几个分形matlab实现

合集下载

matlab分形

matlab分形

尽管分形几何的提出只有三十年左右的时间, 但它已经在自然科学的各个领域如数学、物理、 化学、地理、天文、材料、生命乃至经济、社会、 艺术等极其广泛的领域有着广泛的应用。
这里以迭代的观点介绍分形的基本特性以及生 成分形图形的基本方法。

生成元产生的分形图形

由IFS(迭代函数系)所生成的分形图形
一、生成元产生的分形图形
经过计算,可以得到如下结论: 当 z0 [1.5,1.5] 时,z值始终不会超出某个范围; 而当 z0 小于-1.5或大于1.5后,z值最终将趋于无穷。
现在,我们把这个函数扩展到整个复数范围。对 于复数 z0 x iy ,取不同的x 值和y 值,函数迭代的 结果不一样:对于有些 z0 ,函数值约束在某一范围内; z0 而对于另一些 ,函数值则发散到无穷。由于复数对 应平面上的点,因此我们可以用一个平面图形来表示。 z 我们用深灰色表示不会使函数值趋于无穷的 对于其0 ; z0 它的 ,我们用不同的颜色来区别不同的发散速度。 | z | 2 由于当某个时候 时,函数值一定发散,因此这 里定义发散速度为:使|z|大于2的迭代次数越少,则 发散速度越快。编程画出这个图形。
该吸引子就是一个分形。 利用I FS迭代可以生成各种漂亮的分形图形,而 且I FS迭代的优点是程序具有通用性,要想得到不同 的分形图形,只需改变仿射变换中的系数和概率的 值即可。
Barnsley(巴斯理)羊齿叶
w a
1 2 3 4 0 0.85 0.2 -0.15
b
c
d
e
f
0 1.6 1.6 0.44
由生成元产生的分形是一种规则分形,是数学 家按一定规则构造出来的,相当于物理中的模型。 这类图形的构造方式都有一个共同的特点:

matlab混沌,分形

matlab混沌,分形

matlab混沌,分形对于函数f(x)=λsin(πx),λ∈(0,1],使⽤matlab计算随着λ逐渐增⼤,迭代x=f(x)的值,代码如下:function y=diedai(f,a,x1)N=32;y=zeros(N,1);for i=1:1e4x2=f(a,x1);x1=x2;y(mod(i,N)+1)=x2;endend%f=@(a,x)a*x*(1-x);f=@(a,x)a*sin(pi*x);%x0=0.1;hold on;for x0=-1:0.05:1for a=0:0.01:1y=diedai(f,a,x0);for count=1:32plot(a,y(count),'k.');hold on;endendend得到的图像如下:其中横轴为λ,纵轴为x可以看到随着λ的逐渐增⼤,出现了倍周期分叉的情况。

由图中可以看出第⼀个分叉值⼤约在0.3附近,第⼆个在0.73到0.75之间,第三个在0.8到0.85之间,混沌⼤约出现在0.86附近。

接下来编写代码计算分叉值,代码如下:format long;x0=0.1;for a=0.3182:0.0000001:0.3183y=diedai(f,a,x0);if max(y)>0.001disp(a);break;endend得到第⼀个分叉值⼤约为0.3182298format long;x0=0.1;for a=0.7199:0.000001:0.72y=diedai(f,a,x0);if max(y)-min(y)>0.001disp(a);break;endend得到第⼆个分叉值⼤约为0.719911format long;x0=0.1;for a=0.8332:0.000001:0.8333y=diedai(f,a,x0);if abs(y(32)-y(30))>0.001disp(a);break;endend得到第三个分叉值⼤约为0.833267利⽤Feigenbaum常数估计第三个分叉值,得到0.805939分形图周常青画mandelbrot分形图,主要使⽤了三个函数:iter=mandelbrot1(x0,y0,maxIter),⽤来计算迭代后是否收敛,⽅程z=z2+z0。

matlab多重分形谱算法

matlab多重分形谱算法

matlab多重分形谱算法
MATLAB中的多重分形谱算法是一种用于分析信号和图像的技术,它可以帮助我们理解复杂系统的结构和特征。

多重分形谱算法通常
用于测量信号或图像的分形维度,以及它们的分形特征。

下面我将
从多个角度来解释MATLAB中的多重分形谱算法。

首先,多重分形谱算法可以用于计算信号或图像的分形维度。

分形维度是一种描述信号或图像自相似性的度量,它可以帮助我们
理解信号或图像的复杂性和规律性。

在MATLAB中,我们可以使用多
重分形谱算法来计算信号或图像的分形维度,从而得到关于其结构
和特征的信息。

其次,多重分形谱算法可以用于分析信号或图像的分形特征。

通过计算信号或图像的分形谱,我们可以得到关于其分形特征的信息,比如分形维度的分布情况、分形特征的变化趋势等。

这些信息
可以帮助我们理解信号或图像的复杂性和规律性,从而为进一步的
分析和处理提供参考。

此外,MATLAB中的多重分形谱算法还可以用于处理不同类型的
信号和图像。

无论是一维的时间序列信号还是二维的图像数据,多
重分形谱算法都可以进行分形维度和分形特征的计算,从而帮助我们理解不同类型数据的结构和特征。

总的来说,MATLAB中的多重分形谱算法是一种强大的工具,可以帮助我们分析信号和图像的分形特征,从而揭示其复杂性和规律性。

通过对多重分形谱算法的理解和应用,我们可以更好地理解和处理各种类型的数据。

实验三MATLAB的图形功能于分形

实验三MATLAB的图形功能于分形
南 京 邮 电 大 学
Nanjing University of Posts and Telecommunications
用给定数据绘制三维曲面
在绘图数据已知的情况下, 可以利用mesh, surf 和surfl等函数分别绘制网格图, 刻面图和曲面图. 其中刻面图是用不同颜色对网格图中的单元进 行填充, 而曲面图是对刻面图的颜色进行了平滑 处理. 绘制三维曲面图可分为三个过程:
生成平面网格点数据; 计算三维网格点数据; 绘制三维曲面并进行处理
南 京 邮 电 大 学
Nanjing University of Posts and Telecommunications
Matlab在绘制函数z=f(x, y)的三维图形时,首 先将其定义域D分为若干个小矩形(或三角形), 然后计算出网格点上的函数值,最后连接相邻 的函数值空间数据并构成函数的网格曲面。我 们以矩形网格为例。
xmax], 或者x轴和y轴上的范围[xmin xmax ymin
ymax]. function必须是M文件函数的名称或句柄, 或者含 有变量x的字符串. LineSpec指定属性进行绘图.
南 京 邮 电 大 学
Nanjing University of Posts and Telecommunications
京 邮 电 大 学

Nanjing University of Posts and Telecommunications
Plot(X,Y) —— 最基本的二维图形命令
plot命令自动打开一个图形窗口Figure1
原理:
用直线连接相邻两数据点来绘制图形 根据图形坐标大小自动缩扩坐标轴,将数据标尺及单 位标注自动加到两个坐标轴上 使用方法:

几个分形的matlab实现资料

几个分形的matlab实现资料

几个分形的matlab 实现摘要:给出几个分形的实例,并用matlab 编程实现方便更好的理解分形,欣赏其带来的数学美感关键字:Koch 曲线 实验 图像一、问题描述:从一条直线段开始,将线段中间的三分之一部分用一个等边三角形的两边代替,形成山丘形图形如下图1在新的图形中,又将图中每一直线段中间的三分之一部分都用一个等边三角形的两条边代替,再次形成新的图形如此迭代,形成Koch 分形曲线。

二、算法分析:考虑由直线段(2个点)产生第一个图形(5个点)的过程。

图1中,设1P 和5P 分别为原始直线段的两个端点,现需要在直线段的中间依次插入三个点2P ,3P ,4P。

显然2P 位于线段三分之一处,4P 位于线段三分之二处,3P 点的位置可看成是由4P点以2P 点为轴心,逆时针旋转600而得。

旋转由正交矩阵 ⎪⎪⎪⎪⎭⎫ ⎝⎛-=)3cos()3sin()3sin()3cos(ππππA 实现。

算法根据初始数据(1P 和5P 点的坐标),产生图1中5个结点的坐标。

结点的坐标数组形成一个25⨯矩阵,矩阵的第一行为1P 的坐标,第二行为2P 的坐标……,第五行为5P 的坐标。

矩阵的第一列元素分别为5个结点的x 坐标,第二列元素分别为5个结点的y 坐标。

进一步考虑Koch 曲线形成过程中结点数目的变化规律。

设第k 次迭代产生的结点数为k n ,第1+k 次迭代产生的结点数为1+k n ,则k n 和1+k n 中间的递推关系为341-=+k k n n 。

三、实验程序及注释:p=[0 0;10 0]; %P为初始两个点的坐标,第一列为x坐标,第二列为y坐标n=2; %n为结点数A=[cos(pi/3) -sin(pi/3);sin(pi/3) cos(pi/3)]; %旋转矩阵for k=1:4d=diff(p)/3; %diff计算相邻两个点的坐标之差,得到相邻两点确定的向量%则d就计算出每个向量长度的三分之一,与题中将线段三等分对应 m=4*n-3; %迭代公式q=p(1:n-1,:); %以原点为起点,前n-1个点的坐标为终点形成向量p(5:4:m,:)=p(2:n,:); %迭代后处于4k+1位置上的点的坐标为迭代前的相应坐标 p(2:4:m,:)=q+d; %用向量方法计算迭代后处于4k+2位置上的点的坐标p(3:4:m,:)=q+d+d*A'; %用向量方法计算迭代后处于4k+3位置上的点的坐标p(4:4:m,:)=q+2*d; %用向量方法计算迭代后处于4k位置上的点的坐标n=m; %迭代后新的结点数目endplot(p(:,1),p(:,2)) %绘出每相邻两个点的连线axis([0 10 0 10])四、实验数据记录:由第三部分的程序,可得到如下的Koch分形曲线:图2五、注记:1.参照实验方法,可绘制如下生成元的Koch 分形曲线:图3此时,旋转矩阵为:⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎭⎫ ⎝⎛-=0110)2cos()2sin()2sin()2cos(ππππA 程序和曲线如下:p=[0 0;10 0]; %P 为初始两个点的坐标,第一列为x 坐标,第二列为y 坐标n=2; %n 为结点数A=[0 -1;1 0]; %旋转矩阵for k=1:4d=diff(p)/3; %diff 计算相邻两个点的坐标之差,得到相邻两点确定的向量%则d 就计算出每个向量长度的三分之一,与题中将线段三等分对应 m=5*n-4; %迭代公式q=p(1:n-1,:); %以原点为起点,前n-1个点的坐标为终点形成向量p(6:5:m,:)=p(2:n,:); %迭代后处于5k+1位置上的点的坐标为迭代前的相应坐标 p(2:5:m,:)=q+d; %用向量方法计算迭代后处于5k+2位置上的点的坐标 p(3:5:m,:)=q+d+d*A'; %用向量方法计算迭代后处于5k+3位置上的点的坐标 p(4:5:m,:)=q+2*d+d*A'; %用向量方法计算迭代后处于5k+4位置上的点的坐标 p(5:5:m,:)=q+2*d; %用向量方法计算迭代后处于5k 位置上的点的坐标n=m; %迭代后新的结点数目endplot(p(:,1),p(:,2)) %绘出每相邻两个点的连线axis([0 10 0 10])图4由于中间三分之一部分是一个正方形时,有很多连接的部分。

matlab圆等分坐标程序

matlab圆等分坐标程序

想在MATLAB中生成一个圆并将其等分,可以使用以下代码。

这个代码会创建一个单位圆并将其等分为16个部分。

% 参数
n = 16; % 等分的份数
% 生成单位圆
[theta,rho] = meshgrid(linspace(0,2*pi,n+1));
x = rho .* cos(theta);
y = rho .* sin(theta);
% 画图
figure;
plot(x,y);
axis equal; % 确保x和y轴的比例相等,这样才能画出一个完美的圆
在这个代码中,linspace(0,2*pi,n+1) 会生成一个从0到2π的等差数列,其包含n+1个元素,代表n+1个角度。

meshgrid 函数将这些角度和对应的半径映射到x和y轴上,形成了一个圆。

最后,使用plot 函数将这些坐标点画出来。

axis equal 确保了x和y轴的比例相等,从而使得画出的圆是完美的。

matlab用结构函数法计算分形维数程序__理论说明

matlab用结构函数法计算分形维数程序__理论说明

matlab用结构函数法计算分形维数程序理论说明1. 引言1.1 概述本文旨在介绍使用结构函数法计算分形维数的程序和相关理论。

分形维数是描述自然界和人工物体中不规则结构复杂程度的重要指标之一,它能够定量衡量对象的自相似性和尺度变换特征。

而结构函数法是一种计算分形维数的常用方法,它通过测量对象的尺度不变性来实现对分形维数的求解。

1.2 文章结构本文共分为四个部分;引言部分即本章首先对文章进行概述和简介;接着第二部分将介绍分形维数的基本概念以及与结构函数法计算之间的关系;第三部分将详细介绍如何在Matlab环境下使用结构函数法来计算分形维数,并给出具体示例数据和结果展示;最后,第四部分将给出总结,回顾研究目的,总结各种方法并展望改进和应用前景。

1.3 目的本文旨在向读者介绍使用Matlab编写程序进行结构函数法计算分形维数的方法,并通过具体数据案例展示其有效性。

通过本文的阅读,读者将了解到什么是分形维数以及在实际研究中如何使用结构函数法来计算分形维数。

同时,本文还将讨论该方法的优缺点,并探究其未来的应用前景和改进方向。

以上是关于“1. 引言”部分的详细内容,希望能对您撰写长文提供帮助。

2. 正文:2.1 分形维数的基本概念分形维数是描述分形对象复杂程度的重要指标。

分形是一类特殊的几何结构,具有自相似性和无限细节等特征。

分形维数通常用于量化描述分形对象的粗糙程度和层级结构。

2.2 结构函数法与分形维数计算的关系结构函数法是一种常用于计算分形维数的方法,其基本思想是通过结构函数来测量物体在不同尺度下的信息量。

结构函数可以通过计算物体上不同区域内对应尺度上像素值差异的平均值来得到。

分析这些差异可以揭示出物体在不同尺度下的内在结构规律,从而计算出其分形维数。

2.3 Matlab中使用结构函数法计算分形维数的程序步骤在Matlab中使用结构函数法计算分形维数需要以下步骤:步骤1: 读取并预处理图像或数据集。

首先将图像或数据集转换为灰度图像,并进行必要的预处理操作(如噪声去除、平滑等),以便更好地提取其结构信息。

MATLAB生成分形树

MATLAB生成分形树
1
p2
0.9
0.8
0.7
q2
0.6
q3 q1
0.5
0.4
0.3
0.2
0.1
0 -0.5
-0.4
-0.3-0.2-源自.10p10.1
0.2
0.3
0.4
0.5
分形树
MATLAB程序: • • • r(i,:)=q3;i=i+1; %矩阵r的第六行存储点q3 r(i,:)=q3;i=i+1; %矩阵r的第七行存储点q3 q4=q3+d*A;
levy曲线
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0.5
分形树
MATLAB程序:
• p=[0 0;0 10]; n=2; %初始节点为2
•plot(p(:,1),p(:,2), 'k'); •Hold on;%图形保持 •A=[cos(pi/6) -sin(pi/6);sin(pi/6) cos(pi/6)]; •for k=1:4 • i=1; • for j=1:2:n • p1=p(j,:);p2=p(j+1,:);
levy曲线
MATLAB程序: •r(i,:)=q1;i=i+1; • r(i,:)=q1;i=i+1; • r(i,:)=p2;i=i+1; • end •n=n*2;p=r; •end •for m=1:2:n • plot([p(m,1) p(m+1,1)],[p(m,2) p(m+1,2)],'k'); • hold on; •end •axis equal

傻瓜攻略(十九)——MATLAB实现SVM多分类

傻瓜攻略(十九)——MATLAB实现SVM多分类

傻瓜攻略(十九)——MATLAB实现SVM多分类SVM (Support Vector Machine) 是一种常用的机器学习算法,广泛应用于分类问题。

原始的 SVM 算法只适用于二分类问题,但是有时我们需要解决多分类问题。

本文将介绍如何使用 MATLAB 实现 SVM 多分类。

首先,我们需要明确一些基本概念。

在 SVM 中,我们需要对每个类别建立一个分类器,然后将未知样本进行分类。

这涉及到两个主要步骤:一对一(One-vs-One)分类和一对其他(One-vs-Rest)分类。

在一对一分类中,我们需要对每两个类别都建立一个分类器。

例如,如果有三个类别 A、B 和 C,那么我们需要建立三个分类器:A vs B, A vs C 和 B vs C。

然后,我们将未知样本进行分类,看它属于哪个类别。

在一对其他分类中,我们将一个类别看作是“正例”,而其他所有类别看作是“负例”。

例如,如果有三个类别 A、B 和 C,那么我们需要建立三个分类器:A vs rest, B vs rest 和 C vs rest。

然后,我们将未知样本进行分类,看它属于哪个类别。

接下来,我们将使用一个示例数据集来演示如何使用MATLAB实现SVM多分类。

我们将使用鸢尾花数据集,该数据集包含了三个类别的鸢尾花样本。

首先,我们需要加载数据集。

在 MATLAB 中,我们可以使用`load`函数加载内置的鸢尾花数据集。

代码如下所示:```load fisheriris```数据集加载完成后,我们可以查看数据集的结构。

在 MATLAB 中,我们可以使用`whos`函数查看当前工作空间中的变量。

代码如下所示:```whos``````X = meas;Y = species;```然后,我们可以使用`fitcecoc`函数构建一个多分类 SVM 模型。

`fitcecoc`函数可以自动选择最佳的核函数,并训练多个二分类器来实现多分类。

代码如下所示:```SVMModel = fitcecoc(X, Y);```训练完成后,我们可以使用`predict`函数对未知样本进行分类。

matlab多分类方法

matlab多分类方法

matlab多分类方法Matlab是一种常用的科学计算软件,广泛应用于工程、数学、物理等领域的数据分析和模型建立。

在机器学习中,多分类问题是一个重要的研究方向。

本文将介绍一些常用的Matlab多分类方法,并探讨它们的优缺点。

1. 逻辑回归(Logistic Regression)逻辑回归是一种广义线性模型,常用于解决二分类问题。

通过对输入数据进行线性组合并经过sigmoid函数映射(将输出限制在0到1之间),可以得到分类结果。

在Matlab中,可以使用fitglm函数实现逻辑回归,并利用分类评估指标(如准确率、查准率和查全率)来评估模型的性能。

2. 支持向量机(Support Vector Machine)支持向量机是一种常用的分类算法,在多分类问题中也有广泛的应用。

它通过找到一个最优超平面将不同类别的样本分开,从而实现分类。

在Matlab中,可以使用fitcecoc函数实现支持向量机的多分类,其中cecoc表示错误纠错输出码。

支持向量机在处理高维数据和非线性问题上表现较好,但对于大规模数据集可能计算复杂度较高。

3. 决策树(Decision Tree)决策树是一种基于树状结构的分类方法,通过一系列的特征判断逐步分类数据。

在Matlab中,可以使用fitctree函数实现决策树算法。

决策树易于理解和解释,但容易产生过拟合,并且对于噪声较大的数据可能不稳定。

4. 集成学习(Ensemble Learning)集成学习通过组合多个基分类器的预测结果,提高分类的准确性和鲁棒性。

常见的集成学习方法包括随机森林(Random Forest)和Adaboost。

在Matlab中,可以使用TreeBagger函数实现随机森林,在fitensemble函数中选择Adaboost算法。

集成学习适用于高维数据和复杂分类问题,能够有效地减少过拟合。

5. 神经网络(Neural Network)神经网络是一种模拟生物神经系统工作原理的机器学习算法。

分形插值算法和MATLAB实验分析

分形插值算法和MATLAB实验分析

一,分形插值算法——分形图的递归算法1,分形的定义分形(Fractal)一词,是法国人B.B.Mandelbrot 创造出来的,其原意包含了不规则、支离破碎等意思。

Mandelbrot 基于对不规则的几何对象长期地、系统地研究,于1973 年提出了分维数和分形几何的设想。

分形几何是一门以非规则几何形状为研究对象的几何学,用以描述自然界中普遍存在着的不规则对象。

分形几何有其显明的特征,一是自相似性;分形作为一个数学集合, 其内部具有精细结构, 即在所有比例尺度上其组成部分应包含整体, 而且彼此是相似的。

其定义有如下两种描述:定义 1如果一个集合在欧式空间中的 Hausdorff 维数H D 恒大于其拓扑维数r D ,则称该集合为分形集,简称分形。

定义 2组成部分以某种方式与整体相似的形体叫分形。

对于定义 1 的理解需要一定的数学基础,不仅要知道什么是Hausdorff 维数,而且要知道什么是拓扑维数,看起来很抽象,也不容易推广。

定义 2 比较笼统的说明了自然界中的物质只要局部和局部或者局部和整体之间存在自相似性,那么这个物质就是分形。

正是这一比较“模糊”的概念被人们普遍接受,同时也促进了分形的发展。

根据自相似性的程度,分形可分为有规分形和无规分形。

有规分形是指具有严格的自相似的分形,比如,三分康托集,Koch 曲线。

无规分形是指具有统计意义上的自相似性的分形,比如,曲折的海岸线,漂浮的云等。

本文主要研究有规分形。

2. 分形图的递归算法2.1 三分康托集1883 年,德国数学家康托(G.Cantor)提出了如今广为人知的三分康托集。

三分康托集是很容易构造的,然而,它却显示出许多最典型的分形特征。

它是从单位区间出发,再由这个区间不断地去掉部分子区间的过程构造出来的(如图2.1)。

其详细构造过程是:第一步,把闭区间[0,1]平均分为三段,去掉中间的 1/3 部分段,则只剩下两个闭区间[0,1/3]和[2/3,1]。

基于MATLAB实现分形图形的绘制论文

基于MATLAB实现分形图形的绘制论文

目录前言 (1)第一章 MATLAB介绍 (2)1.1 MATLAB简介 (2)1.2 MATLAB语言 (2)1.2.1 创建向量、向量元素的访问: (2)1.2.2 创建矩阵、矩阵元素的访问 (3)1.2.3 流程控制 (4)1.3 MATLAB语言的传统优点 (5)第二章分形入门知识 (6)2.1 分形理论 (6)2.2 分形几何观及其应用 (7)第三章 Koch雪花的绘制 (7)3.1 von Koch曲线简介 (8)3.2 Koch雪花算法设计 (8)第四章 Frac_tree绘制 (11)第五章 Mandelbort集的绘制 (12)5.1 Mandelbort集简介 (13)5.2 Mandelbort集算法设计 (13)第六章 Julia集的绘制 (17)6.1 Julia集简介 (18)6.2 Julia集的算法设计 (18)6.3 Julia集与Mandelbort集 (20)第七章花篮簇的绘制 (22)总结 (23)主要参考文献: (23)前言分形是描述不规则几何形态的有力工具。

不言而喻,不规则的几何形态在我们的周围处处可见,诸如花草、山脉、烟云、火焰等举目皆是。

至于微观世界的复杂物质结构,宏观世界浩瀚天体的演变,更展现出了层出不穷的不规则几何形态,它们往往都是分形几何的研究对象。

大自然向人类展示其美丽多变形态的同时,也提出了难以回答的询问:怎样描述复杂的自然表象?恰恰是分形几何学,它把自然形态看作是具有无限嵌套层次的精细结构,并且在不同的尺度下保持某种相似的属性,于是在变换与迭代中得到描述自然形态的有效方法。

分形的研究离不开计算机。

如果不是计算机图形图像处理功能的增强,不能想象怎样才能直观地看到Julia集和Mandelbort集的精细结构,更不能想象可以产生具有无限细结的自然景物和高度真实感的三维动画。

反过来,分形理论与方法又极大地丰富了计算机图形学内容,甚至分形的思想会在计算机科学的发展上产生一定的影响。

几个分形的matlab实现

几个分形的matlab实现

几个分形的matlab 实现摘要:给出几个分形的实例,并用matlab 编程实现方便更好的理解分形,欣赏其带来的数学美感关键字:Koch 曲线 实验 图像一、问题描述:从一条直线段开始,将线段中间的三分之一部分用一个等边三角形的两边代替,形成山丘形图形如下图1在新的图形中,又将图中每一直线段中间的三分之一部分都用一个等边三角形的两条边代替,再次形成新的图形如此迭代,形成Koch 分形曲线。

二、算法分析:考虑由直线段(2个点)产生第一个图形(5个点)的过程。

图1中,设1P 和5P 分别为原始直线段的两个端点,现需要在直线段的中间依次插入三个点2P ,3P ,4P 。

显然2P 位于线段三分之一处,4P 位于线段三分之二处,3P 点的位置可看成是由4P 点以2P 点为轴心,逆时针旋转600而得。

旋转由正交矩阵 ⎪⎪⎪⎪⎭⎫ ⎝⎛-=)3cos()3sin()3sin()3cos(ππππA 实现。

算法根据初始数据(1P 和5P 点的坐标),产生图1中5个结点的坐标。

结点的坐标数组形成一个25⨯矩阵,矩阵的第一行为1P 的坐标,第二行为2P 的坐标……,第五行为5P 的坐标。

矩阵的第一列元素分别为5个结点的x 坐标,第二列元素分别为5个结点的y 坐标。

进一步考虑Koch 曲线形成过程中结点数目的变化规律。

设第k 次迭代产生的结点数为k n ,第1+k 次迭代产生的结点数为1+k n ,则k n 和1+k n 中间的递推关系为341-=+k k n n 。

三、实验程序及注释:p=[0 0;10 0]; %P为初始两个点的坐标,第一列为x坐标,第二列为y坐标n=2; %n为结点数A=[cos(pi/3) -sin(pi/3);sin(pi/3) cos(pi/3)]; %旋转矩阵for k=1:4d=diff(p)/3; %diff计算相邻两个点的坐标之差,得到相邻两点确定的向量%则d就计算出每个向量长度的三分之一,与题中将线段三等分对应 m=4*n-3; %迭代公式q=p(1:n-1,:); %以原点为起点,前n-1个点的坐标为终点形成向量p(5:4:m,:)=p(2:n,:); %迭代后处于4k+1位置上的点的坐标为迭代前的相应坐标 p(2:4:m,:)=q+d; %用向量方法计算迭代后处于4k+2位置上的点的坐标p(3:4:m,:)=q+d+d*A'; %用向量方法计算迭代后处于4k+3位置上的点的坐标p(4:4:m,:)=q+2*d; %用向量方法计算迭代后处于4k位置上的点的坐标n=m; %迭代后新的结点数目endplot(p(:,1),p(:,2)) %绘出每相邻两个点的连线axis([0 10 0 10])四、实验数据记录:由第三部分的程序,可得到如下的Koch分形曲线:图2五、注记:1.参照实验方法,可绘制如下生成元的Koch 分形曲线:图3此时,旋转矩阵为:⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎭⎫ ⎝⎛-=0110)2cos()2sin()2sin()2cos(ππππA 程序和曲线如下:p=[0 0;10 0]; %P 为初始两个点的坐标,第一列为x 坐标,第二列为y 坐标n=2; %n 为结点数A=[0 -1;1 0]; %旋转矩阵for k=1:4d=diff(p)/3; %diff 计算相邻两个点的坐标之差,得到相邻两点确定的向量%则d 就计算出每个向量长度的三分之一,与题中将线段三等分对应 m=5*n-4; %迭代公式q=p(1:n-1,:); %以原点为起点,前n-1个点的坐标为终点形成向量p(6:5:m,:)=p(2:n,:); %迭代后处于5k+1位置上的点的坐标为迭代前的相应坐标 p(2:5:m,:)=q+d; %用向量方法计算迭代后处于5k+2位置上的点的坐标 p(3:5:m,:)=q+d+d*A'; %用向量方法计算迭代后处于5k+3位置上的点的坐标 p(4:5:m,:)=q+2*d+d*A'; %用向量方法计算迭代后处于5k+4位置上的点的坐标 p(5:5:m,:)=q+2*d; %用向量方法计算迭代后处于5k 位置上的点的坐标n=m; %迭代后新的结点数目endplot(p(:,1),p(:,2)) %绘出每相邻两个点的连线axis([0 10 0 10])图4由于中间三分之一部分是一个正方形时,有很多连接的部分。

matlab 几何体切割操作

matlab 几何体切割操作

matlab 几何体切割操作
MATLAB中可以使用几何体切割操作实现对几何体的分割和截取。

以下是一些常见的几何体切割操作:1. 切割平面:可以使用plane切割函数实现对三维几何体的切割。

例如,使用polyplane函数可以根据指定的平面参数切割一个多边形。

2. 体积分割:可以使用regiongrowing函数实现根据一组种子点将三维体积分割为不同的区域。

该函数根据种子点周围的灰度值将体积划分为不同的区域。

3. 点云分割:对于点云,可以使用pcl函数库中的函数实现点云的分割。

例如,使用pcl::EuclideanClusterExtraction函数可以将点云分割为多个聚类。

4. 相交检测:可以使用intersect函数检测两个几何体是否相交。

例如,intersect 函数可以检测两个多边形是否相交,并返回相交的部分。

这些都是MATLAB中常用的几何体切割操作。

具体的使用方法可以参考MATLAB的文档和示例。

几个分形的matlab实现(可编辑修改word版)

几个分形的matlab实现(可编辑修改word版)

三、实验程序及注释:p=[o 0:10 0]: 为初始两个点的坐标,第-列为X 坐标,第一列为y 坐标n=2;粒1为结点数A= [cos(pi/3) -sin(pi/3) :sin(pi/3) cos(pi/3)] : %旋转矩阵 for k=l:4d=diff(p)/3;算和邻两个点的坐标之差,得到相邻两点确定的向量%则<1就计算出毎个向量长度的三分之与题中将线段三等分对应 m=4*n-3;$迭代公式q=p(l:n-l,:);弔以原点为起点,前n-l 个点的坐标为终点形成向量p(5:4:m, :)=p(2:n,:);気迭代后处于4k+l 位置上的点的坐标为迭代前的和应坐标 p(2:4:m, :) =q+d: p(3:4:m, :〉=q+d+d*A'; p(4:4:m, :)=q+2*d; plot(p(:, l),p(:>2)) axis([0 10 0 10]) 四、实验数据记录: 由第三部分的程序,可得到如下的Koch 分形曲线:五、注记:1・参照实验方法,可绘制如下生成元的Koch 分形曲线:%用向量方法计算迭代后处于4k+2位置上的点的坐标■^6用向量方法计算迭代后处于低+3位置上的点的坐标 %用向量方法计算迭代后处于4k 位置上的点的坐标 %迭代后新的结点数目 n=m : end%绘出每相邻两个点的连线10■•・ ・・ ・■-------■RJ<7〜9 876 54323455769 10由于中间三分之一部分是一个正方形时,有很多连接的部分。

所以我们将髙度压缩到原来的0.7倍,即中间部分为一个长与宽之比为1:0.7的矩形时,得到程序和曲线如下: P=[o 0:10 0];为初始两个点的坐标,第•列为X 坐标,第一列为y 坐标此时,旋转矩阵为:A If os (亍)-sinQ)sin( ) cos(—)2 2丿程序和曲线如下:p=Eo o :io 0]; n=2;A=EO -1;1 0]; for k=l:4d=diff(p)/3;喙hff 计算和邻两个点的坐标之差,得到相邻两点确定的向量$则<1就计算出毎个向量长度的三分之与题中将线段三等分对应m=5*n-4; $迭代公式q=p(l:n-l, :) ; %以原点为起点,前n-l 个点的坐标为终点形成向量p(6:5:m, :) =p(2:n,:);p(2:5:m, :〉=q+d;p(3:5:m, :〉=q+d+d*A';%P 为初始两个点的坐标,第•列为X 坐标,第一列为y 坐标如为结点数 %旋转矩阵%迭代后处于5k-l 位置上的点的坐标为迭代前的相应坐标%用向量方法计算迭代后处于5k ・2位置上的点的坐标%用向量方法计算迭代后处于5k-3位置上的点的坐标p(4:5:m, :) =q+2*d+d*A';驚用向呈方法计算迭代后处于5k-4位置上的点的坐标 p(5:5:m, :)=q+2*d: n=m : end%用向量方法计算迭代后处于5k 位置上的点的坐标 %迭代后新的结点数目plot(p(:, l),p(:,2)) axis([0 10 0 10])%绘出每相邻两个点的连线n=2;$n 为结点数A=[0 -1;1 0]; 弔旋转矩阵 for k=l:4d=diff(p)/3;算和邻两个点的坐标之差,得到相邻两点确定的向量$则<1就计算出每个向量长度的三分之与题中将线段一等分对应 m=5*n-4; %迭代公式q=p(l:n-U :) ; %以原点为起点,前n-l 个点的坐标为终点形成向量p(6:5:m, :)=p(2:n, :); %迭代后处于5k-l 位置上的点的坐标为迭代前的和应坐标 p(2:5:m. :>=q+d;黑用向量方法计算迭代后处于3k ・2位置上的点的坐标p(3:5:m, :)=q+d+0. 7*d*A* ; %用向量方法计算迭代后处于3k+3位置上的点的坐标p(4:5:m, :)=q+2*d+0. 7*d*A* ;用向量方法计算迭代后处于5k+4位置上的点的坐标p(5:5:m, :〉=q+2*d; n=m : endplot(P(:, l),p(:>2)) axis([0 10 0 10])图52.参照实验方法,我们由四边形的四个初始点出发,对于四边形的每条边,生成元如下:%用向量力法计算迭代后处于5k 位a 上的点的坐标 %迭代后新的结点数目%绘小每相邻两个点的连线可得到火焰般的图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几个分形的matlab实现摘要:给出几个分形的实例,并用matlab编程实现方便更好的理解分形,欣赏其带来的数学美感关键字:Koch曲线实验图像一、问题描述:从一条直线段开始,将线段中间的三分之一部分用一个等边三角形的两边代替,形成山丘形图形如下图1在新的图形中,又将图中每一直线段中间的三分之一部分都用一个等边三角形的两条边代替,再次形成新的图形如此迭代,形成Koch分形曲线。

二、算法分析:考虑由直线段(2个点)产生第一个图形(5个点)的过程。

图1中,设1P和5P分别为原始直线段的两个端点,现需要在直线段的中间依次插入三个点2P,3P,4P。

显然2P位于线段三分之一处,4P位于线段三分之二处,3P点的位置可看成是由4P点以2P点为轴心,逆时针旋转600而得。

旋转由正交矩阵⎪⎪⎪⎪⎭⎫⎝⎛-=)3cos()3sin()3sin()3cos(ππππA实现。

算法根据初始数据(1P和5P点的坐标),产生图1中5个结点的坐标。

结点的坐标数组形成一个25⨯矩阵,矩阵的第一行为1P的坐标,第二行为2P的坐标……,第五行为5P的坐标。

矩阵的第一列元素分别为5个结点的x坐标,第二列元素分别为5个结点的y坐标。

进一步考虑Koch曲线形成过程中结点数目的变化规律。

设第k次迭代产生的结点数为kn,第1+k次迭代产生的结点数为1+kn,则kn和1+kn中间的递推关系为341-=+kknn。

三、实验程序及注释:p=[0 0;10 0]; %P为初始两个点的坐标,第一列为x坐标,第二列为y坐标n=2; %n为结点数A=[cos(pi/3) -sin(pi/3);sin(pi/3) cos(pi/3)]; %旋转矩阵for k=1:4d=diff(p)/3; %diff计算相邻两个点的坐标之差,得到相邻两点确定的向量%则d就计算出每个向量长度的三分之一,与题中将线段三等分对应 m=4*n-3; %迭代公式q=p(1:n-1,:); %以原点为起点,前n-1个点的坐标为终点形成向量p(5:4:m,:)=p(2:n,:); %迭代后处于4k+1位置上的点的坐标为迭代前的相应坐标 p(2:4:m,:)=q+d; %用向量方法计算迭代后处于4k+2位置上的点的坐标p(3:4:m,:)=q+d+d*A'; %用向量方法计算迭代后处于4k+3位置上的点的坐标p(4:4:m,:)=q+2*d; %用向量方法计算迭代后处于4k位置上的点的坐标n=m; %迭代后新的结点数目endplot(p(:,1),p(:,2)) %绘出每相邻两个点的连线axis([0 10 0 10])四、实验数据记录:由第三部分的程序,可得到如下的Koch分形曲线:图2五、注记:1.参照实验方法,可绘制如下生成元的Koch 分形曲线:图3此时,旋转矩阵为:⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎭⎫ ⎝⎛-=0110)2cos()2sin()2sin()2cos(ππππA 程序和曲线如下:p=[0 0;10 0]; %P 为初始两个点的坐标,第一列为x 坐标,第二列为y 坐标 n=2; %n 为结点数 A=[0 -1;1 0]; %旋转矩阵 for k=1:4d=diff(p)/3; %diff 计算相邻两个点的坐标之差,得到相邻两点确定的向量 %则d 就计算出每个向量长度的三分之一,与题中将线段三等分对应 m=5*n-4; %迭代公式q=p(1:n-1,:); %以原点为起点,前n-1个点的坐标为终点形成向量p(6:5:m,:)=p(2:n,:); %迭代后处于5k+1位置上的点的坐标为迭代前的相应坐标 p(2:5:m,:)=q+d; %用向量方法计算迭代后处于5k+2位置上的点的坐标 p(3:5:m,:)=q+d+d*A'; %用向量方法计算迭代后处于5k+3位置上的点的坐标 p(4:5:m,:)=q+2*d+d*A'; %用向量方法计算迭代后处于5k+4位置上的点的坐标 p(5:5:m,:)=q+2*d; %用向量方法计算迭代后处于5k 位置上的点的坐标 n=m; %迭代后新的结点数目 endplot(p(:,1),p(:,2)) %绘出每相邻两个点的连线 axis([0 10 0 10])图4由于中间三分之一部分是一个正方形时,有很多连接的部分。

所以我们将高度压缩到原来的0.7倍,即中间部分为一个长与宽之比为1:0.7的矩形时,得到程序和曲线如下:p=[0 0;10 0]; %P 为初始两个点的坐标,第一列为x 坐标,第二列为y 坐标 n=2; %n 为结点数A=[0 -1;1 0]; %旋转矩阵for k=1:4d=diff(p)/3; %diff计算相邻两个点的坐标之差,得到相邻两点确定的向量%则d就计算出每个向量长度的三分之一,与题中将线段三等分对应m=5*n-4; %迭代公式q=p(1:n-1,:); %以原点为起点,前n-1个点的坐标为终点形成向量p(6:5:m,:)=p(2:n,:); %迭代后处于5k+1位置上的点的坐标为迭代前的相应坐标p(2:5:m,:)=q+d; %用向量方法计算迭代后处于5k+2位置上的点的坐标p(3:5:m,:)=q+d+0.7*d*A'; %用向量方法计算迭代后处于5k+3位置上的点的坐标p(4:5:m,:)=q+2*d+0.7*d*A'; %用向量方法计算迭代后处于5k+4位置上的点的坐标p(5:5:m,:)=q+2*d; %用向量方法计算迭代后处于5k位置上的点的坐标n=m; %迭代后新的结点数目endplot(p(:,1),p(:,2)) %绘出每相邻两个点的连线axis([0 10 0 10])图52.参照实验方法,我们由四边形的四个初始点出发,对于四边形的每条边,生成元如下:图6可得到火焰般的图形。

程序和曲线如下:p=[0 10;10 0;0 -10;-10 0;0 10];%P为四边形四个顶点的坐标,其中第五个点与第一个点重合,以便于绘图%第一列为x坐标,第二列为y坐标n=5; %n为结点数A=[cos(-pi/3) -sin(-pi/3);sin(-pi/3) cos(-pi/3)]; %旋转矩阵,顺时针旋转60度for k=1:5d=diff(p)/3;m=4*n-3; %迭代公式q=p(1:n-1,:);p(5:4:m,:)=p(2:n,:);p(2:4:m,:)=q+d;p(3:4:m,:)=q+2*d+d*A';p(4:4:m,:)=q+2*d;n=m;endplot(p(:,1),p(:,2))axis([-10 10 -10 10])图73.参照实验方法,由下列的生成元,绘制Koch分形曲线:图8分析:为了绘图方便,我们将结点数处理一下,把第一次迭代产生的六个点看成十个点,即图中有五条线段(1-2,3-4,5-6,7-8,9-10),我们将每条线段的每个端点看成新的两个结点,这样我们就可以很方便地用plot绘图了。

程序和曲线如下:p=[0 0;10 10]; %P为初始两个点的坐标,第一列为x坐标,第二列为y坐标n=2; %n为结点数A=[cos(pi/3) -sin(pi/3);sin(pi/3) cos(pi/3)];B=[cos(-pi/3) -sin(-pi/3);sin(-pi/3) cos(-pi/3)];%旋转矩阵A对应于第一次逆时针旋转60度,旋转矩阵B对应于第二次顺时针旋转60度for k=1:4d=diff(p)/3;d1=d(1:2:n,:);%取每条线段对应的向量m=5*n; %迭代公式q1=p(1:2:n-1,:);p(10:10:m,:)=p(2:2:n,:);p(1:10:m,:)=p(1:2:n,:); %迭代后处于10k与10k+1位置上的点的坐标为迭代前的相应坐标p(2:10:m,:)=q1+d1;%用向量方法计算迭代后处于10k+2,10k+3,10k+5位置上的点的坐标,都相同p(3:10:m,:)=p(2:10:m,:);p(4:10:m,:)=q1+d1+d1*A'; %用向量方法计算迭代后处于10k+4位置上的点的坐标p(5:10:m,:)=p(2:10:m,:);p(6:10:m,:)=q1+2*d1;%用向量方法计算迭代后处于10k+6,10k+7,10k+9位置上的点的坐标,都相同p(7:10:m,:)=p(6:10:m,:);p(8:10:m,:)=q1+2*d1+d1*B';p(9:10:m,:)=p(6:10:m,:);n=m; %迭代后新的结点数目endplot(p(:,1),p(:,2)) %绘出每相邻两个点的连线axis([0 10 0 10])六,结束语通过图形显示,更好的理解的分形同时也也加深对分形概念的进一步掌握参考文献:<<matlab从精通到入门>>。

相关文档
最新文档