格林函数法

合集下载

格林函数法

格林函数法
应的单位点源的电势解; 原问题的解可以通过这个点源的解表示出来;
通过格林公式,把静电边值问题与相应的格林 函数问题联系起来。 一般的处理方法,在物理学领域有着非常广泛 的应用
3
本节主要内容: 1. 格林函数——对应于给定问题的单位点源
的电势解; 2. 格林函数与泊松方程的解之间的关系; 3. 几种简单边界问题的格林函数形式。
10/20/2014
§5 格林函数法
1
几种方法的比较
1. 镜像法只适用于比较简单(点电荷)问题; 2. 分离变量法是精确求解的方法:除了几个高对
称的边界问题以外,一些实际问题往往难以求 解; 3. 多极展开法只适用于求远处的场(最后一节); 4. 格林函数方法
2
1
10/20/2014
格林函数方法: Green函数本身实际上是对应于给定问题所对
4
2
10/20/2014
几个基本公式:Ñ
1 r
=
-
r r3
,
高斯定理:
ò
E
×
dS
=
1 e0
i
Qi
空间一个单位点电荷的电场: E
=
4
1 e0
r r3
若点电荷处于闭合积分面内:
��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

格林函数法

格林函数法

为第三边值问题的积分表示式
物理意义:右边第一个积分表示区域T中分布的源在r 点产生的场的总和;第二个积分代表边界上的状况对 r点场的影响的总和;两项积分中的格林函数相同。 说明泊松方程的格林函数是点源在一定的边界条件下 所产生的场。
对于拉普拉斯方程,f(r0)=0,因此可得拉普拉斯 方程第一边值问题的解
因此,我们可设想一个等效的点电荷,它位 于球外M1处,且在球面产生的电势与球内点电荷 在球面产生的电势相反。由物理学知识可知,该 设想的点电荷必位于OM0处的延长线上,如图所 示,并记:
OM r, OM0 r0
在∑ε 上的解,该解表示位于球心r=r0处的电量为ε0的 点电荷在半径为ε的球面上产生的电势,根据电磁学 知识,该电势为:
1
G(r, r0 ) 4
因此我们可得∑ε面上的积分
Ò
u(r)
G n
G
u(r) n
dS
Ò
u(r
)
n
(1
4
)
1
4
u(r) n
dS
Ò
u(
r
)
n
(1
4
)
1
4
u(r n
)
2d
(r r0 ) (x x0) ( y y0) (z z0)
格林函数的物理意义:在物体内部(T内)处放置 一个单位点电荷(或热源),而该物体的界面保持 电位为零(或温度为零), 那么该点电荷(或该点 热源)在物体内产生的电势分布(或稳定温度分 布),就是上述定解问题的解――格林函数。
格林函数互易定理: 格林函数代表r0处的点源在r处 所产生的影响,系统不变,则该影响等同于将移至r 处的该点源在r0处产生影响。故格林函数遵守如下 的互易定理:

第三章格林函数法

第三章格林函数法

r
r0
0
1
ln
R
1
2 r0 r2 r12 2rr1 cos 0
1 ln
1
2 r2 r02 2rr0 cos 0
1
ln
R
2 r2r02 R4 2R2rr0 cos 0
G
= G
1
ln
R
n r0 R r0 r0 R 2 r0 r 2r02 R4 2R2rr0 cos 0
2
r0
注意:这只是二维空间中圆形区域的格林函数表达式
例4 求解圆内拉普拉斯方程狄利克雷问题 2u 0 r R
u
rR
解:由例3,圆内泊松方程狄利克雷问题的格林函数为:
G= 1
2
ln
1 r r0
1
2
ln
R r0
1 r r1
= -1 ln
1
2 r2 r02 2rr0 cos 0
G
r;r0
f
r0
dS0
G0
4
1 r r0
G0
1
2
ln
1 r r0
c0
G1 0 G1 G0
例2 试求解球内的泊松方程的狄利克雷问题
P
3u 0 r R
u rR f ,
R
O r0
r
M0
M1
M
解:设 M0 r0 , M r 的球坐标为 r0,0,0 ,r,, r1 OM1
积分得到
任意源在相同初 始和边界条件下 产生的场
格林函数 :代表一个点源在一定的边界条件和初 始条件下所产生的场
§5.1 泊松方程的格林函数法
1. 边值问题的提法
① 第一边值问题(狄里希利问题) 求一函数,使之在区域内满足泊松方程或拉普拉斯方程,

数学物理方法--格林函数法

数学物理方法--格林函数法

G(r , r0)r(r )dV T

1
4


f
G(r , r0 ) dS. n
第二边值问题(诺依曼问题)
u(r , r ')
u n


f
第二边值问 题格林函数
G(r , r ')ห้องสมุดไป่ตู้n

0
u(r0 )

1
4
G(r , r0)(r )dV T




(u
v n

v
u )dS n


T
(uv

vu)dV
法向导数
5
3. 边值问题 边界条件
泊松方程
u
[
u n

u]

()
() 定义在
0, 0 0, 0
第一类边界条件 第二类边界条件
0, 0 第三类边界条件
3
感应电荷 是边界问题
2. 格林公式
第一格林公式:
区域 T,边界
定解=通解+边界条件 求通解=积分

定解=积分+边界条件 (格林函数法)
T



设 u(r ) 和 v(r ) 在 T 中具有连续二阶导数,
在 上有连续一阶导数。由高斯定理

uv dS (uv)dV
p
M (r)
o
M0 (r0 )
如右图,当导体外 M1 处有电荷 40q 时,镜像电荷
将在球内M0 处。
M1(r1)
像电荷的大小以及位置:

4 0 q
a r1

数学物理方法12格林函数

数学物理方法12格林函数

泊 第一类边界条件:第一边值问题(狄里希利问题)
松 方
第二类边界条件:第二边值问题(诺依曼问题)

第三类边界条件:第三边值问题
2、格林函数的引入及其物理意义
引入:为了求解泊松方程的定解问题,我们必须定 义一个与此定解问题相应的格林函数 G(r, r0)
它满足如下定解问题,边值条件可以是第一、二、三类 条件:
这就是第三边值问题解的积分表示式.
右边第一个积分表示区域 T 中分布的源 f (r0 ) 在 r
点产生的场的总和. 第二个积分则代表边界上的状况对 r
点场的影响的总和.两项积分中的格林函数相同.这说明 泊松方程的格林函数是点源在一定的边界条件下所产生的 场.
对于拉普拉斯方程
f (r0 ) 0
第一边值问题的解为
构建格林函数为
G(x,
y
|
x0 ,
y0 )
1 4π
(x ln[
(x
x0 )2 x0 )2
(y (y
y0 )2 y0 )2
]
边界外法线方向为负 y 轴,故有
G n
|
G y
|y0
=
1 2π
(x
y0 x0 )2
y02
1 π
y0 (x x0 )2
y02
1 π
(x
y0 x0 )2
y02
代入到拉普拉斯第一边值问题解的公式(14.2. 13),拉普拉斯 方程的自由项 f 0 ,则由
G(r,
r0
)
1 2π
ln
|
r
1
r0
|
1 2π
ln
|
r
1
r1
|

《格林函数方法》课件

《格林函数方法》课件

04
格林函数在工程问题中的应用
流体动力学问题
流体力学中的波动和散射问题
格林函数方法可以用于求解流体力学中的波动和散射问题, 例如声波在流体中的传播、波动在管道中的传播等。
流体动力学中的边界层问题
格林函数方法可以用于求解流体力学中的边界层问题,例如 流体在固体表面流动时的速度分布、温度分布等问题。
格林函数方法的优点
精确度高
格林函数方法基于严格的数学推导,能够精 确地描述物理系统的响应。
适用范围广
该方法不仅适用于线性系统,也适用于非线 性系统,具有较强的通用性。
易于实现
格林函数具有明确的物理意义,计算过程相 对简单,易于编程实现。
可扩展性强
通过引入更多的格林函数,可以处理更复杂 的物理问题。
弹性力学问题
总结词
格林函数在弹性力学问题中也有着重要的应用,它可以帮助我们求解弹性波的传播和散射问题。
详细描述
在弹性力学问题中,格林函数可以用于描述弹性波的传播和散射过程。通过求解格林函数,我们可以得到弹性波 在各种不同介质中的传播规律和散射特性,这对于地震探测、声波传播、振动控制等领域有着重要的应用价值。
格林函数方法的缺点
计算量大
对于大规模系统,需要计算的格林函数数量较多,计算量较大。
对初值敏感
某些情况下,初值的选择对计算结果影响较大,需要仔细选择。
对噪声敏感
在数据中存在噪声时,格林函数方法可能会受到影响,导致结果失真。
对边界条件敏感
边界条件的设定对格林函数的计算结果有较大影响,需要谨慎处理。
格林函数方法的未来发展前景
03
格林函数在物理问题中的应用
电磁场问题
总结词
格林函数在电磁场问题中有着广泛的应用,它可以帮助我们求解电磁场中的散射 和辐射问题。

数学物理方程课件第四章拉普拉斯方程的格林函数法

数学物理方程课件第四章拉普拉斯方程的格林函数法

r M 0 M
M 1
1
4 xx02 y y02 zz02
解:
1
4 xx02 y y02 zz02
u(M 0)G (M n,M 0)f(M )dS G(M z,M0)|z0 f(x,y)dS
数学物理方程与特殊函数
第4章格林函数法
1
1
G ( M , M 0 ) 4 x x 0 2 y y 0 2 z z 0 2 4 x x 0 2 y y 0 2 z z 0 2
调和函数的积分表达式
k
拉 普l1r拉n 斯1
1 方x程2的基y本2 解z
ln 1
2
r
x2 y2
三维 二维
1 1 1 u
u (M 0)4 S(u n(r)r n)d S
调和函数在区域内任一点的值可以通过积分表达式用这个
函数在区域边界上的值和边界上的法向导数来表示。
2 牛曼内问题有解的必要条件
V (u 2 v v 2 u )d V S (u n v v u n )d S
一 拉普拉斯方程边值问
题 的 1提 第法一边值问题(狄氏问题)
第四章
拉普 u f
2 第二边值问题(牛曼问题)
拉斯方程的格 u f 林函数法 n
3 内问题与外问题
4 调和函数:具有二阶偏导数并且满足拉普拉斯方程 的连续函数。
二 格林公式及其结论
V (u 2 v )d V S u n vd S V u v d V 格V 林(u 公 2 式v 的v 结 2 论u ):d V S (u n v v u n )d S
半空间的格林函数
1 1 1
G(M,M0)4rM
r M 0 M
M 1
M0q d

格林函数法

格林函数法

第五章 格林函数法一 拉普拉斯方程的对称解与格林公式 1 拉普拉斯方程的对称解定义:如果在n 维空间的一个区域内,函数),...,,(21n x x x u 具有二阶连续偏导数,且满足n 维拉普拉斯方程:+∂∂=∆212x u u (2)2nxu∂∂+=0则称),...,,(21n x x x u 是n 维调和函数。

常见的是二维02222=∂∂+∂∂=∆yux u u 和三维的调和函数0222222=∂∂+∂∂+∂∂=∆zuy u x u u 。

二维拉普拉斯方程:02222=∂∂+∂∂=∆yux u u 的通解为: 211ln C rC u +=如果取π211=C ,02=C 就得到一个重要的特解ru 1ln 21π=,由于该解与点0M 的选择有关,所以常记作:MM rM M u u 01ln 21),(0π==三维拉普拉斯方程:0222222=∂∂+∂∂+∂∂=∆zu y u x u u 的通解为:211C rC u +=如果取π411=C ,02=C 就得到一个重要的特解ru π41=,由于该解与0M 点的选择有关,所以常记作:MM rM M u u 041),(0π==2格林公式及其应用(1)高斯公式设Ω是以分片光滑闭曲面Γ为边界的有界区域,函数),,(z y x P ,),,(z y x Q ,),,(z y x R 在闭区域上Γ+Ω=Ω_连续,其一阶偏导数在Ω内连续,则:⎰⎰⎰∂∂+∂∂+∂∂ΩdV zR y Q x P )(= dS z n R y n Q x n P ⎰⎰++Γ)],cos(),cos(),cos([。

其中dV 是体积元素,dS 是Γ上面积元素,n 是Γ上外法向量。

(2)第一格林公式设),,(z y x u ,),,(z y x v 的一阶偏导数在_Ω上连续,二阶偏导在Ω内连续,令x v u P ∂∂=,y v u Q ∂∂=,zvu R ∂∂=代入高斯公式可得:⎰⎰⎰⋅+⎰⎰⎰⎰⎰∂∂=∆ΩΩΓgradudV gradv dS vuu udV v 。

Chapter4.2格林函数法

Chapter4.2格林函数法

M ( x, y, z )
o
y
x
M1 ( x0 , y0 , z0 )
1 它与M 0点负电荷所产生的电位在平面z 0上相互抵消由于 . 4 rMM1 在半空间z 0为调和函数,且在z 0上有一阶连续偏导数, 1 1 1 因此 G ( M , M 0 ) ( ). 4 rMM 0 rMM1
与调和函数的积分公式相加可得 v u 1 1 1 u ( M 0 ) u ( M ) ( ) v dS n 4 n rMM 0 4 rMM 0 n
显然,若能选择调和函数v满足 v
z0 2



f ( x, y) [( x x0 )2 ( y y0 )2 z02 ]3/2 dxdy

思考:半平面的格林函数?
定解问题
2u 2u x 2 y 2 0, y 0, u f ( x), x y 0
应在内侧就感应有一定分布密度的负电荷,而在外侧分布有相应的
1 G( M , M 0 ) v. 4 rMM0
当点M 在边界上时电位为零,即G(M , M 0 ) | 0.
2 v 0 in 显然电位v满足方程 . 1 v 4 r MM 0
1 则 u( M 0 ) u( M ) ( v)dS n 4 rMM 0
1 4 rMM 0

2 v 0, in 1 1 令G ( M , M 0 ) v, 其中调和函数v满足 1 4 rMM 0 v 4 r MM 0 G 则 u ( M 0 ) u ( M ) dS . n

第六章 格林函数法

第六章 格林函数法

第六章 格林函数法本章利用高等数学中的格林(Green)公式导出调和函数的积分表达式,引进格林函数(又叫点源函数),它是一种广义函数.利用格林函数求解稳态的边值问题,这种方法叫格林函数法,它是解数学物理问题时常用的方法之一.§2.6.1 格林(Green )公式 调和函数的积分表达式2.6.1.1 格林公式设D 是以分片光滑的曲面S 为其边界的有界区域,函数P (x ,y ,z ), Q (x ,y ,z ), R (x ,y ,z )是在D 上连续,在区域D 内有连续偏导数的任意函数,则成立奥一高公式 V z R y Q x P D d (∂∂+∂∂+∂∂∫∫∫=∫∫++SS z n R y n Q x n P d )],cos(),cos(),cos([,这里d V 是体积元,n 是曲面S 的外法线方向,d S 为S 上的面积元.由此可以导出格林第二公式或格林公式:S nu v n v uV u v v u D S d d )()(∫∫∫∫∫∂∂−∂∂=Δ−Δ. 事实上,设函数u (x ,y ,z ), v (x ,y ,z )以及它们的所有的一阶偏导数在闭区域S D D U =上是连续的,u 、v 在D 内具有连续的二阶偏导数.令 P =x v u ∂∂, Q =yv u ∂∂, R =z v u ∂∂, 代入奥一高公式得到格林第一公式:V z v z u y v y u n v x u S n v uV v u DD S d d d )()(∂∂∂∂+∂∂∂∂+∂∂∂∂−∂∂=Δ∫∫∫∫∫∫∫∫ 这里是三维拉普拉斯(Laplace)算子,Δn∂∂表示曲面S 的外法线方向导数.如果引进梯度算子=∇k j v v v z yi x ∂∂+∂∂+∂∂ ,那么格林第一公式缩写成 ∫∫∫∫∫∫∫∫∇⋅∇−∂∂=ΔDS D V v u s n v uv v u d d d )()(,类似地,如果令 P =x u v ∂∂, Q =y u v ∂∂, R =zu v ∂∂,就有 ∫∫∫∫∫∫∫∫∇⋅∇−∂∂=ΔD D SV u v S n u v V u v d d )()(d 注意到向量的数性积的可交换性,上两式相减,得格林第二公式(又叫格林公式):S nu v n v u V u v v u D S d d )()∂∂−∂∂=Δ−Δ∫∫∫∫∫( . 2.6.1.2拉普拉斯方程的基本解在三维空间内,记),()()()(222N M r z y x r =−+−+−=ςηξ表示点M (x ,y ,z )、)(ςηξ,,N 之间的距离,利用复合函数求导的链式法则,对空间中任意固定的一点N ,函数r1除点N 外关于变量(x , y , z )处处满足拉普拉斯方程0=Δu ;注意到函数r1的特征,同样对于任意固定的一点M (x , y , z ),函数r1除点M 外,关于变量),,(ςηξ处处满足拉普拉斯方程,即0)1(=Δr, (N M ≠). 函数r1在求解拉普拉斯方程和泊松(Poisson)方程时有极重要的作用,通常把函数r1称为三维拉普拉斯方程或者泊松方程的基本解.同样,对于二维空间,函数),(1ln )()(1ln 1ln 22N M r y x r =−+−=ηξ 叫做二维拉普拉斯方程或泊松方程的基本解.2.6.1.3 调和函数的积分表达式仍以三维空间为例,利用格林公式不难得到三维空间调和函数的积分表达式.定理:(调和函数的积分表达式)设函数u (x , y , z )在闭区域D 上有连续的一阶偏导数,且u (x , y , z )在区域D 内调和(即0=Δu 在D 内成立),那么对于D 内任意固定的一点就有),,(0000z y x M ,])1(1[41)(0S nr u n u r M u S d ∂∂−∂∂=∫∫π D M ∈0 ,这里M 为点(x , y , z ),并有2020200)()()(),(z z y y x x M M r r −+−+−== .事实上,设为区域D 内任意固定的一点,M (x ,y ,z )为),,(0000z y x M D 上的一个动点,动点M 到定点M 0的距离2020200)()()(),(z z y y x x M M r r −+−+−== .注意到函数r 1除点M 0外,处处调和,M 0挖去.以M 0点为球心,充分小的正数(ρ>0),用表示这个小球的球面.记区域D 0M K ρ0M S ρ0M K ρ1=D \ (通常称区域D 内挖去点M 0M K ρ0).这时区域D 1的表面为.U S 0M S ρ于是函数u , v =r1在闭区域011M S S D D ρU U =上可用格林公式,就有∫∫∫∫∫∫∫∂∂−∂∂+∂∂−∂∂=Δ−ΔS S n u r n r u D S n u r n r u V u r r u M S 01)1)1((1)1((]1)1([ρd d d 因为在区域D 1内0)1(,0=Δ=Δru ,上式左边等于零,由此得 01)1()1)1((00=∂∂−∂∂+∂∂−∂∂∫∫∫∫∫∫S S n u r S S n r u S n u r n r u M M S ρρd d d 现在讨论上式左边的后两项积分.注意到,对区域D 1而言,小球面0M S ρ的外法线方向应指向球心M 0 , 与半径r 的方向刚好相反,因此在球面上有0M S ρ2211)1(1(ρ==∂∂−=∂∂rr r n r ,这样上式第二项积分有 )(44)(1)1(1212200M u M u s S u S S n r u M M ππρρρρρ===∂∂∫∫∫∫d d , 这里用到积分中值定理,M 1为球面上的某一点.0M S ρ对于上式第三项积分,用积分中值定理有||22044112M n u M n u S n u r M S ∂∂⋅=∂∂⋅⋅=∂∂∫∫πρπρρρd 这里M 2为上的某一点.0M S ρ 因为nu ∂∂在M 0点的邻域内是有界的,让0→ρ,则M 1、M 2趋于球心M 0 ,所以第三项积分趋于零,由此得0)(4)1)1((0=+∂∂−∂∂∫∫M u S n u r n r u Sπd . 从而得到有界区域D 内调和函数u 的积分表达式:S nr u n u r M u S d )1(1(41)(0∂∂−∂∂=∫∫π, D M ∈0. 这个公式说明,调和函数u 在区域D 内任意一点M 0处的值可以由它的边界S 上的值和它在边界S 上的法向导数nu ∂∂的值来确定,这对解边值问题提供了方便.推论:若u 在有界区域D 内是二阶连续的可微函数,则有积分表达式∫∫∫∫∫Δ−∂∂−∂∂=DS V r u S n r u v u r M u d d ππ41))1(1(41)(0,. D M ∈0这是因为在闭区域1D 上用格林公式,有 S n u r S n r u S n u r n r u V u D r S M d d d )11(()1)1((101∂∂−∂∂+∂∂−∂∂=Δ−∫∫∫∫∫∫∫ρ 类似上述的讨论,上式右端当0→ρ时,区域,其余都一样.D D →1对于二维情形,由于基本解为r1ln ,所以不难得到在二维有界区域D 内调和的函数u 的积分表达式:S nr u n u r M u C d )1(ln )1[ln(21)(0∂∂−∂∂=∫π, D M ∈0. 这里C 为区域D 的边界.对一般的在区域D 内有二阶连续可微函数u ,则积分表达式为S u r l n r u n u r M u DC d d Δ−∂∂−∂∂=∫∫∫)1(ln 21])1(ln )1[ln(21)(0ππ, .D M ∈0这两个公式的证明作为习题留给读者自己去证明.§2.6.2 拉普拉斯(Laplace )方程的狄里克雷问题2.6.2.1 边值问题的提法数学物理的不少问题都会归结为求拉普拉斯方程的解,根据边界条件的不同提法,可以把它的定解问题分为三类:第一边值问题,又称狄里克雷(Dirichlet)问题.求区域D 内调和,而在D 的边界S 上取已知值f 的函数u ,即狄里克雷问题的提法为:0=Δu , 在D 内,|u s =f 1(M ) , 在S 上.第二边值问题,又称诺伊曼(Neumann)问题,它的提法为: 0=Δu , 在D 内,),(|2M f nu S =∂∂ S M ∈. 第三边值问题,又称洛平(Robin)问题,它的提法为:, 在D 内,0=Δu ),(3M f u n u S=⎥⎦⎤⎢⎣⎡+∂∂βα S M ∈. 这里α、β为已知常数,且不同时为零;f 、f 、f 为已知函数.)(1M )(2M )(3M 如果以上的提法,针对求有界区域D 内的解,称为内问题,如果求区域的外部的解,称为外问题.对于狄里克雷问题、诺伊曼问题解的存在性,要用到积分方程的理论,由于已超出本书的范围,这里不再赘述,感兴趣的读者可以查阅相关的书籍,例如由沈乃录主编的《积分方程》一书,将会给你一个满意的解答.2.6.2.2 狄里克雷问题的格林函数 格林函数法我们重点来解狄里克雷问题.从调和函数u 的积分表达式出发,在区域D 内的调和函数u 的积分表达式为:S n r u nu r M u S d ∫∫∂−∂∂=)/1(1(41)(0π, D M ∈0. 这里由于狄里克雷问题0=Δu , 在D 内,|u s =f (M ) , 在∈M S 上.所以,积分表达式中的第二项u 在边界面S 上的值已知,用f (M )代替,就有S n r M f nu r M u S d ∫∫∂−∂∂=))/1()(1(41)(0π, D M ∈0, 这样求解的关键是如何从上式中消去带nu ∂∂(未知的)这一项. 由格林公式出发,要在区域D 内求一个函数g ,它在区域D 内调和(即0=Δg ),则格林公式为:S n u g ng uS d ∫∫∂∂−∂∂=)(0 用π41乘以上式,再和积分表达式相加,就有 S n g r M f n u g r M u S d ∫∫−∂−∂∂−=])/1()()1[(41)(0π, D M ∈0如果上式中在边界面S 上有g r −1=0,即=S g |r1,那末狄里克雷问题的解就是:S ng r M f M u S d ∫∫−∂−=])/1()([41)(0π, D M ∈0. 综上所述,欲解狄里克雷问题:0=Δu , 在D 内,|u s =f(M) , 在∈M S 上就转化为解另一个狄里克雷问题:0=Δg , 在D 内,=S g |r1 , ∈M S, 这里,);(0M M r r =);(0M M g g =,∈M S ,D M ∈0一般说来,函数也不是好求的,它与边界曲面S 的形状有关,但是不管怎么讲,给出了一个解狄里克雷问题的思路,并且对于一些特殊的区域D ,例如球体、半空间、圆域、半平面等可以用初等的方法求出函数g (M ; M );(0M M g 0)来.为了更清楚,我们令函数 );();(1);(000M M g M M r M M G −= 注意到基本解的特征,);(10M M r g (M ;M 0)的要求,对于函数G (M ;M 0)有两个基本性质:(1)除点D M ∈0外,函数G (M ;M 0)在区域D 内调和,即 0);(0=ΔM M G , M , M 0D ∈ 且0M M ≠ ;(2)在边界面S 上, ,0);(0=M M G ∈M ,S D M ∈0 . 通常把函数G (M ;M 0)称为拉普拉斯方程0=Δu 关于区域D 的狄里克雷问题的格林函数.用求格林函数G (M ;M 0)的方法解狄里克雷问题称为格林函数法.如果格林函数G (M ;M 0)求得,那么狄里克雷问题的解也就有了,并且为S M M G nM f M u S d );()(41)(00∫∫∂∂−=π , D M ∈0.对于二维的情形,完全类似地,可以得到 S nG M f M u C d ∫∂∂−=)(21)(0π , D M ∈0 为狄里克雷问题 C D M M f u D M u C=∂∈=∈=Δ),(,0| 的解,这里格林函数 );(1ln );(00M M g rM M G −=,作为习题留给读者自己去证明.例1. 球的狄里克雷问题和球的格林函数 球内狄里克雷问题的提法: , 在球内 0=Δu 2222R z y x <++ u=f (M ) , 在球面 上 2222R z y x =++这里 M =(x , y , z ).解: 先求球 的格林函数 2222R z y x <++ 设球内任一点,由此求满足另一个球狄里克雷问题:),(00,00z y x M );(0M M g 0);(0=ΔM M g , 在球内);(1);(00M M r M M g = , 在球面上 对于球而 2222R z y x <++M 1言,函数可以用初等的方 );(0M M g 法求得.记202020z y x ++=ρ,点 M 0的对称点为M 0R S 1,显然点M 1在球外,并在OM 0的延长线上(如图),由对称点的定义知:21R =ρρ⋅其中1ρ为OM 1的长,即 2121211z y x ++=ρ ,),,(1111z y x M =,由调和函数的基本解,这个应该是);(0M M g 1r A这种形式,这里 2121211)()()(z z y y x x r −+−+−= ,A 为待定常数.显然函数1r A在球内是调和的.问题是怎样确定常数A .由的第二个条件在球面上应为);(0M M g r 1.为区别起见,球面上的点记为),,(z y x M ′′′′.由于,所以在21R =⋅ρρM OM ′Δ0与中,是公共角,且夹这角的两边成比例1M M O ′ΔO ∠10OM M O M O OM ′=′,因此M OM ′Δ0与1M M O ′Δ相似,从而有M O OM M M M M ′=′′010,亦即R r r ρ=1,这样在球面上有OR S rr R 111=⋅ρ , 可见常数202020z y x RRA ++==ρ,所求的101);(r R M M g ⋅=ρ,因此球的格林函数为2121212020202020201100)()()(1)()()(1);(1);(1);(z z y y x x z y x Rz z y y x x M M r R M M r M M G −+−+−⋅++−−+−+−=⋅−=ρ得球内狄里克雷问题的解为S nG M f M u RS d ∂∂′−=∫∫)(41)(00π,().球∈0M 2222R z y x <++为了计算,还须将这公式化成便于积分的形式.采用球面坐标系.设点M ′的球坐标为),,(ϕθ′′R ,点M 0的球坐标为),,(00ϕθρ,将记为O∠α,于是在球面上,ORS nr nr ∂∂∂∂1(,)1(1有 02022)(1grad 11)1()1(n n ⋅∂∂+∂∂+∂∂−=⋅−=∂∂−=∂∂⋅∂∂=∂∂k zr j y r i x r r r r n r r n r r r n r 其中n 0是球面的外法线单位向量.O R S 在球面上, OR S M ′点的坐标为),,(z y x ′′′,由此r x x x r 0−′=∂∂ , r y y y r 0−′=∂∂ , rz z z r 0−′=∂∂ , 设r 0是r 方向上的单位向量,由此),cos(1)(1)1(200002n r r k r z z j r y y i r x x r n r −=⋅−′+−′+−′−=∂∂n , 同理 ),cos(1)1(1211n r r nr −=∂∂,这样),cos(),cos(1)1()1(12121n r r Rn r rn r n r R n G ρρ−=∂∂−∂∂=∂∂−为了简化上式,在与M OM ′Δ01M M O ′Δ中用余弦定理得Rr r R n r 2),cos(222ρ−+=, 12121212),cos(Rr r R n r ρ−+= , 注意到在球面上有OR S rr R 11=ρ,并且,于是有 21R =⋅ρρ3221212),cos(),cos(1Rr R n r r R n r rn G ρρ−=−=∂∂−, 从而球内狄里克雷问题的解化简为ϕθθραρρϕθπρπππ′′′+−−′′=−′=∫∫∫∫d d d sin ]cos 2[),(4)(41)(2322222003220R R R f RS rR M f R M u O RS这也叫球的泊松积分.利用M 0的对称点M 1构造格林函数的方法,叫做镜像法,物理学中又叫静电源象法.例 2. 半空间的狄里克雷问题.半空间的狄里克雷问题就是求一个在上半空间内的调和函数u (x , y, z ),且在边界面z =0上满足u (x , y , 0)=f (x , y ),即0>z⎪⎩⎪⎨⎧=>=Δ=),(0,0|0y x f u z u z解:设在半空间在z >0内任意一点,这里z ),(00,00z y x M 0>0,那么M 0关于平面的对称点M 0=z 1就是 ),(00,0z y x −.所以函 数2020201)()()(11z z y y x x r ++−+−=是半空间内的调和函数,并且在边界面z =0上,显然有0>z rr 111=,因此半空间z >0内的格林函数为20202020202010)()()(1)()()(111);(z z y y x x z z y y x x r r M M G ++−+−−−+−+−=−=对于半空间z >0,边界面z =0的外法线方向与z 轴的正向相反,于是z G nG ∂∂−=∂∂,这个半空间z >0的狄里克雷问题的解为S n G y x f z y x u z d ∫∫=∂∂−=0000),(41),,(π =S zG y x f z d ∫∫=∂∂0),(41π=y x z y y x x y x f z d d ∫∫+∞∞−+∞∞−+−+−232020200])()[(),(2π.§2.6.3 泊松方程的狄里克雷问题在研究有外力作用下的薄膜平衡和有热流的热平衡以及稳定电场的静电势等问题时,都会导出称谓泊松方程的数学物理方程.泊松方程的一般形式是),,(z y x F u u u u zz yy xx =++≡Δ,其中F (x , y , z )为已知函数.泊松方程的狄里克雷问题的提法是),,(z y x F u =Δ (x , y , z )D ∈, )(|M f u S= M 在D 的边界面S 上.对于在有界区域D 内有二阶连续的可微函数u (M ),有积分表达式V r uS n r u n u r M u DSd d ∫∫∫∫∫Δ−∂∂−∂∂=ππ41))1(1(41)(0, . D M ∈0设是区域);(0M M G D 的格林函数,就有);();(1);(000M M g M M r M M G −=这里函数为区域);(0M M g D 内的调和函数,在边界面S 上有r g S1|=,对格林公式S n u v n v u V u v v u D Sd d ()(∂∂−∂∂=Δ−Δ∫∫∫∫∫中用函数替代v ,再两边乘以);(0M M g π41得∫∫∫∫∫Δ+∂∂−∂∂=DSV u g S n u r n g ud d ππ41)1(410将以上两等式相加,消去S n ur Sd ∂∂∫∫141π项就得泊松方程狄里克雷问题的解为∫∫∫∫∫+∂∂−=DSV FG S n G fM u d d ππ4141)(0显然,上式第一项是定解问题0=Δu 在D 内,的解;第二项是定解问题的解f u S=|0,|==ΔSu F u 对于二维泊松方程的狄里克雷问题可以类似地求解.。

格林函数方法

格林函数方法
设假想点电荷在
2 0 2
P ,它的坐标为
4 0 2
(它在 OP 连线上,题中b对应这里的
2 0 2
2 R0 x 2 R R 2
0
R R R R 2 P P r x x R 2R cos R R R R0 Q R0 R02 R02 ∵ Q 1 Q (b R ) R R a R
(3)球外空间的格林函数
P’
P
设点电荷Q = 1 坐标为 P ( x, y , z )
观察点为 P( x, y, z )
R x
R x
x2 y2 z 2
x 2 y 2 z 2
R 相当于题中的 a ) R0 R(
PP r x x R 2 R 2 2RR cos

(x)
S
解法: (1)先求第一类边值问题的格林函数

1 G ( x , x ) ( x x )
2
G s 0
0
(2)
(2). 把(2)的解(格林函数)代入下式即可:
( x ) G ( x , x ) ( x )dV 0 ( x ) G ( x , x )dS V S n
§2.5
内容提要
格林函数方法
一、格林函数
二、用格林函数求解一般的边值问题
机动
目录
上页
下页
返回
结束
1. 处于 x 点上的单位点电荷的电荷分布密度: ( x ) ( x x )
回忆:点电荷密度的

函数表示

V
( x )dx ( x x )dV 1

第12章_格林函数法

第12章_格林函数法

电磁场的源场关系
源量: (r , t ) 或 q(r , t )
场量: E (r , t ) D(r , t )
电场
J (r , t ) 或 I (r , t )
B(r , t ) H (r , t )
磁场
比如:静电场
源量: (r )
场量: E (r ) D(r )
全电流定律:传导电流和时变的 电场都能产生磁场 电磁感应定律:电荷和时变的磁 场都能产生电场(库仑电场(有源 无旋场)和感应电场(无旋有源场)) 磁通连续性原理:磁场是无散度 场,磁力线总是闭合曲线 高斯定理:电荷是产生电场的源
WangChengyou © Shandong University, Weihai
全电流定律:磁场强度沿任意闭合曲线的环 量,等于穿过以该闭合曲线为周界的任意曲 面的传导电流与位移电流之和。 电磁感应定律:电场强度沿任意闭合曲线的 环量,等于穿过以该闭合曲线为周界的任意 曲面的磁通量变化率的负值。 磁通连续性原理:穿过任意闭合曲面的磁感 应强度的通量恒为0。 高斯定理:穿过任意闭合曲面的电位移的通 量等于该闭合曲面所包围的自由电荷的代数 和。
T T
同理 vu dS vudV u vdV T T 两式相减有 uv dS vu dS (uv vu )dV

T
WangChengyou © Shandong University, Weihai
WangChengyou © Shandong University, Weihai
WangChengyou © Shandong University, Weihai
数学物理方法
第12章 格林函数法

Chapter4.1格林函数法

Chapter4.1格林函数法

此公式称为第一格林公式
若令上述公式中u, v对换,可得 u 2 v udV v dS u vdV n
两式相减可得第二格林公式 v u (u v v u )dV (u v )dS n n
2 2
二、调和函数的基本性质
数学解释: 在内寻求一个调和函数,它在闭区域上有一阶 连续偏导数,即u C 2 () C1 (),且在边界上满足边界条件。
注: 前面两种边值问题都是在内求解拉氏方程,故称此类 方程为内问题。 还有一类问题,例如确定某物体外部的稳恒 温度场, 就归结为在区域外部求调和函数,满足边界条件。 这样的问题称为Laplace方程外问题。
1 4
u(M 0 ) 1 4 1 4 a 2
(u ( M )

1 1 u 1 ( ) )dS n r r n 4
(u ( M )

1 1 u ( ) )dS r r r n
1 1 u 1 (u ( M )( 2 ) )dS 2 r r n 4 a
取u为调和函数,并假定其在上有一阶连续偏导数,取v 1/ r 1 2 1 1 u 2 1 由第二格林公式 (u u )dV (u ( ) )dS, r r n r r n K
1 1 1 u 注意到 u 0, 则 u dS 0 r n r r n
注:对于外问题来说,求解通常都是在无界区域上,
这时需不需要对解加些限制条件呢?看下面一例子。
u 0, r 1, u r 1 1 其中r x 2 y 2 z 2
易知
u 1,
u 1/ r
都是上述定解问题的解,即解不唯一.为了保证解的唯一性, 通常我们要加一些限制条件.

数学物理第五章-格林函数法

数学物理第五章-格林函数法

则有
(P[, P(0P),P0)(P, P(1P),P10),]
P
(P,
P0
),
P

G(P, P0) (P, P0) (P, P1)
为上半空间的格林函数,且有
G(P, P0) (P, P0) (P, P1)
1(
4
1 (1 1)
4 r0 r1
1
(x )2 (y )2 (z )2
( x,
y)
1
0
x2 x2
0 y2 y2
1 1
的解并求出u(0, 0, a)的值(常数a 0)?
解 由上半空间的泊松公式
1 )
(x )2 (y )2 (z )2
G 1 (
1
1
)
4 (x )2 ( y )2 (z )2 (x )2 ( y )2 (z )2
直接计算可得
G
G
1
n
z
z0
2
3
[(x )2 ( y )2 2 ]2

u(
,,
)
G n
ds
GfdV
1
2
(x, y)
3
R2 [(x )2 ( y )2 2 ]2
因此
u
B
n
ds
B
u
4
2
ds
u(x,
y,
z
)
(10)
u
u
B
n
ds
B
4
2
ds
u(x,
y,
z
)
(10)
其中 P(x, y, z ) B.------积分中值定理
同理可得
B
u n

4第四章格林函数法

4第四章格林函数法
u ( M ) u ( M 1 ) 。设 M 2 是 K 1 的球面 S1 与折线 L 的交点,
则 u ( M 2 ) u ( M 1 ) 。以 M 2 为中心,以小于 d 的数为半径 在 内作球 k 2 ,在 k 2上 u ( M ) u ( M 2 ) u ( M 1 ) 点 N 一定包含在以某点 M n
c1 d 2 dV V (r ) 0 其通解为: (r ) c2 , (r 0, c1 , c2 为任意常数)。 r dr dr 1 1 若取 c1 , c2 0 ,则得到特解 V0 (r ) 4r ,称此解为 4
三维Laplace方程的基本解,它在研究三维拉普拉斯方程中 起着重要的作用. 对二维拉普拉斯方程 u uxx u yy 0,其极坐标形式为:
数学物理方程与特殊函数
第4章格林函数法
4.2.1 格林函数的定义 设在 内有 u 0, v 0; u, v 在 上有一阶连续 1 v u 偏导数,则由格林第二公式有 0 (u n v n )dS (2) 4 将(1)和(2)两式加起来:
u(M 0 ) 1 4 1 1 u u (v ) (v ) dS (3) n rMM 0 rMM 0 n
4.1.4 调和函数的性质
u u 0, | f . n
u n dS f dS 0.
6
下午10时1分
数学物理方程与特殊函数
第4章格林函数法
性质2 (平均值定理) 设函数 u(M ) 在区域 内调和, M 0 是 内任意一点,若 a 是以 M 0 为中心,a为半径 的球面,此球完全落在区域 的内部,则有 1 u(M 0 ) udS(调和函数的球面平均值公式) 2 a 4a 证明: 由调和函数的积分表示:

格林函数法

格林函数法

格林函数法
格林函数(Green's Function)是描述物理系统状态之间相互转换和
其它类型的转换的一种函数,用来解决系统的边界值问题。

它可以通过物
理系统的差分方程来解释,也可以用来表征物理系统的任意状态之间的相
互作用。

格林函数可以概括地表示为:当系统处于某一特定状态时,其他
状态的影响,及它们之间的相互作用,以及系统当前状态的演变。

格林函数法可以分为两种:一种是无限空间的,这种方法是通过求解
无限空间的格林函数的衍生值来处理边界值问题;另一种是有限空间的,
这种方法是通过求解有限空间的格林函数的衍生值来处理边界值问题。


林函数法可以用来研究物理系统中多种形式的边界值问题,包括边界条件、初始条件、响应函数、激励函数、反应函数等。

此外,它还可以用来估计
未知量、估计系统参数、构造信号处理过程和对边界条件进行约束等。

格林函数法

格林函数法
n
r
0
dS
(5.2.8)
式(5.2.8)称为泊松方程的基本积分公式。但是它
的物理解释很困难,因此我们根据前面的格林函数互易定
理,并利用跟林函数的对称性,将上式改为:
u r0
G r0,r
u r
G
T0
r0,r
f
r0
dV0
0
G
r0,r
u r0 n0
n0 dS0(5.2.9)
G r0,r
u r
G r,r0
T0
f
r0
dV0 r0
0
n0 dS0
(2)第二类边值问题
(5.2.13)
14
对应下列格林函数的解:
u r f r
u
n
|
rp
(5.2.14)
G r, r0 r r0 G r, r0
n | 0
(5.2.15)
代入基本积分公式可得第二类边值问题的解的积
G(r, r0) G(r0, r)
上式表明,在位于r0处的脉冲(或点源)在一 定边界条件下在r处产生的影响(或产生的场), 等效于把脉冲(或点源)移至r处在同样边界条件 下在r0处算产生的影响(或场),即物理场的互 易性。
10
根据第二格林公式,得到:
u
r
G n
G
u r
n
dS
T
u rG Gr
u
r
0
T
G
r,
r
0
f
r
dV
1
r
G
r,
n
r0
dS
(5.2.19)
利用格林函数的互易性可得到互易后的解的积

第5章格林函数法

第5章格林函数法

第5章格林函数法格林(Green)函数,又称为点源影响函数,是数学物理中的一个重要概念.格林函数代表一个点源在一定的边界条件下和初始条件下所产生的场.知道了点源的场,就可以用叠加的方法计算出任意源所产生的场.格林函数法是解数学物理方程的常用方法之一.5.1 格林公式TΣ上具有连续一阶导数,在区域及其边界中具有连续二阶导数,应用矢量分析的高斯定理d d T T div =∇∫∫∫∫∫∫i A V =A V (5.1.1)单位时间内流体流过边界闭曲面S 的流量单位时间内V 内各源头产生的流体的总量将对曲面Σ的积分化为体积分d ()d d d T T Tu u V u V u V Σ∇=∇∇=Δ+∇∇∫∫∫∫∫∫∫∫∫∫∫i i i S v v v v (5.1.2)()uv u v u v∇=∇⋅+∇以上用到公式称上式为第一格林公式.同理有d ()d d d T T T u u V u V u V Σ∇=∇∇=Δ+∇∇∫∫∫∫∫∫∫∫∫∫∫i i i S v v v v (5.1.3)上述两式相减得到()d ()d Tu u u u V Σ∇−∇=Δ−Δ∫∫∫∫∫i S v v v v的外法向偏导数.5.1.4)为第二格林公式.进一步改写为()d ()d Tu S u u V n Σ∂∂−=Δ−Δ∂∂∫∫∫∫∫ v u v v v n (5.1.4)5.2 泊松方程的格林函数法讨论具有一定边界条件的泊松方程的定解问题.泊松方程()() u f Δ=−r r (5.2.1)(5.2.2)是区域边界Σ上给定的函数.是第一、第二、第三类边界条件的统一描述典型的泊松方程(三维稳定分布)边值问题()()[]()u f u u n αβϕΣΣΔ=−⎧⎪∂⎨+=⎪∂⎩r r r (5.2.3)上沿界面外法线方向的偏导数格林函数的引入及其物理意义引入:为了求解定解问题(5.2.3),我们必须定义一个与此定解问题相应的格林函数0(,)G r r 它满足如下定解问题,边值条件可以是第一、二、三类(,)()[]0G G G n δαβΣΔ=−−⎧⎪∂⎨+=⎪∂⎩00r r r r (5.2.4)()δ−0r r 代表三维空间变量的δ函数,在直角坐标系中其形式为0()()()()x x y y z z δδδδ−=−−−r r 函数前取负号是为了以后构建格林函数方便格林函数的物理意义【2】:在物体内部(T 内)0r 处放置一个单位点电荷,而该物体的界面保持电位为零, 那么该点电荷在物体内产生的电势分布,就是定解问题(5.2.4)的解――格林函数.由此可以进一步理解通常人们为什么称格林函格林函数互易定理:因为格林函数0(,)G r r 代表0r 处的脉冲(或点源)在r 处所产生的影响(或所产生的场),所以它只能是距离0||−r r 的函数,故它应该遵守如下的互易定理:(,)()G G ,=r r r r (5.2.5))得到())d (()())d T u S u G G u V n ∂⋅=Δ−Δ∂∫∫∫r r r (5.2.6)0()]d (()())d ())()()]d T G u S G u u G Vf u V δ∂−⋅=Δ−Δ∂−+−∫∫∫r r r r r r r n (5.2.7)根据δ函数性质有:00()()]d ()T u V u δ−=∫∫∫r r r r (5.2.8)故有0(,)()]d G u S ∂−∂r r r)r n (5.2.9)泊松方程的基本积分公式.00000000((,))d [(,)()]d u G V G u S n Σ∂∂+−∂∂∫∫ r )r r r r r n 格林函数满足互易定理并利用格林函数的对称性则得到(5.2.10)解的基本思想:通过上面解的形式(5.2.9)我们容易观察出引用格林函数的目的:主要就是为了使一个非齐次方程(5.2.1)与任意边值问题(5.2.2)所构成的定解问题转化为求解一个特定的边值问题(5.2.4). 一般后者的解容易求得,通(5.2.9)即可求出(5.2.1)和(5.2.2)定解问题的解.考虑格林函数所满足的边界条件讨论如下:1.第一类边值问题:()()|()u f u ϕΣΣΔ=−⎧⎨=⎩r r r (5.2.11)相应的格林函数0(,)G r r 是下列问题的解:000(,)(-)(,)|0 G G δΣΔ=−⎧⎨=⎩r r r r r r (5.2.12)考虑到格林函数的齐次边界条件,由公式(5.2.9)可得第一类边值问题的解000(,)()(,)()d ()d T G u G f V S ϕΣ∂=−∂∫∫∫∫∫ nr r r r r r r (5.2.13)另一形式的第一类边值问题的解000(,)()d G S ∂∂0n r r r (5.2.5)2.第二类边值问题()()|()p u f unϕΣΔ=−⎧⎪∂⎨=⎪∂⎩r r r 是下列问题的解:(5.2.15)00,)|0n Σ=r (5.2.16)5.2.9)可得第二类边值问题解00(,)()d ()(,)d G f V G SϕΣ+∫∫ r r r r r r (5.2.17)3.第三类边值问题()() []()p u f u u n αβϕΣΔ=−⎧⎪∂⎨+=⎪∂⎩r r r 是下列问题的解:(5.2.18)0(,)]0G G n βΣ∂+=∂r r (5.2.19)边值条件,两边同乘以格林函数G(5.2.19)的边值条件的两边同乘以函数u得[]0Gu G nαβΣ∂+=∂G ϕ[]()p uG u G nαβϕΣ∂+=∂r )得到第三类边值问题的解001,)()d ((,)d f V G S ϕβΣ+∫∫ r r r r)r r (5.2.20)格林函数的互易性则得到000001)()d ()(,)d 0f V G S ϕβΣ+∫∫r r r r r (5.2.21)这就是第三边值问题解的积分表示式.右边第一个积分表示区域T 中分布的源0()f r 在r点产生的场的总和.第二个积分则代表边界上的状况对r点场的影响的总和.两项积分中的格林函数相同.这说明泊松方程的格林函数是点源在一定的边界条件下所产生的对于拉普拉斯方程0()0f ≡r 第一边值问题的解为0000(,)()()]d G u S ϕΣ∂=−∂∫∫ r r r r n (5.2.22)第三边值问题的解为1()()(,)d u G S ϕβΣ=∫∫ r r r r (5.2.23)5.3 无界空间的格林函数基本解无界区域这种情形公式(5.2.10)中的面积分应为零,故有000()(,)()d T u G f V =∫∫∫r r r r (5.3.1)选取()u r 和0(,)G r r 分别满足下列方程()()u f Δ=−r r (5.3.2)00(,)(-)G δΔ=−r r r r (5.3.3)5.3.1 三维球对称对于三维球对称情形,我们选取00=r 对(5.3.3)式两边在球内积分)d V(5.3.4)T∫∫∫(5.3.5)5.1.1)得到2(,0)d (,0)d sin d d S S G G V G r r θθϕ∂⋅∇=∇⋅=∂∫∫∫∫ r r S (5.3.6)故有2sin d d (,0)d 1S T G r G V r θθϕ∂=Δ=−∂∫∫∫∫∫ r 使上式恒成立,有2(,0)4π1G r r∂=−∂r 14πcr=+0G →因此0c =,,故得到1(,0)4πG r=r对于三维无界球对称情形的格林函数可以选取为001(,)4π||G =−r r r r (5.3.7)代入(5.3.1)得到三维无界区域问题的解为0(5.3.8)上式正是我们所熟知的静电场的电位表达式5.3.2 二维轴对称情形用单位长的圆柱体来代替球.积分在单位长的圆柱体内进行,即(,0)d ()d TTG V VδΔ=−∫∫∫∫∫∫r r ()d 1V δ=∫∫∫r ,0)d (,0)d SV G =∇∫∫i r SG只是垂直于轴,且向外的分量,所以上式在圆柱体上、下底的面积分为零,只剩下沿侧面的积分,即d d ()d 1T Gr z V r ϕδ=−=−∫∫∫r选取的圆柱的高度为单位长,则很容易得到下面的结果12πG r r∂=−∂11(,0)ln 2πG c r =+r 令积分常数为0,得到11(,0)ln 2πG r=r 0011(,)ln 2π||G =−r r r r (5.3.9))代入式(5.3.1)得到二维无界区域的解为000011()()ln d 2π|S u f S |=−∫∫r r r r。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ρ
取ψ(x)为格林函数G(x,x’) ,将x与x’互换,则有
v v v v v v [G(x′, x )′ (x′) (x′)′ G(x′, x )]dV ′ ∫
2 2 V
v ( x ′) v v v v′ v ( x ′) = ∫ G ( x , x ) G ( x ′, x )dS ′ S n ′ n ′
3
2、格林函数 一个处于x'点上的单位点电荷 所激发的电势满足泊松方程 第一类边值问题的格林函数 泊松方程满足第一类边界条件的解 第二类边值问题的格林函数 泊松方程满足第二类边界条件的解 格林函数所满足的微分方程为
1 v v v ( x ) = δ ( x x ′)
2
ε0
v v v v 1 G ( x , x′ ) = ε 0 δ ( x x′ )
R = x2 + y2 + z2
R ′ = x′ 2 + y ′ 2 + z ′ 2
上节例2中a对应于R’,b对应 于R02/R’,镜象电荷 所在点的坐标为
R02 v bv x′ = 2 x′ a R′
8
作一定代换后,球外 空间格林函数为
1 R 2 + R′2 2 RR′cosα 1 v v G ( x , x′ ) = 1 4πε 0 2 (RR′ R0 ) + R02 2 RR′cosα
四、格林函数法
本节研究的问题: 如何借助于有关点电荷的较简单的边 值问题解决较复杂的边值问题。
为此,我们先说明点电荷密度的数学表示,然后利用格林 公式把一般边值问题和有关点电荷的相应问题联系起来。 第一类边值问题 : 给定V内电荷分布ρ和V的边界S上各点的电势|s 第二类边值问题 : 给定V内电荷分布ρ和电场法向分量/n|s
v v G ( x , x ′) =
1 4πε 0 ′ ) 2 + ( y y ′ )2 + ( z z ′ ) 2 (x x
6
(2)上半空间的格林函数。 当Q=1时,由上节例1可得上半空间第一类边值问题 的格林函数。 以导体平面上任一点为坐标原点,设点电荷所在点的坐标 为(x’,y’,z,’) ,场点坐标为(x,y,z),上半空间格林函数为
因为在上半空间ρ=0,因此这问题是拉普拉斯方 程第一类边值问题。 上半空间的电势为
( x ) = -ε 0 ∫ ( x ′ )
S
v
v
v v G ( x ′, x )dS ′ n ′
先计算格林函数的法向导数
G G = n ′ z ′ =
z′=0
1
2πε 0 R 2 + z 2 + R ′ 2 2 RR ′cos(φ - φ ′) 3 2
15
[
z
]
由பைடு நூலகம்S上只有圆内部分电势不为零,所以只需对r≤a积分
V G v ε0 ∫ ( x′)dS ′ = 0 n′ 2π =


a
0
R′dR′∫ dφ ′
0 a 2π
[R [
z
2 2
+ z 2 + R′2 2 RR′cos(φ - φ ′)
]
32 3 2
V0 z 1 R′dR′∫ dφ ′ 0 2π ∫0 R2 + z2
11
(x ) = ∫ G ( x ′, x )ρ ( x ′)dV ′ + ε 0 ∫ G ( x ′, x )
V
v
v v
v
S
v v v v v G ( x ′, x )dS ′ ( x ′) n ′ n ′
在第一类边值问题中,格林函数满足边界条件
v v G( x ′, x ) = 0,
所以第一类边值问题的解为
v 当x′在S上
v v v v v v v ′, x )ρ ( x ′)dV ′-ε 0 ∫ (x ′) (x ) = ∫ G (x G ( x ′, x )dS ′ V S n ′
由这公式,只要知道格林函数G(x,x’) ,在给定边 界上的|s值情形下就可算出区域内的(x) ,因而 第一类边值问题完全解决。
(
V0 z
)
a

[
[
]
]
(
)
(
)
16
v v G ( x , x ′) = 1 1 4πε 0 R 2 + z 2 + R ′ 2 + z ′ 2 2 zz ′ 2 RR ′cos(φ - φ ′) 1 2 2 2 2 R + z + R ′ + z ′ + 2 zz ′ 2 RR ′cos(φ - φ ′)

14
1 ( x x ′ )2 + ( y y ′ )2 + ( z z ′ )2 1 v v ′) = G(x, x 1 4πε 0 ( x x ′ )2 + ( y y ′ ) 2 + ( z + z ′ ) 2
7
(3)球外空间的格林函数。 当Q=1时,由上节例2可得球外空 间的格林函数。 如图,以球心O为坐标原点。 设电荷所在点P’的坐标为R’, 场点P的坐标为P 令
2
4
上节中我们实际上已求出 一些区域的格林函数。现列举 几种区域的格林函数为例。
5
(1)无界空间的格林函数。
在x'点上一个单位点电荷在无界空间中激发的电势为
(x ) =
v
1 4πε 0 r
=
1 4πε 0
( x x ′ )2 + ( y y ′ )2 + ( z z ′ )2
因此,无界空间的格林函数为
1
1、点电荷密度的δ函数表示
δ函数定义
v v δ (x ) = 0, 当x ≠ 0, v v ∫ δ (x )dV = 1, 若积分区域V包含x = 0点
V
处于x’点上的单位点电荷的密度用函数δ(x-x')表示
v v v ρ ( x ) = δ ( x x ′)
则有
v v v v δ (x x ′) = 0, 当x ≠ x ′, v v v v ∫ δ (x x ′)dx = 1, 当x′ ∈ V
]
R′ 2 RR′cos(φ - φ ′) 1+ 32 R2 + z2
当R2+z2>>a2时,可以把被积函数展开,得
v (x ) =
2 2 2 3 R′ 2RR′cos(φ φ′) 15 R′ 2RR′cos(φ φ′) + + L R′dR′∫ dφ′1 2 2 2 2 32 ∫ 2 2 2 0 0 R +z 8 2 2π R + z R +z 3 a2 V0a2 z 15R2a2 = + + L 1 2 R2 + z 2 3 2 4 R2 + z 2 8 R2 + z 2 2
V
2
δ函数有如下重要性质:
若f(x)为在原点附近的连续函数,V包括原点在内,有

V
v v f ( x )δ ( x )dV = f (0)
同样,若V包括x’点在内,而f(x)在x=x’点附近连续,由 δ函数定义可推出

V
v v v v v f ( x )δ ( x x ′)dx = f ( x ′)
12
对第二类边值问题,由于G(x,x’)是点上单位点电荷所 产生的电势,其电场通量在边界面S上应等于1/ε0,即
∫ 1 v v G ( x ′, x )dS ′ = S n ′ ε0
满足上式的最简单的边界条件是
1 v v = G ( x ′, x ) v n′ ε0S x′∈S
第二类边值问题的解
v v v v v v v ′, x )ρ ( x ′)dV ′ + ε 0 ∫ G ( x ′, x ) (x ) = ∫ G (x (x ′)dS ′ + V S n ′
S
其中<>s是电势在界面S上的平均值。
13
例 在无穷大导体平面上有半径为a的圆,圆内和 圆外用极狭窄的绝缘环绝缘。设圆内电势为V0, 导体板其余部分电势为0,求上半空间的电势。 以圆心为柱坐标系原点,z轴与平板垂直,R 为空间点到z轴的距离。上半空间的格林函 数用柱坐标表出为
9
3、格林公式和边值问题的解
先考虑第一类边值问题 ,设V内有电荷分布ρ, 边界S上给定电势|s ,求V内的电势(x)。
设区域内有两个函数(x) 和ψ (x) ,有格林公式
∫(
V
ψ ψ ψ dV = ∫ ψ dS S n n
2 2
)
10
取(x) 满足泊松方程
=
2
1
ε0
相关文档
最新文档