分形树__Matlab

合集下载

Matlab实验报告:分形迭代

Matlab实验报告:分形迭代

数学实验报告:分形迭代练习11.实验目的:绘制分形图案并分析其特点。

2.实验内容:绘制Koch曲线、Sierpinski三角形和树木花草图形,观察这些图形的局部和原来分形图形的关系。

3.实验思路:利用函数反复调用自己来模拟分形构造时的迭代过程,当迭代指标n为0时运行作图操作,否则继续迭代。

4.实验步骤:(1)Koch曲线function koch(p,q,n) % p、q分别为koch曲线的始末复坐标,n为迭代次数if (n==0)plot([real(p);real(q)],[imag(p);imag(q)]);hold on;axis equalelsea=(2*p+q)/3; % 求出从p 到q 的1/3 处端点ab=(p+2*q)/3; % 求出从p 到q 的2/3 处端点bc=a+(b-a)*exp(pi*i/3);%koch(p, a, n-1); % 对pa 线段做下一回合koch(a, c, n-1); % 对ac 线段做下一回合koch(c, b, n-1); % 对cb 线段做下一回合koch(b, q, n-1); % 对bq 线段做下一回合end(2)Sierpinski三角形function sierpinski(a,b,c,n) % a、b、c为三角形顶点,n为迭代次数if (n==0)fill([real(a) real(b) real(c)],[imag(a) imag(b) imag(c)],'b');% 填充三角形abchold on;axis equalelsea1=(b+c)/2;b1=(a+c)/2;c1=(a+b)/2;sierpinski(a,b1,c1,n-1);sierpinski(a1,b,c1,n-1);sierpinski(a1,b1,c,n-1);end(3)树木花草function grasstree(p,q,n) % p、q分别为树木花草始末复坐标,n为迭代次数plot([real(p);real(q)],[imag(p);imag(q)]);hold on;axis equalif(n>0)a=(2*p+q)/3;b=(p+2*q)/3;c=a+(b-a)*exp(pi*i/6);%d=b+(q-b)*exp(-pi*i/6);%grasstree(a,c,n-1);grasstree(b,d,n-1);endend5.主要输出:指令:koch(0,1,5); soerpinski(0,1,exp(pi*i/3),5); grasstree(0,i,5);Koch曲线Sierpinski三角形树木花草6.实验结论:以上图案的局部形状与原本图形用某种自相似性,这正是分形的特点。

matlab混沌,分形

matlab混沌,分形

matlab混沌,分形对于函数f(x)=λsin(πx),λ∈(0,1],使⽤matlab计算随着λ逐渐增⼤,迭代x=f(x)的值,代码如下:function y=diedai(f,a,x1)N=32;y=zeros(N,1);for i=1:1e4x2=f(a,x1);x1=x2;y(mod(i,N)+1)=x2;endend%f=@(a,x)a*x*(1-x);f=@(a,x)a*sin(pi*x);%x0=0.1;hold on;for x0=-1:0.05:1for a=0:0.01:1y=diedai(f,a,x0);for count=1:32plot(a,y(count),'k.');hold on;endendend得到的图像如下:其中横轴为λ,纵轴为x可以看到随着λ的逐渐增⼤,出现了倍周期分叉的情况。

由图中可以看出第⼀个分叉值⼤约在0.3附近,第⼆个在0.73到0.75之间,第三个在0.8到0.85之间,混沌⼤约出现在0.86附近。

接下来编写代码计算分叉值,代码如下:format long;x0=0.1;for a=0.3182:0.0000001:0.3183y=diedai(f,a,x0);if max(y)>0.001disp(a);break;endend得到第⼀个分叉值⼤约为0.3182298format long;x0=0.1;for a=0.7199:0.000001:0.72y=diedai(f,a,x0);if max(y)-min(y)>0.001disp(a);break;endend得到第⼆个分叉值⼤约为0.719911format long;x0=0.1;for a=0.8332:0.000001:0.8333y=diedai(f,a,x0);if abs(y(32)-y(30))>0.001disp(a);break;endend得到第三个分叉值⼤约为0.833267利⽤Feigenbaum常数估计第三个分叉值,得到0.805939分形图周常青画mandelbrot分形图,主要使⽤了三个函数:iter=mandelbrot1(x0,y0,maxIter),⽤来计算迭代后是否收敛,⽅程z=z2+z0。

matlab的fraclab计算

matlab的fraclab计算

一、概述计算作为现代科学技术的重要工具,在各个领域有着广泛的应用。

而MATLAB作为一种基于矩阵运算的高级技术计算语言,在科学计算和工程领域也有着非常广泛的应用。

而fraclab作为MATLAB中扩展性工具箱的一种,是专门用于分形计算的工具,它能够方便地进行分形维度、分形谱等方面的计算。

二、fraclab简介1. fraclab是什么?fraclab是一个MATLAB的扩展工具箱,它专门用于分形计算。

其中包含了一系列用于计算分形维度、分形谱以及进行分形图形生成等功能的函数。

2. fraclab的优势- 方便快捷:fraclab提供了一系列方便快捷的函数,能够帮助用户轻松地进行分形计算。

- 多功能性:fraclab不仅仅可以用于计算分形维度和分形谱,还能够用于生成分形图形,对于分形研究来说颇具实用性。

三、fraclab的基本运用1. 分形维度的计算- 使用fraclab中的函数,可以很容易地计算出给定分形结构的分形维度,这对于分形结构的研究和分析有着很大的帮助。

- 可以使用boxcount函数来计算分形维度,只需输入相应的分形结构,即可得到相应的分形维度。

2. 分形谱的计算- fraclab还能够帮助用户计算分形谱,这对于分形图像的分析和特征提取有着很大的作用。

- 通过使用fraclab中的相应函数,可以得到给定分形图像的分形谱,并从中获取有用的信息。

3. 分形图形的生成- fraclab不仅可以用于分形特征的计算,还能够帮助用户生成分形图形,这对于分形算法的验证和实验有着很大的帮助。

- 用户只需要使用fraclab中的相应函数,就可以方便地生成各种形式的分形图形,验证自己的分形算法。

四、fraclab在科学研究中的应用1. 地质学领域- 在地震波形分析中,常常会涉及到地质中的分形结构,而fraclab提供了一系列的功能,方便地进行地震波形的分形维度和分形谱的计算,以及分形图形的生成,对于地震波形的分析具有很大的帮助。

几个分形的matlab实现资料

几个分形的matlab实现资料

几个分形的matlab 实现摘要:给出几个分形的实例,并用matlab 编程实现方便更好的理解分形,欣赏其带来的数学美感关键字:Koch 曲线 实验 图像一、问题描述:从一条直线段开始,将线段中间的三分之一部分用一个等边三角形的两边代替,形成山丘形图形如下图1在新的图形中,又将图中每一直线段中间的三分之一部分都用一个等边三角形的两条边代替,再次形成新的图形如此迭代,形成Koch 分形曲线。

二、算法分析:考虑由直线段(2个点)产生第一个图形(5个点)的过程。

图1中,设1P 和5P 分别为原始直线段的两个端点,现需要在直线段的中间依次插入三个点2P ,3P ,4P。

显然2P 位于线段三分之一处,4P 位于线段三分之二处,3P 点的位置可看成是由4P点以2P 点为轴心,逆时针旋转600而得。

旋转由正交矩阵 ⎪⎪⎪⎪⎭⎫ ⎝⎛-=)3cos()3sin()3sin()3cos(ππππA 实现。

算法根据初始数据(1P 和5P 点的坐标),产生图1中5个结点的坐标。

结点的坐标数组形成一个25⨯矩阵,矩阵的第一行为1P 的坐标,第二行为2P 的坐标……,第五行为5P 的坐标。

矩阵的第一列元素分别为5个结点的x 坐标,第二列元素分别为5个结点的y 坐标。

进一步考虑Koch 曲线形成过程中结点数目的变化规律。

设第k 次迭代产生的结点数为k n ,第1+k 次迭代产生的结点数为1+k n ,则k n 和1+k n 中间的递推关系为341-=+k k n n 。

三、实验程序及注释:p=[0 0;10 0]; %P为初始两个点的坐标,第一列为x坐标,第二列为y坐标n=2; %n为结点数A=[cos(pi/3) -sin(pi/3);sin(pi/3) cos(pi/3)]; %旋转矩阵for k=1:4d=diff(p)/3; %diff计算相邻两个点的坐标之差,得到相邻两点确定的向量%则d就计算出每个向量长度的三分之一,与题中将线段三等分对应 m=4*n-3; %迭代公式q=p(1:n-1,:); %以原点为起点,前n-1个点的坐标为终点形成向量p(5:4:m,:)=p(2:n,:); %迭代后处于4k+1位置上的点的坐标为迭代前的相应坐标 p(2:4:m,:)=q+d; %用向量方法计算迭代后处于4k+2位置上的点的坐标p(3:4:m,:)=q+d+d*A'; %用向量方法计算迭代后处于4k+3位置上的点的坐标p(4:4:m,:)=q+2*d; %用向量方法计算迭代后处于4k位置上的点的坐标n=m; %迭代后新的结点数目endplot(p(:,1),p(:,2)) %绘出每相邻两个点的连线axis([0 10 0 10])四、实验数据记录:由第三部分的程序,可得到如下的Koch分形曲线:图2五、注记:1.参照实验方法,可绘制如下生成元的Koch 分形曲线:图3此时,旋转矩阵为:⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎭⎫ ⎝⎛-=0110)2cos()2sin()2sin()2cos(ππππA 程序和曲线如下:p=[0 0;10 0]; %P 为初始两个点的坐标,第一列为x 坐标,第二列为y 坐标n=2; %n 为结点数A=[0 -1;1 0]; %旋转矩阵for k=1:4d=diff(p)/3; %diff 计算相邻两个点的坐标之差,得到相邻两点确定的向量%则d 就计算出每个向量长度的三分之一,与题中将线段三等分对应 m=5*n-4; %迭代公式q=p(1:n-1,:); %以原点为起点,前n-1个点的坐标为终点形成向量p(6:5:m,:)=p(2:n,:); %迭代后处于5k+1位置上的点的坐标为迭代前的相应坐标 p(2:5:m,:)=q+d; %用向量方法计算迭代后处于5k+2位置上的点的坐标 p(3:5:m,:)=q+d+d*A'; %用向量方法计算迭代后处于5k+3位置上的点的坐标 p(4:5:m,:)=q+2*d+d*A'; %用向量方法计算迭代后处于5k+4位置上的点的坐标 p(5:5:m,:)=q+2*d; %用向量方法计算迭代后处于5k 位置上的点的坐标n=m; %迭代后新的结点数目endplot(p(:,1),p(:,2)) %绘出每相邻两个点的连线axis([0 10 0 10])图4由于中间三分之一部分是一个正方形时,有很多连接的部分。

分形维数--matlab

分形维数--matlab

一维曲线分形维数的matlab程序function D=FractalDim(y,cellmax)%求输入一维信号的计盒分形维数%y是一维信号%cellmax:方格子的最大边长,可以取2的偶数次幂次(1,2,4,8...),取大于数据长度的偶数%D是y的计盒维数(一般情况下D>=1),D=lim(log(N(e))/log(k/e)),if cellmax<length(y)error('cellmax must be larger than input signal!')endL=length(y);%输入样点的个数y_min=min(y);%移位操作,将y_min移到坐标0点y_shift=y-y_min;%重采样,使总点数等于cellmax+1x_ord=[0:L-1]./(L-1);xx_ord=[0:cellmax]./(cellmax);y_interp=interp1(x_ord,y_shift,xx_ord);%按比例缩放y,使最大值为2^^cys_max=max(y_interp);factory=cellmax/ys_max;yy=abs(y_interp*factory);t=log2(cellmax)+1;%叠代次数for e=1:tNe=0;%累积覆盖信号的格子的总数cellsize=2^(e-1);%每次的格子大小NumSeg(e)=cellmax/cellsize;%横轴划分成的段数for j=1:NumSeg(e) %由横轴第一个段起通过计算纵轴跨越的格子数累积N(e)begin=cellsize*(j-1)+1;%每一段的起始tail=cellsize*j+1;seg=[begin:tail];%段坐标yy_max=max(yy(seg));yy_min=min(yy(seg));up=ceil(yy_max/cellsize);down=floor(yy_min/cellsize);Ns=up-down;% 本段曲线占有的格子数Ne=Ne+Ns;%累加每一段覆盖曲线的格子数endN(e)=Ne;%记录每e下的N(e)end%对log(N(e))和log(k/e)进行最小二乘的一次曲线拟合,斜率就是Dr=-diff(log2(N));%去掉r超过2和小于1的野点数据id=find(r<=2&r>=1);%保留的数据点Ne=N(id);e=NumSeg(id);P=polyfit(log2(e),log2(Ne),1);%一次曲线拟合返回斜率和截距D=P(1);。

matlab用结构函数法计算分形维数程序__理论说明

matlab用结构函数法计算分形维数程序__理论说明

matlab用结构函数法计算分形维数程序理论说明1. 引言1.1 概述本文旨在介绍使用结构函数法计算分形维数的程序和相关理论。

分形维数是描述自然界和人工物体中不规则结构复杂程度的重要指标之一,它能够定量衡量对象的自相似性和尺度变换特征。

而结构函数法是一种计算分形维数的常用方法,它通过测量对象的尺度不变性来实现对分形维数的求解。

1.2 文章结构本文共分为四个部分;引言部分即本章首先对文章进行概述和简介;接着第二部分将介绍分形维数的基本概念以及与结构函数法计算之间的关系;第三部分将详细介绍如何在Matlab环境下使用结构函数法来计算分形维数,并给出具体示例数据和结果展示;最后,第四部分将给出总结,回顾研究目的,总结各种方法并展望改进和应用前景。

1.3 目的本文旨在向读者介绍使用Matlab编写程序进行结构函数法计算分形维数的方法,并通过具体数据案例展示其有效性。

通过本文的阅读,读者将了解到什么是分形维数以及在实际研究中如何使用结构函数法来计算分形维数。

同时,本文还将讨论该方法的优缺点,并探究其未来的应用前景和改进方向。

以上是关于“1. 引言”部分的详细内容,希望能对您撰写长文提供帮助。

2. 正文:2.1 分形维数的基本概念分形维数是描述分形对象复杂程度的重要指标。

分形是一类特殊的几何结构,具有自相似性和无限细节等特征。

分形维数通常用于量化描述分形对象的粗糙程度和层级结构。

2.2 结构函数法与分形维数计算的关系结构函数法是一种常用于计算分形维数的方法,其基本思想是通过结构函数来测量物体在不同尺度下的信息量。

结构函数可以通过计算物体上不同区域内对应尺度上像素值差异的平均值来得到。

分析这些差异可以揭示出物体在不同尺度下的内在结构规律,从而计算出其分形维数。

2.3 Matlab中使用结构函数法计算分形维数的程序步骤在Matlab中使用结构函数法计算分形维数需要以下步骤:步骤1: 读取并预处理图像或数据集。

首先将图像或数据集转换为灰度图像,并进行必要的预处理操作(如噪声去除、平滑等),以便更好地提取其结构信息。

分形曲线及matlable算法

分形曲线及matlable算法

分形曲线及matlable算法0 koch分形曲线在线演示从一条直线段开始,将线段中间的三分之一部分用一个等边三角形的两边代替,形成山丘形图形如下在新的图形中,又将图中每一直线段中间的三分之一部分都用一个等边三角形的两条边代替,再次形成新的图形如此迭代,形成koch 分形曲线。

算法分析:由一条线段产生四条线段,故算法中由n 条线段迭代一次后将产生 4n 条线段。

算法针对每一条线段逐步进行,将计算新的三个点。

第一个点位于线段三分之一处,第三个点位于线段三分之二处,第二个点以第一个点为轴心,将第一和第三个点形成的向量正向旋转 60 0 而得。

正向旋转由正交矩阵实现。

MATLAB 程序如下clearp=[0 0;10 0];n=1;A=[cos(pi/3) -sin(pi/3);sin(pi/3) cos(pi/3)];for k=1:5j=0;for i=1:nq1=p(i,:);q2=p(i+1,:);d=(q2-q1)/3;j=j+1;r(j,:)=q1;j=j+1;r(j,:)=q1+d;j=j+1;r(j,:)=q1+d+d*A';j=j+1;r(j,:)=q1+2*d;endn=4*n;clear pp=[r;q2];endplot(p(:,1),p(:,2))koch分形图片flash制作源代码第一祯die=4;bi=1color=0x000000alpha=100stop();第二祯_root.createEmptyMovieClip("koch",1); a=new Array(1025); b=new Array(1025);c=new Array(1025);d=new Array(1025);l=0;n=1;a[1]=100;b[1]=200;a[2]=500;b[2]=200;c[1]=100;d[1]=200;c[2]=500;d[2]=200;for(m=1;m<=die;m++){j=0;with(_root.koch){for(k=1;k<=n;k++){x1=c[k];y1=d[k];x2=c[k+1];y2=d[k+1];j=j+1;a[j]=x1;b[j]=y1;j=j+1;a[j]=x1+(x2-x1)/3;b[j]=y1+(y2-y1)/3;j=j+1;a[j]=x1+(x2-x1)/3+((x2-x1)/3)*Math.cos(Math.PI/3)-((y2-y1)/3)*Math.sin(Math.PI/3); b[j]=y1+(y2-y1)/3+((x2-x1)/3)*Math.sin(Math.PI/3)+((y2-y1)/3)*Math.cos(Math.PI/3);j=j+1;a[j]=x1+2*(x2-x1)/3;b[j]=y1+2*(y2-y1)/3;j=j+1;a[j]=x2;b[j]=y2;l=j;}for(j=1;j<l;j++)< bdsfid="152" p=""></l;j++)<>{if(a[j]==a[j+1]&&b[j]==b[j+1]){ g=j;for(;j<l;j++)< bdsfid="156" p=""></l;j++)<>{a[j]=a[j+1];b[j]=b[j+1];}j=g+1;}}y=l;for(f=1;f<=y;f++){c[f]=a[f];d[f]=b[f];}}n=4*n;}第三祯//k1=1;i=1;_root.koch.onEnterFrame=function() {with(_root.koch){ //for(;i<=k1*10&&i<=y;) {lineStyle(bi,color,alpha);moveTo(c[i-1],450-d[i-1]);lineTo(c[i],450-d[i]);trace(i-1);trace(d[i-1]);i++;}//k1++;if(i>=y){delete _root.koch.onEnterFrame;}}}第四祯_root.koch.clear();stop();1 矩形分形曲线1在线演示顶部从一条直线段开始,将线段中间的三分之一部分用一个正方形的三边代替,形成几字形图形如下在新的图形中,又将图中每一直线段中间的三分之一部分都用一个正方形的三边代替替,再次形成新的图形如此迭代,形成矩形分形曲线 1 。

最小生成树matlab代码

最小生成树matlab代码

最小生成树matlab代码在Matlab中,最小生成树可以通过Kruskal算法和Prim算法来实现。

本文将分别介绍两种算法的代码实现,并对其进行详细解析。

Kruskal算法Kruskal算法是基于贪心算法的最小生成树算法。

其基本思想是将边按照权值从小到大进行排序,然后逐个加入到树中,直到树连通为止。

如果加入一条边使得形成环,则不加入该边。

定义一个函数Kruskal(weight,n)来实现Kruskal算法。

参数weight是一个n*n的矩阵,表示图的邻接矩阵;n表示图中节点的个数。

该函数的返回值为最小生成树的边集。

function edges=Kruskal(weight,n)%初始化[rows,cols,vals]=find(weight);edge_num=length(rows);%边数edges=zeros(n-1,2);%初始化,存放最小生成树的边%边按照权重从小到大排序[~,idx]=sort(vals);rows=rows(idx);cols=cols(idx);%初始化并查集par=1:n;rank=zeros(1,n);%依次加入边n_edge=0;%表示已加入的边数for i=1:edge_num%如果两个节点已经在同一连通块中,则不能加入当前边if FindPar(par,rows(i))==FindPar(par,cols(i))continue;end%将当前边加入到最小生成树中n_edge=n_edge+1;edges(n_edge,:)=[rows(i),cols(i)];%将两个节点合并Union(par,rank,rows(i),cols(i));%如果当前已经加入足够的边,则退出循环if n_edge==n-1break;endendFindPar函数和Union函数是实现并查集的两个函数,用于判断是否形成环以及将两个节点合并。

具体代码如下:%查找节点的祖先function par=FindPar(par,idx)if par(idx)==idxpar=idx;elsepar=FindPar(par,par(idx));end%将两个节点合并function Union(par,rank,x,y)x_par=FindPar(par,x);y_par=FindPar(par,y);if rank(x_par)>rank(y_par)par(y_par)=x_par;elsepar(x_par)=y_par;if rank(x_par)==rank(y_par)rank(y_par)=rank(y_par)+1;endendPrim算法Prim算法也是一种贪心算法,基本思想是从任意一个点开始,找到与该点相邻的最短边,然后将这个边连接的点加入到集合中,继续寻找与该集合相邻的最短边。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

%这是一个生成树的主函数,它的输入分别为每叉树枝的缩短比、树枝的偏角、生长次数. %注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!!
%注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!!
%注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!!
%注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!!
%注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!!
%注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!!
%注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!!
%%小提示:若用做函数,请将虚线框内语句删去。

function f=tree(w,dtheata,NN)
%%%--------------------虚线框--------------------%%%
clear;clc;clf;w=0.8;dtheata=pi/6;NN=8;%建议生长次数NN不要超过10
%%%--------------------虚线框--------------------%%%
n=2^NN;%从主枝算起,共需生成2^NN个树枝
for NNK=1:n
x1=0;
y1=0;
r1=1;
theata1=pi/2;
dataway=ten2twoN(NNK,NN); %把每一个树枝的编号转化为一个NN位的二进制数
for NNL=1:NN
if dataway(NNL)==0
[x2,y2,r2,theata2]=antmoveleft(x1,y1,r1,theata1,w,dtheata);%若路径数组上对应的数字为0,则向左生长
x1=x2;
y1=y2;
r1=r2;
theata1=theata2;
hold on
%pause(eps)
else
[x2,y2,r2,theata2]=antmoveright(x1,y1,r1,theata1,w,dtheata);%否则,数字为1,向右生长
x1=x2;
y1=y2;
r1=r2;
theata1=theata2;
hold on
%pause(eps)
end
end
end
hold off
%--------------------------------------------------------------------------
%这是一个十进制转换为二进制的函数,适用于正整数
function yushu=ten2two(x)
yushu=[];
shang=2;
if x==1
yushu=[1];
else
while shang>1
shang=fix(x/2);
yushu=[mod(x,2),yushu];
x=shang;
end
yushu=[1,yushu];
end
%-------------------------------------------------------------------------- %该函数的功能是将十进制转化为指定位数(NN)的二进制数
function dataway=ten2twoN(NNK,NN);
dataway=ten2two(NNK);
[a,b]=size(dataway);
Ncc=NN-b;%需要补充的0的个数
for cc=1:Ncc
dataway=[0,dataway];
end
%-------------------------------------------------------------------------- %这是一个显示平面中点的运动的函数,它的输入为起始点的坐标、
%将要运动的方位角、将要运动的长度
function [x2,y2]=antmove(x1,y1,r1,theata)
x2=x1+r1*cos(theata);
y2=y1+r1*sin(theata);
plot([x1,x2],[y1,y2])
%-------------------------------------------------------------------------- %这是一个显示平面中点的运动的函数,它的输入为起始点的坐标、
%将要运动的方位角、将要运动的长度
%参见函数antmove
%与antmove不同的是,该函数的返回值中多了两个变量
%这两个变量r2,theata2为下一步点的移动准备了数据
%theata角增大,表示点向左移动
function [x2,y2,r2,theata2]=antmoveleft(x1,y1,r1,theata1,w,dtheata)
x2=x1+r1*cos(theata1);
y2=y1+r1*sin(theata1);
plot([x1,x2],[y1,y2]);
r2=r1*w;
theata2=theata1+dtheata;
%--------------------------------------------------------------------------
%这是一个显示平面中点的运动的函数,它的输入为起始点的坐标、
%将要运动的方位角、将要运动的长度
%参见函数antmove
%与antmove不同的是,该函数的返回值中多了两个变量
%这两个变量r2,theata2为下一步点的移动准备了数据
%theata角减小,表示点向右移动
function [x2,y2,r2,theata2]=antmoveright(x1,y1,r1,theata1,w,dtheata) x2=x1+r1*cos(theata1);
y2=y1+r1*sin(theata1);
plot([x1,x2],[y1,y2]);
r2=r1*w;
theata2=theata1-dtheata;
%注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!!
%注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!!
%注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!!
%注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!!
%注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!!
%注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!!。

相关文档
最新文档