230,3+3y PT x ⎛⎫=+ ⎪⎝⎭,()0,3PO =.由PS PO λ=,PT PO μ=,可得:11333+3y x λ+=,22333+3y x μ+=,所以1212233y yx x λμ+=++++,由(2)得1225495k x x k +=+,1223695x k x =+,所以()()()1212121212122311333338229kx x k x x kx kx x x x x x x λμ--++-+-+=++=+++++()222254231189595254936369595k k k k k k k k ⎛⎫⋅+-- ⎪++⎝⎭=+⎛⎫++ ⎪++⎝⎭21012921k k k +=-⨯+++()()2110291k k +=-⨯++101291k =-⨯++,因为23k >,所以5131,0315k k +><<+,10142,2913k ⎛⎫-⨯+∈ ⎪+⎝⎭,故λμ+的范围是4,23⎛⎫⎪⎝⎭.【变式6-2】设A ,B 为双曲线C :22221x y a b-=()00a b >>,的左、右顶点,直线l 过右焦点F 且与双曲线C 的右支交于M ,N 两点,当直线l 垂直于x 轴时,AMN 为等腰直角三角形.(1)求双曲线C 的离心率;(2)已知4AB =,若直线AM ,AN 分别交直线1x =于P ,Q 两点,若()0D t ,为x 轴上一动点,当直线l 的倾斜角变化时,若PDQ ∠为锐角,求t 的取值范围.【答案】(1)2;(2){2t t <-或}4t >【解析】(1)由双曲线C :22221x y a b-=()00a b >>,可得:右焦点(),0F c ,将x c =代入2222:1(0,0)x y C a b a b -=>>中,2by a=±,当直线l 垂直于x 轴时,AMN 为等腰直角三角形,此时AF FM =,即2b ac a+=,整理得:220a ac b +-=,因为222b c a =-,所以2220a ac c +-=,方程两边同除以2a 得:220e e +-=,解得:2e =或1-(舍去),所以双曲线C 的离心率为2;(2)因为24AB a ==,所以2a =,因为2c e a ==,解得4c =,故22212b c a =-=,所以双曲线的方程为221412x y -=,当直线l 的斜率存在时,设直线l 的方程为:()4y k x =-,与双曲线联立得:()22223816120kxk x k -+--=,设()()1122,,,M x y N x y ,则212283k x x k +=-,212216123k x x k +=-,则()()()221212121244416y y k x x k x x x x =--=-++⎡⎤⎣⎦222221612321633k k k k k ⎛⎫+=-+ ⎪--⎝⎭22363k k -=-,因为直线l 过右焦点F 且与双曲线C 的右支交于,M N 两点,所以22121222816124,433k k x x x x k k ++=>=>--,解得:23k >,直线()11:22y AM y x x =++,则1131,2y P x ⎛⎫ ⎪+⎝⎭,同理可求得:2231,2y Q x ⎛⎫⎪+⎝⎭,所以11,213y D x P t ⎪+⎛⎫=- ⎝⎭,22,213y D x Q t ⎪+⎛⎫=- ⎝⎭,因为PDQ ∠为锐角,所以()()12221192202D y y x Q t x P D t ⋅=+-+>++,即()1122122109224y y x x x t x t +-+++>+,所以22222221203693161216433k k k k t k t k -⨯-++--+++>-所以21290t t +-->即()219t ->,解得2t <-或4t >;当直线l 的斜率不存在时,将4x =代入双曲线可得6y =±,此时不妨设()()4,6,4,6M N -,此时直线:2AM y x =+,点P 坐标为()1,3,同理可得:()1,3Q -,所以()1,3DP t =-,()1,3DQ t =--,因为PDQ ∠为锐角,所以2280DP DQ t t ⋅=-->,解得2t <-或4t >;综上所述,t 的取值范围{2t t <-或}4t >【变式6-3】22122:1y x C a b-=上的动点P 到两焦点的距离之和的最小值为22:2(0)C x py p =>的焦点与双曲线1C 的上顶点重合.(1)求抛物线2C 的方程;(2)过直线:(l y a a =为负常数)上任意一点M 向抛物线2C 引两条切线,切点分别为AB ,坐标原点O 恒在以AB 为直径的圆内,求实数a 的取值范围.【答案】(1)24x y =;(2)40a -<<.【解析】(1)由已知:双曲线焦距为,则长轴长为2,故双曲线的上顶点为(0,1),即为抛物线焦点.∴抛物线2C 的方程为24x y =;(2)设(,)M m a ,2111(,)4A x x ,2221(,)4B x x ,故直线MA 的方程为211111()42y x x x x -=-,即21142y x x x =-,所以21142a x m x =-,同理可得:22242a x m x =-,∴1x ,2x 是方程242a xm x =-的两个不同的根,则124x x a =,2212121()416OA OB x x x x a a ∴⋅=+=+,由O 恒在以AB 为直径的圆内,240a a ∴+<,即40a -<<.。

高考数学圆锥曲线中的最值与范围专题

高考数学圆锥曲线中的最值与范围专题

高考数学圆锥曲线中的最值与范围专题一、整理方法 提升能力圆锥曲线中的最值与范围问题的类型较多,解法灵活多变,但总体上主要有以下3种方法:方法1:几何法.若题目的条件或结论能明显体现几何特征及意义,则考虑利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解.方法2:代数法.把所求的量表示为某个(某些)参数的函数解析式,然后利用函数方法、不等式方法等进行求解.对于大多数题目来说,主要是选择一个参数去表示所求的量,从而把问题转化为求函数的值域问题.由于引进的参数往往不只一个,所以解题时通常涉及到消参问题.如果用两个参数去表示所求的量(不能通过消参留下一个未知数),则往往考虑使用均值不等式.方法3:不等式(组)法.由题目所给的条件寻找所求量满足的不等式(组),通过该不等式(组)的求解得到所求量的最值或取值范围.上述三种方法中,方法1主要在小题中体现,解答题中以方法2最为常见.例1 已知抛物线C 的顶点为()0,0O ,焦点为()0,1F .(1)求抛物线C 的方程;(2)过点F 作直线交抛物线C 于A 、B 两点,若直线AO 、BO 分别交直线l :2y x =-于M 、N 两点,求MN的最小值.例2 设椭圆22213x y a +=(3a >)的右焦点为F ,右顶点为A .已知113e OF OA FA +=,其中O 为原点,e 为椭圆的离心率.(1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF HF ⊥,且MOA MAO ∠≤∠,求直线l 的斜率的取值范围.例3 已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k (0k >)的直线交E 于A 、M 两点,点N 在E 上,MA NA ⊥.(1)当4t =,AM AN =时,求△AMN 的面积;(2)当2AM AN =时,求k 的取值范围.二、练习巩固 整合提升练习1:如图,设抛物线22y px =(0p >)的焦点为F ,抛物线上的点A 到y 轴的距离等于1AF -.(1)求p 的值;(2)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M ,求M 的横坐标的取值范围.练习2:椭圆M :22221x y a b+=(0a b >>)3,直线x a =±和y b =±所围成的矩形ABCD 的面积为8.(1)求椭圆M 的标准方程;(2)设直线l :y x m =+(m ∈R )与椭圆M 有两个不同的交点P 、Q ,l 与矩形ABCD 有两个不同的交点S 、T ,求PQST 的最大值及取得最大值时m 的值.练习3:如图,点()0,1P -是椭圆1C :22221x y a b +=(0a b >>)的一个顶点,1C 的长轴是圆2C :224x y +=的直径.1l 、2l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于A 、B 两点,2l 交椭圆1C 于另一点D .(1)求椭圆1C 的方程;(2)求△ABD 面积取最大值时直线1l 的方程.练习4:如图,O 为坐标原点,椭圆1C :22221x y a b+=(0a b >>)的左右焦点分别为1F 、2F ,离心率为1e ;双曲线2C :22221x y a b-=的左右焦点分别为3F 、4F ,离心率为2e ,已知123e e =,且2431F F =. (1)求1C 、2C 的方程;(2)过1F 点作1C 的不垂直于y 轴的弦AB ,M 为AB 的中点,当直线OM 与2C 交于P 、Q 两点时,求四边形APBQ 面积的最小值.。

圆锥曲线中的范围、最值、证明问题 专题

圆锥曲线中的范围、最值、证明问题 专题

圆锥曲线中的范围、最值、证明问题[压轴大题突破练][明晰考情] 1.命题角度:直线与圆锥曲线的位置关系是高考必考题,范围、最值问题是高考的热点;圆锥曲线中的证明问题是常见的题型.2.题目难度:中高档难度.考点一 直线与圆锥曲线方法技巧 对于直线与圆锥曲线的位置关系问题,一般要把圆锥曲线的方程与直线方程联立来处理.(1)设直线方程,在直线的斜率不确定的情况下要分斜率存在和不存在两种情况进行讨论,或者将直线方程设成x =my +b (斜率不为0)的形式.(2)联立直线方程与曲线方程并将其转化成一元二次方程,利用方程根的判别式或根与系数的关系得到交点的横坐标或纵坐标的关系.(3)一般涉及弦长的问题,要用到弦长公式|AB |=1+k 2·|x 1-x 2|或|AB |=1+1k 2·|y 1-y 2|. 1.已知动点M (x ,y )到点F (2,0)的距离为d 1,动点M (x ,y )到直线x =3的距离为d 2,且d 1d 2=63.(1)求动点M (x ,y )的轨迹C 的方程;(2)过点F 作直线l :y =k (x -2)(k ≠0)交曲线C 于P ,Q 两点,若△OPQ 的面积S △OPQ =3(O 是坐标原点),求直线l 的方程. 解 (1)结合题意,可得d 1=(x -2)2+y 2,d 2=|x -3|. 又d 1d 2=63,即(x -2)2+y 2|x -3|=63,化简得x 26+y 22=1. 因此,所求动点M (x ,y )的轨迹C 的方程是x 26+y 22=1.(2)联立方程组⎩⎪⎨⎪⎧x 26+y 22=1,y =k (x -2),消去y ,得(1+3k 2)x 2-12k 2x +12k 2-6=0.设点P (x 1,y 1),Q (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=12k 21+3k 2,x 1x 2=12k 2-61+3k2,Δ>0.于是,弦|PQ |=(x 1-x 2)2+(y 1-y 2)2=1+k 2⎝ ⎛⎭⎪⎫12k 21+3k 22-4·12k 2-61+3k 2 =26(k 2+1)1+3k 2, 点O 到直线l 的距离d =|2k |1+k2.由S △OPQ =3,得12×|2k |1+k 2×26(k 2+1)1+3k 2=3,化简得,k 4-2k 2+1=0, 解得k =±1,且满足Δ>0,即k =±1符合题意. 因此,所求直线的方程为x -y -2=0或x +y -2=0.2.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,右焦点为F (1,0).(1)求椭圆E 的标准方程;(2)设点O 为坐标原点,过点F 作直线l 与椭圆E 交于M ,N 两点,若OM ⊥ON ,求直线l 的方程.解 (1)依题意可得⎩⎪⎨⎪⎧1a =22,a 2=b 2+1,解得⎩⎪⎨⎪⎧a =2,b =1.∴椭圆E 的标准方程为x 22+y 2=1.(2)设M (x 1,y 1),N (x 2,y 2),①当MN 垂直于x 轴时,直线l 的方程为x =1,设直线与椭圆E 的交点坐标为M ⎝⎛⎭⎫1,22,N ⎝⎛⎭⎫1,-22,此时OM 不垂直于ON ,不符合题意; ②当MN 不垂直于x 轴时,设直线l 的方程为y =k (x -1).联立得方程组⎩⎪⎨⎪⎧x 22+y 2=1,y =k (x -1),消去y 得(1+2k 2)x 2-4k 2x +2(k 2-1)=0,Δ>0显然成立. ∴x 1+x 2=4k 21+2k 2,x 1x 2=2(k 2-1)1+2k 2. ∴y 1y 2=k 2[x 1x 2-(x 1+x 2)+1]=-k 21+2k 2.∵OM ⊥ON ,∴OM →·ON →=0. ∴x 1x 2+y 1y 2=k 2-21+2k 2=0,∴k =±2.故直线l 的方程为2x ±y -2=0.3.(2017·天津)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线y 2=2px (p >0)的焦点,F 到抛物线的准线l 的距离为12.(1)求椭圆的方程和抛物线的方程;(2)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (点B 异于点A ),直线BQ 与x 轴相交于点D .若△APD 的面积为62,求直线AP 的方程. 解 (1)设点F 的坐标为(-c ,0),依题意,得c a =12,p 2=a ,a -c =12,解得a =1,c =12,p =2,于是b 2=a 2-c 2=34.所以椭圆的方程为x 2+4y 23=1,抛物线的方程为y 2=4x .(2)设直线AP 的方程为x =my +1(m ≠0),与直线l 的方程x =-1联立,可得点P ⎝⎛⎭⎫-1,-2m , 故点Q ⎝⎛⎭⎫-1,2m . 将x =my +1与x 2+4y 23=1联立,消去x ,整理得(3m 2+4)y 2+6my =0,解得y =0或y =-6m3m 2+4.由点B 异于点A ,可得点B ⎝⎛⎭⎪⎫-3m 2+43m 2+4,-6m 3m 2+4, 由Q ⎝⎛⎭⎫-1,2m ,可得直线BQ 的方程为 ⎝ ⎛⎭⎪⎫-6m 3m 2+4-2m (x +1)-⎝ ⎛⎭⎪⎫-3m 2+43m 2+4+1⎝⎛⎭⎫y -2m =0, 令y =0,解得x =2-3m 23m 2+2,故点D ⎝ ⎛⎭⎪⎫2-3m 23m 2+2,0.所以|AD |=1-2-3m 23m 2+2=6m 23m 2+2.又因为△APD 的面积为62, 故12×6m 23m 2+2×2|m |=62, 整理得3m 2-26|m |+2=0, 解得|m |=63,所以m =±63. 所以直线AP 的方程为3x +6y -3=0或3x -6y -3=0. 考点二 圆锥曲线中的范围、最值问题方法技巧 求圆锥曲线中范围、最值的主要方法(1)几何法:若题目中的条件和结论能明显体现几何特征和意义,则考虑利用图形性质数形结合求解.(2)代数法:若题目中的条件和结论能体现一种明确的函数关系,或者不等关系,或者已知参数与新参数之间的等量关系等,则利用代数法求参数的范围.4.已知椭圆E :x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA .(1)当t =4,|AM |=|AN |时,求△AMN 的面积; (2)当2|AM |=|AN |时,求k 的取值范围.解 (1)设M (x 1,y 1),则由题意知y 1>0.当t =4时,椭圆E 的方程为x 24+y 23=1,A (-2,0).由|AM |=|AN |及椭圆的对称性知,直线AM 的倾斜角为π4.因此直线AM 的方程为y =x +2.将x =y -2代入x 24+y 23=1,得7y 2-12y =0,解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)由题意知t >3,k >0,A (-t ,0),设M (x 1,y 1), 将直线AM 的方程y =k (x +t )代入x 2t +y 23=1,得(3+tk 2)x 2+2t ·tk 2x +t 2k 2-3t =0. 由x 1·(-t )=t 2k 2-3t 3+tk 2,得x 1=t (3-tk 2)3+tk 2,故|AM |=|x 1+t |1+k 2=6t (1+k 2)3+tk 2.由题设,直线AN 的方程为y =-1k (x +t ),故同理可得|AN |=6kt (1+k 2)3k 2+t.由2|AM |=|AN |,得23+tk 2=k3k 2+t, 即(k 3-2)t =3k (2k -1),当k =32时上式不成立,因此t =3k (2k -1)k 3-2.t >3等价于k 3-2k 2+k -2k 3-2=(k -2)(k 2+1)k 3-2<0,即k -2k 3-2<0. 由此得⎩⎪⎨⎪⎧ k -2>0,k 3-2<0或⎩⎪⎨⎪⎧k -2<0,k 3-2>0,解得32<k <2.因此k 的取值范围是(32,2).5.已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程. 解 (1)设F (c ,0),由条件知,2c =233,得c = 3.又c a =32,所以a =2,b 2=a 2-c 2=1. 故E 的方程为x 24+y 2=1.(2)当l ⊥x 轴时不合题意,故设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2). 将y =kx -2代入x 24+y 2=1,得(1+4k 2)x 2-16kx +12=0. 当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2=8k ±24k 2-34k 2+1.从而|PQ |=k 2+1|x 1-x 2|=4k 2+14k 2-34k 2+1.又点O 到直线PQ 的距离d =2k 2+1.所以△OPQ 的面积S △OPQ =12·d ·|PQ |=44k 2-34k 2+1.+4t当且仅当t =2,即k =±72时等号成立,且满足Δ>0.所以当△OPQ 的面积最大时,l 的方程为2y ±7x +4=0.6.已知O 为坐标原点,M (x 1,y 1),N (x 2,y 2)是椭圆x 24+y 22=1上的点,且x 1x 2+2y 1y 2=0,设动点P 满足OP →=OM →+2ON →. (1)求动点P 的轨迹C 的方程;(2)若直线l :y =x +m (m ≠0)与曲线C 交于A ,B 两点,求△OAB 面积的最大值. 解 (1)设点P (x ,y ),则由OP →=OM →+2ON →, 得(x ,y )=(x 1,y 1)+2(x 2,y 2), 即x =x 1+2x 2,y =y 1+2y 2. 因为点M ,N 在椭圆x 24+y 22=1上,所以x 21+2y 21=4,x 22+2y 22=4.故x 2+2y 2=(x 21+4x 22+4x 1x 2)+2(y 21+4y 22+4y 1y 2) =(x 21+2y 21)+4(x 22+2y 22)+4(x 1x 2+2y 1y 2)=20+4(x 1x 2+2y 1y 2).又因为x 1x 2+2y 1y 2=0,所以x 2+2y 2=20, 所以动点P 的轨迹C 的方程为x 2+2y 2=20.(2)将曲线C 与直线l 的方程联立,得⎩⎪⎨⎪⎧x 2+2y 2=20,y =x +m ,消去y 得3x 2+4mx +2m 2-20=0.因为直线l 与曲线C 交于A ,B 两点,设A (x 3,y 3),B (x 4,y 4), 所以Δ=16m 2-4×3×(2m 2-20)>0. 又m ≠0,所以0<m 2<30, x 3+x 4=-4m3,x 3x 4=2m 2-203.又点O 到直线AB :x -y +m =0的距离d =|m |2, |AB |=1+k 2|x 3-x 4|=(1+k 2)[(x 3+x 4)2-4x 3x 4]=2×⎝ ⎛⎭⎪⎫16m 29-4×2m 2-203= 169(30-m 2), 所以S △OAB =12169(30-m 2)×|m |2=23×m 2(30-m 2)≤23×m 2+(30-m 2)2=52, 当且仅当m 2=30-m 2,即m 2=15时取等号,且满足Δ>0. 所以△OAB 面积的最大值为5 2. 考点三 圆锥曲线中的证明问题方法技巧 圆锥曲线中的证明问题是转化与化归思想的充分体现.无论证明什么结论,要对已知条件进行化简,同时对要证结论合理转化,寻求条件和结论间的联系,从而确定解题思路及转化方向.7.(优质试题·全国Ⅰ) 设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB . (1)解 由已知得F (1,0),l 的方程为x =1. 由已知可得,点A 的坐标为⎝⎛⎭⎫1,22或⎝⎛⎭⎫1,-22. 又M (2,0),所以AM 的方程为y =-22x +2或y =22x - 2. 即x +2y -2=0或x -2y -2=0.(2)证明 当l 与x 轴重合时,∠OMA =∠OMB =0°. 当l 与x 轴垂直时,OM 为AB 的垂直平分线, 所以∠OMA =∠OMB .当l 与x 轴不重合也不垂直时,设l 的方程为y =k (x -1)(k ≠0),A (x 1,y 1),B (x 2,y 2), 则x 1<2,x 2<2,直线MA ,MB 的斜率之和 k MA +k MB =y 1x 1-2+y 2x 2-2.由y 1=kx 1-k ,y 2=kx 2-k ,得 k MA +k MB =2kx 1x 2-3k (x 1+x 2)+4k(x 1-2)(x 2-2).将y =k (x -1)代入x 22+y 2=1,得(2k 2+1)x 2-4k 2x +2k 2-2=0,由题意知Δ>0恒成立, 所以x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1.则2kx 1x 2-3k (x 1+x 2)+4k =4k 3-4k -12k 3+8k 3+4k2k 2+1=0,从而k MA +k MB =0, 故MA ,MB 的倾斜角互补. 所以∠OMA =∠OMB . 综上,∠OMA =∠OMB .8.(优质试题·大庆质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为23,且C 过点⎝⎛⎭⎫3,12. (1)求椭圆C 的方程;(2)设B 1,B 2分别是椭圆C 的下顶点和上顶点,P 是椭圆上异于B 1,B 2的任意一点,过点P 作PM ⊥y 轴于M ,N 为线段PM 的中点,直线B 2N 与直线y =-1交于点D ,E 为线段B 1D 的中点,O 为坐标原点,求证:ON ⊥EN . (1)解 由题设知焦距为23,所以c = 3. 又因为椭圆过点⎝⎛⎭⎫3,12, 所以代入椭圆方程得3a 2+14b 2=1,因为a 2=b 2+c 2,解得a =2,b =1,故所求椭圆C 的方程是x24+y 2=1.(2)证明 设P (x 0,y 0),x 0≠0,则M (0,y 0),N ⎝⎛⎭⎫x 02,y 0. 因为点P 在椭圆C 上,所以x 204+y 20=1.即x 20=4-4y 20. 又B 2(0,1),所以直线B 2N 的方程为y -1=2(y 0-1)x 0x .令y =-1,得x =x 01-y 0,所以D ⎝⎛⎭⎫x 01-y 0,-1.又B 1(0,-1),E 为线段B 1D 的中点, 所以E ⎝⎛⎭⎫x 02(1-y 0),-1.所以ON →=⎝⎛⎭⎫x 02,y 0,EN →=⎝⎛⎭⎫x 02-x 02(1-y 0),y 0+1. 因为ON →·EN →=x 02⎣⎡⎦⎤x 02-x 02(1-y 0)+y 0(y 0+1)=x 204-x 204(1-y 0)+y 20+y 0=1-4-4y 204(1-y 0)+y 0=1-y 0-1+y 0=0,所以ON →⊥EN →,即ON ⊥EN .9.(优质试题·咸阳模拟)已知A (-2,0),B (2,0),点C 是动点,且直线AC 和直线BC 的斜率之积为-34.(1)求动点C 的轨迹方程;(2)设直线l 与(1)中轨迹相切于点P ,与直线x =4相交于点Q ,且F (1,0),求证:∠PFQ =90°.(1)解 设C (x ,y ),则依题意得k AC ·k BC =-34,又A (-2,0),B (2,0),所以有y x +2·y x -2=-34(y ≠0),整理得x 24+y 23=1(y ≠0),即为所求轨迹方程.(2)证明 方法一 由题意知,直线l 的斜率存在,设直线l :y =kx +m ,与3x 2+4y 2=12联立得,3x 2+4(kx +m )2=12,即(3+4k 2)x 2+8kmx +4m 2-12=0,依题意得Δ=(8km )2-4(3+4k 2)(4m 2-12)=0, 即3+4k 2=m 2,∴x 1+x 2=-8km3+4k 2,得x 1=x 2=-4km3+4k 2,∴P ⎝ ⎛⎭⎪⎫-4km 3+4k 2,3m 3+4k 2,而3+4k 2=m 2,得P ⎝ ⎛⎭⎪⎫-4k m ,3m ,又Q (4,4k +m ),F (1,0), 则FP →·FQ →=⎝⎛⎭⎫-4km -1,3m ·(3,4k +m )=0, 知FP →⊥FQ →, 即∠PFQ =90°.方法二 设P (x 0,y 0),则曲线C 在点P 处切线PQ : x 0x 4+y 0y 3=1,令x =4,得Q ⎝⎛⎭⎪⎫4,3-3x 0y 0, 又F (1,0),∴FP →·FQ →=(x 0-1,y 0)·⎝⎛⎭⎪⎫3,3-3x 0y 0=0,知FP →⊥FQ →,即∠PFQ =90°.典例 (12分)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且点⎝⎛⎭⎫3,12在椭圆C 上. (1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b 2=1,P 为椭圆C 上任意一点,过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q . ①求|OQ ||OP |的值;②求△ABQ 面积的最大值. 审题路线图基本量法求得椭圆C 的方程(2)①P 在C 上,Q 在E 上――→P ,O ,Q 共线设坐标代入方程―→求出|OQ ||OP |②直线y =kx +m 和椭圆E 的方程联立――→通法研究判别式Δ并判断根与系数的关系→ 用m ,k 表示S △OAB →求S △OAB 最值―――――――→利用①得S △ABQ和S △OAB的关系得S △ABQ 的最大值 规范解答·评分标准 解 (1)由题意知3a 2+14b2=1.又a 2-b 2a =32, 解得a 2=4,b 2=1.所以椭圆C 的方程为x 24+y 2=1.…………………………………………2分(2)由(1)知椭圆E 的方程为x 216+y 24=1.①设P (x 0,y 0),|OQ ||OP |=λ(λ>0),由题意知Q (-λx 0,-λy 0).因为x 204+y 20=1,又(-λx 0)216+(-λy 0)24=1,即λ24⎝⎛⎭⎫x 204+y 20=1, 所以λ=2,即|OQ ||OP |=…………………………………………………………………………2.5分②设A (x 1,y 1),B (x 2,y 2). 将y =kx +m 代入椭圆E 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-16=0, 由Δ>0,可得m 2<4+16k 2,(*) 则有x 1+x 2=-8km1+4k 2,x 1x 2=4m 2-161+4k 2. 所以|x 1-x 2|=416k 2+4-m 21+4k 2.…………………………………………………………………8分因为直线y =kx +m 与y 轴交点的坐标为(0,m ),1+4k 1+4k =2⎝ ⎛⎭⎪⎫4-m 21+4k 2m 21+4k 2.……………………………………………………………………9分 设m 21+4k 2=t ,将y =kx +m 代入椭圆C 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-4=0, 由Δ≥0,可得m 2≤1+4k 2.(**) 由(*)和(**)可知0<t ≤1, 因此S =2(4-t )t =2-t 2+4t ,……………………………………………………………10分故0<S ≤23,当且仅当t =1,即m 2=1+4k 2时取得最大值2 3.………………………11分 由①知,△ABQ 的面积为3S ,所以△ABQ 面积的最大值为6 3.…………………………12分 构建答题模板[第一步] 求曲线方程:根据基本量法确定圆锥曲线的方程;[第二步] 联立消元:将直线方程和圆锥曲线方程联立,得到方程Ax 2+Bx +C =0,然后研究判别式,利用根与系数的关系;[第三步] 找关系:从题设中寻求变量的等量或不等关系;[第四步] 建函数:对范围最值类问题,要建立关于目标变量的函数关系;[第五步] 得范围:通过求解函数值域或解不等式得目标变量的范围或最值,要注意变量条件的制约,检查最值取得的条件.1.(优质试题·全国Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程. 解 (1)由题意得F (1,0),l 的方程为y =k (x -1)(k >0). 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0.Δ=16k 2+16>0,故x 1+x 2=2k 2+4k2.所以|AB |=|AF |+|BF |=(x 1+1)+(x 2+1)=4k 2+4k 2.由题意知4k 2+4k 2=8,解得k =-1(舍去)或k =1.因此l 的方程为x -y -1=0.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3), 即y =-x +5.设所求圆的圆心坐标为(x 0,y 0),则⎩⎨⎧y 0=-x 0+5,(x 0+1)2=(x 0-y 0-1)22+16,解得⎩⎪⎨⎪⎧ x 0=3,y 0=2或⎩⎪⎨⎪⎧x 0=11,y 0=-6.因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144.2.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点.若AC →·DB →+AD →·CB →=8,O 为坐标原点,求△OCD 的面积.解 (1)因为过焦点且垂直于x 轴的直线被椭圆截得的线段长为433,所以2b 2a =433.因为椭圆的离心率为33,所以c a =33, 又a 2=b 2+c 2,可解得b =2,c =1,a = 3.所以椭圆的方程为x 23+y22=1.(2)由(1)可知F (-1,0), 则直线CD 的方程为y =k (x +1).联立⎩⎪⎨⎪⎧y =k (x +1),x 23+y 22=1,消去y 得(2+3k 2)x 2+6k 2x +3k 2-6=0. 设C (x 1,y 1),D (x 2,y 2),所以x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2.又A (-3,0),B (3,0), 所以AC →·DB →+AD →·CB →=(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1) =6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2 =6+2k 2+122+3k 2=8,解得k =±2.从而x 1+x 2=-6×22+3×2=-32,x 1x 2=3×2-62+3×2=0.所以|x 1-x 2|=(x 1+x 2)2-4x 1x 2=⎝⎛⎭⎫-322-4×0=32, |CD |=1+k 2|x 1-x 2|=1+2×32=332.而原点O 到直线CD 的距离d =|k |1+k 2=21+2=63, 所以△OCD 的面积S =12|CD |×d =12×332×63=324.3.(优质试题·全国Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0). (1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+F A →+FB →=0.证明:|F A →|,|FP →|,|FB →|成等差数列,并求该数列的公差.(1)证明 设A (x 1,y 1),B (x 2,y 2),则x 214+y 213=1,x 224+y 223=1. 两式相减,并由y 1-y 2x 1-x 2=k ,得x 1+x 24+y 1+y 23·k =0.由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m .①由题设得0<m <32,故k <-12.(2)解 由题意得F (1,0).设P (x 3,y 3),则 (x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0). 由(1)及题设得x 3=3-(x 1+x 2)=1, y 3=-(y 1+y 2)=-2m <0. 又点P 在C 上,所以m =34,从而P ⎝⎛⎭⎫1,-32,|FP →|=32, 于是|F A →|=(x 1-1)2+y 21=(x 1-1)2+3⎝⎛⎭⎫1-x 214=2-x 12. 同理|FB →|=2-x 22.所以|F A →|+|FB →|=4-12(x 1+x 2)=3.故2|FP →|=|F A →|+|FB →|,即|F A →|,|FP →|,|FB →|成等差数列. 设该数列的公差为d ,则2|d |=||FB →|-|F A →||= 12|x 1-x 2|=12(x 1+x 2)2-4x 1x 2.②将m =34代入①得k =-1,所以l 的方程为y =-x +74,代入C 的方程,并整理得7x 2-14x +14=0.故x 1+x 2=2,x 1x 2=128,代入②解得|d |=32128.所以该数列的公差为32128或-32128.4.(优质试题·河南八市测评)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,点M ⎝⎛⎭⎫3,32在椭圆C 上.(1)求椭圆C 的方程;(2)若不过原点O 的直线l 与椭圆C 相交于A ,B 两点,与直线OM 相交于点N ,且N 是线段AB 的中点,求△OAB 面积的最大值.解 (1) 由椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,点M ⎝⎛⎭⎫3,32在椭圆C 上,得⎩⎪⎨⎪⎧c a =12,(3)2a 2+(3)24b 2=1,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a 2=4,b 2=3.所以椭圆C 的方程为x 24+y 23=1.(2)易得直线OM 的方程为y =12x .当直线l 的斜率不存在时,AB 的中点不在直线y =12x 上,故直线l 的斜率存在.设直线l 的方程为y =kx +m (m ≠0),与x 24+y 23=1联立消y ,得(3+4k 2)x 2+8kmx +4m 2-12=0,所以Δ=64k 2m 2-4(3+4k 2)(4m 2-12) =48(3+4k 2-m 2)>0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km3+4k 2,x 1x 2=4m 2-123+4k 2. 由y 1+y 2=k (x 1+x 2)+2m =6m 3+4k2, 所以AB 的中点N ⎝ ⎛⎭⎪⎫-4km 3+4k 2,3m 3+4k 2,因为N 在直线y =12x 上,所以-4km 3+4k 2=2×3m 3+4k 2,解得k =-32, 所以Δ=48(12-m 2)>0,得-23<m <23,且m ≠0, |AB |=1+⎝⎛⎭⎫322|x 2-x 1|=132·(x 1+x 2)2-4x 1x 2=132·m 2-4×m 2-33=39612-m 2,又原点O 到直线l 的距离d =2|m |13, 所以S △OAB =12×39612-m 2×2|m |13=36(12-m 2)m 2≤36(12-m 2+m 2)24=3,当且仅当12-m 2=m 2,即m =±6时等号成立, 符合-23<m <23,且m ≠0, 所以△OAB 面积的最大值为 3.。

高考数学专题复习:圆锥曲线中的最值(范围)问题

高考数学专题复习:圆锥曲线中的最值(范围)问题

[解] (1)由题意知 M(0,-4),F0,p2 ,圆 M 的半径 r=1,所以|MF|-r=4,即
p 2
+4-1=4,解得 p=2.
(2)由(1)知,抛物线方程为 x2=4y,
由题意可知直线 AB 的斜率存在,设 Ax1,x421
,Bx2,x422
,直线 AB 的方程为
y=kx+b,
联立得yx=2=k4xy+,b, 消去 y 得 x2-4kx-4b=0, 则 Δ=16k2+16b>0 (※),x1+x2=4k,x1x2=-4b,
寻找不等关系的突破口 (1)利用判别式来构造不等式,从而确定所求范围; (2)利用已知参数的取值范围,求新参数的范围,解这类问题的核心是在两个参数 之间建立相等关系; (3)利用隐含的不等关系,从而求出所求范围; (4)利用已知不等关系构造不等式,从而求出所求范围; (5)利用函数值域的求法,确定所求范围.
联立方程x42+y2=1, 得(m2+4)y2+8my+12=0. 由 Δ=64m2-48(m2+4)>0,得 m2>12, 所以 y1y2=m21+2 4 .
λ=|MA|·|MB|= m2+1 |y1|· m2+1 |y2|
=(m2+1)·|y1y2|=12(mm2+2+41) =121-m23+4 . 由 m2>12,得 0<m23+4 <136 ,所以349 <λ<12.
已知椭圆 C:xa22
+by22
=1(a>b>0)的离心率 e=
3 2
,直线 x+
3
y-1=0 被以椭圆 C
的短轴为直径的圆截得的弦长为 3 .
(1)求椭圆 C 的方程;
(2)过点 M(4,0)的直线 l 交椭圆于 A,B 两个不同的点,且 λ=|MA|·|MB|,求 λ 的取值

圆锥曲线中的最值、范围、证明问题知识点梳理

圆锥曲线中的最值、范围、证明问题知识点梳理

建立目标函数求最值
[例2] (2017·浙江高考)如图,已知抛
物线x2=y,点A -12,14 ,B 32,94 ,抛物 线上的点P(x,y) -12<x<32 .过点B作直线 AP的垂线,垂足为Q.
(1)求直线AP斜率的取值范围;(2)求|PA|·|PQ|的最大值.
[解]
(1)设直线AP的斜率为k,k=xx2+-1214=x-12,
3.[考点三]如图,已知点F1,F2是椭圆C1:x22 +y2=1的两个焦点,椭圆C2:x22+y2=λ经过 点F1,F2,点P是椭圆C2上异于F1,F2的任意 一点,直线PF1和PF2与椭圆C1的交点分别是A,B和C,D.设 AB,CD的斜率分别为k,k′. (1)求证:k·k′为定值; (2)求|AB|·|CD|的最大值.
[全析考法]
利用几何性质求最值
[例1] 设P是椭圆2x52 +y92=1上一点,M,N分别是两圆:(x
+4)2+y2=1和(x-4)2+y2=1上的点,则|PM|+|PN|的最小值、
最大值分别为
()
A.9,12
B.8,11
C.8,12
D.10,12
[解析] 如图,由椭圆及圆的方程可 知两圆圆心分别为椭圆的两个焦点,由椭 圆定义知|PA|+|PB|=2a=10,连接PA, PB分别与圆相交于两点,此时|PM|+|PN|
[全析考法]
利用判别式构造不等关系求范围
[例1]
已知m>1,直线l:x-my-
m2 2

0,椭圆C:
x2 m2
+y2=1,F1,F2分别为椭圆C
的左、右焦点.
(1)当直线l过右焦点F2时,求直线l的方程; (2)设直线l与椭圆C交于A,B两点,△AF1F2,△BF1F2的重 心分别为G,H,若原点O在以线段GH为直径的圆内,求实数m

圆锥曲线解答题中的范围和最值问题的解题策略(原卷版)

圆锥曲线解答题中的范围和最值问题的解题策略(原卷版)

圆锥曲线解答题中的范围和最值问题的解题策略圆锥曲线中的最值和取值范围问题是高考中的常考题型,以解答题为主.题型一:取值范围问题解题策略:⑴利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;⑵利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;⑶利用隐含的不等关系建立不等式,从而求出参数的取值范围; ⑷利用已知的不等关系构造不等式,从而求出参数的取值范围;⑸利用求函数的值域的方法将待求量表示为其它变量的函数,求其值域,从而求出参数的取值范围.1、利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;例1、(2021·安徽黄山市高三一模(理))已知椭圆2222:1(0)x y C a b a b+=>>的长倍,且过点. (1)求椭圆C 的标准方程;(2)点P 是圆心在原点O O 上的一个动点,过点P 作椭圆的两条切线,且分别交其圆O 于点E 、F ,求动弦EF 长的取值范围.2、利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;例2、(2021·云南昆明市昆明一中高三月考(理))已知A ,B 是椭圆1322=+y xC :上的两点.(1)若直线AB 的斜率为1,求AB 的最大值;(2)线段AB 的垂直平分线与x 轴交于点(),0N t ,求t 的取值范围.例3、(2021·江苏省新海高级中学高三期末)已知椭圆C :22221x y a b+=(0a b >>)的离心率为2,右顶点、上顶点分别为A 、B ,原点O 到直线AB .(1)求椭圆C 的方程;(2)若P ,Q 为椭圆C 上两不同点,线段PQ 的中点为M . ①当M 的坐标为()1,1时,求直线PQ 的直线方程②当三角形OPQ OM 的取值范围.3、利用隐含的不等关系建立不等式,从而求出参数的取值范围;例4、(2020·湖南高三月考)已知椭圆()2222:10x y E a b a b+=>>的右焦点为)F,顺次连接椭圆E 的菱形.(1)求椭圆E 的标准方程;(2)设24,33M ⎛⎫⎪⎝⎭,O 为坐标原点,A 、B 是椭圆E 上两点,且AB 的中点在线段OM (不含端点O 、M )上,求AOB ∆面积S 的取值范围.4、利用已知的不等关系构造不等式,从而求出参数的取值范围例5、(2020·重庆南开中学高三月考)在平面直角坐标系下,已知动点P 到定点()8,0M ,()2,0N 的距离之比为2. (1)求动点P 的轨迹方程C ;(2)若直线l :2y kx =+与曲线C 交于A ,B 两点,且AB ⎡∈⎣,求实数k 的取值范围.例6、(2021·湖南师大附中高三月考)已知椭圆C 过点⎛ ⎝⎭,且与曲线2212x y -=有共同的焦点. (1)求椭圆C 的标准方程;(2)过椭圆的右焦点2F 作直线l 与椭圆C 交于,A B 两点,设2F A =2F B λ,若[]2,1λ∈--,点()2,0T ,求TA TB +的取值范围.5、利用求函数的值域的方法将待求量表示为其它变量的函数,求其值域,从而求出参数的取值范围.例7、(2021·河南高三月考(理))已知抛物线C :22y px =(0p >),点A 在抛物线C 上,点B 在x 轴的正半轴上,等边AOB ∆的边长为83.(1)求抛物线的方程;(2)若直线l :2+=ty x []()1,3t ∈与抛物线C 相交于D ,E 两点,直线DE 不经过点(0,1)M ,DEM △的面积为S ,求22St +的取值范围.题型二:最值问题解题策略:一、若题目中的条件和要求的结论能体现一种明确的函数关系,则可先建立目标函数,然后根据其结构特征,构建函数模型求最值,一般情况下,常构建的函数模型有:1、二次函数型;;2、基本不等式型;二、利用曲线的几何性质求最值一、构建函数模型求最值 1. 二次函数型例1、(2021·山东青岛市·高三期末)已知O 为坐标原点,椭圆2222:1(0)x y C a b a b +=>>的离心率2e =,点P 在椭圆C 上,椭圆C 的左右焦点分别为12,F F ,1PF 的中点为Q ,1OF Q (1)求椭圆C 的标准方程;(2)W 为双曲线22:14x D y -=上的一个点,由W 向抛物线2:4E x y =做切线12,l l ,切点分别为,A B.(i )证明:直线AB 与圆221x y +=相切;(ii )若直线AB 与椭圆C 相交于,M N 两点,求OMN 外接圆面积的最大值.2. 基本不等式型例2、(2021·江西高三模拟(理))已知椭圆2222:1(0)x y M a b a b+=>>的左、右顶点分别为A ,B ,上、下顶点分别为C ,D ,右焦点为F ,离心率为12,其中24||||||FA FB CD =⋅.(1)求椭圆的标准方程.(2)过椭圆的左焦点F '的直线l 与椭圆M 交于E ,H 两点,记ABE △与ABH 的面积分别为1S 和2S ,求12S S -的最大值.例3、(2021·江西高三模拟)已知椭圆C :22221x y a b +=(0a b >>)过点1,2E ⎛ ⎝⎭,1A ,2A 为椭圆的左右顶点,且直线1A E ,2A E 的斜率的乘积为12-.(1)求椭圆C 的方程;(2)过右焦点F 的直线l 与椭圆C 交于M ,N 两点,线段MN 的垂直平分线交直线l 于点P ,交直线2x =-于点Q ,求PQMN的最小值.二、利用曲线的几何性质求最值例4、(2021·山东菏泽市高三期末)已知椭圆()2222:10x y C a b a b+=>>的左右焦点分别为1F 、2F ,点M 为短轴的一个端点,离心率为12,12MF F △的面积S = (1)求椭圆C 的方程;(2)设A 是椭圆上的一点,B 是点A 关于x 轴的对称点,P 是椭圆C 上异于A 、B 的任意一点,且直线PA 、PB 分别于x 轴交于不同的点C 、D ,O 为坐标原点,求POC POD S S ⋅△△的最大值,并求出此时P 点的坐标例5、(2021·江苏常州市高三期末)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,且过点(2,3)A ,右顶点为B . (1)求椭圆C 的标准方程;(2)过点A 作两条直线分别交椭圆于点M ,N 满足直线AM ,AN 的斜率之和为3-,求点B 到直线MN 距离的最大值.【强化训练】1.(2021·北京高三期末)已知椭圆()2222:10x y C a b a b +=>>过点⎛ ⎝⎭,且C 的离心率为2. (1)求椭圆C 的方程;(2)过点()1,0P 的直线l 交椭圆C 于A 、B 两点,求PA PB ⋅的取值范围. 2.(2021·云南昆明市昆明一中高三月考(理))已知点P 是抛物线2:2C x y =上的动点,且位于第一象限.圆222:()0O x y r r +=>,点P 处的切线l 与圆O 交于不同两点A ,B ,线段AB 的中点为D ,直线OD 与过点P 且垂直于x 轴的直线交于点M .(1)求证:点M 在定直线上;(2)设点F 为抛物线C 的焦点,切线l 与y 轴交于点N ,求PFN 与PDM △面积比的取值范围.3.(2021·云南曲靖市高三一模(理))已知椭圆2222:1(0)x y C a b a b+=>>的离心,且椭圆C 过点3,22⎛ ⎝⎭.(1)求椭圆C 的标准方程;(2)过椭圆C 右焦点的直线l 与椭圆C 交于,A B 两点,且与圆22:2O x y +=交于E F 、两点,求2||||AB EF ⋅的取值范围.4、(2020·江西高三其他模拟(理))已知椭圆()2222:10x y C a b a b+=>>的离心率,且过点⎛ ⎝⎭,O 为坐标原点.(1)求椭圆C 的方程;(2)圆2283x y +=的一条切线l 与椭圆C 相交于A 、B 两点,求: ①AOB ∠的值; ②AB 的取值范围.5、(2021·辽宁丹东市高三期末)已知中心在坐标原点,焦点在坐标轴上的椭圆C经过点和点1,2⎛ ⎝⎭.(1)求C 的方程;(2)已知00y t <<,点()0,A t y 在C 上,A 关于y 轴、坐标原点的对称点分别为B 、D ,AE 垂直于x 轴,垂足为E ,直线DE 与y 轴、C 分别交于点F 、G ,直线BF 交C 于点M ,直线DF 的斜率为k ,直线BF 的斜率k '. ①将k '表示为k 的函数; ②求直线GM 斜率的最小值.6.(2020·全国高三专题练习(理))如图所示,已知点1F 、2F 是椭圆221:12xC y +=的两个焦点,椭圆222:2x C y λ+=经过点1F 、2F ,点P 是椭圆2C 上异于1F 、2F 的任意一点,直线1PF 和2PF 与椭圆1C 的交点分别是A 、B 和C 、D .设AB 、CD 的斜率分别为1k 、2k .(1)求证:12k k ⋅为定值; (2)求AB CD ⋅的最大值.。

2025年高考数学总复习课件71第八章第八节第3课时圆锥曲线中的范围、最值问题

2025年高考数学总复习课件71第八章第八节第3课时圆锥曲线中的范围、最值问题
号,可以转化为函数方法求最值.
第3课时
圆锥曲线中的范围、最值问题
核心考点
提升“四能”
课时质量评价
x2 y2
(2024·临沂模拟)已知椭圆C: 2 + 2 =1(a>b>0)的左、右焦点分别为F1,F2,离
a b
6
2 3
,直线x= 2被C截得的线段长为
.
3
3
(1)求C的方程;
心率为
c
6
c2 2
2
2
1
利用基本不等式求最值
x2 y2
【例4】如图,椭圆 2 + 2 =1(a>b>0)的左、右顶点分别
a b
为A,B,过左焦点F(-1,0)的直线与椭圆交于C,D两点
(其中C点位于x轴上方),当CD垂直于x轴时,|CD|=3.
(1)求椭圆的方程;
x2 y2
解:因为椭圆 2 + 2 =1(a>b>0)的左焦点为F(-1,0),所以a2-b2=1.
解:因为e= = ,所以 2 = ,所以c2= a2.又b2=a2-c2=a2- a2 = a2,
a
3
a
3
3
3
3
2
2
2
2 -2
x
+3
y

a

a
所以椭圆的标准方程为x2+3y2=a2.由൝
解得y=±

3
x= 2,
由题可知2
a2-2
3
2 3
x2 2
2

,解得a =3,所以椭圆C的方程为 +y =1.
3
3
第3课时
圆锥曲线中的范围、最值问题
核心考点

2025届高中数学一轮复习《圆锥曲线最值与范围问题》ppt

2025届高中数学一轮复习《圆锥曲线最值与范围问题》ppt

高考一轮总复习•数学
第9页
圆锥曲线中最值的求法 (1)几何法:若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来 解决,这就是几何法. (2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函 数,再求这个函数的最值,求函数最值的常用方法有配方法、判别式法、基本不等式法及单 调性法等.
5-82=2.
第23页
高考一轮总复习•数学
第24页
圆锥曲线中取值范围问题的五种常用解法 (1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围. (2)利用已知参数的范围,求新参数的范围,解决这类问题的核心是建立两个参数之间 的等量关系. (3)利用隐含的不等关系建立不等式,从而求出参数的取值范围. (4)利用已知的不等关系构造不等式,从而求出参数的取值范围. (5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数 的取值范围.
第22页
高考一轮总复习•数学
即 16y20<(x0-4)2. 因为x420+y20=1,所以y02x-02 1=-14, 所以 5x20-8x0>0,解得 x0>85或 x0<0. 因为 0<x0≤2,所以85<x0≤2, 所以 EF=2 r2-d2=2 x40-12-4xy002=2 5-x80≤2 所以该圆被 x 轴截得的弦长|EF|的最大值为 2.
所以|AB|= 1+14 x1+x22-4x1x2= 解得 p=2(负值舍去).
1+14 8p-22-4=4 15,
高考一轮总复习•数学
第6页
(2)由题知,直线 MN 的斜率不为 0,设直线 MN 的方程为 x=my+b,由(1)知,抛物线
C 的方程

2025高考数学圆锥曲线中的最值、范围问题课件练习题

2025高考数学圆锥曲线中的最值、范围问题课件练习题
例1
训练1
例2
训练2
返回目录
突破2
圆锥曲线中的最值、范围问题
方法技巧
圆锥曲线中最值(范围)问题的求解方法
几何法
若题目的条件和结论明显能体现几何特征及意义,则考虑利用图形性质来
解决.
若题目的条件和结论能体现一种明确的函数,则可首先建立目标函数,再
代数法 求这个函数的最值,求函数最值的常用方法有配方法、判别式法、基本不
第八章
平面解析几何
突破2 圆锥曲线中的最值、范围问题
目录
Contents
01
练习 练透好题 精准分层
突破2
圆锥曲线中的最值、范围问题
命题点1 最值问题
例1 [2023全国卷甲]已知直线 x -2 y +1=0与抛物线 C : y 2=2 px ( p >0)交于 A , B
两点,| AB |=4 15 .
.
例1
训练1
例2
训练2
返回目录
突破2
圆锥曲线中的最值、范围问题
又 · =( x 3 -1, y 3 )·( x 4 -1, y 4 )= x 3 x 4 -( x 3 + x 4 )+1+ y 3 y 4 =0,
所以
2
2

4−2
2
+1+
4

=0,化简得 m 2 + k 2 +6 km =4.
(2)若动点 P 与双曲线 C 的两个焦点 F 1, F 2的距离之和为定值(大于| F 1 F 2|),且
cos
1
∠ F 1 PF 2的最小值为- ,求动点 P 的轨迹方程.
9
[解析]
2
2
由椭圆定义得 P 点轨迹为椭圆,可设其轨迹方程为 2 + 2 =1( a > b >0),

圆锥曲线中的最值(范围)问题-(通用版)(解析版)

圆锥曲线中的最值(范围)问题-(通用版)(解析版)

专题4 圆锥曲线中的最值(范围)问题解析几何中的最值(范围)问题,主要是结合直线与椭圆、直线与抛物线的位置关系的进行命题,要求证明、探索、计算线段长度(距离)或图形面积或参数等有关最值问题.从高考命题看,此类问题以主观题形式考查,多步设问,逐步深入考查分析问题解决问题的能力.圆锥曲线中的最值(范围)问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法(在选填题部分已重点讲解),即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、均值不等式方法等进行求解.而解答题部分主要使用代数法。

题型1 线段(距离)类的最值(范围)问题1.(2021·四川成都市·高三三模)已知椭圆2222:1(0)x y C a b a b +=>>的长轴长为,其离心率为2.(1)求椭圆C 的方程;(2)若A ,B 是椭圆C 上两点,且2AB =,求线段AB 中点M 到原点O 的最大距离.【答案】(1)2212x y +=;(21. 【分析】(1)根据椭圆的几何性质求出,,a b c 可得椭圆的标准方程;(2)当直线AB 斜率不存在时,0OM =;当直线AB 斜率存在时,设其方程为y kx m =+,联立直线与椭圆,根据弦长公式得到2222122k m k +=+,得到||OM 关于k 的函数关系式,再换元后根据基本不等式可求出结果.【详解】(1)由已知,2a =,所以a =又离心率为c a =,即a =,故1c =,进而1b =,所以椭圆C 的方程为2212x y +=.(2)设()11,A x y ,()22,B x y ,当直线AB 斜率不存在时,由题意可得AB 就是短轴,中点与原点重合,0OM =, 当直线AB 斜率存在时,设其方程为y kx m =+,由2222y kx m x y =+⎧⎨+=⎩,得()222214220k x kmx m +++-=, ()()()22222216421228210k m k m k m ∆=-⨯+-=+->,122421km x x k ∴+=-+,21222221m x x k -=+, 所以212122242()222121k m my y k x x m m k k +=++=-+=++, 222,2121km m M k k -⎛⎫∴ ⎪++⎝⎭,()()2222241||21k m OM k +∴=+,由2||221AB k ===+,化简得2222122k m k +=+, ()()()222222222412141||22212221k k k OM k k k k +++∴=⋅=++++, 令2411k t +=≥,则244||43(1)(3)4t OM t t t t==≤=-++++,当且仅当t =时取等号,||1OM ∴≤,max ||1OM ∴=,当且仅当214k =时取等号.即AB 中点M 到原点O1. 【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.(2021·浙江高三期末)如图,已知抛物线21:C x y =在点A 处的切线l 与椭圆222:12x C y 相交,过点A 作l 的垂线交抛物线1C 于另一点B ,直线OB (O 为直角坐标原点)与l 相交于点D ,记()11,A x y 、()22,B x y ,且1>0x .(1)求12x x -的最小值;(2)求DO DB的取值范围.【答案】(1)2;(2)40,17⎛⎫⎪⎝⎭. 【分析】(1)利用导数求出抛物线1C 在点A 处的切线方程,将切线方程与椭圆方程联立,由0∆>求出21x 的取值范围,求出直线AB 的方程,并将直线AB 的方程与抛物线1C 的方程联立,由韦达定理得出12112x x x +=-,再利用基本不等式可求得12x x -的最小值;(2)记点O 、B 到直线l 的距离分别为1d 、2d ,求出1d 、2d ,可得出12DO d DBd =,结合21x 的取值范围可求得DO DB的取值范围. 【详解】(1)对函数2yx 求导得2y x '=,所以抛物线1C 在点A 处的切线方程为()1112y y x x x -=-,即2112y x x x =-,联立21122212y x x x x y ⎧=-⎪⎨+=⎪⎩,得()2234111188220x x x x x +-+-=, 所以()()62411164418220x x x∆=-+->,解得2104x <<,所以直线AB 的方程为2111122y x x x =-++, 联立21121122y x x x x y⎧=-++⎪⎨⎪=⎩,得23111220x x x x x +--=,所以12112x x x +=-,所以12111222x x x x -=+≥=,当且仅当112x =时取等号,所以12x x -的最小值为2; (2)记点O 、B 到直线l 的距离分别为1d 、2d ,所以21d =,211211214124x x x x d ⎫+=+=⎪⎭, 所以()4112222121441414DOd x DB d x x ===⎛⎫++ ⎪⎝⎭,因为2104x <<,所以2114x +>, 所以222440,1714DODBx ⎛⎫=∈ ⎪⎝⎭⎛⎫+ ⎪⎝⎭,所以DO DB 的取值范围为40,17⎛⎫ ⎪⎝⎭. 【点睛】圆锥曲线中的取值范围问题的求解方法(1)函数法:用其他变量作为参数,建立函数关系,利用求函数值域的方法求解. (2)不等式法:根据题意建立含参数的不等式,通过解不等式求参数的取值范围. (3)判别式法:建立关于某变量的一元二次方程,利用根的判别式求参数的取值范围. (4)数形结合法:研究参数所表示的几何意义,利用数形结合思想求解.3.(2021·全国高三专题练习(理))设O 为坐标原点,M 是x 轴上一点,过点M 的直线交抛物线C :24y x =于点A ,B ,且4OA OB ⋅=-.(1)求点M 的坐标;(2)求232BM AM-的最大值.【答案】(1)()2,0;(2)2.【分析】(1)设211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫ ⎪⎝⎭,(),0M m ,由4OA OB ⋅=-得到128y y =-,设直线:AB x ty m =+与抛物线方程联立,由根与系数的关系得到2m =,即可得到点M 的坐标;(2)由题意及弦长公式得到AM ,BM ,利用根与系数的关系得到221114AMBM+=,进而得232BM AM-的表达式,然后构造函数,利用函数的单调性求函数的最大值,即可得到232BM AM-的最大值.【详解】(1)设211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫⎪⎝⎭,(),0M m , 则222212121212,,44416y y y y OA OB y y y y ⎛⎫⎛⎫⋅=⋅=+=- ⎪ ⎪⎝⎭⎝⎭,解得128y y =-,设直线:AB x ty m =+,联立方程,得2,4,x ty m y x =+⎧⎨=⎩得2440y ty m --=, 由根与系数的关系知,1248m y y -==-,所以2m =,故点M 的坐标为()2,0.(2)由(1)知,124y y t +=,128y y =-.易知1AM y =,2M B =, 所以()()22222212111111t y t y AM BM+=+++()()222122222121616141641y y t t y y t ++===++, 则222321132||3284BM BM BM AM BM BM ⎛⎫-= -⎪-=-- ⎪⎝⎭. 令()2328u f u u =--,2u >,则()3641f u u='-,所以()f u 在()2,4上单调递增,在()4,+∞上单调递减, 所以()()min 42f u f ==,即232BM AM-的最大值是2,当且仅当4BM =时取等号.【点睛】圆锥曲线中的最值问题是高考中的热点问题,常涉及不等式、函数的值域问题,综合性比较强,解法灵活多样,但主要有两种方法:一是几何方法,即利用圆锥曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是代数方法,即把要求最值的几何量或代数式表示为某个(些)参数的函数,然后利用函数、不等式的知识等进行求解.4.(2021·山西临汾市·高三二模(理))已知点()21Q ,在椭圆()2222:10x y C a b a b+=>>上,且点Q 到C的两焦点的距离之和为(1)求C 的方程;(2)设圆228:5O x y +=上任意一点P 处的切线l 交C 于点M ,N ,求OM ON ⋅的最小值.【答案】(1)22182x y +=;(2)165. 【分析】(1)由椭圆定义得a ,把已知点的坐标代入方程求得b ,从而得椭圆方程; (2)设直线方程为y kx b =+,1122(,),(,)M x y N x y ,由直线与圆相切得22588b k =+, 直线方程与椭圆方程联立,消元后应用韦达定理代入求得0OM ON ⋅=,得2MON π∠=,斜率不存在时求得,M N 点坐标后也得此结论,然后设(cos ,sin )M OM OM θθ,cos(),sin 22N ON ON ππθθ⎛⎫±±⎪⎝⎭,代入椭圆方程,然后计算2288OM ON ⋅得最大值,从而可得OM ON ⋅的最小值.【详解】(1)由题意2a =,a =(2,1)Q 在椭圆上,所以24118b+=,b = 椭圆方程为22182x y +=.(2)当直线MN斜率不存在时,直线方程为x =把x =y =M,N , 0OM ON ⋅=,所以2MON π∠=,同理x =2MON π∠=;当直线MN 斜率存在时,设直线方程为y kx b =+,1122(,),(,)M x y N x y ,=225880b k --=,(*) 由22182y kx b x y =+⎧⎪⎨+=⎪⎩得222(41)8480k x kbx b +++-=,则12221228414841kb x x k b x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩, 22121212121212()()(1)()OM ON x x y y x x kx b kx b k x x kb x x b ⋅=+=+++=++++22222222488588(1)414141b kb b k k kb b k k k ---⎛⎫=+⨯+⨯-+= ⎪+++⎝⎭, 由(*)得0OM ON ⋅=,所以2MON π∠=,综上,2MON π∠=,设xOM θ∠=,则2xON πθ∠=±,(cos ,sin )M OM OM θθ,cos(),sin 22N ON ON ππθθ⎛⎫±±⎪⎝⎭,因为,M N 在椭圆22182x y +=上,所以2222cos sin 182OM OM θθ+=,2228cos 4sin OMθθ=+,同理2228sin 4cos ONθθ=+,2222222288(cos 4sin )(sin 4cos )(13sin )(13cos )OMONθθθθθθ⋅=++=++222299139sin cos 4(2sin cos )4sin 244θθθθθ=++=+=+,2sin 2[0,1]θ∈,所以sin 21θ=时,2288OMON⋅取得最大值254,所以OM ON165=. 【点睛】本题考查求椭圆方程,考查直线与椭圆相交,考查直线相切.解题关键是首先利用设而不求的思想方法结合韦达定理求得2MON π∠=,然后设点的坐标(cos ,sin )M OM OM θθ,cos(),sin 22N ON ON ππθθ⎛⎫±±⎪⎝⎭,易得出OM ON ⋅的最小值.题型2面积类的最值(范围)问题1、(2021江西南昌高三模拟)已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,焦距为4,直线1l :by x c=与椭圆相交于A 、B 两点,2F 关于直线1l 的对称点E 在椭圆上.斜率为1-的直线2l 与线段AB 相交于点P ,与椭圆相交于C 、D 两点.(1)求椭圆的标准方程;(2)求四边形ACBD 面积的取值范围.【解析】(1)由椭圆焦距为4,设()12,0F -,()22,0F ,连结1EF ,设12EF F α∠=, 则b tan c α=,又222a b c =+,得,b csin cos a aαα==, ∴ ()121229012|+|90F F c sin a c e b c a EF EF b c a sin sin a aαα======++-+,解得222a bc c b c =+⇒==,28a =,所以椭圆方程为22184x y +=;(2)设直线2l 方程:+y x m =-,()11,C x y 、()22,D x y ,由22184+x y y x m ⎧+=⎪⎨⎪=-⎩,得2234280x mx m -+-=,所以1221243283x x m m x x ⎧+=⎪⎪⎨-⎪=⎪⎩, 由(1)知直线1l :y x =,代入椭圆得,A B ⎛ ⎝,得3AB =,由直线2l 与线段AB 相交于点P,得m ⎛∈ ⎝ ,12CD x =-===而21l k =-与11l k =,知21l l ⊥,∴ 12ACBD S AB CD =⨯=,由m ⎛∈ ⎝,得232,03m ⎛⎤-∈- ⎥⎝⎦3232,93⎛⎤ ⎥⎝⎦, ∴四边形ACBD 面积的取值范围3232,93⎛⎤⎥⎝⎦.2.(2021·浙江高三模拟)已知:抛物线21:2C y x =,曲线()222:104x C y x +=<,过2C 上一点P 作1C 的两条切线,切点分别为A .(1)若()2,0P -,求两条切线的方程;(2)求PAB △面积的取值范围.【答案】(1)()122y x =±+;(2)(]1,8. 【分析】(1)设所求切线的方程为()2y k x =+,将该直线的方程与抛物线的方程联立,由0∆=可求出k 的值,即可求得所求的两条切线的方程;(2)设()11,A x y 、()22,B x y 、()P m n ,,写出抛物线22y x =在点A 、B 处的切线方程,将点P 的坐标代入两切线方程,可求得直线AB 的方程,将直线AB 的方程与抛物线1C 的方程联立,列出韦达定理,利用三角形的面积公式可得出PAB △面积关于m 的表达式,利用函数思想可求得PAB △面积的取值范围. 【详解】(1)显然切线斜率存在,设切线方程为()2y k x =+,由()222y k x y x ⎧=+⎨=⎩,得2240-+=ky y k ,由204160k k ≠⎧⎨∆=-=⎩,得12k =±, 因此,两条切线的方程为()122y x =±+; (2)设()11,A x y 、()22,B x y 、()P m n ,,先证明出抛物线22y x =在其上一点()00,x y 处的切线方程为00y y x x =+.证明:联立0022y y x x y x=+⎧⎨=⎩,消去x 可得200220y y y x -+=,即220020y y y y -+=,即()200y y -=,解得0y y =,所以,直线00y y x x =+与抛物线22y x =相切于点()00,x y .所以,切线PA 的方程为11yy x x =+,可得11ny m x =+,切线PB 的方程为22yy x x =+,可得22ny m x =+,AB ∴的方程为ny m x =+,P 到AB的距离d =.由22ny m x y x=+⎧⎨=⎩,得2220y ny m -+=, 由韦达定理可得122y y n +=,122y y m =,()P m n ,为曲线2C 上一点,则2214m n +=,所以,2214m n =-且20m -≤<,AB ==220n m ->,()332222121224PABm SAB d n m m ⎛⎫=⋅==-=-- ⎪⎝⎭,20m -≤<,()(]22121451,444m m m --+=-++∈,则(]322121,84PABm S m ⎛⎫--∈⎪⎝⎭= .因此,PAB △面积的取值范围为(]1,8.【点睛】利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式;(5)代入韦达定理求解.3.(2021·浙江高三其他模拟)如图,已知椭圆2214x y +=的左、右顶点分别为A ,B ,()2,2P ,线段OP(O 为坐标原点)交椭圆于点C ,D 在线段OC 上(不包括端点),连接AD 并延长,交椭圆于另一点E ,连接PE 并延长,交椭圆于另一点F ,连接BF ,DF .记1S ,2S 分别为BCD △和BDF 的面积.(1)求OC 的值;(2)求12S S ⋅的最大值.【答案】(1;(2)25.【分析】(1)先根据点P 的坐标得到直线OP 的方程,并将其与椭圆的方程联立,求出点C 的坐标,再利用两点间的距离公式求OC 的值即可;(2)设出直线PF 的方程,将其与椭圆方程联立,结合根与系数的关系得到AF BD k k =,进而可得BCD △和BDF 的面积的表达式,最后利用基本不等式求最值即可. 【详解】解:(1)因为()2,2P ,所以直线OP 的方程为y x =,将直线OP 的方程与椭圆的方程联立,可得221,4x y y x⎧+=⎪⎨⎪=⎩解得x y ⎧=⎪⎪⎨⎪=⎪⎩或x y ⎧=⎪⎪⎨⎪=⎪⎩又由题意得点C位于第一象限,所以C.因此5OC ==. (2)由题意易知直线PF 的斜率一定存在且大于1,故设直线PF 的方程为()22y k x -=-(1k >),即22y kx k =+-,联立方程,得221,422,x y y kx k ⎧+=⎪⎨⎪=+-⎩化简得()()()2221416144830k x k k x k k ++-+-+=,由0∆>得()()()22216141444830k k k k k --+⨯-+>⎡⎤⎣⎦,即830k ->,得38k >,故1k >. 设()11,E x y ,()22,F x y ,则()()1222122161,144483.14k k x x k k k x x k ⎧-+=⎪+⎪⎨-+⎪=⎪+⎩易知()2,0A -,连接AF ,所以直线AE 的斜率112AE y k x =+,直线AF 的斜率222AF y k x =+,所以12122211AE AF x x k k y y +++=+()()()()()()1221122222222222x kx k x kx k kx k kx k ++-+++-=+-+- ()()()()12122212122242222(22)kx x x x k k x x k k x x k +++-=+-++-()()()()()()()()()222222284831622422144483822222214k k k k k k k k k k k k k k k -++-+-+=-++--+-+81648kk-=-2=.①因为点D 在直线y x =上,所以D D x y =,又()2,0B , 所以直线AD 的斜率2D AD D y k x =+,直线BD 的斜率2DBD D y k x =-,所以22112D D AD BD D D x x k k y y +-+=+=.② 又11AE AD k k =,③ 则由①②③可得11AF BDk k =,即AF BD k k =.设(),D m m(0m <<),则2122BDFBDAS S SBAm m ===⋅=. 又C,所以CD m m ⎫==-=-⎪⎭又点B 到直线CD 的距离d ==所以11122BDCS SCD d m m ⎫==⋅=-=-⎪⎭. 因此2122225S S m m ⎡⎤⎫⋅=-≤=⎪⎭⎢⎥⎣⎦,当且仅当m m =-,即5m =时等号成立,所以12S S ⋅的最大值是25. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.4.(2021·全国高三其他模拟)已知1A ,2A 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右顶点,B 为椭圆C 的上顶点,点2A 到直线1A B,椭圆C 过点⎝.(1)求椭圆C 的标准方程;(2)设直线l 过点1A ,且与x 轴垂直,P ,Q 为直线l 上关于x 轴对称的两点,直线2A P 与椭圆C 相交于异于2A 的点D ,直线DQ 与x 轴的交点为E ,当2PA Q △与PEQ 的面积之差取得最大值时,求直线2A P 的方程.【答案】(1)22143x y +=;(2)360x -=或360x -=. 【分析】(1)由点到直线的距离得一个,a b 的关系式,已知点的坐标代入又得一个关系式,,两者联立解得,a b ,得椭圆方程;(2)设直线2A P 的方程为2(0)x my m =+≠,依次求得P 点,Q 点,D 点,E 点坐标,然后计算面积之差222PA Q PEQ PA E S S S -=△△△,再结合基本不等式求得最大值.由此可得直线方程.【详解】(1)由题意知2(,0)A a ,1(,0)A a -,(0,)B b ,则直线1A B 的方程为by x b a=+, 即0bx ay ab -+=,所以点2A 到直线1A B的距离d ==2234b a =.① 又椭圆C过点3⎛ ⎝,所以224213a b +=.② 联立①②,解得24a =,23b =,故椭圆C 的标准方程为22143x y +=.(2)由(1)知2(2,0)A ,直线l 的方程为2x =-.由题意知直线2A P 的斜率存在且不为0, 设直线2A P 的方程为2(0)x my m =+≠,联立2,2,x x my =-⎧⎨=+⎩解得2,4,x y m =-⎧⎪⎨=-⎪⎩即42,P m ⎛⎫-- ⎪⎝⎭,42,Q m ⎛⎫- ⎪⎝⎭.联立222(0),1,43x my m x y =+≠⎧⎪⎨+=⎪⎩消去x 整理得()2234120m y my ++=,解得0y =或21234m y m -=+. 由点D 异于点2A 可得2226812,3434m m D m m ⎛⎫-+- ⎪++⎝⎭, 所以直线DQ 的方程为222124684(2)203434m m x y m m m m ⎛⎫--+⎛⎫⎛⎫-+-+-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, 令0y =,得226432E m x m -+=+,所以22222641223232m m A E m m -+=-=++, 所以2PA Q △与PEQ 的面积之差为222PA Q PEQ PA E S S S -=△△△. (利用点的对称关系,将面积差问题转化为求2PA E S △)因为2222112448||48222232323||||PA Em m S m m m m m -=⨯⋅⋅==≤+++△当且仅当m =时取等号.(在利用基本不等式求最值时,要特别注意“拆、拼、凑"等技巧)故当2PA Q △与PEQ 的面积之差取得最大值时,直线2A P的方程为360x +-=或360x -=. 【点睛】本题考查求椭圆方程,考查直线与椭圆相交问题,解题方法是解析几何的基本方法:设直线2AP 方程为2(0)x my m =+≠,直线与直线相交得交点坐标,直线与椭圆相交得交点坐标,然后求得三角形面积(之差),再结合基本不等式求得最大值,得出结论. 题型3斜率类的最值(范围)问题1.(2021·成都市高三模拟)设椭圆22213x y a +=(a >)的右焦点为F ,右顶点为A .已知113e OF OA FA +=,其中O 为原点,e 为椭圆的离心率.(1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF HF ⊥,且MOA MAO ∠≤∠,求直线l 的斜率的取值范围. 【解析】(1)设(),0F c ,由113eOF OA FA+=,即()113c c a a a c +=-,2223a c c -=,又2223a c b -==,所以21c =,因此24a =,所以椭圆的方程为22143x y +=.(2)设直线l 的斜率为k (0k ≠),则直线l 的方程为()2y k x =-.设()11,B x y ,()22,M x y ,()30,H y .在△MAO 中,MOA MAO MA MO ∠≤∠⇔≤,即()222222222x y x y -+≤+,化简得21x ≥. 由方程组()221432x y y k x ⎧+=⎪⎨⎪=-⎩,消去y ,整理得()2222431616120k x k x k +-+-=.于是2128643k x k -=+, 从而121243ky k =-+.由(1)知()1,0F ,所以()31,FH y =-,2229412,4343k k BF k k ⎛⎫-= ⎪++⎝⎭,由BF HF ⊥,得0BF HF ⋅=,所以2322129404343ky k k k -+=++,解得239412k y k-=, 因此直线MH 的方程为219412k y x k k-=-+.由方程组()2194122k y x k k y k x ⎧-=-+⎪⎨⎪=-⎩,消去y ,解得()222209121k x k +=+.于是()222091121k k +≥+,解得k ≤或k ≥, 所以直线l的斜率的取值范围为6,,4⎛⎡⎫-∞+∞ ⎪⎢ ⎪⎝⎦⎣⎭.【点评】由MOA MAO ∠≤∠,可得到不等式21x ≥,此时只要用k 去表示2x ,就能得到有关k 的不等式,这也是k 需要满足的唯一一个不等式,解这个不等式就能求出k 的取值范围.2.(2020·上海高三其他模拟)已知椭圆()2222:10x y C a b a b+=>>长轴的两顶点为A 、B ,左右焦点分别为1F 、2F ,焦距为2c 且2a c =,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为3.(1)求椭圆C 的方程;(2)在双曲线22:143x y T -=上取点Q (异于顶点),直线OQ 与椭圆C 交于点P ,若直线AP 、BP 、AQ 、BQ 的斜率分别为1k 、2k 、3k 、4k .试证明:1234k k k k +++为定值;(3)在椭圆C 外的抛物线K :24y x =上取一点E ,1EF 、2EF 的斜率分别为1'k 、2'k ,求121''k k 的取值范围.【答案】(1)22143x y +=;(2)证明过程见详解;(3)5(,0)(0,)24-⋃+∞. 【分析】(1)本小题先建立方程组2222223a cb a a b c=⎧⎪⎪=⎨⎪=+⎪⎩,再求出2a =,b =1c =,最后求出椭圆C 的方程即可;(2)本小题先得到112132x k k y +=-,再得到234232x k k y +=,接着判断1122x y x y =,最后得到结论即可; (3)本小题先用233(,)4y E y 表示出432123161''16y k k y -=,(2383y >且32y ≠-),再建立函数1()16t f t t =-求导得到()f t 的取值范围,最后求导121''k k 的取值范围. 【详解】(1)因为过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为3,所以223ba=,所以2222223a c b a a b c=⎧⎪⎪=⎨⎪=+⎪⎩,解得:2a =,b =1c =,所以椭圆C 的方程:22143x y +=; (2)由(1)可知:(2,0)A -、(2,0)B 、1(1,0)F -、2(1,0)F ,设点11(,)P x y ,则2211143x y +=,整理得:2211443y x -=-, 1111111122211111223422423y y x y x y x k k y x x x y +=+===-+---; 设点22(,)P x y ,则2222143x y -=,整理得:2222443y x -=, 2222222342222222223422423y y x y x y xk k y x x x y +=+===+--.又因为OP 与OQ 共线,所以12x x λ=,12y y λ=,所以1122x y x y =, 所以121212341212333()0222x x x x k k k k y y y y +++=-+=-+=,所以1234k k k k +++为定值; (3)设233(,)4y E y ,由2221434x y y x⎧+=⎪⎨⎪=⎩,解得:222383x y ⎧=⎪⎪⎨⎪=⎪⎩, 由E 在椭圆C 外的抛物线K :24y x =上一点,则2383y >, 则3123'14y k y =+,(2383y >且32y ≠-);3223'14y k y =-,(2383y >且32y ≠-), 则23331222433316''161144y y y k k y y y =⋅=--+,(2383y >且32y ≠-), 则432123161''16y k k y -=,(2383y >且32y ≠-), 令23y t =,(83t >且4t ≠),设1()16t f t t =-,(83t >且4t ≠),则211'()016f t t =+>,所以1()16t f t t=-在8(,4)3,(4,)+∞上单调递增, 所以()f t 的取值范围:5(,0)(0,)24-⋃+∞,所以121''k k 的取值范围5(,0)(0,)24-⋃+∞. 【点睛】本题考查求椭圆的标准方程,圆锥曲线相关的定值问题、圆锥曲线相关的参数取值范围问题,是偏难题.3.(2021·广东茂名市·高三月考)已知点N 为圆1C :()22116x y ++=上一动点,圆心1C 关于y 轴的对称点为2C ,点M 、P 分别是线段1C N ,2C N 上的点,且20MP C N ⋅=,222C N C P =.(1)求点M 的轨迹方程;(2)过点()2,0A -且斜率为()0k k >的直线与点M 的轨迹交于A ,G 两点,点H 在点M 的轨迹上,GA HA ⊥,当2AG AH =2k <<.【答案】(1)22143x y +=;(2)证明见解析 【分析】(1)由已知可得214MC MC +=,可判断点M 在以12,C C 为交点的椭圆上,即可求出方程;(2)将直线方程代入椭圆,利用弦长公式可求出AG =,同理可得AH =知可得3246380k k k -+-=,利用导数结合零点存在性定理即可证明. 【详解】(1)222C N C P =,P ∴是2C N 的中点,20MP C N ⋅=,2MP C N ∴⊥,∴点M 在2C N 的垂直平分线上,2||MN MC ∴=,121||42MN MC MC MC +=+=>,∴点M 在以12,C C 为交点的椭圆上,且2,1a c ==,则b =M 的轨迹方程为22143x y +=; (2)可得直线AG 的方程为(2)(0)y k x k =+>, 与椭圆方程联立可得()2222341616120kxk x k +++-=,设()11,G x y ,则2121612(2)34k x k -⋅-=+,可得()21223434k x k-=+,则12234AG k =+=+,由题可得,直线AH 的方程为1(2)y x k =-+,故同理可得AH =由2AG AH =可得2223443k k k=++,即3246380k k k -+-=, 设32()4638f t t t t =-+-,则k 是()f t 的零点,22()121233(21)0f t t t t '=-+=-≥,则()f t 在()0,∞+单调递增,又260,(2)60f f =<=>,因此()f t 在()0,∞+有唯一零点,且零点k在)22k <<.【点睛】本题考查椭圆的轨迹方程,解题的关键是利用椭圆定义得出M 的轨迹为椭圆;考查参数范围的证明,解题的关键是利用弦长公式求出弦长,利用已知得出3246380k k k -+-=,再利用导数证明.4.(2021·全国高三月考(文))已知椭圆2222:1(0)x y C a b a b+=>>的两个焦点分别为1F ,2F ,过点1F 的直线l 与椭圆C 交于M ,N 两点(点M 位于x 轴上方),2MNF ,12MF F △的周长分别为8,6. (1)求椭圆C 的方程;(2)若1||MF m MN =,且2334m ≤<,设直线l 的倾斜角为θ,求sin θ的取值范围. 【答案】(1)22143x y +=;(2)0,3⎛ ⎝⎦. 【分析】(1)根据椭圆的定义可得2MNF ,12MF F △的周长分别为4,22a a c +,结合222a b c =+可得答案.(2)根据题意设出直线l 的方程与椭圆方程联立,写出韦达定理,由1||MF m MN =,得出11MF F N,得出,M N的纵坐标12,y y 的关系,从而可求出答案.【详解】(1)设椭圆C 的半焦距为c ,因为2MNF ,12MF F △的周长分别为8,6,所以根据椭圆的定义得22248226a a c a b c =⎧⎪+=⎨⎪=+⎩,解得21a c b ⎧=⎪=⎨⎪=⎩.所以椭圆C 的方程为22143x y +=.(2)由条件1||MF m MN =,且2334m ≤<,则12MF MF >,所以直线l 的斜率存在. 根据题意,可设直线l 的方程为(1)(0).y k x k =+>.联立22(1)143y k x x y =+⎧⎪⎨+=⎪⎩,消去x ,得()22234690k y ky k +--=,则()2214410k k ∆=+>,设()11,M x y ,()22,N x y ,则122634k y y k +=+①,2122934k y y k-=+②, 又1||MF m MN =,且2334m ≤<,则11[2,3)1MF m F N m =∈-.设1mmλ=-,[2,3)λ∈,则11MF F N λ=,所以12y y λ③,把③代入①得()226(1)34k y k λ=-+,()126(1)34ky k λλ-=-+,并结合②可得()2212222236934(1)34k k y y k kλλ--==+-+,则22(1)434kλλ-=+,即214234k λλ+-=+, 因为12λλ+-在[2,3)λ∈上单调递增,所以114223λλ≤+-<,即21442343k ≤<+,且0k >,解得02k <≤,即0tan 2θ<≤,所以0sin 3θ<≤. 故sin θ的取值范围是0,3⎛ ⎝⎦.【点睛】本题考查求椭圆方程和直线与椭圆的位置关系,解答本题的关键是由122634ky y k +=+,2122934k y y k-=+,又1||MF m MN =,且2334m ≤<,则11[2,3)1MF m F N m =∈-,得出关系求解,属于中档题.题型4向量类的最值(范围)问题1.(2021·陕西咸阳市·高三三模(理))已知12B B 、分别是椭圆22221(0)x y a b a b+=>>短轴两端点,离心率为12,P 是椭圆C 上异于1B 、2B 的任一点,12PB B △的面积最大值为(1)求椭圆C 的标准方程; (2)过椭圆C 右焦点F 的直线l 交椭圆C 于M N 、两点,O 为坐标原点,求OM ON +的取值范围.【答案】(1)22143x y +=;(2)[]0,2. 【分析】(1)根据题中条件,列出方程组求出,a b ,即可得出椭圆方程;(2)先讨论直线l 的斜率为0的情况,可求出0OM ON +=;再讨论直线的斜率不为0的情况,直线l 的方程为:1x my =+,()11,M x y ,()22,N x y ,联立直线与椭圆方程,利用韦达定理,以及向量模的坐标表示,得到(2OM ON +=.【详解】(1)由题意可得:22212ab c a a b c ⎧=⎪⎪=⎨⎪=+⎪⎩,解得2a b =⎧⎪⎨=⎪⎩;所以椭圆C 的方程为221.43x y +=(2)当直线l 的斜率为0时,0OM ON +=,0OM ON +=当直线的斜率不为0时,因为()1,0F ,设直线l 的方程为:1x my =+,与椭圆C 交于()11,M x y ,()22,N x y , 由221,431,x y x my ⎧+=⎪⎨⎪=+⎩消去x 得()22:34690m y my ++-=, 所以1221226,349,34m y y m y y m ⎧+=-⎪⎪+⎨⎪=-⎪+⎩,()()22236363414410m m m ∆=++=+>,又()()12121212,2,OM ON x x y y my my y y +++=+++=, 所以(OM ON my +===令2110,344t m ⎛⎤=∈ ⎥+⎝⎦,则()()()222222223433449164313434m m t t t m m t ++++===+++, 因为二次函数243y t t =+在10,4t ⎛⎤∈ ⎥⎝⎦上显然单调递增,所以(]2430,1y t t =+∈,因此((]20,2OM ON +=;综上知,[]0,2OM ON +∈.【点睛】求解椭圆中弦长、向量的模长等问题时,一般需要联立直线与椭圆方程,利用韦达定理,结合弦长公式或两点间距离公式、向量模的坐标表示等,表示出所求的量,再结合基本不等式或利用函数单调性等,即可求解.2.(2021·安徽高三月考(理))已知椭圆()2222:10x y Ca b a b+=>>的左焦点为F,过点F 的直线l 与椭圆交于A ,B 两点,当直线l x ⊥轴时,AB =tan AOB ∠=(1)求椭圆C 的方程;(2)设直线l l '⊥,直线l '与直线l 、x 轴、y 轴分别交于点M 、P 、Q ,当点M 为线段AB 中点时,求PM PFPO PQ⋅⋅的取值范围.【答案】(1)2212x y +=;(2)()1,+∞.【分析】(1,2AOB AOF ∠=∠,进而根据几何关系解得1bc ==,a =即可得答案;(2)由题设():1l y k x =+,与椭圆联立方程得2222,2121k k M k k ⎛⎫- ⎪++⎝⎭,进而得直线22212:2121kk l y x k k k ⎛⎫'-=-+ ⎪++⎝⎭,所以22,021k P k ⎛⎫- ⎪+⎝⎭,进而根据几何关系得2PM PF PM ⋅=,2PO PQ PO ⋅=,进而将问题转化为求22PM PO的取值范围问题求解即可.【详解】解:(1)由题意可知(),0F c -,直线l x⊥轴时,22b AB a==22tan tan 1tan AOF AOB AOF ∠∠==-∠tanAOF ∠=, ∵0,2AOF π⎛⎫∠∈⎪⎝⎭,∴2tan 2b AF a AOF FO c∠===,解得:1bc ==,a =C 的方程为2212x y +=.(2)设()11,A x y ,()22,B x y ,依题意直线l 斜率一定存在且不为零,设():1l y k x =+,代入椭圆方程得:()2222214220kx k x k +++-=,则2122421k x x k -+=+,()121222221k y y k x x k +=++=+.故2222,2121k k M k k ⎛⎫- ⎪++⎝⎭, 直线22212:2121kk l y x k k k ⎛⎫'-=-+ ⎪++⎝⎭,令0y =,则22,021k P k ⎛⎫- ⎪+⎝⎭, ∵PMMF ⊥,OQ PO ⊥,∴2PM PF PM ⋅=,2PO PQ PO ⋅=,∴222222222222222221212111121k k k PMk k k PM PF k k k PO PQ POk k ⎛⎫--⎛⎫-+ ⎪ ⎪+++⋅+⎝⎭⎝⎭====+⋅⎛⎫- ⎪+⎝⎭, ∵()20,k ∈+∞,∴()2111,k +∈+∞,∴ ()1,PM PFPO PQ⋅∈+∞⋅. 【点睛】本题考查椭圆的性质求方程,直线与椭圆的位置关系求范围问题,考查运算求解能力,化归转化能力,是中档题.本题第二问解题的关键在于根据PMMF ⊥,OQ PO ⊥得2PM PF PM ⋅=,2PO PQ PO ⋅=,进而将问题转化为22PM PO范围的求解.3.(2021·浙江高三其他模拟)如图,椭圆()2222:10x y C a b a b+=>>的左顶点为A ,离心率为12,长轴长为4,椭圆C 和抛物线()2:20F y px p =>有相同的焦点,直线:0l x y m -+=与椭圆交于M ,N 两点,与抛物线交于P ,Q 两点.(1)求抛物线F 的方程;(2)若点D ,E 满足AD AM AN =+,AE AP AQ =+,求AD AE ⋅的取值范围.【答案】(1)24y x =;(2)144,4877AD AE ⎛⋅∈+⎝⎭. 【分析】(1)根据题意可得2a =,1c =,再根据12p=即可求解. (2)将直线:0l x y m -+=与椭圆方程联立,设()11,M x y ,()22,N x y,利用韦达定理可得864,77m m AD ⎛⎫=- ⎪⎝⎭,再将直线:0l x y m -+=与抛物线方程联立设()33,P x y ,()44,Q x y ,利用韦达定理可得()82,4AE m =-,再由从而可得216963277AD AE m m ⋅=-+,配方即可求解.【详解】(1)因为椭圆C 的离心率为12,长轴长为4,2412a c a =⎧⎪⎨=⎪⎩,,,所以2a =,1c =,因为椭圆C 和抛物线F 有相同的焦点,所以12p=,即2p =,所以抛物线F 的方程为24y x =. (2)由(1)知椭圆22:143x y C +=,由221430x yx y m ⎧+=⎪⎨⎪-+=⎩,,得22784120x mx m ++-=, ()22164474120m m ∆=-⨯⨯->,得27m <,m <<设()11,M x y ,()22,N x y ,则1287mx x +=-,所以()1212627m y y x x m +=++=. 易知()2,0A -,所以()1212864,4,77m m AD AM AN x x y y ⎛⎫=+=+++=-⎪⎝⎭. 由240y x x y m ⎧=⎨-+=⎩,,得()22240x m x m +-+=.()2222440m m ∆=-->,得1m <. 设()33,P x y ,()44,Q x y ,则3442x x m +=-,所以()343424y y x x m +=++=,所以()()34344,82,4AE AP AQ x x y y m =+=+++=-.所以()864,82,477m m AD AE m ⎛⎫⋅=-⋅- ⎪⎝⎭()28616964824327777m m m m m ⎛⎫=-⋅-+⨯=-+ ⎪⎝⎭,1m <<, 易知函数216963277y m m =-+在()m ∈上单调递减,所以144,487AD AE ⎛⋅∈ ⎝⎭. 【点睛】求解圆锥曲线中最值或范围问题的一般方法:一是建立关系,二是求最值或范围,即先由题设条件建立关于所求目标的函数关系式,再对目标函数求最值,如本题中需先将直线方程分别与椭圆、抛物线方程联立,利用根与系数的关系将AD ,AE 用m 表示出来,再结合m 的范围及函数的单调性求AD AE ⋅的取值范围.4.(2021·海南海口市·高三模拟)已知抛物线的顶点是坐标原点O ,焦点F 在x 轴正半轴上,过F 的直线l 与抛物线交于A 、B 两点,且满足3OA OB ⋅=-.(1)求抛物线的方程;(2)在x 轴负半轴上一点(),0M m ,使得AMB ∠是锐角,求m 的取值范围.【答案】(1)24y x =;(2)(),1-∞-.【分析】(1)设抛物线方程()220y px p =>,直线l 的方程2px ty =+,联立方程组结合韦达定理可得12y y 、12x x ,再由平面向量数量积的坐标表示即可得p ,即可得解;(2)由题意结合平面向量数量积的概念可转化条件为0MA MB ⋅>,进而可得22234m m t m-->恒成立,解不等式22304m m m --<即可得解.【详解】(1)设抛物线方程()220y px p =>,直线l 的方程2p x ty =+, 联立消去x 得222p y p ty ⎛⎫=+⎪⎝⎭,即2220y pty p --=,>0∆, 设()11,A x y ,()22,B x y ,则122y y pt +=,212y y p =-,所以()22121212122224p p pt p x x ty ty t y y y y ⎛⎫⎛⎫=++=+++ ⎪⎪⎝⎭⎝⎭()22222244pt p p t p pt =⋅-+⋅+=,所以22212123344p OA OB x x y y p p ⋅=+=-=-=-,解得2p =或2p =-(舍去), 故所求抛物线方程为24y x =;(2)因为AMB ∠是锐角,所以0MA MB ⋅>恒成立,即()()12120x m x m y y --+>, 所以()21212120x x m x x m y y -+++>,由(1)得121=x x ,124y y =-,124y y t +=,()2121242x x t y y p t +=++=+,所以()2214240m t m -++->,而0m <,所以22234m m t m-->对于t R ∀∈恒成立,所以22304m m m --<,又0m <,所以2230m m m ⎧-->⎨<⎩,解得1m <-,所以m 的取值范围为(),1-∞-.【点睛】本题考查了平面向量数量积的应用及直线与抛物线的综合应用,考查了转化化归思想与运算求解能力,属于中档题.题型5坐标类的最值(范围)问题1.(2021·上海静安区·高三二模)已知椭圆2212x y +=的左焦点为F ,O 为坐标原点.(1)求过点F 、O ,并且与抛物线28y x =的准线相切的圆的方程;(2)设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 的横坐标的取值范围.【答案】(1)(221924x y ⎛⎫++= ⎪⎝⎭或(221924x y ⎛⎫++= ⎪⎝⎭;(2)1,0.2⎛⎫- ⎪⎝⎭【分析】(1)求得点()1,0F -,可知圆心M 在直线12x =-上,设点1,2Mt ⎛⎫- ⎪⎝⎭,根据已知条件得出关于实数t 的等式,求出t 的值,即可得出所求圆的方程;(2)设直线AB 的方程为()()10y k x k =+≠,设点()11,A x y 、()22,B x y ,将直线AB 的方程与椭圆的方程联立,列出韦达定理,求出线段AB 的垂直平分线方程,可求得点G 的横坐标,利用不等式的基本性质可求得点G 的横坐标的取值范围.【详解】(1)抛物线28y x =的准线为2x =-,椭圆2212x y +=的左焦点为()1,0F -,圆过点F 、O ,∴圆心M 在直线12x =-上.设1,2Mt ⎛⎫- ⎪⎝⎭,则圆的半径为()13222r ⎛⎫=---= ⎪⎝⎭. 由OM r =32=,解得t =于是,所求圆的方程为(221924x y ⎛⎫++= ⎪⎝⎭或(221924x y ⎛⎫++=⎪⎝⎭; (2)设直线AB 的方程为()()10y k x k =+≠,联立()22112y k x x y ⎧=+⎪⎨+=⎪⎩,整理可得()2222124220k x k x k +++-=, 因为直线AB 过椭圆的左焦点F ,所以方程()2222124220kxk x k +++-=有两个不相等的实根.设点()11,A x y 、()22,B x y ,设AB 的中点为()00,N x y ,则2122412k x x k+=-+,202221k x k =-+,()002112k y k x k =+=+.直线AB 的垂直平分线NG 的方程为()001y y x x k-=--, 令0y =,则222002222211212121242G k k k x x ky k k k k =+=-+=-=-+++++. 因为0k ≠,所以10.2G x -<<故点G 的横坐标的取值范围1,02⎛⎫- ⎪⎝⎭. 【点睛】圆锥曲线中的取值范围问题的求解方法(1)函数法:用其他变量作为参数,建立函数关系,利用求函数值域的方法求解. (2)不等式法:根据题意建立含参数的不等式,通过解不等式求参数的取值范围. (3)判别式法:建立关于某变量的一元二次方程,利用根的判别式求参数的取值范围. (4)数形结合法:研究参数所表示的几何意义,利用数形结合思想求解.2.(2021·新疆高三其他模拟(理))已知抛物线()2204y px p =<<的焦点为F ,点P 在抛物线上,点P的纵坐标为6,且10PF =.(1)求抛物线的标准方程;(2)若A ,B 为抛物线上的两个动点(异于P 点)且AP AB ⊥,求点B 纵坐标的取值范围.【答案】(1)24y x =;(2)2y <-或14y ≥.【分析】(1)根据抛物线的焦半径公式求解即可;(2)先根据抛物线的方程及点P 的纵坐标求得()9,6P ,再根据AP AB ⊥得到()2121261660y y y y ++++=,利用判别式0∆≥,得到22y ≤-或214y ≥,最后验证当22y =-时,12y =-,与题意不符,最后得到点B 的纵坐标y 的取值范围. 【详解】解:(1)设(),6p P x ,则36182P x p p==, 由102p pPF x =+=,得18102p p +=,解得2p =或18,∵04p <<,所以2p =.∴24y x =.(2)由(1)得()9,6P ,设()11,A x y ,()22,B x y ,由题意可知:直线AP ,AB 的斜率存在, 设为AP k ,AB k ,且1211212221211216699444AP AB y y y y y y k k y y y x x x ----⋅=⨯=⨯----()()1214416y y y =⨯=-++, 整理得()2121261660y y y y ++++=,由题意知0∆≥,即()()222641660y y ∆=+-+≥∴22212280y y --≥即22y ≤-或214y ≥,又当22y =-时,211440y y ++=,∴12y =-,与题意不符,舍去,综上所述,点B 的纵坐标2y 的取值范围为22y <-或214y ≥.【点睛】抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,2p等于焦点到抛物线顶点的距离.牢记它对解题非常有益.3.(2021·上海金山区·高三一模)已知点P 在抛物线2:4C y x =上,过点P 作圆222:(3)M x y r-+=(0r <≤)的两条切线,与抛物线C 分别交于A 、B 两点,切线PA 、PB 与圆M 分别相切于点E 、F .(1)若点P 到圆心M 的距离与它到抛物线C 的准线的距离相等,求点P 的坐标;(2)若点P 的坐标为(1,2),且r =PE PF ⋅的值;(3)若点P 的坐标为(1,2),设线段AB 中点的纵坐标t ,求t 的取值范围. 【答案】(1)(2,或(2,-;(2)3;(3)[10,6)--.【分析】(1)设出P 点的坐标,根据已知条件列方程组,解方程组求得P 点坐标. (2)先求得||PE 和||PF ,然后结合向量数量积运算求得PE PF ⋅.(2)设出过P 的圆的切线方程,利用圆心到直线的距离等于半径列方程,化简写出根与系数关系,联立切线和抛物线的方程,求得,A B 的纵坐标,由此求得线段AB 中点的纵坐标t 的表达式,进而求得t 的取值范围.【详解】(1)设点P 的坐标为(,)x y ,则241y x x ⎧==+,解得2x y =⎧⎪⎨=⎪⎩2x y =⎧⎪⎨=-⎪⎩,即点P的坐标为(2,或(2,-;(2)当点P 的坐标为(1,2),且r =||PM ==,在直角三角形PME中,||PE ==,且30MPE ∠=︒,同理,||PF =30MPF ∠=︒,从而||||co cos 603s PE PF PE PF EPF ∠=⋅⋅︒==;(3)由题意知切线PA 、PB 的斜率均存在且不为零,设切线方程为2(1)y k x -=-,r =,得222(4)840r k k r -++-=,。

广东专用2024版高考数学总复习:圆锥曲线中的最值或范围问题课件

广东专用2024版高考数学总复习:圆锥曲线中的最值或范围问题课件
设 的面积为 ,所以 ,当且仅当 时等号成立,此时满足 .故 面积的最大值为 .
【点拨】求与直线或与圆锥曲线有关的某个量的取值范围问题,依据已知条件建立关于该量的函数表达式,转化为求函数值域问题,要正确确定定义域.应注意到的是本例第(1)问使用了判别式法求参数范围.
变式1 如图,在平面直角坐标系 中,已知等轴双曲线 的左顶点为 ,过右焦点 且垂直于 轴的直线与 交于 , 两点,若 的面积为 .
由 得 .因为点 为 与 的一个交点,所以 ,解得 .所以 .直线 的方程变形为 ,设原点到直线 的距离为 ,则 .所以 .
(方法一) .设 ,则 .所以
.因为 (当且仅当 时,等号成立).所以 面积的最大值为 .(方法二) .设 ,则 .所以 .
第八章 平面解析几何
综合突破五 圆锥曲线的综合问题第1课时 圆锥曲线中的最值或范围问题
核心考点 精准突破
课时作业 知能提升
规范答题——解析几何解答题
考点一 构造函数求最值或范围问题
例1 已知椭圆 上两个不同的点 , 关于直线 对称.
(1) 求实数 的取值范围;
解:如图,由题意知 ,可设直线 的方程为 , , .由
(2) 当点 在 轴上方时,过点 作 轴的垂线与 轴相交于点 ,设直线 与双曲线 相交于不同的两点 , ,若 ,求实数 的取值范围.
, ,又 ,所以 ,所以 (由题意取负),所以直线 的斜率为 .代入 式,得 ,所以 ,所以 ,又 ,所以 的取值范围为 .
【点拨】若题设中给出直线(曲线)与曲线有公共点或无公共点的条件时,可以通过联立消元,得到一元二次方程,进而用判别式法得到不等关系代入求范围.
[答案] (方法一)设切点 ,因为 ,所以 ,则在点 处的切线方程为 ,化简得 ,令 ,得 .

专题12 圆锥曲线中的最值、范围问题(原卷版)

专题12 圆锥曲线中的最值、范围问题(原卷版)

专题12 圆锥曲线中的最值、范围问题【压轴综述】圆锥曲线中最值与范围问题是近几年考查的热点问题,本专题在分析研究近几年高考题及各地模拟题的基础上,重点说明利用代数方法求解最值、范围问题.一、圆锥曲线中最值问题的两种类型和两种解法(1)两种类型①涉及距离、面积的最值以及与之相关的一些问题;②求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些问题.(2)两种解法①几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决;②代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解.二、解决圆锥曲线中的取值范围问题的5种常用解法(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.本专题在分析研究近几年高考题及各地模拟题的基础上,重点说明利用代数方法求解最值、范围问题.【压轴典例】例1.(2020·全国卷Ⅱ文科·T9)设O为坐标原点,直线x=a与双曲线C:-=1的两条渐近线分别交于D,E两点.若△ODE的面积为8,则C的焦距的最小值为 ( )A.4B.8C.16D.32例2.(2020·全国卷Ⅱ理科·T8)设O 为坐标原点,直线x=a 与双曲线C:-=1的两条渐近线分别交于D,E 两点.若△ODE 的面积为8,则C 的焦距的最小值为 ( )A.4B.8C.16D.32例3.(2020山东高考模拟)已知(0,3)A ,若点P 是抛物线28x y =上任意一点,点Q 是圆22(2)1x y +-=上任意一点,则2||PA PQ的最小值为( )A .434-B .221-C .232-D .421+例4.(2020·浙江高考·T21)如图,已知椭圆C 1:+y 2=1,抛物线C 2:y 2=2px (p >0),点A 是椭圆C 1与抛物线C 2的交点,过点A 的直线l 交椭圆C 1于点B ,交抛物线C 2于M (B ,M 不同于A ).(Ⅰ)若p =,求抛物线C 2的焦点坐标;(Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.例5.(2020·江苏高考·T18)在平面直角坐标系xOy 中,若椭圆E :+=1的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B. (1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求·的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别是S 1,S 2,若S 2=3S 1,求M 的坐标.例6.(2019·浙江高考真题)如图,已知点(10)F ,为抛物线22(0)y px p =>,点F 为焦点,过点F 的直线交抛物线于,A B 两点,点C 在抛物线上,使得ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 右侧.记,AFG CQG △△的面积为12,S S .(1)求p 的值及抛物线的准线方程;(2)求12S S 的最小值及此时点G的坐标. 例7.(2019·全国高考真题)已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG 是直角三角形;(ii )求PQG 面积的最大值.例8. (2017·浙江高考真题)如图,已知抛物线2x y =.点A 1139-2424B ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,抛物线上的点P (x,y )13-x 22⎛⎫ ⎪⎝⎭<<,过点B 作直线AP 的垂线,垂足为Q(I )求直线AP 斜率的取值范围; (II )求PA?PQ 的最大值例9. (2017·山东高考真题)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b +=(a >b >0)的离心率为2,椭圆C 截直线y =1所得线段的长度为22(Ⅰ)求椭圆C 的方程;(Ⅱ)动直线l :y =kx +m (m ≠0)交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,⊙N 的半径为|NO |. 设D 为AB 的中点,DE ,DF 与⊙N 分别相切于点E ,F ,求∠EDF 的最小值.例10.(2018·浙江高考真题)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆x 2+24y=1(x<0)上的动点,求△PAB 面积的取值范围. 【压轴训练】1.(2021·盐城市伍佑中学高三期末)已知P 是圆22:(2)(2)1C x y -++=上一动点,过点P 作抛物线28x y =的两条切线,切点分别为,A B ,则直线AB 斜率的最大值为( )A .14B .34C .38D .122.(2021·安徽高三开学考试)已知抛物线2:2C y px =的焦点F 与双曲线221621x y -=的右焦点重合,斜率为k 的直线l 与C 的两个交点为A ,B .若4AF BF +=,则k 的取值范围是( )A .,⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭B .⎛⎫⎛⋃ ⎪ ⎪ ⎝⎭⎝⎭C .,33∞∞⎛⎛⎫--⋃+ ⎪ ⎪⎝⎭⎝⎭D .0,33⎛⎫⎛⎫-⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3.(2020·全国高三专题练习)已知双曲线22:1x C y m -=的离心率为2,过点(2,0)P 的直线l 与双曲线C 交于不同的两点A 、B ,且AOB ∠为钝角(其中O 为坐标原点),则直线l 斜率的取值范围是( )A .2((0,)22-B .(,0)(0⋃C .2(,(,)-∞+∞ D .5(,(,)-∞+∞ 4.(2020·安徽高三月考)已知双曲线()222210,0x y a b a b-=>>的一条渐近线方程为2y x =,P 为双曲线上一个动点,1F ,2F 为其左,右焦点,12PF PF ⋅的最小值为3-,则此双曲线的焦距为( ).A .2B .4C .D .5.(2020·山东高三专题练习)在同一直角坐标系下,已知双曲线2222:1(0,0)y x C a b a b-=>>C 的一个焦点到一条渐近线的距离为2,函数sin 26y x π⎛⎫=+ ⎪⎝⎭的图象向右平移3π单位后得到曲线D ,点A ,B 分别在双曲线C 的下支和曲线D 上,则线段AB 长度的最小值为( )A .2BC D .16.(2021·福建漳州市·高三其他模拟)(多选)已知双曲线1C :()2211221110,0x y a b a b -=>>的一条渐近线的方程为y =,且过点31,2⎛⎫ ⎪⎝⎭,椭圆2C :22221x ya b+=的焦距与双曲线1C 的焦距相同,且椭圆2C 的左、右焦点分别为1F ,2F ,过点1F 的直线交2C 于A ,B 两点,若点()11,A y ,则下列说法中正确的有( ) A .双曲线1C 的离心率为2B .双曲线1C 的实轴长为12C .点B 的横坐标的取值范围为()2,1--D .点B 的横坐标的取值范围为()3,1--7.(2020·浙江高三月考)已知P 是椭圆2222111x y a b +=(110>>a b )和双曲线2222221x y a b -=(220,0a b >>)的一个交点,12,F F 是椭圆和双曲线的公共焦点,12,e e 分别为椭圆和双曲线的离心率,若123F PF π∠=,则12e e ⋅的最小值为________.8.(2020·河北高三月考)已知P 是离心率为2的双曲线()2210y x m m-=>右支上一点,则该双曲线的渐近线方程为_______,P 到直线()1y m x =-的距离与P 到点()2,0F -的距离之和的最小值为_____.9.(2021·安徽高三一模)已知动圆P 与x 轴相切且与圆()2224x y +-=相外切,圆心P 在x 轴的上方,P 点的轨迹为曲线C .(1)求C 的方程;(2)已知2(4)E ,,过点(0)4,作直线交曲线C 于,A B 两点,分别以,A B 为切点作曲线C 的切线相交于D ,当ABE △的面积1S 与ABD △的面积2S 之比12S S 取最大值时,求直线AB 的方程.10.(2021·浙江绍兴市·高三)如图,过抛物线2:4C x y =的焦点F 作直线l 交C 于()11,A x y ,()22,B x y 两点,其中||||4||BF AF BF <,设直线12,l l 分别与抛物线相切于点A ,B ,12,l l 交于点P .(1)若14x =,求切线1l 的方程;(2)过F 作y 轴的垂线交2l 于点M ,若有且仅有一条直线l 使得FPAFMBS t S =,求t 的取值范围.11.(2021·辽宁丹东市·高三)已知中心在坐标原点,焦点在坐标轴上的椭圆C 经过点2,1)和点6⎛ ⎝⎭.(1)求C 的方程;(2)已知00y t <<,点()0,A t y 在C 上,A 关于y 轴、坐标原点的对称点分别为B 、D ,AE 垂直于x 轴,垂足为E ,直线DE 与y 轴、C 分别交于点F 、G ,直线BF 交C 于点M ,直线DF 的斜率为k ,直线BF 的斜率k '.①将k '表示为k 的函数;②求直线GM 斜率的最小值.12.(2021·南京市中华中学高三期末)已知离心率为63的椭圆2222:1(0) x y C a b a b +=>>经过点(3,1)P .(1)求椭圆C 的标准方程;(2)设点P 关于x 轴的对称点为Q ,过点P 斜率为1k ,2k 的两条动直线与椭圆C 的另一交点分别为M 、N (M 、N 皆异于点Q ).若1213k k =,求QMN 的面积S 最大值.13.(2021·长沙市·湖南师大附中高三)已知椭圆C 过点21,2⎛ ⎝⎭,且与曲线2212x y -=有共同的焦点.(1)求椭圆C 的标准方程;(2)过椭圆的右焦点2F 作直线l 与椭圆C 交于,A B 两点,设2F A =2F B λ,若[]2,1λ∈--,点()2,0T ,求TA TB +的取值范围.14.(2021·安徽高三期末)已知椭圆()2222:10x y C a b a b +=>>过点421,3P ⎛⎫ ⎪ ⎪⎝⎭,离心率为53.(1)求椭圆C 的方程;(2)直线l 与圆22:1O x y +=相切,且与椭圆C 交于M ,N 两点,Q 为椭圆C 上一个动点(点O ,Q 分别位于直线l 两侧),求四边形OMQN 面积的最大值.15.(2019·湖南长沙一中高三月考)如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,P 为椭圆C 上一点,且2PF 垂直于x 轴,连结1PF 并延长交椭圆于另一点Q ,设1PQ FQ λ=(1)若点P 的坐标为31,2⎛⎫⎪⎝⎭,求椭圆C 的方程;(2)若34λ≤≤,求椭圆C 的离心率的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考专题圆锥曲线中的最值和范围问题★★★高考要考什么
1 圆锥曲线的最值与范围问题
(1)圆锥曲线上本身存在的最值问题:
①椭圆上两点间最大距离为2a(长轴长).
②双曲线上不同支的两点间最小距离为2a(实轴长).
③椭圆焦半径的取值范围为[a-c,a+c],a-c与a+c分别表示椭圆焦点到椭圆上的点的最小距离与最大距离.
④抛物线上的点中顶点与抛物线的准线距离最近.
(2)圆锥曲线上的点到定点的距离的最值问题,常用两点间的距离公式转化为区间上的二次函数的最值问题解决,有时也用圆锥曲线的参数方程,化为三角函数的最值问题或用三角形的两边之和(或差)与第三边的不等关系求解.
(3)圆锥曲线上的点到定直线的距离的最值问题解法同上或用平行切线法.
(4)点在圆锥曲线上(非线性约束条件)的条件下,求相关式子(目标函数)的取值范围问题,常用参数方程代入转化为三角函数的最值问题,或根据平面几何知识或引入一个参数(有几何意义)化为函数进行处理.
(5)由直线(系)和圆锥曲线(系)的位置关系,求直线或圆锥曲线中某个参数(系数)的范围问题,常把所求参数作为函数,另一个元作为自变量求解.
与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决:
(1)结合定义利用图形中几何量之间的大小关系;
(2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围;
(3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围。

(4)利用代数基本不等式。

代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思;
(5)结合参数方程,利用三角函数的有界性。

直线、圆或椭圆的参数方程,它们的一个共同特点是均含有三角式。

因此,它们的应用价值在于:
①通过参数θ简明地表示曲线上点的坐标;
②利用三角函数的有界性及其变形公式来帮助求解诸如最值、范围等问题;
(6)构造一个二次方程,利用判别式0。

★★★突破重难点
【练习】1、 点A (3,2)为定点,点F 是抛物线y 2=4x 的焦点,点P 在抛物线
y 2=4x 上移动,若|PA|+|PF|取得最小值,求点P 的坐标。

若A (1,3)为定点,点F 是抛物线y 2=4x 的焦点,点P 在抛物线y 2=4x 上移动,若|PA|+d|取得最小值,其中d 是点P 到准线的距离,求点P 的坐标 2.已知A (3,2)、B (-4,0),P
是椭圆x y 22
259
1+=上一点,则|PA |+|PB|的
最大值为( )
A .10
B .105-
C .105+
D .1025+
3.已知双曲线22
1169
x y -=,过其右焦点F 的直线l 交双曲线于AB ,若|AB |=5,则
直线l 有( )
A .1条
B .2条
C .3条
D .4条
4.已知点P 是抛物线y 2=4x 上一点,设P 到此抛物线的准线的距离为d 1, 到直线x +2y+10=0的距离为d 2,则d 1+d 2的最小值为 ( )
A .5
B .4
C (
D )
115
. 5.抛物线y 2=2x 上到直线x-y +3=0距离最短的点的坐标为__________ 2
1(,1)
例题1、若点O 和点F 分别为椭圆x 24+y 2
3=1的中心和左焦点,点P 为椭圆上的
任意一点,则OP →·FP →的最大值为( )
A .2
B .3
C .6
D .8
练习、已知点M (-2,0),N (2,0),动点P 满足条件
||||PM PN -=记动点P 的轨迹为W .
(Ⅰ)求W 的方程;
(Ⅱ)若A ,B 是W 上的不同两点,O 是坐标原点,求OA OB ⋅u u u r u u u r
的最小值.
(2014·新课标全国卷Ⅰ] 已知点A (0,-2),椭圆E :x 2a 2+y 2
b
2=1(a >b >0)的
离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为23
3,O 为坐标原点.
(1)求E 的方程;
(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求
l 的方程.
例题2、已知动点Q 与两定点(-2,0),(2,0)连线的斜率的乘积为-1
2
,点
Q 形成的轨迹为M .
(1)求轨迹M 的方程;
(2)过点P (-2,0)的直线l 交M 于A ,B 两点,且PB →=3PA →,平行于AB 的直线与M 位于x 轴上方的部分交于C ,D 两点,过C ,D 两点分别作CE ,DF 垂直x 轴于E ,F 两点,求四边形CEFD 面积的最大值.
例题3、如图,点P (0,-1)是椭圆C 1:x 2a 2+y 2
b
2=1(a >b >0)
的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径.l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,
l 2交椭圆C 1于另一点D .
(1)求椭圆C 1的方程;
(2)求△ABD 面积取最大值时直线l 1的方程.
【例4】已知椭圆22
22:1(0)x y C a b a b
+=>>过点(,22A -,离心率为2,点12,F F 分
别为其左右焦点.
(1)求椭圆C 的标准方程;
(2)若24y x =上存在两个点,M N ,椭圆上有两个点,P Q 满足2,,M N F 三点共线,
2,,P Q F 三点共线,且PQ MN ⊥,求四边形PMQN 面积的最小值.
,例题5,已知椭圆C :122
22=+b
y a x (a >b >0)的离心率为,36短轴一个端点到右
焦点的距离为3。

(Ⅰ)求椭圆C 的方程;
(Ⅱ)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为2
3
,求△AOB 面积的最大值。

,例题6已知椭圆2
2:12
x E y +=的右焦点为F ,过F 作互相垂直的两条直线分别与
E 相交于,A C 和,B D 四点.(1)四边形ABCD 能否成为平行四边形,请说明理由;
(2)求四边形ABCD 面积的最小值.
例7、在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2
b
2=1(a >b >0)的离心率e =
23
,且椭圆C 上的点到点Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程;
(2)在椭圆C 上,是否存在点M (m ,n ),使得直线l :mx +ny =1与圆O :x 2
+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及对应的△OAB 的面积;若不存在,请说明理由.
,例题8如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为1
2
,其左焦点到点P (2,1)的
距离为10,不过原点O 的直线l 与C 相交于A ,B 两点,且线段AB 被直线OP
平分.
(1)求椭圆C 的方程;
(2)求△ABP 面积取最大值时直线l 的方程
考点2 范围、最值问题与平面向量的交汇
【例9】设F 1,F 2分别是椭圆x 2
4
+y 2=1的左、右焦点.
(1)若P 是该椭圆上的一个动点,求PF
1→·PF 2→的最大值和最小值;
(2)设过定点M (0,2)的直线l 与椭圆交于不同的两点A ,B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率的取值范围.
【例10】已知椭圆C :()22
2210x y a b a b
+=>>,其右焦点()1,0F ,离心率为2.
(Ⅰ)求椭圆C 的标准方程;
(Ⅱ)已知直线0x y m -+=与椭圆C 交于不同的两点,A B ,且线段AB 的中点不在圆225
9
x y +=内, 求m 的取值范围.。

相关文档
最新文档