电大离散数学作业答案 作业答案
电大 离散数学 形成性考核册 作业(一)答案
离散数学形成性考核作业(一)集合论部分本课程形成性考核作业共4次,内容由中央电大确定、统一布置。
本次形考作业是第一次作业,大家要认真及时地完成集合论部分的形考作业,字迹工整,抄写题目,解答题有解答过程。
第1章 集合及其运算1.用列举法表示 “大于2而小于等于9的整数” 集合.解:{3,4,5,6,7,8,9}2.用描述法表示 “小于5的非负整数集合” 集合.解:}50{N n n n ∈<<且3.写出集合B ={1, {2, 3 }}的全部子集.解:集合B ={1, {2, 3 }}的全部子集为:}}.3,2{,1{}},3,2{{},1{,φ4.求集合A ={∅∅,{}}的幂集.解:A ={∅∅,{}}的幂集为,是子集的集合。
题是求集合的幂集,,应把子集列举出来;题是求集合的全部子集:注意43][}}}{,{}},{{},{,{2)(φφφφφ==A A P5.设集合A ={{a }, a },命题:{a }⊆P (A ) 是否正确,说明理由.解:{a }⊆P (A ) 不正确。
因为P (A )是A 的幂集,是由A 的子集组成的集合。
{a }既是 A 的元素又是A 的子集,应有{a }∈P (A ) 。
6.设A B C ==={,,},{,,},{,,},123135246求(1)A B ⋂ (2)A B C ⋃⋃(3)C - A (4)A B ⊕解:(1)A B ⋂={1,3}; (2)A B C ⋃⋃={1,2,3,4,5,6};(3)C -A ={4,6}; (4)A B ⊕={2,5}7.化简集合表示式:((A ⋃B )⋂B ) - A ⋃B .解:φ=⋃-=⋃-⋂⋃B A B B A B B A ))((8.设A , B , C 是三个任意集合,试证: A - (B ⋃C ) = (A - B ) - C .C B A C A B A A C A B A A C B A A C B A --=⋂-⋂-=⋂⋃⋂-=⋃⋂-=⋃-)()()())()(()()(解:9.填写集合{4, 9 }⊂{9, 10, 4}之间的关系.10.设集合A = {2, a , {3}, 4},那么下列命题中错误的是( A ).A .{a }∈AB .{ a , 4, {3}}⊆AC .{a }⊆AD .∅⊆A11.设B = { {a }, 3, 4, 2},那么下列命题中错误的是( C 、D ).A .{a }∈B B .{2, {a }, 3, 4}⊆BC .{a }⊆BD .{∅}⊆B第2章 关系与函数1.设集合A = {a , b },B = {1, 2, 3},C = {3, 4},求 A ⨯(B ⋂C ),(A ⨯B )⋂(A ⨯C ) ,并验证A ⨯(B ⋂C ) = (A ⨯B )⋂(A ⨯C ).)()(}3,,3,{}4,,3,,4,,3,{}3,,2,,1,,3,,2,,1,{)()(};3,,3,{}3{},{C A B A C B A b a b b a a b b b a a a C A B A b a b a C B A ⨯⋂⨯=⋂⨯〉〈〉〈=〉〈〉〈〉〈〉〈⋂〉〈〉〈〉〈〉〈〉〈〉〈=⨯⋂⨯〉〈〉〈=⨯=⋂⨯)(由上面可知,)(解:2.对任意三个集合A , B 和C ,若A ⨯B ⊆A ⨯C ,是否一定有B ⊆C ?为什么?。
国家开放大学《离散数学》综合练习题参考答案
国家开放大学《离散数学》综合练习题参考答案一、单项选择题1.若集合A ={ a ,{a },{1,2}},则下列表述正确的是()。
A .{a ,{a }}∈AB .{1,2}∉AC .{a }⊆AD .∅∈A2.若集合A ={1,2},B ={1,2,{1,2}},则下列表述正确的是()。
A .A ⊂B ,且A ∈B B .B ⊂A ,且A ∈BC .A ⊂B ,且A ∉BD .A ⊄B ,且A ∈B3.若集合A ={ a ,{1}},则下列表述正确的是( )。
A .{1}∈AB .{1}⊆AC .{a }∈AD .∅∈A4.设集合A = {1, a },则P (A ) = ()。
A .{{1}, {a }}B .{,{1}, {a }}C .{,{1}, {a }, {1, a }}D .{{1}, {a }, {1, a }}5.若集合A 的元素个数为10,则其幂集的元素个数为()。
A .10B .100C .1024D .16.集合A ={1, 2, 3, 4, 5, 6, 7, 8}上的关系R ={<x ,y >|x +y =10且x , y A },则R 的性∅∅∈质为( )。
A .自反的B .对称的C .传递且对称的D .反自反且传递的7.设集合A ={1 , 2 , 3 , 4}上的二元关系R = { 1 , 1, 2 , 2, 2 , 3, 4 , 4},S = { 1 , 1, 2 , 2, 2 , 3, 3 , 2, 4 , 4}, 则S 是R 的()闭包。
A .自反B .传递C .对称D .以上都不对8.设A ={1, 2, 3, 4, 5, 6, 7, 8},R 是A 上的整除关系,B ={2, 4, 6},则集合B 的最大元、最小元、上界、下界依次为 ()A .8、2、8、2B .8、1、6、1C .6、2、6、2D .无、2、无、29.设A ={a , b },B ={1, 2},R 1,R 2,R 3是A 到B 的二元关系,且R 1={<a ,2>, <b ,2>},R 2={<a ,1>, <a ,2>, <b ,1>},R 3={<a ,1>, <b ,2>},则( )不是从A到B 的函数。
最新国家开放大学电大《离散数学》形考任务1试题及答案
最新国家开放大学电大《离散数学》形考任务1试题及答案最新国家开放大学电大《离散数学》形考任务1试题及答.形考任务1(集合论部分概念及性质)单项选择.题目.若集合A=.a, {a}, {1, 2}}, 则下列表述正确的是().选择一项:A.{a, {a}}.B..C.{1, 2..D.{a..题目.设函数f: N→N, f(n)=n+1, 下列表述正确的是.).选择一项: A.f是满射.B.f存在反函.C.f是单射函.D.f是双射.题目.设集合A={1, 2, 3, 4, 5}, 偏序关系是A上的整除关系, 则偏序集<A, >上的元素5是集合A的.).选择一项:A.极小.B.极大.C.最大.D.最小.题目.设A={a, b}, B={1, 2}, C={4, 5}, 从A到B的函数f={<a,1>.<b, 2>}, 从B到C的函数g={<1, 5>.<2, 4>}, 则下列表述正确的是.).选择一项:A.g..={<a, 5>.<b, 4>.B.g..={<5, .>.<4, .>.C.f°.={<5, .>.<4, .>.D.f°.={<a, 5>.<b, 4>.题目.集合A={1.2.3.4}上的关系R={<x, y>|x=y且x.yA}, 则R的性质为.).选择一项:A.传递.B.不是对称.C.反自.D.不是自反.题目.设集合..{1..}, 则P(A...).选择一项:A.{{1}.{a}.{1..}.B.{{1}.{a}.C.{,{1}.{a}.D.{,{1}.{a}.{1..}.题目.若集合A={1, 2}, B={1, 2, {1, 2}},则下列表述正确的是.).选择一项:A.AB, 且A.B.AB, 且A.C.BA, 且A.D.AB, 且A.题目.设集合A={1.2.3}, B={3.4.5}, C={5.6.7},则A∪B–.=.).选择一项:A.{1.2.3.4.B.{4.5.6.7.C.{2.3.4.5.D.{1.2.3.5.题目.设集合..{1.2.3.4.5}上的偏序关系的哈斯图如右图所示, 若A的子集..{3.4.5}, 则元素3为B的.).选择一项:A.最小上.B.下.C.最大下.D.最小.题目1.如果R1和R2是A上的自反关系, 则R1∪R2, R1∩R2, R1-R2中自反关系有.)个.选择一项:A..B..C..D..以下资料为赠送资料:《滴水之中见精神》主题班会教案活动目的: 教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的, 每个人都要保护它, 做到节约每一滴水, 造福子孙万代。
电大离散数学作业5答案(图论部分)
电大离散数学作业5答案〔图论局部〕★形成性考核作业★离散数学作业5姓名:学号:得分:教师签名:离散数学图论局部形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论局部、图论局部、数理逻辑局部的综合练习,根本上是按照考试的题型〔除单项选择题外〕安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。
本次形考书面作业是第二次作业,大家要认真及时地完成图论局部的综合练习作业。
要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求2022年12月5日前完成并上交任课教师〔不收电子稿〕。
并在05任务界面下方点击“保存〞和“交卷〞按钮,以便教师评分。
一、填空题1.图G中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,那么G的边数是 15 .2.设给定图G(如右由图所示),那么图G的点割集是 {f} .3.设G是一个图,结点集合为V,边集合为E,那么 G的结点度数之和等于边数的两倍.4.无向图G存在欧拉回路,当且仅当G连通且等于出度. 5.设G=是具有n个结点的简单图,假设在G中每一对结点度数之和大于等于 n-1 ,那么在G 中存在一条汉密尔顿路.6.假设图G=中具有一条汉密尔顿回路,那么对于结点集V的每个非空子集S,在G中删除S中的所有结点得到的连通分支数为W,那么S中结点数|S|与W满足的关系式为 W(G-V1) ??V1? .7.设完全图Kn有n个结点(n?2),m条边,当 n为奇数时,Kn中存在欧拉回路.8.结点数v与边数e满足 e=v-1 关系的无向连通图就是树. 9.设图G是有6个结点的连通图,结点的总度数为18,那么可从G中删去 4 条边后使之变成树.10.设正那么5叉树的树叶数为17,那么分支数为i = 5 .1★形成性考核作业★二、判断说明题〔判断以下各题,并说明理由.〕1.如果图G是无向图,且其结点度数均为偶数,那么图G存在一条欧拉回路.. (1) 不正确,缺了一个条件,图G应该是连通图,可以找出一个反例,比方图G是一个有孤立结点的图。
国开电大《离散数学》形考任务1和4试题及答案
国开电大《离散数学》形考任务一参考答案单项选择题试题1若集合A的元素个数为10,则其幕集的元素个数为().选择一项:A.lB.100C.1024D.10正确答案是:1024试题2集合A={l,2, 3, 4, 5, 6, 7, 8}上的关系R={<x,y> I x+y=lO且x,yA}, 则R 的性质为().选择一项:A反自反且传递的B对称的C自反的D传递且对称的正确答案是:对称的试题3设集合A={l,2, 3}, 8={3, 4, S}, C={S, 6, 7}, 则AU B -C =( ).一、公式翻译题(每小题4分,共16分)1.将语句 “我会英语, 并且会德语. “翻译成命题公式.答: 设P : 我会头语Q: 我会德语则命题公式为P/\Q 2.将语句 “ 如果今天是周三, 则昨天是周二. “翻译成命题公式.答: 设P: 今天是周三Q: 昨天是周二则命题公式为: PQ 3.将语句"C3次列车每天上午9点发车或者10点发车” 翻译成命题公式.答: 设P : C 3次列车每天卜午9点发车Q : C3次列车每天上午10点发车则命题公式为: -, C P 仁 Q )4.将语句 “小王是个学生, 小李是个职员, 而小张是个军人. “翻译成命题公式. 答: 设: P : 小王是个学生Q : 小李是个职员R : 小张是个军人则命题公式为: p/\Q /\R 二、计算题(每小题12 分, 共 84 分)1.设集合A={{a},a, b ), B ={a, {b)}, 试计算(1)AnB;(2)AU 8;(3)A-(AnB)答:C I )炉B ={a}(2)A u B ={ {a},a,b {b}}(3)A -(A n B)={ { a },a ,b }-{a}={a ,b}2设集合A={2,3, 6, 12, 24, 36}, B为A 的子集,其中B={6,12}, R是A 上的整除关系,试Cl)写出R 的关系表达式;(2)画出关系R 的哈斯图;(3)求出B 的最大元、极大元、最小上界.。
离散数学(本)-国家开放大学电大学习网形考作业题目答案
离散数学(本)一、单项选择题1.集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={<x,y>|x+y=10且x, yA},则R的性质为().A.自反的B.对称的C.传递且对称的D.反自反且传递的正确答案: B2.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.A.0B.2C.1D.3正确答案: B3.设集合A={1, 2, 3},B={3, 4, 5},C={5, 6, 7},则A∪B–C =( ).A.{1, 2, 3, 4}B.{1, 2, 3, 5}C.{2, 3, 4, 5}D.{4, 5, 6, 7}正确答案: A4.若集合A={ a,{a},{1,2}},则下列表述正确的是().A.{a,{a}}AB.{1,2}AC.{a}AD.A正确答案: C5.若集合A的元素个数为10,则其幂集的元素个数为().A.1024B.10C.100D.1正确答案: A6.设函数f:N→N,f(n)=n+1,下列表述正确的是().A.f存在反函数B.f是双射的C.f是满射的D.f是单射函数正确答案: D7.设集合A = {1, 2, 3, 4, 5}上的偏序关系的哈斯图如图所示,若A的子集B = {3, 4, 5},则元素3为B的().A.下界B.最小上界C.最大下界D.最小元正确答案: B8.设集合A={1,2,3,4,5},偏序关系是A上的整除关系,则偏序集<A,>上的元素5是集合A的().A.最大元B.最小元C.极大元D.极小元正确答案: C9.设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1,1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的()闭包.A.自反B.传递C.对称D.自反和传递正确答案: C10.集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, yA},则R的性质为().A.不是自反的B.不是对称的C.传递的D.反自反正确答案: C11.图G如图三所示,以下说法正确的是 ( ).A.a是割点B.{b,c}是点割集C.{b, d}是点割集D.{c}是点割集正确答案: B12.设G是连通平面图,有v个结点,e条边,r个面,则r= ( ).A.e-v+2B.v+e-2C.e-v-2D.e+v+2正确答案: A13.图G如图四所示,以下说法正确的是 ( ) .A.{(a, d)}是割边B.{(a, d)}是边割集C.{(a, d) ,(b, d)}是边割集D.{(b, d)}是边割集正确答案: C14.设无向图G的邻接矩阵为,则G的边数为( ).A.6B.5C.4D.3正确答案: B15.无向图G存在欧拉回路,当且仅当().A.G中所有结点的度数全为偶数B.G中至多有两个奇数度结点C.G连通且所有结点的度数全为偶数D.G连通且至多有两个奇数度结点正确答案: C16.无向完全图K4是().A.欧拉图B.汉密尔顿图C.非平面图D.树正确答案: B17.无向树T有8个结点,则T的边数为( ).A.6B.7C.8D.9正确答案: B18.若G是一个汉密尔顿图,则G一定是( ).A.平面图B.对偶图C.欧拉图D.连通图正确答案: D19.若G是一个欧拉图,则G一定是( ).A.平面图B.汉密尔顿图C.连通图D.对偶图正确答案: C20.设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是( ).图五A.(a)是强连通的B.(b)是强连通的C.(c)是强连通的D.(d)是强连通的正确答案: A21.命题公式为( )A.矛盾式B.可满足式C.重言式D.合取范式正确答案: B22.设个体域为整数集,则公式的解释可为( ).A.存在一整数x有整数y满足x+y=0B.任一整数x对任意整数y满足x+y=0C.对任一整数x存在整数y满足x+y=0D.存在一整数x对任意整数y满足x+y=0正确答案: C23.设命题公式G:,则使公式G取真值为1的P,Q,R赋值分别是 ( ).A.0, 0, 0B.0, 0, 1C.0, 1, 0D.1, 0, 0正确答案: D24.设A(x):x是人,B(x):x是教师,则命题“有人是教师”可符号化为().A.B.C.D.正确答案: D25.下列公式 ( )为重言式.A.┐P∧┐Q↔P∨QB.(Q→(P∨Q)) ↔(┐Q∧(P∨Q))C.Q→(P∨(P∧Q))↔Q →PD.(┐P∨(P∧Q)) ↔Q正确答案: C26.下列等价公式成立的为( ).A.┐P∧P┐Q∧QB.┐Q→P P→QC.P∧Q P∨QD.┐P∨P Q正确答案: A27.谓词公式(x)(A(x)→B(x)∨C(x,y))中的()。
电大离散数学作业答案02任务0001
电大离散数学作业答案02任务000102任务_00011. 设集合A = {1, a },则P(A) = ( ).A. {{1}, {a}}B. {,{1}, {a}}C. {{1}, {a}, {1, a }}D. {,{1}, {a}, {1, a }}2. 集合A={1, 2, 3, 4}上的关系R={x,y|x=y且x, yA},则R的性质为().A. 不是自反的B. 不是对称的C. 传递的D. 反自反3. 若集合A={ a,{a},{1,2}},则下列表述正确的是( ).A A. {a,{a}}B. {1,2}C. {a}D.4. A A A设集合A ={1 , 2, 3}上的函数分别为:f = {1, 2,2, 1,3, 3},g = {1,3,2, 2,3, 2},h = {1, 3,2, 1,3, 1},则h =().A. f gB. g fC. f fD. g g5. 设集合A={1 , 2 , 3 , 4}上的二元关系R={1, 1,2, 2,2, 3,4, 4},S={1, 1,2, 2,2, 3,3, 2,4, 4},则S是R的()闭包.A. 自反B. 传递C. 对称D. 自反和传递6. 若集合A. AB. BC. AD. AA={1,2},B={1,2,{1,2}},则下列表述正确的是( ).B,且AB A,且AB B,且AB B,且AB7. 设集合A={1,2,3,4,5},偏序关系是A上的整除关系,则偏序集A,上的元素5是集合A的().A. 最大元B. 最小元C. 极大元D. 极小元8. 若集合A. 1024B. 10C. 100D. 19. 如果A的元素个数为10,则其幂集的元素个数为().R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.A. 0。
中央电大形成性测评系统离散数学作业3答案(集合论部分)
精选离散数学作业3离散数学集合论部分形成性考核书面作业一、填空题1.设集合{1,2,3},{1,2}A B ==,则P (A )-P (B )= {{1,2},{2,3},{1,3},{1,2,3}} ,A B = {<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>} .2.设集合A 有10个元素,那么A 的幂集合P (A )的元素个数为 1024 . 3.设集合A ={0, 1, 2, 3},B ={2, 3, 4, 5},R 是A 到B 的二元关系,},,{B A y x B y A x y x R ⋂∈∈∈><=且且则R 的有序对集合为 {<2,2>,<2,3>,<3,2>,<3,3>} .4.设集合A ={1, 2, 3, 4 },B ={6, 8, 12}, A 到B 的二元关系R =},,2,{B y A x x y y x ∈∈=><那么R -1= {<6,3>,<8,4>}5.设集合A ={a , b , c , d },A 上的二元关系R ={<a , b >, <b , a >, <b , c >, <c , d >},则R 具有的性质是 反自反性 .6.设集合A ={a , b , c , d },A 上的二元关系R ={<a , a >, <b , b >, <b , c >, <c ,d >},若在R 中再增加两个元素 <c, b>, <d, c> ,则新得到的关系就具有对称性.7.如果R 1和R 2是A 上的自反关系,则R 1∪R 2,R 1∩R 2,R 1-R 2中自反关系有 2 个.8.设A ={1, 2}上的二元关系为R ={<x , y >|x A ,y A , x +y =10},则R 的自反闭包为 {<1,1>,<2,2>} .9.设R 是集合A 上的等价关系,且1 , 2 , 3是A 中的元素,则R 中至少包含 <1,1>,<2,2>,<3,3> 等元素.10.设集合A ={1, 2},B ={a , b },那么集合A 到B 的双射函数是姓 名: 学 号: 得 分: 教师签名:{<1,a>,<2,b>}或{<1,b>,<2,a>} .二、判断说明题(判断下列各题,并说明理由.)1.若集合A = {1,2,3}上的二元关系R ={<1, 1>,<2, 2>,<1, 2>},则 (1) R 是自反的关系; (2) R 是对称的关系.解:(1) 结论不成立.因为关系R 要成为自反的,其中缺少元素<3, 3>. (2) 结论不成立.因为关系R 中缺少元素<2, 1>.2.如果R 1和R 2是A 上的自反关系,判断结论:“R -11、R 1∪R 2、R 1∩R 2是自反的” 是否成立?并说明理由. 解:结论成立.因为R 1和R 2是A 上的自反关系,即I A R 1,I A R 2. 由逆关系定义和I A R 1,得I A R 1-1; 由I A R 1,I A R 2,得I A R 1∪R 2,I AR 1R 2.所以,R 1-1、R 1∪R 2、R 1R 2是自反的.3.若偏序集<A ,R >的哈斯图如图一所示,则集合A 的最大元为a ,最小元不存在.解:错误,按照定义,图中不存在最大元和最小元。
国家开放大学电大本科《离散数学》2024-2025期末试题及答案(试卷号:1009)
国家开放大学电大本科《离散数学》2024-2025期末试题及答案(试卷号:1009)一、单项选择题(每小题3分,本题共16分)若集合A = {1,2,3,4},则下列表述不正确的是( ).A.{2,3)€AB.AU{1,2,3,4}C. <1,2,3,4)QAD. 16A2.若无向图G的结点度数之和为20,则G的边数为( ).A.10B. 20C. 30D. 53.无向图G是棵树,结点数为10,则G的边数为( ).A. 5B. 10C.9D. 114.设A(x):x是人,B(x):x是学生,则命题“有的人是学生”可符号化为( )•A.Vx)(A(x)-*B(x»B.(3x)(A(x)AB(x))C.(Vx)(A(x)AB(x»D.-«(3x)(A(x)A -B(x»5.下面的推理正确的是( ).A.(l)(Vx)F(x)->G(x) 前提引入(2)F(>-)-*G(y) US(1).B.(1)( 3 x)F(x)-*G(x) 前提引入(2)F(y)-*G(y) US(1),C.(l)(3x)(F(x)->G(x»前提引入(2)F(y)-*G(x) ES(1).D.(l)(3x)(F(x)-*G(x)) 前提引入(2)F(y)-*G(y) ESQ).二、填空题(每小题3分,本题共15分)6.设A = {1,2),H = {1,2,3},则A到B上不同的函数个数为________________ .7.有&个结点的无向完全图的边数为 ____________ .8.若无向图G中存在欧拉路但不存在欧拉回路,则G的奇数度数的结点有________ 个.9.设G是有10个结点的无向连通图,结点的度数之和为30,则从G中删去条边后使之变成树.10.设个体域£> = {1,2,3,4},则谓词公式(*)人(了)消去量词后的等值式为三、逻辑公式翻译(每小题6分,本息共12分)11.将语句“昨天下甬“翻译成命题公式.12.将语句“小王今天上午或者去看电彩或者去打球”翻译成命JS公式.四、判断说明题(判断各题正误,并说明理由.每小题7分,本黑共14分)13.存在集合A与B,使得A6B与AUB同时成立.14.完全图K<是平面图.五、计算题(每小题12分,本题共36分)15.设偏序集VA,R>的哈斯图如下,B为A的子集,其中B = 试(1)写出R的关系表达式;(2)画出关系R的关系图;(3)求出B的最大元、极大元、上界.16.设图G — <V,E>,V={vj f v it v t,Vi»v s)»(v2, v3)»(v3»vs)}»试(1)画出G的图形表示;(2)写出其邻接矩阵;(3)求出每个结点的度数;(4)画出图G的补图的图形,17.求P TQ代R)的合取范式与主合取范式.六、证明题(本题共8分)18.设A.B是任意集合,试证明:若AXA=BXB,^ A = B.M答杖松标准(仅辩者)一、单项选择题(每小题3分,本题共15分)1. A2. A3. C4.B5. D二、填空题(每小题3分,本题共]5分)6.97.”3 — 1)/2(或庆)8.210. A(l) VA(2) V A(3) V A(4)三、 逻辑公式翻译(每小题6分,本题共】2分)H,设P :昨天下雨. 则命题公式为:P ,12. 设P :小王今天上午去看电影 Q :小王今天上午去打球 则命题公式为:r (PiQ ). 或者(rPAQ )V 〈PA rQ )四、 判断说明题(每小题7分,本题共14分)13. 正确.例:设 A = {a} t H — {a,{a}) 则有且ACI3.说明:举出符合条件的例均给分. 14. 正确.完全图K 〈是平面图, 如K,可以如下图示嵌入平面.(7分)五、计算题(每小题12分,本题共36分)15. (l )R = {Va ,a>,Vb,Q>,Vc,c>,Vd,d>・Va0>・Va ・c>,V&,d>,VQ,d >}. (4 分)(2)关系图(8分)(3)集合B 无最大元,极大元为6与c.无上界. 16, 解: (1)关系图(2分) (6分)(2分)(6分)(3分) (517. P TQAR) 5PV(QAR) 0(rPVQ 〉A(rPVR)合取范式<=>(-PVQ)V(K A rR)A(rPVR) 0("VQ)V(& A rR)A(" VR)V(QA -Q)D(rPVQVR)A(rPVQVA("VR VQ) A(-、PVR V -Q) c=>(-PVQV7?)A(-'PVQV-R)A(-PV-QVR) 主合取范式 六、证明题(本意共8分)18. 证明:V2(2)邻接矩阵bioir 101001001 1 00 0(6分)(3) deg(vi)=,3deg(v t )—2 <ieg(v 3)~2 deg顷)=1 deg(v s )=2 (4) 补图(9分)(】2分)(2分) (5分)(7分〉设x€A,则Vx,x>€AXA,(1 分)因AXA = BXB,故V X,X>€BXB,则有xGB, (3 分)因此AGB. (5分)设xQB,则Vx,x>€BXB,(6 分)因AXA-BXB,故Vx,x>eAXA,则有因此BWA. (7 分)故得A=B. (8分)。
国家开放大学电大本科《离散数学》网络课形考任务2作业及答案
A. 有n个结点n-1条边的无向图都是树
B. 无向完全图都是平面图
C. 树的每条边都是割边
D. 无向完全图都是欧拉图
题目6
若G是一个欧拉图,则G一定是( ).
选择一项:
A. 汉密尔顿图
B. 连通图
C. 平面图
D. 对偶图
题目7
设图G=<V, E>,v∈V,则下列结论成立的是 ( ) .
选择一项:
选择一项:
对
错
题目17
设G是一个图,结点集合为V,边集合为E,则 ( )
选择一项:
对
错
题目18
设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去6条边后使之变成树.( )
选择一项:
对
错
题目19
如图九所示的图G不是欧拉图而是汉密尔顿图.( )
选择一项:
对
错
题目20
若图G=<V, E>,其中V={ a, b, c, d },E={ (a, b), (a, d),(b, c), (b, d)},则该图中的割边为(b, c).( )
题目8
图G如图三所示,以下说法正确的是 ( ).
选择一项:
A. {b, d}是点割集
B. {c}是点割集
C. {b, c}是点割集
D. a是割点
题目9
设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是( ).
选择一项:
A. (a)是强连通的
B. (d)是强连通的
C. (c)是强连通的
选择一项:
对
错
题目12
汉密尔顿图一定是欧拉图.( )
选择一项:
对
国开电大离散数学(本)形考任务1-3参考答案
B.自反
C.自反和传递
D.传递
【答案】:对称
29.设A={a,b},B={1,2},C={4,5},从A到B的函数f={<a,1>, <b,2>},从B到C的函数g={<1,5>, <2,4>},则下列表述正确的是().
A. f°g ={<5,a >, <4,b >}
B. f°g ={<a,5>, <b,4>}
B. {<2, 1>, <3, 2>, <4, 3>}
C. {<2, 3>, <4, 5>, <6, 7>}
D. {<2, 1>, <4, 3>, <6, 5>}
【答案】:{<2, 3>, <4, 5>, <6, 7>}
3.设集合A={a},则A的幂集为( ).
【答案】:
4.设集合A = {1, a },则P(A) = ( ).
对
错
【答案】:错
15.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系R=那么R-1={<6, 3>,<8,4>}.()
对
错
【答案】:对
16.设A={1, 2}上的二元关系为R={<x, y>|xA,yA, x+y =10},则R的自反闭包为{<1, 1>, <2, 2>}.()
对
错
【答案】:对
20.设A={1,2},B={ a, b, c },则A×B的元素个数为8.()
国家开放大学电大本科《离散数学》2024-2025期末试题及答案(试卷号:1009)
国家开放大学电大本科《离散数学》2024-2025期末试题及答案(试卷号:1009)一、单项选择题(每小题3分,本题共16分)若集合A = {1,2,3,4},则下列表述不正确的是( ).A.{2,3)€AB.AU{1,2,3,4}C. <1,2,3,4)QAD. 16A2.若无向图G的结点度数之和为20,则G的边数为( ).A.10B. 20C. 30D. 53.无向图G是棵树,结点数为10,则G的边数为( ).A. 5B. 10C.9D. 114.设A(x):x是人,B(x):x是学生,则命题“有的人是学生”可符号化为( )•A.Vx)(A(x)-*B(x»B.(3x)(A(x)AB(x))C.(Vx)(A(x)AB(x»D.-«(3x)(A(x)A -B(x»5.下面的推理正确的是( ).A.(l)(Vx)F(x)->G(x) 前提引入(2)F(>-)-*G(y) US(1).B.(1)( 3 x)F(x)-*G(x) 前提引入(2)F(y)-*G(y) US(1),C.(l)(3x)(F(x)->G(x»前提引入(2)F(y)-*G(x) ES(1).D.(l)(3x)(F(x)-*G(x)) 前提引入(2)F(y)-*G(y) ESQ).二、填空题(每小题3分,本题共15分)6.设A = {1,2),H = {1,2,3},则A到B上不同的函数个数为________________ .7.有&个结点的无向完全图的边数为 ____________ .8.若无向图G中存在欧拉路但不存在欧拉回路,则G的奇数度数的结点有________ 个.9.设G是有10个结点的无向连通图,结点的度数之和为30,则从G中删去条边后使之变成树.10.设个体域£> = {1,2,3,4},则谓词公式(*)人(了)消去量词后的等值式为三、逻辑公式翻译(每小题6分,本息共12分)11.将语句“昨天下甬“翻译成命题公式.12.将语句“小王今天上午或者去看电彩或者去打球”翻译成命JS公式.四、判断说明题(判断各题正误,并说明理由.每小题7分,本黑共14分)13.存在集合A与B,使得A6B与AUB同时成立.14.完全图K<是平面图.五、计算题(每小题12分,本题共36分)15.设偏序集VA,R>的哈斯图如下,B为A的子集,其中B = 试(1)写出R的关系表达式;(2)画出关系R的关系图;(3)求出B的最大元、极大元、上界.16.设图G — <V,E>,V={vj f v it v t,Vi»v s)»(v2, v3)»(v3»vs)}»试(1)画出G的图形表示;(2)写出其邻接矩阵;(3)求出每个结点的度数;(4)画出图G的补图的图形,17.求P TQ代R)的合取范式与主合取范式.六、证明题(本题共8分)18.设A.B是任意集合,试证明:若AXA=BXB,^ A = B.M答杖松标准(仅辩者)一、单项选择题(每小题3分,本题共15分)1. A2. A3. C4.B5. D二、填空题(每小题3分,本题共]5分)6.97.”3 — 1)/2(或庆)8.210. A(l) VA(2) V A(3) V A(4)三、 逻辑公式翻译(每小题6分,本题共】2分)H,设P :昨天下雨. 则命题公式为:P ,12. 设P :小王今天上午去看电影 Q :小王今天上午去打球 则命题公式为:r (PiQ ). 或者(rPAQ )V 〈PA rQ )四、 判断说明题(每小题7分,本题共14分)13. 正确.例:设 A = {a} t H — {a,{a}) 则有且ACI3.说明:举出符合条件的例均给分. 14. 正确.完全图K 〈是平面图, 如K,可以如下图示嵌入平面.(7分)五、计算题(每小题12分,本题共36分)15. (l )R = {Va ,a>,Vb,Q>,Vc,c>,Vd,d>・Va0>・Va ・c>,V&,d>,VQ,d >}. (4 分)(2)关系图(8分)(3)集合B 无最大元,极大元为6与c.无上界. 16, 解: (1)关系图(2分) (6分)(2分)(6分)(3分) (517. P TQAR) 5PV(QAR) 0(rPVQ 〉A(rPVR)合取范式<=>(-PVQ)V(K A rR)A(rPVR) 0("VQ)V(& A rR)A(" VR)V(QA -Q)D(rPVQVR)A(rPVQVA("VR VQ) A(-、PVR V -Q) c=>(-PVQV7?)A(-'PVQV-R)A(-PV-QVR) 主合取范式 六、证明题(本意共8分)18. 证明:V2(2)邻接矩阵bioir 101001001 1 00 0(6分)(3) deg(vi)=,3deg(v t )—2 <ieg(v 3)~2 deg顷)=1 deg(v s )=2 (4) 补图(9分)(】2分)(2分) (5分)(7分〉设x€A,则Vx,x>€AXA,(1 分)因AXA = BXB,故V X,X>€BXB,则有xGB, (3 分)因此AGB. (5分)设xQB,则Vx,x>€BXB,(6 分)因AXA-BXB,故Vx,x>eAXA,则有因此BWA. (7 分)故得A=B. (8分)。
国开电大《离散数学》形考任务+大作业
国开电大《离散数学》形考任务+大作业离散数学(本)·形考任务一1.若集合A={ a,{a},{1,2}},则下列表述正确的是( ).A.{a,{a}}ÎAB.{1,2}ÏAC.{a}ÍAD.ÆÎA正确答案:C2.若集合A={1, 2, 3, 4},则下列表述正确的是 ().A.{1, 2}ÎAB.{1, 2, 3 } Í AC.AÌ{1, 2, 3 }D.{1, 2, 3}ÎA正确答案:B3.若集合A={2,a,{ a },4},则下列表述正确的是( ).A.{a,{ a }}ÎAB.ÎAC.{2}ÎAD.{ a }ÍA正确答案:D4.若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).A.AÌB,且AÎBB.BÌA,且AÎBC.AÌB,且AÏBD.AËB,且AÎB正确答案:A5.若集合A={a,b},B={a,{a,b}},则下列表述正确的是( ).A.AÌBB.BÌAC.AÏBD.AÎB正确答案:D6.若集合A的元素个数为5,则其幂集的元素个数为().A.5B.16C.32D.64正确答案:C7.设集合A={1, 2, 3, 4, 5, 6},B={1, 2, 3},A到B的关系R={<x,y>| x A,yB且 x=y2},则R=( ).A.{<1, 1>, <2, 4>}B.{<1, 1>, <4, 2>}C.{<1, 1>, <6, 3>}D.{<1, 1>, <2, 1>}正确答案:B8.设集合A={2, 4, 6, 8},B={1, 3, 5, 7},A到B的关系R={<x,y>|xA, y B且y=x +1},则R= ().A.{<2, 3>, <4,5>, <6, 7>}B.{<2, 1>, <4, 3>, <6, 5>}C.{<2, 1>, <3, 2>, <4, 3>}D.{<2, 2>, <3, 3>, <4, 6>}正确答案:A9.设A={1, 2, 3},B={1, 2, 3, 4},A到B的关系R={〈x,y〉| xÎA,yÎB,x=y},则R= ( ) .A.{<1, 2>, <2, 3>}B. {<1, 1>, <1, 2>, <1, 3>, <1, 4>, <1, 5>}C. {<1, 1>, <2, 1>}D.{<1, 1>, <2, 2>, <3, 3 >}正确答案:D10.设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为()A.2B.3C.6D.8正确答案:D11.空集的幂集是空集.()A.正确B.错误正确答案:B12.存在集合A与B,可以使得AÎB与AÍB同时成立.A.正确B.错误正确答案:A13.集合的元素可以是集合.A.正确B.错误正确答案:A14.如果A是集合B的元素,则A不可能是B的子集.A.正确B.错误正确答案:B15.设集合A={a},那么集合A的幂集是{Æ, {a}}A.正确B.错误正确答案:A16.若集合A的元素个数为4,则其幂集的元素个数为16A.正确B.错误正确答案:A17.设A={1, 2, 3},B ={1, 2, 3, 4},A到B的关系R ={<x,y> |xÎA,yÎB,x>y},则R ={<2, 1>, <3, 1>, <3, 2 >}A.正确B.错误正确答案:A18.设A={1, 6,7},B={2, 4,8,10},A到B的关系R={〈x,y〉|xÎA,yÎB,且 x=y},则R={<2, 2>, <4, 4>, <8, 8>, <10, 10>}A.正确B.错误正确答案:B19.设A={a,b,c},B={1,2,3},作f:A→B,则共有9个不同的函数.A.正确B.错误正确答案:B20.设A={1,2},B={ a,b,c },则A´B的元素个数为8.()A.正确B.错误正确答案:B离散数学(本)·形考任务二1.n阶无向完全图Kn的边数是().A.nB. n(n-1)/2C. n-1D.n(n-1)正确答案:B2.n阶无向完全图Kn每个结点的度数是().A.nB. n(n-1)/2C.n-1D.n(n-1)正确答案:C3.已知无向图G的结点度数之和为20,则图G的边数为().A.5B.15C.20D.10正确答案:D4.已知无向图G 有15条边,则G的结点度数之和为().A.10B.20C.30D.5正确答案:C5.图G如图所示,以下说法正确的是( ) .A.{(a, e)}是割边B.{(a, e)}是边割集C.{(a, e) ,(b, c)}是边割集D.{(d,e)}是边割集正确答案:D6.若图G=<V,E>,其中V={ a,b,c,d },E={ (a,b), (b,c) , (b,d)},则该图中的割点为().A.aB.bC.cD.d正确答案:B7.设无向完全图K有n个结点(n≥2),m条边,当()时,K中存在欧拉回路.A.m为奇数B.n为偶数C.n为奇数D.m为偶数正确答案:C8.设G是欧拉图,则G的奇数度数的结点数为( )个.A.0B.1C.2D.4正确答案:A9.设G为连通无向图,则()时,G中存在欧拉回路.A.G不存在奇数度数的结点B.G存在偶数度数的结点C.G存在一个奇数度数的结点D.G存在两个奇数度数的结点正确答案:A10.设连通平面图G有v个结点,e条边,r个面,则.A.v + e - r=2B.r +v - e =2C.v +e - r=4D.v +e – r = –4正确答案:B11.已知图G中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G的边数是15.( )A.正确B.错误正确答案:A12. 设G是一个无向图,结点集合为V,边集合为E,则G的结点度数之和为2|E|. ( )A.正确B.错误正确答案:A13. 若图G=<V,E>,其中V={ a,b,c,d },E={ (a,b), (a,d),(b,c), (b,d)},则该图中的割边为(b,c).( )A.正确B.错误正确答案:A14. 边数相等与度数相同的结点数相等是两个图同构的必要条件.A.正确正确答案:A15. 若图G中存在欧拉路,则图G是一个欧拉图.A.正确B.错误正确答案:B16. 无向图G存在欧拉回路,当且仅当G连通且结点度数都是偶数.( )A.正确B.错误正确答案:A17. 设G是具有n个结点m条边k个面的连通平面图,则n-m=2-k.A.正确B.错误正确答案:A18.设G是一个有6个结点13条边的连通图,则G为平面图.A.正确B.错误正确答案:B19. 完全图K5是平面图.B.错误正确答案:B20. 设G是汉密尔顿图,S是其结点集的一个子集,若S的元素个数为6,则在G-S中的连通分支数不超过6A.正确B.错误正确答案:A离散数学(本)·形考任务三1.无向图G是棵树,边数为12,则G的结点数是().A.12B.24C.11D.13正确答案:D2.无向图G是棵树,边数是12,则G的结点度数之和是().A.12B.13D.6正确答案:C3.无向图G是棵树,结点数为10,则G的边数是().A.9B.10C.11D.12正确答案:A4.设G是有10个结点,边数为20的连通图,则可从G中删去()条边后使之变成树.A.12B.9C.10D.11正确答案:D5.设G是有n个结点,m条边的连通图,必须删去G的( )条边,才能确定G的一棵生成树.A.m-n+1C.m+n+1D.n-m+1正确答案:A6.设A(x):x是金属,B(x):x是金子,则命题“有的金属是金子”可符号化为().A.(x)(A(x)∧B(x))B.┐("x)(A(x)→B(x))C.(x)(A(x)∧B(x))D.┐(x)(A(x)∧┐B(x))正确答案:C7.设A(x):x是学生,B(x):x去跑步,则命题“所有人都去跑步”可符号化为().A.($x)(A(x)∧B(x))B.("x)(A(x)→B(x))C.($x)(A(x)∧┐B(x))D.("x)(A(x)∧B(x))正确答案:B8.设A(x):x是书,B(x):x是数学书,则命题“不是所有书都是数学书”可符号化为().A.┐("x)(A(x)→B(x))B.┐($x)(A(x)∧B(x))C.("x)(A(x)∧B(x))D.┐($x)(A(x)∧┐B(x))正确答案:A9.("x)( P(x,y)∨Q(z))∧($y) (R(x,y) → ("z) Q(z))中量词“"”的辖域是().A.P(x,y)B.P(x,y)∨Q(z)C.R(x,y)D.P(x,y)∧R(x,y)正确答案:B10.设个体域D={a,b,c},那么谓词公式($x)A(x)∨("y)B(y)消去量词后的等值式为( ).A.(A(a)∨A(b)∨A(c))∨(B(a)∧B(b)∧B(c))B.(A(a)∧A(b)∧A(c))∨(B(a)∨B(b)∨B(c))C.(A(a)∨A(b)∨A(c))∨(B(a)∨B(b)∨B(c))D.(A(a)∧A(b)∧A(c))∨(B(a)∧B(b)∧B(c))正确答案:A11.若无向图G的边数比结点数少1,则G是树.A.正确B.错误正确答案:B12.无向图G是树当且仅当无向图G是连通图.A.正确B.错误正确答案:B13.无向图G是棵树,结点度数之和是20,则G的边数是9A.正确B.错误正确答案:B14.设G是有8个结点的连通图,结点的度数之和为24,则可从G中删去5条边后使之变成树.A.正确B.错误正确答案:A15.设个体域D={1,2,3},则谓词公式("x)A(x)消去量词后的等值式为A(1)∧A(2)∧A(3).B.错误正确答案:A16.设个体域D={1, 2, 3, 4},则谓词公式($x)A(x)消去量词后的等值式为A(1 ) ∨A(2) ∨ A(3) ∨ A(4)A.正确B.错误正确答案:A17.设个体域D={1, 2},则谓词公式("x)P(x) ∨($x)Q(x)消去量词后的等值式为(P (1)∧P (2)) ∨(Q(1)∨Q(2)).A.正确B.错误正确答案:A18.("x)(P(x)∧Q(y)→R(x))中量词“"”的辖域为(P(x)∧Q(y)).A.正确B.错误正确答案:B19.("x)(P(x)∧Q(y))→R(x)中量词“"”的辖域为(P(x)∧Q(y)).A.正确正确答案:A20.设A(x):x是人,B(x):x是学生,则命题“有的人是学生”可符号化为┐(x)(A(x)∧┐B(x))A.正确B.错误正确答案:B大作业1. 在线提交word文档第一部分一、公式翻译题(每小题2分,共10分)1.将语句“我会英语,并且会德语.”翻译成命题公式.参考答案:设p.我学英语Q:我学法语则命题公式为:pΛQ2.将语句“如果今天是周三,则昨天是周二.”翻译成命题公式.参考答案:设P:今天是周三Q:昨天是周二则命题公式为:P→Q3.将语句“小王是个学生,小李是个职员.”翻译成命题公式.参考答案:设P:小王是个学生Q:小李是个职员则命题公式为:P∧Q4.将语句“如果明天下雨,我们就去图书馆.”翻译成命题公式.参考答案:设P:如果明天下雨Q:我们就去图书馆则命题公式为:P→Q5.将语句“当大家都进入教室后,讨论会开始进行.”翻译成命题公式.参考答案:设P:当大家都进入教室后Q:讨论会开始进行则命题公式为:P→Q二、计算题(每小题10分,共50分)1.设集合A={1, 2, 3},B={2, 3, 4},C={2, {3}},试计算(1)A-C;(2)A∩B;(3)(A∩B)×C.参考答案:(1)A-C={l,3};(2)A∩B={2,3};(3)(A∩B)×C= { <2,2>,<2, {3} > ,<3,2> ,<3, {3} >}.2. 设G=<V,E>,V={v1,v2,v3,v4,v5},E={(v1,v3) , (v1,v5) , (v2,v3) , (v3,v4) , (v4,v5) },试(1)给出G的图形表示;(2)求出每个结点的度数;(3)画出其补图的图形.参考答案:(1)关系图(2)deg(v1)=3deg(v2)=2deg(v3)=3deg(v4)=2deg(v5)=2(3)补图3.试画一棵带权为1, 2, 3, 3, 4的最优二叉树,并计算该最优二叉树的权.参考答案:权为1×3+2×3+3×2+3×2+4×2=294.求出如下所示赋权图中的最小生成树(要求写出求解步骤),并求此最小生成树的权.参考答案:解:用Kruskal 算法求产生的最小生成树,步骤为:w(v2,v6)=1 选(v2,v6)w(v4,v5)=1 选(v4,v5)w(v1,v6)=2 选(v1,v6)w(v3,v5)=2 选(v3,v5)w(v2,v3)=4 选(v2,v3)最小生成树如图所示:最小生成树的权w(T)=1+1+2+2+4=10.5. 求P→(Q∧R) 的析取范式与合取范式. 参考答案:解:(P∨Q)→R⇔┐(P∨Q)∨R⇔(┐P∧┐Q)∨R(析取范式)⇔(┐P∨R)∧(┐Q∨R)(合取范式)第二部分从下列选题中选择一个感兴趣的主题,自主查阅文献资料进行深入的研究和学习,并形成一份至少一千字的总结报告。
电大 离散数学 本科 形成性考核册 作业(三)答案
11 离散数学形成性考核作业离散数学形成性考核作业离散数学形成性考核作业离散数学形成性考核作业((((三三三三))))集合论与图论综合练习集合论与图论综合练习集合论与图论综合练习集合论与图论综合练习本课程形成性考核作业共4次,内容由中央电大确定、统一布置。
本次形考作业是第三次作业,大家要认真及时地完成图论部分的形考作业,字迹工整,抄写题目,解答题有解答过程。
一一一一、、、、单项选择题单项选择题单项选择题单项选择题1.若集合A={2,a,{ a },4},则下列表述正确的是( B ).A.{a,{ a }}∈A B.{ a }?AC.{2}∈A D.?∈A2.设B = { {2}, 3, 4, 2},那么下列命题中错误的是( B ).A.{2}∈BB.{2, {2}, 3, 4}?BC.{2}?BD.{2, {2}}?B3.若集合A={a,b,{ 1,2 }},B={ 1,2},则( B ).A.B ? A,且B∈A B.B∈ A,但B?AC.B ? A,但B?A D.B? A,且B?A4.设集合A = {1, a },则P(A) = ( C ).A.{{1}, {a}} B.{?,{1}, {a}}C.{?,{1}, {a}, {1, a }} D.{{1}, {a}, {1, a }}5.设集合A = {1,2,3,4,5,6 }上的二元关系R ={<a, b>?a , b∈A , 且a +b = 8},则R具有的性质为( B ).A.自反的 B.对称的C.对称和传递的 D.反自反和传递的6.设集合A = {1,2,3,4,5 },B = {1,2,3},R从A到B的二元关系,R ={<a, b>?a∈A,b∈B且1=?ba}则R具有的性质为().A.自反的 B.对称的 C.传递的 D.反自反的[注意]:此题有误!自反性、反自反性、对称性、反对称性以及传递性指某一个集合上的二元关系的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学作业5
离散数学图论部分形成性考核书面作
业
本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。
本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业。
要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求2010年12月5日前完成并上交任课教师(不收电子稿)。
并在05任务界面下方点击“保存”和“交卷”按钮,以便教师评分。
一、填空题
1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 15 .
2.设给定图G (如右由图所示),则图G 的点割集是
{}f {}c e ,.
3.设G 是一个图,结点集合为V ,边集合为E ,则
G 的结点 度数之和 等于边数的两倍.
4.无向图G 存在欧拉回路,当且仅当G 连通且 不含奇数度结点 . 5.设G=<V ,E >是具有n 个结点的简单图,若在G 中每一对结点度数之和大于等于︱V ︱ ,则在G 中存在一条汉密尔顿回路. 6.若图G=<V , E>中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W
满足的关系式为 S W ≤ .
7.设完全图K n 有n 个结点(n ≥2),m 条边,当n 为奇数时,K n 中存在欧拉回路.
8.结点数v 与边数e 满足 e= v -1 关系的无向连通图就是树. 9.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去
条边后使之变成树.
10.设正则5叉树的树叶数为17,则分支数为i = 4 . 二、判断说明题(判断下列各题,并说明理由.)
姓 名: 学 号: 得 分: 教师签名:
1.如果图G 是无向图,且其结点度数均为偶数,则图G 存在一条欧拉回路.. 答:错误。
应叙述为:“如果图G 是无向连通图,且其结点度数均为偶数,则图G 存在一条欧拉回路。
”
2.如下图所示的图G 存在一条欧拉回路.
答:错误。
因为图中存在奇数度结点,所以不存在欧拉回路。
3.如下图所示的图G 不是欧拉图而是汉密尔顿图.
答:正确。
因为有4个结点的度数为奇数,所以不是欧拉图;而对于图中任意点集V 中的非空子集1V ,都有)(1V G P -≤∣V 1∣。
其中)(1V G P -是从图中删除1V 结点及其关联的边。
4.设G 是一个有7个结点16条边的连通图,则G 为平面图. 答:错误。
若G 是连通平面图,那么若63,3-≤≥v e v 就有, 而16>3×7-6,所以不满足定理条件,叙述错误。
5.设G 是一个连通平面图,且有6个结点11条边,则G 有7个面.
答:正确。
因为连通平面图满足欧拉公式。
即:2=+-r e v 。
由此题条件知6-11+7=2成立。
三、计算题
1.设G =<V ,E >,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1,v 3),(v 2,v 3),(v 2,v 4),(v 3,v 4),(v 3,v 5),(v 4,v 5) },试
(1) 给出G 的图形表示; (2) 写出其邻接矩阵; (3) 求出每个结点的度数; (4) 画出其补图的图形. 答:(1) 1v °
° °3v
4v ° °5v
(2) ⎥⎥⎥⎥⎥
⎥⎦
⎤⎢⎢⎢⎢⎢⎢⎣⎡=0110010110110110110000100)(D A
(3) =)deg(1v 1、=)deg(2v 2、=)deg(3v 4、=)deg(4v 3、=)deg(5v 2 (4) °1v
2v ° °3v
4v ° °5v
2.图G =<V , E >,其中V ={ a , b , c , d , e },E ={ (a , b ), (a , c ), (a , e ), (b , d ), (b , e ), (c , e ), (c , d ), (d , e ) },对应边的权值依次为2、1、2、3、6、1、4
G
及5,试
(1)画出G的图形;(2)写出G的邻接矩阵;
(3)求出G权最小的生成树及其权值.
b c
解:(1)。
2 1
a。
6 4
2 1 3。
e 5 d
(2) ⎥⎥
⎥⎥⎥
⎥⎦
⎤⎢⎢⎢⎢⎢
⎢⎣⎡=011111011011001
1100110110)(D A (3) b c 。
。
2 1
a 。
1 3 。
。
e d 其权值为:7 3.已知带权图G 如右图所示.
(1) 求图G 的最小生成树; (2)计算该生成树的权值. 答:(1)
1 2
7
5 3
(2) 权值为18。
4.设有一组权为2, 3, 5, 7, 17, 31,试画出相应的最优二叉树,计算该最优二叉树的权.
解: 65
17 48 5 12
17 31 2 3 5 7
权值为65。
四、证明题
1.设G 是一个n 阶无向简单图,n 是大于等于3的奇数.证明图G 与它的补图G 中的奇数度顶点个数相等.
证明:设a 为G 中任意一个奇数度顶点,由G 定义,a 仍为G 顶点,为区分起见,记为a ’, 则deg(a)+deg(a ’)=n-1, 而n 为奇数,则a ’必为奇数度顶点。
由a 的任意性,容易得知结论成立。
2.设连通图G 有k 个奇数度的结点,证明在图G 中至少要添加2
k
条边才能使其成为欧拉图.
证明:由定理推论知:在任何图中,度数为奇数的结点必是偶数个,则k 是偶数。
又由欧拉图的充要条件是图G 中不含奇数度结点。
因此,只
要在每对奇数度结点间各加一条边,使图G 的所有结点的度数变为偶数,成为欧拉图。
故最少要加2
k 条边才能使其成为欧拉图。