25.1.3列举法、列表法、画树状图法求概率
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 3
1 4
A盘
B盘
A盘红 开始
1 3
B盘蓝
1 2
结束
A盘蓝
B盘红
1 1 1 1 1 1 1 3 4 3 2 12 6 4
行家看“门道”
用心领“悟”
如图,袋中装有两个完全相同的球,分别标有数字“1”和 “2”.小明设计了一个游戏:游戏者每次从袋中随机摸出 一个球,并自由转动图中的转盘(转盘被分成相等的三个 扇形).
11 P(C ) 36
如果把例2中的“同时掷两个骰子”改为 “把一个骰子掷两次”,所得的结果有变化 吗?
没有变化
思考:
小明和小亮做扑克游戏,桌面上放有两堆牌,分 别是红桃和黑桃的1,2,3,4,5,6,小明建议:我从红桃 中抽取一张牌,你从黑桃中取一张,当两张牌数字 之积为奇数时,你得1分,为偶数我得1分,先得 到10分的获胜”。如果你是小亮,你愿意接受这 个游戏的规则吗?
4.你喜欢玩游戏吗?现请你玩一个转盘游戏.如 图所示的两上转盘中指针落在每一个数字上的 机会均等,现同时自由转动甲,乙两个转盘,转盘 停止后,指针各指向一个数字,用所指的两个数 字作乘积.所有可能得到的不同的积分别为 ______;数字之积为奇数的概率为______.
2
3
1
6
2
3
4
1
4 甲
5 乙
例1.掷两枚硬币,求下列事件的概率:
当一次试验涉及两个因素时,且可能 出现的结果较多时,为不重复不遗漏地 列出所有可能的结果,通常用列表法
随堂练习
1、一套丛书共6册,随机地放到 书架上,求各册从左至右或从 右至左恰成1,2,3,4,5,6的顺 序的概率。
2.小明是个小马虎,晚上睡觉时将 两双不同的袜子放在床头,早上 起床没看清随便穿了两只就去上 学,问小明正好穿的是相同的一 双袜子的概率是多少?
黄 白 A盘 绿 B盘 蓝
红
真知灼见源于实践
“配紫色”游戏
表格可以是:
第二个 转盘
黄
蓝
绿
第一个 转盘
红 白
(红,黄) (白,黄)
(红,蓝) (白,蓝)
(红,绿) (白,绿)
游戏者获胜的概率是1/6.
(2006年广东茂名市第18题改编) 如图是配紫游戏中的两个转 盘,你能用列表的方法求出 配成紫色的概率是多少?
(1)只有一个元音字母(记为事件A)的结果有5个,所以 P(A)=
有两个元音字母(记为事件B)的结果有4个,所以 4 1 P(B)= 12 = 3 有三个元音字母(记为事件C)的结果有1个,所以 1 P(C)= 12 (2)全是辅音字母(记为事件D)的结果有2个,所以 2 1 P(D)=12 = 6
解:由表可看出,同时投掷两个骰子,可能 出现的结果有36个,它们出现的可能性相等。
(1)满足两个骰子点数相同(记为事件A)的结果有6个
6 1 P ( A) 36 6
(2)满足两个骰子点数和为9(记为事件B)的结果有4个
4 1 P( B) 36 9
(3)满足至少有一个骰子的点数为2(记为事件C)的结果有11个。
4
9 3、在6张卡片上分别写有1—6的整数,随机的抽取
一张后放回,再随机的抽取一张,那么,第一次取出 的数字能够整除第2次取出的数字的概率是多少?
解:将两次抽取卡片记为第1个和第2个,用表格列出所有可 能出现的情况,如图所示,共有36种情况。
则将第1个数字能整除第2个数字事件记为事件A,满足情况的有(1,1), (2,1),(2,2),(3,1),(3,3),(4,1),(4,2), (4,4),(5,1),(5,5),(6,1)(6,2),(6,3),(6,6)。
总结经验: 当一次试验要涉及两个因素,并且可能出 现的结果数目较多时,为了不重不漏的列 出所有可能的结果,通常采用列表的办法
1 4
随堂练习 (基础练习) 1、一个袋子中装有2个红球和2个绿球,任意摸出一 球,记录颜色放回,再任意摸出一球,记录颜色放回,请 1 你估计两次都摸到红球的概率是________。 2、某人有红、白、蓝三件衬衫和红、白、蓝三条 长裤,该人任意拿一件衬衫和一条长裤,求正好 1 是一套白色的概率_________。
(1)两枚硬币全部反面朝上; (2)一枚硬币正面朝上,一枚硬币反面朝上. 解:其中一枚硬币为A,另一枚硬币为B,则所有可能结果如表所示:
A
正 反
B
正
反
(正,正) (反,正)
(正,反) (反,反)
总共4种结果,每种结果出现的可能性相同.
(1)所有结果中,满足两枚硬币全部反面朝上的结果只 有一个,即”(反,反)”,所以 1 P(两枚硬币全部反面朝上)= 4 (2)所有结果中,满足一枚硬币正面朝上, 一枚硬币反 面朝上的结果有2个,即”(正,反),(反,正)”,所以 P(一枚硬币正面朝上,一枚硬币反面朝上)= 2 1 4 2
(3)至少有两辆车向左转
一 辆 第 二 左 辆
解:画树形图如下: 第 直 左
右
直
右
左 直
右
左 直
右
第 左直右 左直右 左直右 左直右 三 左直右 左直右 左直右 左直右 左直右 辆
共有27种行驶方向
1 (1) P(全部继续直行) 27
3 1 (2) P(两车右转,一车左传) 27 9
B A
D
E H
I
C
解:根据题意,我们可以画出如下的树形图
甲
A B
乙C 丙
D
E
C I H
D
E
H
I H
I
H
I H
I
H
I
共有12种等可能的结果
(1)只有一个元音字母(记为事件A)的结果有5个,所以 P(A)= 5
12
根据树形图,可以看出,所有可能出现的结果是 12个,这些结果出现的可能性相等,
A C H A C I A D H A D I A E H A E I B C H B C I B D H B D I B E H B E I
“配紫色”游戏
要“玩”出水平
小颖为学校联欢会设计了一个“配紫色”游戏:下面是两 个可以自由转动的转盘,每个转盘被分成相等的几个扇形. 游戏规则是:游戏者同时转动两个转盘,如果转盘A转出了 红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在 一起配成了紫色. (1)利用列表的方法表 示游戏者所有可能出 现的结果. (2)游戏者获胜的概率 是多少?
练习
解:设两双袜子分别为A1、A2、B1、B2,则
开始
A1
A2 B1 B2 A2 B1 B2 A1 A2 B1
A1 B1 B2
A1 A1 B2
4 1 所以穿相同一双袜子的概率为 12 3
4.经过某十字路口的汽车,它可能继续直行, 也可能向左转或向右转,如果这三种可能 性大小相同,当有三辆汽车经过这个十字 路口时,求下列事件的概率 (1)三辆车全部继续直行; (2)两辆车向右转,一辆车向左转;
(3)至少有两辆车向左传,有7种情况,即: 左左左,左左直,左左右,左直左, 左右左,直左左,右左左。
7 P(至少有两车向左传) 27
课堂总结: 用列表法和树形图法求概率时应注意什 么情况? 利用树形图或表格可以清晰地表示 出某个事件发生的所有可能出现的 结果;从而较方便地求出某些事件 发生的概率.当试验包含两步时,列 表法比较方便,当然,此时也可以用 树形图法,当试验在三步或三步以 上时,用树形图法方便.
5
6
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
解:由表中可以看出,在两堆牌中分别取一张,它可 能出现的结果有36个,它们出现的可能性相等 满足两张牌的数字之积为奇数(记为事件A) 的有(1,1)(1,3)(1,5)(3,1)(3,3)(3,5)(5,1)(5,3)(5,5) 这9种情况,所以 P(A)= 9 36
1 2
3
游戏规则是: 如果所摸球上的数字与转盘转出的数字之和为2, 那么游戏者获胜.求游戏者获胜的概率.
解:每次游戏时,所有可能出现的结果如下:
转盘 摸球
1 (1,1) (2,1)
2 (1,2) (2,2)
3
1
2
(1,3)
(2,3)
共有6种等可能结果,其中和为2的有1种
P(游戏者获胜)=1/6.
思考?什么时候用“列表法”方便,什么时 候用“树形图”方便?
第 第 一个 二个
1
2
3
4
5
6
C H I H
A D I H E I H C I H
B D I H E I
1 2 3 4 5 6
(1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
(1,2) (2,2) (3,2) (4,2) (5,2) (6,2) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) A A A A A A B B B B B B (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) C C D D E E C C D D E E H I H I H I H I H I H I (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) 当一次试验涉及3个因素或3个以上 的因素时,列表法就不方便了,为不 重复不遗漏地列出所有可能的结果, 通常用树形图
问题:利用分类列举法可以事件发生的各 种情况,对于列举复杂事件的发生情况还 有什么更好的方法呢?
例2.同时掷两个质地均匀的骰子,计算下列 事件的概率:
(1)两个骰子的点数相同;
(2)两个骰子点数的和是9;
(3)至少有一个骰子的点数为2。
分析:当一次试验要涉及两个因素(例如掷两个 骰子)并且可能出现的结果数目较多时,为不重 不漏地列出所有可能结果,通常采用 列表法 。
这个游戏对小亮和小明公 平吗? 你能求出小亮得分的概率吗?
用表格表示
红桃 黑桃
1
பைடு நூலகம்
2
3
4
5
6
1
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2
3 4
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
把两个骰子分别标记为第1个和第2个,列表如下:
第2个 6 1,6 2,6 3,6 4,6 5,6 6,6 5 1,5 2,5 3,5 4,5 5,5 6,5 4 1,4 2,4 3,4 4,4 5,4 6,4 3 1,3 2,3 3,3 4,3 5,3 6,3 2 1,2 2,2 3,2 4,2 5,2 6,2 1 1,1 2,1 3,1 4,1 5,1 6,1 1 2 3 4 5 6 第1个
14 7 P( A) 36 18
例3:
甲口袋中装有2个相同的小球,它们分 别写有字母A和B;乙口袋中装有3个相 同的小球,它们分别写有字母C.D和E; 丙口袋中装有2个相同的小球,它们分 别写有字母H和I,从3个口袋中各随机 地取出1个小球.
(1)取出的3个小球上,恰好有1个,2个 和3个元音字母的概率分别是多少? (2)取出的3个小球上全是辅音字母 的概率是多少?
25.2. 用列举法、列表法、 树状图法求概率(2)
河南信阳浉河中学
汪老师
复习与练习
1、有100张卡片(从1号到100号),从中任取1 张,取到的卡号是7的倍数的概率为( )。
2、某组16名学生,其中男女生各一半,把全 组学生分成人数相等的两个小组,则分得每 小组里男、女人数相同的概率是( ) 3.一个口袋内装有大小相等的1个白球和已编 有不同号码的3个黑球,从中摸出2个球. (1)共有多少种不同的结果? (2)摸出2个黑球有多种不同的结果? (3)摸出两个黑球的概率是多少?
第2个 6 1,6 2,6 3,6 4,6 5,6 6,6 5 1,5 2,5 3,5 4,5 5,5 6,5 4 1,4 2,4 3,4 4,4 5,4 6,4 3 1,3 2,3 3,3 4,3 5,3 6,3 2 1,2 2,2 3,2 4,2 5,2 6,2 1 1,1 2,1 3,1 4,1 5,1 6,1 1 2 3 4 5 6 第1个
1 4
A盘
B盘
A盘红 开始
1 3
B盘蓝
1 2
结束
A盘蓝
B盘红
1 1 1 1 1 1 1 3 4 3 2 12 6 4
行家看“门道”
用心领“悟”
如图,袋中装有两个完全相同的球,分别标有数字“1”和 “2”.小明设计了一个游戏:游戏者每次从袋中随机摸出 一个球,并自由转动图中的转盘(转盘被分成相等的三个 扇形).
11 P(C ) 36
如果把例2中的“同时掷两个骰子”改为 “把一个骰子掷两次”,所得的结果有变化 吗?
没有变化
思考:
小明和小亮做扑克游戏,桌面上放有两堆牌,分 别是红桃和黑桃的1,2,3,4,5,6,小明建议:我从红桃 中抽取一张牌,你从黑桃中取一张,当两张牌数字 之积为奇数时,你得1分,为偶数我得1分,先得 到10分的获胜”。如果你是小亮,你愿意接受这 个游戏的规则吗?
4.你喜欢玩游戏吗?现请你玩一个转盘游戏.如 图所示的两上转盘中指针落在每一个数字上的 机会均等,现同时自由转动甲,乙两个转盘,转盘 停止后,指针各指向一个数字,用所指的两个数 字作乘积.所有可能得到的不同的积分别为 ______;数字之积为奇数的概率为______.
2
3
1
6
2
3
4
1
4 甲
5 乙
例1.掷两枚硬币,求下列事件的概率:
当一次试验涉及两个因素时,且可能 出现的结果较多时,为不重复不遗漏地 列出所有可能的结果,通常用列表法
随堂练习
1、一套丛书共6册,随机地放到 书架上,求各册从左至右或从 右至左恰成1,2,3,4,5,6的顺 序的概率。
2.小明是个小马虎,晚上睡觉时将 两双不同的袜子放在床头,早上 起床没看清随便穿了两只就去上 学,问小明正好穿的是相同的一 双袜子的概率是多少?
黄 白 A盘 绿 B盘 蓝
红
真知灼见源于实践
“配紫色”游戏
表格可以是:
第二个 转盘
黄
蓝
绿
第一个 转盘
红 白
(红,黄) (白,黄)
(红,蓝) (白,蓝)
(红,绿) (白,绿)
游戏者获胜的概率是1/6.
(2006年广东茂名市第18题改编) 如图是配紫游戏中的两个转 盘,你能用列表的方法求出 配成紫色的概率是多少?
(1)只有一个元音字母(记为事件A)的结果有5个,所以 P(A)=
有两个元音字母(记为事件B)的结果有4个,所以 4 1 P(B)= 12 = 3 有三个元音字母(记为事件C)的结果有1个,所以 1 P(C)= 12 (2)全是辅音字母(记为事件D)的结果有2个,所以 2 1 P(D)=12 = 6
解:由表可看出,同时投掷两个骰子,可能 出现的结果有36个,它们出现的可能性相等。
(1)满足两个骰子点数相同(记为事件A)的结果有6个
6 1 P ( A) 36 6
(2)满足两个骰子点数和为9(记为事件B)的结果有4个
4 1 P( B) 36 9
(3)满足至少有一个骰子的点数为2(记为事件C)的结果有11个。
4
9 3、在6张卡片上分别写有1—6的整数,随机的抽取
一张后放回,再随机的抽取一张,那么,第一次取出 的数字能够整除第2次取出的数字的概率是多少?
解:将两次抽取卡片记为第1个和第2个,用表格列出所有可 能出现的情况,如图所示,共有36种情况。
则将第1个数字能整除第2个数字事件记为事件A,满足情况的有(1,1), (2,1),(2,2),(3,1),(3,3),(4,1),(4,2), (4,4),(5,1),(5,5),(6,1)(6,2),(6,3),(6,6)。
总结经验: 当一次试验要涉及两个因素,并且可能出 现的结果数目较多时,为了不重不漏的列 出所有可能的结果,通常采用列表的办法
1 4
随堂练习 (基础练习) 1、一个袋子中装有2个红球和2个绿球,任意摸出一 球,记录颜色放回,再任意摸出一球,记录颜色放回,请 1 你估计两次都摸到红球的概率是________。 2、某人有红、白、蓝三件衬衫和红、白、蓝三条 长裤,该人任意拿一件衬衫和一条长裤,求正好 1 是一套白色的概率_________。
(1)两枚硬币全部反面朝上; (2)一枚硬币正面朝上,一枚硬币反面朝上. 解:其中一枚硬币为A,另一枚硬币为B,则所有可能结果如表所示:
A
正 反
B
正
反
(正,正) (反,正)
(正,反) (反,反)
总共4种结果,每种结果出现的可能性相同.
(1)所有结果中,满足两枚硬币全部反面朝上的结果只 有一个,即”(反,反)”,所以 1 P(两枚硬币全部反面朝上)= 4 (2)所有结果中,满足一枚硬币正面朝上, 一枚硬币反 面朝上的结果有2个,即”(正,反),(反,正)”,所以 P(一枚硬币正面朝上,一枚硬币反面朝上)= 2 1 4 2
(3)至少有两辆车向左转
一 辆 第 二 左 辆
解:画树形图如下: 第 直 左
右
直
右
左 直
右
左 直
右
第 左直右 左直右 左直右 左直右 三 左直右 左直右 左直右 左直右 左直右 辆
共有27种行驶方向
1 (1) P(全部继续直行) 27
3 1 (2) P(两车右转,一车左传) 27 9
B A
D
E H
I
C
解:根据题意,我们可以画出如下的树形图
甲
A B
乙C 丙
D
E
C I H
D
E
H
I H
I
H
I H
I
H
I
共有12种等可能的结果
(1)只有一个元音字母(记为事件A)的结果有5个,所以 P(A)= 5
12
根据树形图,可以看出,所有可能出现的结果是 12个,这些结果出现的可能性相等,
A C H A C I A D H A D I A E H A E I B C H B C I B D H B D I B E H B E I
“配紫色”游戏
要“玩”出水平
小颖为学校联欢会设计了一个“配紫色”游戏:下面是两 个可以自由转动的转盘,每个转盘被分成相等的几个扇形. 游戏规则是:游戏者同时转动两个转盘,如果转盘A转出了 红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在 一起配成了紫色. (1)利用列表的方法表 示游戏者所有可能出 现的结果. (2)游戏者获胜的概率 是多少?
练习
解:设两双袜子分别为A1、A2、B1、B2,则
开始
A1
A2 B1 B2 A2 B1 B2 A1 A2 B1
A1 B1 B2
A1 A1 B2
4 1 所以穿相同一双袜子的概率为 12 3
4.经过某十字路口的汽车,它可能继续直行, 也可能向左转或向右转,如果这三种可能 性大小相同,当有三辆汽车经过这个十字 路口时,求下列事件的概率 (1)三辆车全部继续直行; (2)两辆车向右转,一辆车向左转;
(3)至少有两辆车向左传,有7种情况,即: 左左左,左左直,左左右,左直左, 左右左,直左左,右左左。
7 P(至少有两车向左传) 27
课堂总结: 用列表法和树形图法求概率时应注意什 么情况? 利用树形图或表格可以清晰地表示 出某个事件发生的所有可能出现的 结果;从而较方便地求出某些事件 发生的概率.当试验包含两步时,列 表法比较方便,当然,此时也可以用 树形图法,当试验在三步或三步以 上时,用树形图法方便.
5
6
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
解:由表中可以看出,在两堆牌中分别取一张,它可 能出现的结果有36个,它们出现的可能性相等 满足两张牌的数字之积为奇数(记为事件A) 的有(1,1)(1,3)(1,5)(3,1)(3,3)(3,5)(5,1)(5,3)(5,5) 这9种情况,所以 P(A)= 9 36
1 2
3
游戏规则是: 如果所摸球上的数字与转盘转出的数字之和为2, 那么游戏者获胜.求游戏者获胜的概率.
解:每次游戏时,所有可能出现的结果如下:
转盘 摸球
1 (1,1) (2,1)
2 (1,2) (2,2)
3
1
2
(1,3)
(2,3)
共有6种等可能结果,其中和为2的有1种
P(游戏者获胜)=1/6.
思考?什么时候用“列表法”方便,什么时 候用“树形图”方便?
第 第 一个 二个
1
2
3
4
5
6
C H I H
A D I H E I H C I H
B D I H E I
1 2 3 4 5 6
(1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
(1,2) (2,2) (3,2) (4,2) (5,2) (6,2) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) A A A A A A B B B B B B (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) C C D D E E C C D D E E H I H I H I H I H I H I (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) 当一次试验涉及3个因素或3个以上 的因素时,列表法就不方便了,为不 重复不遗漏地列出所有可能的结果, 通常用树形图
问题:利用分类列举法可以事件发生的各 种情况,对于列举复杂事件的发生情况还 有什么更好的方法呢?
例2.同时掷两个质地均匀的骰子,计算下列 事件的概率:
(1)两个骰子的点数相同;
(2)两个骰子点数的和是9;
(3)至少有一个骰子的点数为2。
分析:当一次试验要涉及两个因素(例如掷两个 骰子)并且可能出现的结果数目较多时,为不重 不漏地列出所有可能结果,通常采用 列表法 。
这个游戏对小亮和小明公 平吗? 你能求出小亮得分的概率吗?
用表格表示
红桃 黑桃
1
பைடு நூலகம்
2
3
4
5
6
1
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2
3 4
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
把两个骰子分别标记为第1个和第2个,列表如下:
第2个 6 1,6 2,6 3,6 4,6 5,6 6,6 5 1,5 2,5 3,5 4,5 5,5 6,5 4 1,4 2,4 3,4 4,4 5,4 6,4 3 1,3 2,3 3,3 4,3 5,3 6,3 2 1,2 2,2 3,2 4,2 5,2 6,2 1 1,1 2,1 3,1 4,1 5,1 6,1 1 2 3 4 5 6 第1个
14 7 P( A) 36 18
例3:
甲口袋中装有2个相同的小球,它们分 别写有字母A和B;乙口袋中装有3个相 同的小球,它们分别写有字母C.D和E; 丙口袋中装有2个相同的小球,它们分 别写有字母H和I,从3个口袋中各随机 地取出1个小球.
(1)取出的3个小球上,恰好有1个,2个 和3个元音字母的概率分别是多少? (2)取出的3个小球上全是辅音字母 的概率是多少?
25.2. 用列举法、列表法、 树状图法求概率(2)
河南信阳浉河中学
汪老师
复习与练习
1、有100张卡片(从1号到100号),从中任取1 张,取到的卡号是7的倍数的概率为( )。
2、某组16名学生,其中男女生各一半,把全 组学生分成人数相等的两个小组,则分得每 小组里男、女人数相同的概率是( ) 3.一个口袋内装有大小相等的1个白球和已编 有不同号码的3个黑球,从中摸出2个球. (1)共有多少种不同的结果? (2)摸出2个黑球有多种不同的结果? (3)摸出两个黑球的概率是多少?
第2个 6 1,6 2,6 3,6 4,6 5,6 6,6 5 1,5 2,5 3,5 4,5 5,5 6,5 4 1,4 2,4 3,4 4,4 5,4 6,4 3 1,3 2,3 3,3 4,3 5,3 6,3 2 1,2 2,2 3,2 4,2 5,2 6,2 1 1,1 2,1 3,1 4,1 5,1 6,1 1 2 3 4 5 6 第1个