格林函数法
6、格林函数法
对应的原问题是:
用T
乘(7-4)式,用G乘(7-5)式,相减, 得到
根据Green公式:
(7-7)式等号左边第一项为:
(7-7)式等号右边:
分析(7-9)式中等号右边最后一项,即边 界条件,用G乘(7-1b)和用T乘(7-2b) 相减, 有:
其中, Gsi 为在边界得到的Green函数值。
对于各种齐次问题的解已经在第二、
三和四章做过介绍。
§7.1 求解非齐次、非稳态 问题中的Green函数
三维非齐次、非稳态问题:
控制方程
边界条件 初始条件
为解决上述问题,在相同的区 域内,考虑这样一个辅助问题:
辅助问题:
一个脉冲点热源,边界条件为齐次的, 初始条件为零。 1 1 G 2 G r,t r', r r' t t > (7-2a) t 边界条件: t
中的
综上,求解
的方法和步骤: (1)用分离变量法求解原问题相对应齐 次问题的解,即(7-15); (2)与(7-14)进行比较,得到 ; (3)只要用 代替 中的 t,就可以得到
§7.3 Green函数方法的应用
Example
1
Байду номын сангаас
一块一维平板,边界条件和初始条 件如下图所示,求温度场 T( x ,t ) .
表示,
(4)式与(3)式比较,可得:
2
级数不均匀收敛的处理方法参见书本或上一章PPT。
思考:格林函数法与杜哈美尔 定理法有何共同点和不同点?
The End
权函数 :
如何确定G?
§7.2 求Green函数的一种 方法
格林函数法
为第三边值问题的积分表示式
物理意义:右边第一个积分表示区域T中分布的源在r 点产生的场的总和;第二个积分代表边界上的状况对 r点场的影响的总和;两项积分中的格林函数相同。 说明泊松方程的格林函数是点源在一定的边界条件下 所产生的场。
对于拉普拉斯方程,f(r0)=0,因此可得拉普拉斯 方程第一边值问题的解
因此,我们可设想一个等效的点电荷,它位 于球外M1处,且在球面产生的电势与球内点电荷 在球面产生的电势相反。由物理学知识可知,该 设想的点电荷必位于OM0处的延长线上,如图所 示,并记:
OM r, OM0 r0
在∑ε 上的解,该解表示位于球心r=r0处的电量为ε0的 点电荷在半径为ε的球面上产生的电势,根据电磁学 知识,该电势为:
1
G(r, r0 ) 4
因此我们可得∑ε面上的积分
Ò
u(r)
G n
G
u(r) n
dS
Ò
u(r
)
n
(1
4
)
1
4
u(r) n
dS
Ò
u(
r
)
n
(1
4
)
1
4
u(r n
)
2d
(r r0 ) (x x0) ( y y0) (z z0)
格林函数的物理意义:在物体内部(T内)处放置 一个单位点电荷(或热源),而该物体的界面保持 电位为零(或温度为零), 那么该点电荷(或该点 热源)在物体内产生的电势分布(或稳定温度分 布),就是上述定解问题的解――格林函数。
格林函数互易定理: 格林函数代表r0处的点源在r处 所产生的影响,系统不变,则该影响等同于将移至r 处的该点源在r0处产生影响。故格林函数遵守如下 的互易定理:
第三章格林函数法
r
r0
0
1
ln
R
1
2 r0 r2 r12 2rr1 cos 0
1 ln
1
2 r2 r02 2rr0 cos 0
1
ln
R
2 r2r02 R4 2R2rr0 cos 0
G
= G
1
ln
R
n r0 R r0 r0 R 2 r0 r 2r02 R4 2R2rr0 cos 0
2
r0
注意:这只是二维空间中圆形区域的格林函数表达式
例4 求解圆内拉普拉斯方程狄利克雷问题 2u 0 r R
u
rR
解:由例3,圆内泊松方程狄利克雷问题的格林函数为:
G= 1
2
ln
1 r r0
1
2
ln
R r0
1 r r1
= -1 ln
1
2 r2 r02 2rr0 cos 0
G
r;r0
f
r0
dS0
G0
4
1 r r0
G0
1
2
ln
1 r r0
c0
G1 0 G1 G0
例2 试求解球内的泊松方程的狄利克雷问题
P
3u 0 r R
u rR f ,
R
O r0
r
M0
M1
M
解:设 M0 r0 , M r 的球坐标为 r0,0,0 ,r,, r1 OM1
积分得到
任意源在相同初 始和边界条件下 产生的场
格林函数 :代表一个点源在一定的边界条件和初 始条件下所产生的场
§5.1 泊松方程的格林函数法
1. 边值问题的提法
① 第一边值问题(狄里希利问题) 求一函数,使之在区域内满足泊松方程或拉普拉斯方程,
数学物理方法--格林函数法
G(r , r0)r(r )dV T
1
4
f
G(r , r0 ) dS. n
第二边值问题(诺依曼问题)
u(r , r ')
u n
f
第二边值问 题格林函数
G(r , r ')ห้องสมุดไป่ตู้n
0
u(r0 )
1
4
G(r , r0)(r )dV T
(u
v n
v
u )dS n
T
(uv
vu)dV
法向导数
5
3. 边值问题 边界条件
泊松方程
u
[
u n
u]
()
() 定义在
0, 0 0, 0
第一类边界条件 第二类边界条件
0, 0 第三类边界条件
3
感应电荷 是边界问题
2. 格林公式
第一格林公式:
区域 T,边界
定解=通解+边界条件 求通解=积分
定解=积分+边界条件 (格林函数法)
T
设 u(r ) 和 v(r ) 在 T 中具有连续二阶导数,
在 上有连续一阶导数。由高斯定理
uv dS (uv)dV
p
M (r)
o
M0 (r0 )
如右图,当导体外 M1 处有电荷 40q 时,镜像电荷
将在球内M0 处。
M1(r1)
像电荷的大小以及位置:
4 0 q
a r1
数学物理方法12格林函数
泊 第一类边界条件:第一边值问题(狄里希利问题)
松 方
第二类边界条件:第二边值问题(诺依曼问题)
程
第三类边界条件:第三边值问题
2、格林函数的引入及其物理意义
引入:为了求解泊松方程的定解问题,我们必须定 义一个与此定解问题相应的格林函数 G(r, r0)
它满足如下定解问题,边值条件可以是第一、二、三类 条件:
这就是第三边值问题解的积分表示式.
右边第一个积分表示区域 T 中分布的源 f (r0 ) 在 r
点产生的场的总和. 第二个积分则代表边界上的状况对 r
点场的影响的总和.两项积分中的格林函数相同.这说明 泊松方程的格林函数是点源在一定的边界条件下所产生的 场.
对于拉普拉斯方程
f (r0 ) 0
第一边值问题的解为
构建格林函数为
G(x,
y
|
x0 ,
y0 )
1 4π
(x ln[
(x
x0 )2 x0 )2
(y (y
y0 )2 y0 )2
]
边界外法线方向为负 y 轴,故有
G n
|
G y
|y0
=
1 2π
(x
y0 x0 )2
y02
1 π
y0 (x x0 )2
y02
1 π
(x
y0 x0 )2
y02
代入到拉普拉斯第一边值问题解的公式(14.2. 13),拉普拉斯 方程的自由项 f 0 ,则由
G(r,
r0
)
1 2π
ln
|
r
1
r0
|
1 2π
ln
|
r
1
r1
|
格林函数法
1 2π
x x0 2
z0
y
y0 2
z02
32
代入相应积分公式,
uM
0
z0
GM;M
0
f
M
dM
M
z0
GM;M
n
0
dS
可得
uM0
z0
1 4πrMM1
1 4πrMM0
f
M dM
M
z0
1
2π
x
x0 2
z0
y
y0 2
z02
32
dS
6.4.2 球域上的格林函数
在以原点为球心,以R为半径的球域内的格林函数满足
vΔudV
S
u
v n
dS
若令u=1,可得
ΔvdV
S
v n
dS
二维公式
平面格林公式
D
Q x
P y
d
C
Pdx
Qdy
或写成对弧长积分的形式
(5)
D
Q x
P y
d
Qn1
C
Pn2 ds
其中 n =(n1,n2)为边界曲线C的单位外法线向量。
(6)
关于边界曲线弧长与坐标,有如下微分关系
dy n1ds, dx n2ds
M0(x0,y0,z0)
y
M1(x0,y0,-z0)
应用举例
下面利用半空间格林函数给出定解问题
Δu 3u f,
z0 z0
解的积分表达式。
首先计算边界上的方向导数
G
M;M
0
1 4πrMM
0
1 4πrMM1
G G
n z0
数学物理方法课件 第十一章-格林函数法-1
第十一章格林函数法
引言:格林函数的概念
格林函数,又称为点源函数,是数学物理中的一个重要概念。
格林函数代表个“点源”在定边界条件(或初始条件)所产生的场知道了点表一个“点源”在一定边界条件(或初始条件)下所产生的场。
知道了点源所产生的场,利用迭加原理,就可以确定任意分布的源所产生的场。
如在无界空间中,源与场之间的关系为:
′′′
=r r r r r ()
u r )
()(,)()u G d ρ∫∫∫()
ρ′r 源分布()
ρ′r (,G ′r r 这样,从物理上看,一个数学物理方程的解实际上表示的是“源”与它所(,)
G ′r r 格林函数
产生的“场”之间的关系。
格林函数法
因此,无界空间的格林函数为
G (x ,x )
1
40( x x ') 2 (y y ') 2 ( z z ') 2
10.07.2020
21
计算电磁学基础
(2)上半空间的格林函数。 当Q=1时,可得上半空间第一类边值问题的格林
函数。
以导体平面上任一点为坐标原点,设点电荷所在
点的坐标为(x’,y’,z’) ,场点坐标为(x,y,z),上半空间格
• 这种方法称为电像法
10.07.2020
16
计算电磁学基础
• 例题
在半空间内求解稳定问题的格林函数
解:根据题目,定解问题为
G (x x ')(y y ')(z z')z , 0
G |z 0 0
这相当于在接地导体平面上方点 M(x’,y’,z’) 处放 置一个电量为 - 0 的点电荷,求电势。
2(x)10(x)
已知
S
(xx)
2G (x,x)1 0(xx)
令 G 0 S
已知
n S
令 G 1 ,
n S 0S
10.07.2020
20
计算电磁学基础
常见的几个格林函数:
(1)无界空间的格林函数。
在无界空间中x’点上放一个单位点电荷,激发的电
势为:
( x ) 1
1
40 r40( x x ') 2 ( y y ') 2 ( z z ') 2
• 用Green函数求解电磁场是场论中的重要方法之一。
– 当给定边界条件的Green函数比较容易求得时,利用Green函数 计算分布场源的解答常常是方便的。
– 借助于有关点电荷的较简单的边值问题解决较复杂的边值问题。
第六章 格林函数法
第六章 格林函数法本章利用高等数学中的格林(Green)公式导出调和函数的积分表达式,引进格林函数(又叫点源函数),它是一种广义函数.利用格林函数求解稳态的边值问题,这种方法叫格林函数法,它是解数学物理问题时常用的方法之一.§2.6.1 格林(Green )公式 调和函数的积分表达式2.6.1.1 格林公式设D 是以分片光滑的曲面S 为其边界的有界区域,函数P (x ,y ,z ), Q (x ,y ,z ), R (x ,y ,z )是在D 上连续,在区域D 内有连续偏导数的任意函数,则成立奥一高公式 V z R y Q x P D d (∂∂+∂∂+∂∂∫∫∫=∫∫++SS z n R y n Q x n P d )],cos(),cos(),cos([,这里d V 是体积元,n 是曲面S 的外法线方向,d S 为S 上的面积元.由此可以导出格林第二公式或格林公式:S nu v n v uV u v v u D S d d )()(∫∫∫∫∫∂∂−∂∂=Δ−Δ. 事实上,设函数u (x ,y ,z ), v (x ,y ,z )以及它们的所有的一阶偏导数在闭区域S D D U =上是连续的,u 、v 在D 内具有连续的二阶偏导数.令 P =x v u ∂∂, Q =yv u ∂∂, R =z v u ∂∂, 代入奥一高公式得到格林第一公式:V z v z u y v y u n v x u S n v uV v u DD S d d d )()(∂∂∂∂+∂∂∂∂+∂∂∂∂−∂∂=Δ∫∫∫∫∫∫∫∫ 这里是三维拉普拉斯(Laplace)算子,Δn∂∂表示曲面S 的外法线方向导数.如果引进梯度算子=∇k j v v v z yi x ∂∂+∂∂+∂∂ ,那么格林第一公式缩写成 ∫∫∫∫∫∫∫∫∇⋅∇−∂∂=ΔDS D V v u s n v uv v u d d d )()(,类似地,如果令 P =x u v ∂∂, Q =y u v ∂∂, R =zu v ∂∂,就有 ∫∫∫∫∫∫∫∫∇⋅∇−∂∂=ΔD D SV u v S n u v V u v d d )()(d 注意到向量的数性积的可交换性,上两式相减,得格林第二公式(又叫格林公式):S nu v n v u V u v v u D S d d )()∂∂−∂∂=Δ−Δ∫∫∫∫∫( . 2.6.1.2拉普拉斯方程的基本解在三维空间内,记),()()()(222N M r z y x r =−+−+−=ςηξ表示点M (x ,y ,z )、)(ςηξ,,N 之间的距离,利用复合函数求导的链式法则,对空间中任意固定的一点N ,函数r1除点N 外关于变量(x , y , z )处处满足拉普拉斯方程0=Δu ;注意到函数r1的特征,同样对于任意固定的一点M (x , y , z ),函数r1除点M 外,关于变量),,(ςηξ处处满足拉普拉斯方程,即0)1(=Δr, (N M ≠). 函数r1在求解拉普拉斯方程和泊松(Poisson)方程时有极重要的作用,通常把函数r1称为三维拉普拉斯方程或者泊松方程的基本解.同样,对于二维空间,函数),(1ln )()(1ln 1ln 22N M r y x r =−+−=ηξ 叫做二维拉普拉斯方程或泊松方程的基本解.2.6.1.3 调和函数的积分表达式仍以三维空间为例,利用格林公式不难得到三维空间调和函数的积分表达式.定理:(调和函数的积分表达式)设函数u (x , y , z )在闭区域D 上有连续的一阶偏导数,且u (x , y , z )在区域D 内调和(即0=Δu 在D 内成立),那么对于D 内任意固定的一点就有),,(0000z y x M ,])1(1[41)(0S nr u n u r M u S d ∂∂−∂∂=∫∫π D M ∈0 ,这里M 为点(x , y , z ),并有2020200)()()(),(z z y y x x M M r r −+−+−== .事实上,设为区域D 内任意固定的一点,M (x ,y ,z )为),,(0000z y x M D 上的一个动点,动点M 到定点M 0的距离2020200)()()(),(z z y y x x M M r r −+−+−== .注意到函数r 1除点M 0外,处处调和,M 0挖去.以M 0点为球心,充分小的正数(ρ>0),用表示这个小球的球面.记区域D 0M K ρ0M S ρ0M K ρ1=D \ (通常称区域D 内挖去点M 0M K ρ0).这时区域D 1的表面为.U S 0M S ρ于是函数u , v =r1在闭区域011M S S D D ρU U =上可用格林公式,就有∫∫∫∫∫∫∫∂∂−∂∂+∂∂−∂∂=Δ−ΔS S n u r n r u D S n u r n r u V u r r u M S 01)1)1((1)1((]1)1([ρd d d 因为在区域D 1内0)1(,0=Δ=Δru ,上式左边等于零,由此得 01)1()1)1((00=∂∂−∂∂+∂∂−∂∂∫∫∫∫∫∫S S n u r S S n r u S n u r n r u M M S ρρd d d 现在讨论上式左边的后两项积分.注意到,对区域D 1而言,小球面0M S ρ的外法线方向应指向球心M 0 , 与半径r 的方向刚好相反,因此在球面上有0M S ρ2211)1(1(ρ==∂∂−=∂∂rr r n r ,这样上式第二项积分有 )(44)(1)1(1212200M u M u s S u S S n r u M M ππρρρρρ===∂∂∫∫∫∫d d , 这里用到积分中值定理,M 1为球面上的某一点.0M S ρ对于上式第三项积分,用积分中值定理有||22044112M n u M n u S n u r M S ∂∂⋅=∂∂⋅⋅=∂∂∫∫πρπρρρd 这里M 2为上的某一点.0M S ρ 因为nu ∂∂在M 0点的邻域内是有界的,让0→ρ,则M 1、M 2趋于球心M 0 ,所以第三项积分趋于零,由此得0)(4)1)1((0=+∂∂−∂∂∫∫M u S n u r n r u Sπd . 从而得到有界区域D 内调和函数u 的积分表达式:S nr u n u r M u S d )1(1(41)(0∂∂−∂∂=∫∫π, D M ∈0. 这个公式说明,调和函数u 在区域D 内任意一点M 0处的值可以由它的边界S 上的值和它在边界S 上的法向导数nu ∂∂的值来确定,这对解边值问题提供了方便.推论:若u 在有界区域D 内是二阶连续的可微函数,则有积分表达式∫∫∫∫∫Δ−∂∂−∂∂=DS V r u S n r u v u r M u d d ππ41))1(1(41)(0,. D M ∈0这是因为在闭区域1D 上用格林公式,有 S n u r S n r u S n u r n r u V u D r S M d d d )11(()1)1((101∂∂−∂∂+∂∂−∂∂=Δ−∫∫∫∫∫∫∫ρ 类似上述的讨论,上式右端当0→ρ时,区域,其余都一样.D D →1对于二维情形,由于基本解为r1ln ,所以不难得到在二维有界区域D 内调和的函数u 的积分表达式:S nr u n u r M u C d )1(ln )1[ln(21)(0∂∂−∂∂=∫π, D M ∈0. 这里C 为区域D 的边界.对一般的在区域D 内有二阶连续可微函数u ,则积分表达式为S u r l n r u n u r M u DC d d Δ−∂∂−∂∂=∫∫∫)1(ln 21])1(ln )1[ln(21)(0ππ, .D M ∈0这两个公式的证明作为习题留给读者自己去证明.§2.6.2 拉普拉斯(Laplace )方程的狄里克雷问题2.6.2.1 边值问题的提法数学物理的不少问题都会归结为求拉普拉斯方程的解,根据边界条件的不同提法,可以把它的定解问题分为三类:第一边值问题,又称狄里克雷(Dirichlet)问题.求区域D 内调和,而在D 的边界S 上取已知值f 的函数u ,即狄里克雷问题的提法为:0=Δu , 在D 内,|u s =f 1(M ) , 在S 上.第二边值问题,又称诺伊曼(Neumann)问题,它的提法为: 0=Δu , 在D 内,),(|2M f nu S =∂∂ S M ∈. 第三边值问题,又称洛平(Robin)问题,它的提法为:, 在D 内,0=Δu ),(3M f u n u S=⎥⎦⎤⎢⎣⎡+∂∂βα S M ∈. 这里α、β为已知常数,且不同时为零;f 、f 、f 为已知函数.)(1M )(2M )(3M 如果以上的提法,针对求有界区域D 内的解,称为内问题,如果求区域的外部的解,称为外问题.对于狄里克雷问题、诺伊曼问题解的存在性,要用到积分方程的理论,由于已超出本书的范围,这里不再赘述,感兴趣的读者可以查阅相关的书籍,例如由沈乃录主编的《积分方程》一书,将会给你一个满意的解答.2.6.2.2 狄里克雷问题的格林函数 格林函数法我们重点来解狄里克雷问题.从调和函数u 的积分表达式出发,在区域D 内的调和函数u 的积分表达式为:S n r u nu r M u S d ∫∫∂−∂∂=)/1(1(41)(0π, D M ∈0. 这里由于狄里克雷问题0=Δu , 在D 内,|u s =f (M ) , 在∈M S 上.所以,积分表达式中的第二项u 在边界面S 上的值已知,用f (M )代替,就有S n r M f nu r M u S d ∫∫∂−∂∂=))/1()(1(41)(0π, D M ∈0, 这样求解的关键是如何从上式中消去带nu ∂∂(未知的)这一项. 由格林公式出发,要在区域D 内求一个函数g ,它在区域D 内调和(即0=Δg ),则格林公式为:S n u g ng uS d ∫∫∂∂−∂∂=)(0 用π41乘以上式,再和积分表达式相加,就有 S n g r M f n u g r M u S d ∫∫−∂−∂∂−=])/1()()1[(41)(0π, D M ∈0如果上式中在边界面S 上有g r −1=0,即=S g |r1,那末狄里克雷问题的解就是:S ng r M f M u S d ∫∫−∂−=])/1()([41)(0π, D M ∈0. 综上所述,欲解狄里克雷问题:0=Δu , 在D 内,|u s =f(M) , 在∈M S 上就转化为解另一个狄里克雷问题:0=Δg , 在D 内,=S g |r1 , ∈M S, 这里,);(0M M r r =);(0M M g g =,∈M S ,D M ∈0一般说来,函数也不是好求的,它与边界曲面S 的形状有关,但是不管怎么讲,给出了一个解狄里克雷问题的思路,并且对于一些特殊的区域D ,例如球体、半空间、圆域、半平面等可以用初等的方法求出函数g (M ; M );(0M M g 0)来.为了更清楚,我们令函数 );();(1);(000M M g M M r M M G −= 注意到基本解的特征,);(10M M r g (M ;M 0)的要求,对于函数G (M ;M 0)有两个基本性质:(1)除点D M ∈0外,函数G (M ;M 0)在区域D 内调和,即 0);(0=ΔM M G , M , M 0D ∈ 且0M M ≠ ;(2)在边界面S 上, ,0);(0=M M G ∈M ,S D M ∈0 . 通常把函数G (M ;M 0)称为拉普拉斯方程0=Δu 关于区域D 的狄里克雷问题的格林函数.用求格林函数G (M ;M 0)的方法解狄里克雷问题称为格林函数法.如果格林函数G (M ;M 0)求得,那么狄里克雷问题的解也就有了,并且为S M M G nM f M u S d );()(41)(00∫∫∂∂−=π , D M ∈0.对于二维的情形,完全类似地,可以得到 S nG M f M u C d ∫∂∂−=)(21)(0π , D M ∈0 为狄里克雷问题 C D M M f u D M u C=∂∈=∈=Δ),(,0| 的解,这里格林函数 );(1ln );(00M M g rM M G −=,作为习题留给读者自己去证明.例1. 球的狄里克雷问题和球的格林函数 球内狄里克雷问题的提法: , 在球内 0=Δu 2222R z y x <++ u=f (M ) , 在球面 上 2222R z y x =++这里 M =(x , y , z ).解: 先求球 的格林函数 2222R z y x <++ 设球内任一点,由此求满足另一个球狄里克雷问题:),(00,00z y x M );(0M M g 0);(0=ΔM M g , 在球内);(1);(00M M r M M g = , 在球面上 对于球而 2222R z y x <++M 1言,函数可以用初等的方 );(0M M g 法求得.记202020z y x ++=ρ,点 M 0的对称点为M 0R S 1,显然点M 1在球外,并在OM 0的延长线上(如图),由对称点的定义知:21R =ρρ⋅其中1ρ为OM 1的长,即 2121211z y x ++=ρ ,),,(1111z y x M =,由调和函数的基本解,这个应该是);(0M M g 1r A这种形式,这里 2121211)()()(z z y y x x r −+−+−= ,A 为待定常数.显然函数1r A在球内是调和的.问题是怎样确定常数A .由的第二个条件在球面上应为);(0M M g r 1.为区别起见,球面上的点记为),,(z y x M ′′′′.由于,所以在21R =⋅ρρM OM ′Δ0与中,是公共角,且夹这角的两边成比例1M M O ′ΔO ∠10OM M O M O OM ′=′,因此M OM ′Δ0与1M M O ′Δ相似,从而有M O OM M M M M ′=′′010,亦即R r r ρ=1,这样在球面上有OR S rr R 111=⋅ρ , 可见常数202020z y x RRA ++==ρ,所求的101);(r R M M g ⋅=ρ,因此球的格林函数为2121212020202020201100)()()(1)()()(1);(1);(1);(z z y y x x z y x Rz z y y x x M M r R M M r M M G −+−+−⋅++−−+−+−=⋅−=ρ得球内狄里克雷问题的解为S nG M f M u RS d ∂∂′−=∫∫)(41)(00π,().球∈0M 2222R z y x <++为了计算,还须将这公式化成便于积分的形式.采用球面坐标系.设点M ′的球坐标为),,(ϕθ′′R ,点M 0的球坐标为),,(00ϕθρ,将记为O∠α,于是在球面上,ORS nr nr ∂∂∂∂1(,)1(1有 02022)(1grad 11)1()1(n n ⋅∂∂+∂∂+∂∂−=⋅−=∂∂−=∂∂⋅∂∂=∂∂k zr j y r i x r r r r n r r n r r r n r 其中n 0是球面的外法线单位向量.O R S 在球面上, OR S M ′点的坐标为),,(z y x ′′′,由此r x x x r 0−′=∂∂ , r y y y r 0−′=∂∂ , rz z z r 0−′=∂∂ , 设r 0是r 方向上的单位向量,由此),cos(1)(1)1(200002n r r k r z z j r y y i r x x r n r −=⋅−′+−′+−′−=∂∂n , 同理 ),cos(1)1(1211n r r nr −=∂∂,这样),cos(),cos(1)1()1(12121n r r Rn r rn r n r R n G ρρ−=∂∂−∂∂=∂∂−为了简化上式,在与M OM ′Δ01M M O ′Δ中用余弦定理得Rr r R n r 2),cos(222ρ−+=, 12121212),cos(Rr r R n r ρ−+= , 注意到在球面上有OR S rr R 11=ρ,并且,于是有 21R =⋅ρρ3221212),cos(),cos(1Rr R n r r R n r rn G ρρ−=−=∂∂−, 从而球内狄里克雷问题的解化简为ϕθθραρρϕθπρπππ′′′+−−′′=−′=∫∫∫∫d d d sin ]cos 2[),(4)(41)(2322222003220R R R f RS rR M f R M u O RS这也叫球的泊松积分.利用M 0的对称点M 1构造格林函数的方法,叫做镜像法,物理学中又叫静电源象法.例 2. 半空间的狄里克雷问题.半空间的狄里克雷问题就是求一个在上半空间内的调和函数u (x , y, z ),且在边界面z =0上满足u (x , y , 0)=f (x , y ),即0>z⎪⎩⎪⎨⎧=>=Δ=),(0,0|0y x f u z u z解:设在半空间在z >0内任意一点,这里z ),(00,00z y x M 0>0,那么M 0关于平面的对称点M 0=z 1就是 ),(00,0z y x −.所以函 数2020201)()()(11z z y y x x r ++−+−=是半空间内的调和函数,并且在边界面z =0上,显然有0>z rr 111=,因此半空间z >0内的格林函数为20202020202010)()()(1)()()(111);(z z y y x x z z y y x x r r M M G ++−+−−−+−+−=−=对于半空间z >0,边界面z =0的外法线方向与z 轴的正向相反,于是z G nG ∂∂−=∂∂,这个半空间z >0的狄里克雷问题的解为S n G y x f z y x u z d ∫∫=∂∂−=0000),(41),,(π =S zG y x f z d ∫∫=∂∂0),(41π=y x z y y x x y x f z d d ∫∫+∞∞−+∞∞−+−+−232020200])()[(),(2π.§2.6.3 泊松方程的狄里克雷问题在研究有外力作用下的薄膜平衡和有热流的热平衡以及稳定电场的静电势等问题时,都会导出称谓泊松方程的数学物理方程.泊松方程的一般形式是),,(z y x F u u u u zz yy xx =++≡Δ,其中F (x , y , z )为已知函数.泊松方程的狄里克雷问题的提法是),,(z y x F u =Δ (x , y , z )D ∈, )(|M f u S= M 在D 的边界面S 上.对于在有界区域D 内有二阶连续的可微函数u (M ),有积分表达式V r uS n r u n u r M u DSd d ∫∫∫∫∫Δ−∂∂−∂∂=ππ41))1(1(41)(0, . D M ∈0设是区域);(0M M G D 的格林函数,就有);();(1);(000M M g M M r M M G −=这里函数为区域);(0M M g D 内的调和函数,在边界面S 上有r g S1|=,对格林公式S n u v n v u V u v v u D Sd d ()(∂∂−∂∂=Δ−Δ∫∫∫∫∫中用函数替代v ,再两边乘以);(0M M g π41得∫∫∫∫∫Δ+∂∂−∂∂=DSV u g S n u r n g ud d ππ41)1(410将以上两等式相加,消去S n ur Sd ∂∂∫∫141π项就得泊松方程狄里克雷问题的解为∫∫∫∫∫+∂∂−=DSV FG S n G fM u d d ππ4141)(0显然,上式第一项是定解问题0=Δu 在D 内,的解;第二项是定解问题的解f u S=|0,|==ΔSu F u 对于二维泊松方程的狄里克雷问题可以类似地求解.。
第12章_格林函数法
电磁场的源场关系
源量: (r , t ) 或 q(r , t )
场量: E (r , t ) D(r , t )
电场
J (r , t ) 或 I (r , t )
B(r , t ) H (r , t )
磁场
比如:静电场
源量: (r )
场量: E (r ) D(r )
全电流定律:传导电流和时变的 电场都能产生磁场 电磁感应定律:电荷和时变的磁 场都能产生电场(库仑电场(有源 无旋场)和感应电场(无旋有源场)) 磁通连续性原理:磁场是无散度 场,磁力线总是闭合曲线 高斯定理:电荷是产生电场的源
WangChengyou © Shandong University, Weihai
全电流定律:磁场强度沿任意闭合曲线的环 量,等于穿过以该闭合曲线为周界的任意曲 面的传导电流与位移电流之和。 电磁感应定律:电场强度沿任意闭合曲线的 环量,等于穿过以该闭合曲线为周界的任意 曲面的磁通量变化率的负值。 磁通连续性原理:穿过任意闭合曲面的磁感 应强度的通量恒为0。 高斯定理:穿过任意闭合曲面的电位移的通 量等于该闭合曲面所包围的自由电荷的代数 和。
T T
同理 vu dS vudV u vdV T T 两式相减有 uv dS vu dS (uv vu )dV
T
WangChengyou © Shandong University, Weihai
WangChengyou © Shandong University, Weihai
WangChengyou © Shandong University, Weihai
数学物理方法
第12章 格林函数法
Chapter4.1格林函数法
此公式称为第一格林公式
若令上述公式中u, v对换,可得 u 2 v udV v dS u vdV n
两式相减可得第二格林公式 v u (u v v u )dV (u v )dS n n
2 2
二、调和函数的基本性质
数学解释: 在内寻求一个调和函数,它在闭区域上有一阶 连续偏导数,即u C 2 () C1 (),且在边界上满足边界条件。
注: 前面两种边值问题都是在内求解拉氏方程,故称此类 方程为内问题。 还有一类问题,例如确定某物体外部的稳恒 温度场, 就归结为在区域外部求调和函数,满足边界条件。 这样的问题称为Laplace方程外问题。
1 4
u(M 0 ) 1 4 1 4 a 2
(u ( M )
1 1 u 1 ( ) )dS n r r n 4
(u ( M )
1 1 u ( ) )dS r r r n
1 1 u 1 (u ( M )( 2 ) )dS 2 r r n 4 a
取u为调和函数,并假定其在上有一阶连续偏导数,取v 1/ r 1 2 1 1 u 2 1 由第二格林公式 (u u )dV (u ( ) )dS, r r n r r n K
1 1 1 u 注意到 u 0, 则 u dS 0 r n r r n
注:对于外问题来说,求解通常都是在无界区域上,
这时需不需要对解加些限制条件呢?看下面一例子。
u 0, r 1, u r 1 1 其中r x 2 y 2 z 2
易知
u 1,
u 1/ r
都是上述定解问题的解,即解不唯一.为了保证解的唯一性, 通常我们要加一些限制条件.
数学物理第五章-格林函数法
则有
(P[, P(0P),P0)(P, P(1P),P10),]
P
(P,
P0
),
P
即
G(P, P0) (P, P0) (P, P1)
为上半空间的格林函数,且有
G(P, P0) (P, P0) (P, P1)
1(
4
1 (1 1)
4 r0 r1
1
(x )2 (y )2 (z )2
( x,
y)
1
0
x2 x2
0 y2 y2
1 1
的解并求出u(0, 0, a)的值(常数a 0)?
解 由上半空间的泊松公式
1 )
(x )2 (y )2 (z )2
G 1 (
1
1
)
4 (x )2 ( y )2 (z )2 (x )2 ( y )2 (z )2
直接计算可得
G
G
1
n
z
z0
2
3
[(x )2 ( y )2 2 ]2
又
u(
,,
)
G n
ds
GfdV
1
2
(x, y)
3
R2 [(x )2 ( y )2 2 ]2
因此
u
B
n
ds
B
u
4
2
ds
u(x,
y,
z
)
(10)
u
u
B
n
ds
B
4
2
ds
u(x,
y,
z
)
(10)
其中 P(x, y, z ) B.------积分中值定理
同理可得
B
u n
4第四章格林函数法
则 u ( M 2 ) u ( M 1 ) 。以 M 2 为中心,以小于 d 的数为半径 在 内作球 k 2 ,在 k 2上 u ( M ) u ( M 2 ) u ( M 1 ) 点 N 一定包含在以某点 M n
c1 d 2 dV V (r ) 0 其通解为: (r ) c2 , (r 0, c1 , c2 为任意常数)。 r dr dr 1 1 若取 c1 , c2 0 ,则得到特解 V0 (r ) 4r ,称此解为 4
三维Laplace方程的基本解,它在研究三维拉普拉斯方程中 起着重要的作用. 对二维拉普拉斯方程 u uxx u yy 0,其极坐标形式为:
数学物理方程与特殊函数
第4章格林函数法
4.2.1 格林函数的定义 设在 内有 u 0, v 0; u, v 在 上有一阶连续 1 v u 偏导数,则由格林第二公式有 0 (u n v n )dS (2) 4 将(1)和(2)两式加起来:
u(M 0 ) 1 4 1 1 u u (v ) (v ) dS (3) n rMM 0 rMM 0 n
4.1.4 调和函数的性质
u u 0, | f . n
u n dS f dS 0.
6
下午10时1分
数学物理方程与特殊函数
第4章格林函数法
性质2 (平均值定理) 设函数 u(M ) 在区域 内调和, M 0 是 内任意一点,若 a 是以 M 0 为中心,a为半径 的球面,此球完全落在区域 的内部,则有 1 u(M 0 ) udS(调和函数的球面平均值公式) 2 a 4a 证明: 由调和函数的积分表示:
数学物理方程第四章 格林函数法
为边界的有界连通区域,u(x, y, z)在 上有连续
的一阶偏导数,在 内调和,定点 M 0 (x0 , y0 , z0 ) , r 为定点M 0到变点 M (x, y, z) 距离: 则有
u(M0 )
1
4
1 [ r
u n
u
(1)]ds n r
(2.9)
故不提初始条件!只给出边界条件就可以. 下面看边界条件的提法.
(1) 第一边值问题(狄利克雷(Dirichlet)问题)
设方程(1.1)的空间变量(x, y, z) , 为 R3的开区域。如果
u(x, y, z)满足方程(1.1),且在 边界 上直接给定了u(x, y, z)
的具体函数形式 f (x, y, z),即
u(x, y, z) f (x, y, z)
(1.2)
则称问题(1.1)~(1.2)为拉普拉斯第一边值问题或狄利克雷
(Dirichlet)问题,u(x, y, z) 为此问题的解。
2u 2u 2u
u
x 2
y 2
z 2
0
u( x, y,z) f ( x, y,z),
u, v互 换
v
u v u v u v
( uv )dV
u
n
ds
(
x
x
y
y
z
z
)dV
(2.2)
u
u v u v u v
(vu)dV
v
n
ds
(
x
x
y
y
z
格林函数法
格林函数法
格林函数(Green's Function)是描述物理系统状态之间相互转换和
其它类型的转换的一种函数,用来解决系统的边界值问题。
它可以通过物
理系统的差分方程来解释,也可以用来表征物理系统的任意状态之间的相
互作用。
格林函数可以概括地表示为:当系统处于某一特定状态时,其他
状态的影响,及它们之间的相互作用,以及系统当前状态的演变。
格林函数法可以分为两种:一种是无限空间的,这种方法是通过求解
无限空间的格林函数的衍生值来处理边界值问题;另一种是有限空间的,
这种方法是通过求解有限空间的格林函数的衍生值来处理边界值问题。
格
林函数法可以用来研究物理系统中多种形式的边界值问题,包括边界条件、初始条件、响应函数、激励函数、反应函数等。
此外,它还可以用来估计
未知量、估计系统参数、构造信号处理过程和对边界条件进行约束等。
第十二章 格林函数法
1
(
x)
0 V
0
得到
V
G(
x
x)
1
0
S
G
(
x
x)
(x)d
(x)
n
1
0
(
(
x)
x) G (x
n
x)
ds
13
故得到
(x) G(x x)(x)d
V
G(
x,
x)
1
0
S
G(
x
(x)
x)
( x)
n
( x)
1
0
( x
x)d
( x)
G(x n
x)
ds
12
该式左边第二项为
1
(x) (x x)d
第十二章 格林函数法
Method of Green Function
1
• 泊松方程的格林函数 • 用电像法求格林函数 • 含时间的格林函数 • 用冲量定理法求格林函数 • 推广的格林公式及应用
2
第一节 泊松方程的格林函数法
一、 分离变量法和镜像法能解的情况
1、分离变量法能解的情况:自由电荷全聚集在边界上, 也就是说:在要求解电场区域没有自由电荷(泊松方 程转变为拉普拉斯方程)+边界条件。
内找一个待定函数 ( 为待求),通过这个公式从
已知确定未知。
(2)边值问题的解 给定一个区域V,其中给定了
格林函数方法
格林函数方法格林函数方法是一种数值计算方法,它通过求解常微分方程来解决实际问题,并有助于研究工程中的某些物理特性。
格林函数方法以量子力学和热力学的成功应用为基础,现在被广泛用于量子电子学、光学、流体力学、结构力学、能源学等领域,其有效的处理数十亿个基础状态的能力为科学研究提供了无穷的可能性。
格林函数方法的基本思想是将给定的微分方程转换为它的格林函数表示,以便对常微分方程的解或其他数学特性进行分析。
主要特点是,格林函数方法可以用来求解复杂的线性和非线性微分方程组,其中格林函数可以看作是方程组中各元素的描述,而不需要显式地求出它们的解。
这使得格林函数方法得以应用于复杂系统中实际问题的求解,从而在工程实践中节省了大量的时间和精力。
具体来说,格林函数方法一般分为三个步骤:首先,将常微分方程转换为额外的辅助方程和格林函数;其次,解辅助方程,以求出格林函数,并使用它来解决源微分方程;最后,通过使用互补性和通用性特性,求出格林函数方程组的解,并进行可视化分析。
格林函数方法在研究各种量子物理学问题方面表现异常出色,在计算能量谱、场动力学以及其他类似的量子物理问题方面,它具有极大的优势。
如果将格林函数方法与数值模拟技术相结合,就可以更好地描述复杂的物理系统的特性和行为,从而对更复杂的问题有所贡献。
在过去几十年中,随着计算机技术的发展,格林函数方法也取得了巨大的进步。
最近,研究者们发展出了新型的格林函数方法,如蒙特卡洛格林函数方法和一维格林函数方法,它们可以用于更复杂的微分方程组,能够更快地收敛,对于大型系统也更加有效。
此外,现在有一系列的软件可用来帮助研究人员编写格林函数方程组的程序,大大简化了编程的过程,也方便了研究人员使用格林函数方法发掘物理系统的特性。
综上所述,格林函数方法为研究者提供了解决复杂系统的实际问题的独特工具,同时也大大提高了数值计算的效率。
该方法在研究物理学问题方面取得了显著的进展,已经被广泛应用于各个领域;随着科技的进步,格林函数方法也在不断演进,发展出新的计算技术,为科学研究提供无穷的可能性。
格林函数法
r
0
dS
(5.2.8)
式(5.2.8)称为泊松方程的基本积分公式。但是它
的物理解释很困难,因此我们根据前面的格林函数互易定
理,并利用跟林函数的对称性,将上式改为:
u r0
G r0,r
u r
G
T0
r0,r
f
r0
dV0
0
G
r0,r
u r0 n0
n0 dS0(5.2.9)
G r0,r
u r
G r,r0
T0
f
r0
dV0 r0
0
n0 dS0
(2)第二类边值问题
(5.2.13)
14
对应下列格林函数的解:
u r f r
u
n
|
rp
(5.2.14)
G r, r0 r r0 G r, r0
n | 0
(5.2.15)
代入基本积分公式可得第二类边值问题的解的积
G(r, r0) G(r0, r)
上式表明,在位于r0处的脉冲(或点源)在一 定边界条件下在r处产生的影响(或产生的场), 等效于把脉冲(或点源)移至r处在同样边界条件 下在r0处算产生的影响(或场),即物理场的互 易性。
10
根据第二格林公式,得到:
u
r
G n
G
u r
n
dS
T
u rG Gr
u
r
0
T
G
r,
r
0
f
r
dV
1
r
G
r,
n
r0
dS
(5.2.19)
利用格林函数的互易性可得到互易后的解的积
第5章格林函数法
第5章格林函数法格林(Green)函数,又称为点源影响函数,是数学物理中的一个重要概念.格林函数代表一个点源在一定的边界条件下和初始条件下所产生的场.知道了点源的场,就可以用叠加的方法计算出任意源所产生的场.格林函数法是解数学物理方程的常用方法之一.5.1 格林公式TΣ上具有连续一阶导数,在区域及其边界中具有连续二阶导数,应用矢量分析的高斯定理d d T T div =∇∫∫∫∫∫∫i A V =A V (5.1.1)单位时间内流体流过边界闭曲面S 的流量单位时间内V 内各源头产生的流体的总量将对曲面Σ的积分化为体积分d ()d d d T T Tu u V u V u V Σ∇=∇∇=Δ+∇∇∫∫∫∫∫∫∫∫∫∫∫i i i S v v v v (5.1.2)()uv u v u v∇=∇⋅+∇以上用到公式称上式为第一格林公式.同理有d ()d d d T T T u u V u V u V Σ∇=∇∇=Δ+∇∇∫∫∫∫∫∫∫∫∫∫∫i i i S v v v v (5.1.3)上述两式相减得到()d ()d Tu u u u V Σ∇−∇=Δ−Δ∫∫∫∫∫i S v v v v的外法向偏导数.5.1.4)为第二格林公式.进一步改写为()d ()d Tu S u u V n Σ∂∂−=Δ−Δ∂∂∫∫∫∫∫ v u v v v n (5.1.4)5.2 泊松方程的格林函数法讨论具有一定边界条件的泊松方程的定解问题.泊松方程()() u f Δ=−r r (5.2.1)(5.2.2)是区域边界Σ上给定的函数.是第一、第二、第三类边界条件的统一描述典型的泊松方程(三维稳定分布)边值问题()()[]()u f u u n αβϕΣΣΔ=−⎧⎪∂⎨+=⎪∂⎩r r r (5.2.3)上沿界面外法线方向的偏导数格林函数的引入及其物理意义引入:为了求解定解问题(5.2.3),我们必须定义一个与此定解问题相应的格林函数0(,)G r r 它满足如下定解问题,边值条件可以是第一、二、三类(,)()[]0G G G n δαβΣΔ=−−⎧⎪∂⎨+=⎪∂⎩00r r r r (5.2.4)()δ−0r r 代表三维空间变量的δ函数,在直角坐标系中其形式为0()()()()x x y y z z δδδδ−=−−−r r 函数前取负号是为了以后构建格林函数方便格林函数的物理意义【2】:在物体内部(T 内)0r 处放置一个单位点电荷,而该物体的界面保持电位为零, 那么该点电荷在物体内产生的电势分布,就是定解问题(5.2.4)的解――格林函数.由此可以进一步理解通常人们为什么称格林函格林函数互易定理:因为格林函数0(,)G r r 代表0r 处的脉冲(或点源)在r 处所产生的影响(或所产生的场),所以它只能是距离0||−r r 的函数,故它应该遵守如下的互易定理:(,)()G G ,=r r r r (5.2.5))得到())d (()())d T u S u G G u V n ∂⋅=Δ−Δ∂∫∫∫r r r (5.2.6)0()]d (()())d ())()()]d T G u S G u u G Vf u V δ∂−⋅=Δ−Δ∂−+−∫∫∫r r r r r r r n (5.2.7)根据δ函数性质有:00()()]d ()T u V u δ−=∫∫∫r r r r (5.2.8)故有0(,)()]d G u S ∂−∂r r r)r n (5.2.9)泊松方程的基本积分公式.00000000((,))d [(,)()]d u G V G u S n Σ∂∂+−∂∂∫∫ r )r r r r r n 格林函数满足互易定理并利用格林函数的对称性则得到(5.2.10)解的基本思想:通过上面解的形式(5.2.9)我们容易观察出引用格林函数的目的:主要就是为了使一个非齐次方程(5.2.1)与任意边值问题(5.2.2)所构成的定解问题转化为求解一个特定的边值问题(5.2.4). 一般后者的解容易求得,通(5.2.9)即可求出(5.2.1)和(5.2.2)定解问题的解.考虑格林函数所满足的边界条件讨论如下:1.第一类边值问题:()()|()u f u ϕΣΣΔ=−⎧⎨=⎩r r r (5.2.11)相应的格林函数0(,)G r r 是下列问题的解:000(,)(-)(,)|0 G G δΣΔ=−⎧⎨=⎩r r r r r r (5.2.12)考虑到格林函数的齐次边界条件,由公式(5.2.9)可得第一类边值问题的解000(,)()(,)()d ()d T G u G f V S ϕΣ∂=−∂∫∫∫∫∫ nr r r r r r r (5.2.13)另一形式的第一类边值问题的解000(,)()d G S ∂∂0n r r r (5.2.5)2.第二类边值问题()()|()p u f unϕΣΔ=−⎧⎪∂⎨=⎪∂⎩r r r 是下列问题的解:(5.2.15)00,)|0n Σ=r (5.2.16)5.2.9)可得第二类边值问题解00(,)()d ()(,)d G f V G SϕΣ+∫∫ r r r r r r (5.2.17)3.第三类边值问题()() []()p u f u u n αβϕΣΔ=−⎧⎪∂⎨+=⎪∂⎩r r r 是下列问题的解:(5.2.18)0(,)]0G G n βΣ∂+=∂r r (5.2.19)边值条件,两边同乘以格林函数G(5.2.19)的边值条件的两边同乘以函数u得[]0Gu G nαβΣ∂+=∂G ϕ[]()p uG u G nαβϕΣ∂+=∂r )得到第三类边值问题的解001,)()d ((,)d f V G S ϕβΣ+∫∫ r r r r)r r (5.2.20)格林函数的互易性则得到000001)()d ()(,)d 0f V G S ϕβΣ+∫∫r r r r r (5.2.21)这就是第三边值问题解的积分表示式.右边第一个积分表示区域T 中分布的源0()f r 在r点产生的场的总和.第二个积分则代表边界上的状况对r点场的影响的总和.两项积分中的格林函数相同.这说明泊松方程的格林函数是点源在一定的边界条件下所产生的对于拉普拉斯方程0()0f ≡r 第一边值问题的解为0000(,)()()]d G u S ϕΣ∂=−∂∫∫ r r r r n (5.2.22)第三边值问题的解为1()()(,)d u G S ϕβΣ=∫∫ r r r r (5.2.23)5.3 无界空间的格林函数基本解无界区域这种情形公式(5.2.10)中的面积分应为零,故有000()(,)()d T u G f V =∫∫∫r r r r (5.3.1)选取()u r 和0(,)G r r 分别满足下列方程()()u f Δ=−r r (5.3.2)00(,)(-)G δΔ=−r r r r (5.3.3)5.3.1 三维球对称对于三维球对称情形,我们选取00=r 对(5.3.3)式两边在球内积分)d V(5.3.4)T∫∫∫(5.3.5)5.1.1)得到2(,0)d (,0)d sin d d S S G G V G r r θθϕ∂⋅∇=∇⋅=∂∫∫∫∫ r r S (5.3.6)故有2sin d d (,0)d 1S T G r G V r θθϕ∂=Δ=−∂∫∫∫∫∫ r 使上式恒成立,有2(,0)4π1G r r∂=−∂r 14πcr=+0G →因此0c =,,故得到1(,0)4πG r=r对于三维无界球对称情形的格林函数可以选取为001(,)4π||G =−r r r r (5.3.7)代入(5.3.1)得到三维无界区域问题的解为0(5.3.8)上式正是我们所熟知的静电场的电位表达式5.3.2 二维轴对称情形用单位长的圆柱体来代替球.积分在单位长的圆柱体内进行,即(,0)d ()d TTG V VδΔ=−∫∫∫∫∫∫r r ()d 1V δ=∫∫∫r ,0)d (,0)d SV G =∇∫∫i r SG只是垂直于轴,且向外的分量,所以上式在圆柱体上、下底的面积分为零,只剩下沿侧面的积分,即d d ()d 1T Gr z V r ϕδ=−=−∫∫∫r选取的圆柱的高度为单位长,则很容易得到下面的结果12πG r r∂=−∂11(,0)ln 2πG c r =+r 令积分常数为0,得到11(,0)ln 2πG r=r 0011(,)ln 2π||G =−r r r r (5.3.9))代入式(5.3.1)得到二维无界区域的解为000011()()ln d 2π|S u f S |=−∫∫r r r r。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(14.2.12)
考虑到格林函数的齐次边界条件,由公式(14.2.9) 可得第一类边值问题的解
u (r0 ) G (r , r0 ) f (r )dV (r )
T
G (r , r0 ) n
dS
(14.2.13)
另一形式的第一类边值问题的解
u (r ) G (r , r0 ) f ( r0 )dV0 ( r0 )
T 中具有连续二阶导数,应用矢量分析的高斯定理
A S d
AdV =
T
divAdV (14.1.1)
T
单位时间内流体流过边界闭曲面S的流量
单位时间内V内各源头产生的流体的总量
将对曲面 的积分化为体积分
uv S uv )dV uvdV u vdV d (
T0
(14.3.1)
选取 u (r ) 和 G(r , r0 ) 分别满足下列方程
u (r ) f (r )
G(r , r0 ) (r - r0 )
(14.3.2) (14.3.3)
14.3.1 三维球对称
对于三维球对称情形,我们选取 对(14.3.3)式两边在球内积分
r0 0
(14.2.4)
(r r0 ) 代表三维空间变量的 函数,在直角坐标系中其形式为
(r r0 ) ( x x0 ) ( y y0 ) ( z z0 )
(14.2.4)式中
函数前取负号是为了以后构建格林函数方便
格林函数的物理意义【2】:在物体内部(T 内) r0 处放置一个单位点电荷,而该物体的界面保持电位为零, 那么 该点电荷在物体内产生的电势分布,就是定解问题(14.2.4)的解 ――格林函数.由此可以进一步理解通常人们为什么称格林函 数为点源函数.
G (r , r0 ) 1 4π | r r0 |
(14.3.7)
代入 (14.3.1)得到三维无界区域问题的解为
u (r )
4π
1
f (r0 ) | r r0 |
T0
dV0
(14.3.8)
上式正是我们所熟知的静电场的电位表达式
14.3.2 二维轴对称情形
用单位长的圆柱体来代替球.积分在单位长的圆柱体内进行,即
因为
T
G(r ,0)dV (r )dV
T
(r )dV 1
T
由于
G G r
T
G(r ,0)dV G(r ,0)dV G(r ,0) S d
T S
er , G
只是垂直于轴,且向外的分量,所以上式在
圆柱体上、下底的面积分为零,只剩下沿侧面的积分,即
T T T
(14.1.2)
以上用到公式 (uv) u v uv 称上式为第一格林公式.同理有
vu S vu )dV vudV v udV d (
T T T
(14.1.3)
上述两式相减得到
(uv vu ) S (uv vu )dV d
T
1
(r)G(r , r0 )dS
(14.2.20)
利用格林函数的互易性则得到
u (r )
T
G (r , r0 ) f (r0 )dV0
1
(r0 )G(r , r0 )dS0
(14.2.21)
这就是第三边值问题解的积分表示式.
右边第一个积分表示区域 T 中分布的源
T
r
r sin d d
2
(14.3.6)
故有
G
S
r
r sin d d G(r , 0)dV 1
2 T
使上式恒成立,有
4πr
2
G(r ,0) r
1
1
G (r , 0)
c
4πr
r , G 0 因此 c 0 ,故得到
对于三维无界球对称情形的格林函数可以选取为
f ( r0 )
在
r
点产生的场的总和. 第二个积分则代表边界上的状况对 r 点场的影响的总和.两项积分中的格林函数相同.这说明 泊松方程的格林函数是点源在一定的边界条件下所产生的 场.
对于拉普拉斯方程
第一边值问题的解为
f (r0 ) 0
u (r ) ( r0 )
G (r , r0 ) n 0
T
(14.2.7)
根据 函数性质有:
T
u (r ) (r r0 )]dV u (r0 )
(14.2.8)
故有
u (r0 ) G (r , r0 ) f (r )dV [G ( r , r0 )
T
u (r) n
u(r )
G (r , r0 ) n
T
进一步改写为
v n u n
(u
v
)dS (u v vu )dV
T
(14.1.4)
n
表示沿边界 的外法向偏导数.
称式(14.1.4)为第二格林公式.
14.2
泊松方程的格林函数法
讨论具有一定边界条件的泊松方程的定解问题.
泊松方程 边值条件
u (r ) f (r )
(14.2.18)
相应的格林函数
G (r , r0 )
是下列问题的解:
G ( r , r0 ) ( r - r0 ) [ G G ( r , r0 ) n ] 0
(14.2.19)
(14.2.18)的边值条件,两边同乘以格林函数 G
G[ u
[ u u n ] ( r )
(14.2.1) (14.2.2)
(r ) 是区域边界 上给定的函数.
是第一、第二、第三类边界条件的统一描述
典型的泊松方程(三维稳定分布)边值问题
u ( r ) f ( r ) u ] ( r ) [ u n
(14.3.4) (14.3.5)
T
G(r , 0)dV (r )dV
T
(r )dV 1
T
利用高斯定理(14.1.1)得到
G(r ,0)dV G(r ,0)dV G( r ,0) dS
T S
G
S
]dS
(14.2.9)
称式(14.2.9)为泊松方程的基本积分公式.
格林函数满足互易定理 并利用格林函数的对称性则得到
u (r ) G (r , r0 ) f (r0 )dV0 [G ( r , r0 )
T
u (r0 ) n0
u ( r0 )
G (r , r0 ) n 0
(14.2.3)
表示边界面 上沿界面外法线方向的偏导数 n
1.格林函数的引入及其物理意义
引入:为了求解定解问题(14.2.3),我们必须定义 一个与此定解问题相应的格林函数 G (r , r0 ) 它满足如下定解问题,边值条件可以是第一、二、三类 条件:
G ( r , r0 ) ( r r0 ) G ] 0 [ G n
r
G
rd dz (r )dV 1
T
选取的圆柱的高度为单位长,则很容易得到下面的结果
G r 1 2πr
G (r ,0)
G (r ,0)
1 2π 1 r
1 2π
ln
1 r
c
令积分常数为0,得到
ln
因此二维轴对称情形的格林函数为
G (r , r0 ) 1 2π ln 1 | r r0 |
为了满足边界条件:电势为零,所以还得在边界外像点 (或对称点)放置一个合适的负电荷,这样才能使这两个 电荷在界面上产生的电势之和为零
(u (r )
G n
G
u (r ) n
) dS (u ( r )G Gu ( r ))dV
T
(14.2.6)
即为 [G u u (r ) G ] dS (Gu (r ) u (r )G)dV n T n
[G ( f (r )) u (r ) (r r0 )]dV
第十四章
格林函数法
格林(Green)函数,又称为点源影响函数,是数学物理中
的一个重要概念.格林函数代表一个点源在一定的边界条件下和 初始条件下所产生的场.知道了点源的场,就可以用叠加的方法 计算出任意源所产生的场. 格林函数法是解数学物理方程的常用方法之一.
14.1 格林公式
u (r )和v (r ) 在区域 T 及其边界 上具有连续一阶导数,
]dS0
(14.2.10)
解的基本思想:通过上面解的形式(14.2.9)我们容易观
察出引用格林函数的目的:主要就是为了使一个非齐次方程 (14.2.1)与任意边值问题(14.2.2)所构成的定解问题转化为求解 一个特定的边值问题(14.2.4). 一般后者的解容易求得,通 (14.2.9)即可求出(14.2.1)和(14.2.2)定解问题的解.
定义 14.4.1 电像法
考虑一个具体的物理模型:设在一接地导体球内的
M0
点
放置一个单位正电荷,求在体内的电势分布,并满足边界条件为零
对于第一类边值问题,其格林函数可定义为下列定解问题的解
G (r , r0 ) (r - r0 ) G (r , r0 ) | 0