列举法列表法画树状图法求概率共28页
人教版九年级上册2第2课时用画树状图法求概率课件
![人教版九年级上册2第2课时用画树状图法求概率课件](https://img.taocdn.com/s3/m/32102612842458fb770bf78a6529647d26283471.png)
正
反
正 反正反
正 反 正 反正 反正反
25.2 第2课时 用画树状图法求概率
方法归纳
画树状图求概率的基本步骤
(1)明确一次实验的几个步骤及顺序; (2)画出树状图列举一次实验的所有可能结果; (3)数出随机事件A包含的结果数m,实验的所有 可能结果数n; (4)代入概率公式进行计算.
25.2 第2课时 用画树状图法求概率
色上的区分,随机从袋中摸出2个小球,两球恰好是一个黄
球和一个红球的概率为( A )
A. 1
2
B. 1
3
C. 1
4
D. 1
6
25.2 第2课时 用画树状图法求概率
3.某市教育局为提高教师业务素养,扎实开展了“课内比教学” 活动.在一次数学讲课比赛中,每个参赛选手都从两个分别标有 “A”“B”内容的签中,随机抽出一个作为自己的讲课内容, 某校有三个选手参加这次讲课比赛,则这三个选手中有两个抽中 内容“A”,一个抽中内容“B”的概率是___3__.
②在摸球实验一定要弄清“放回”还是“不放回”.
25.2 第2课时 用画树状图法求概率
第二十五章 概率初步
25.2 第2课时 用画树状图法求概率
25.2 第2课时 用画树状图法求概率
情景导入 问题1:同时掷两枚质地均匀的硬币,落地后,两枚都是正面向上的
概率是多少?
解:设正面向上为1,反面向上为2.
第二枚
第一枚
1
2
1
(1,1) (1,2)
2
(2,1) (2,2)
25.2 第2课时 用画树状图法求概率
取球实验
甲
A
B
乙
CD ECD E
丙 H I H I H I H IH I H I
【课件】用画树状图法求概率课件+2024-2025学年人教版数学九年级上册
![【课件】用画树状图法求概率课件+2024-2025学年人教版数学九年级上册](https://img.taocdn.com/s3/m/d250eab2112de2bd960590c69ec3d5bbfd0ada95.png)
∴这两个数字之和为奇数的概率为 = .
返回
当堂小练
2. 老师为帮助学生正确理解物理变化和化学变化,将四种
生活现象:“滴水成冰”“酒精燃烧”“光合作用”“木已成
舟”制作成无差别卡片,置于暗箱中摇匀,随机抽取两
1
张均为物理变化的概率是________.
6
当堂小练
字之积恰好是有理数的概率为 = .
返回
当堂小练
5. [2023 沈阳]为弘扬中华优秀传统文化,学校举办“经典
诵读”比赛,将比赛内容分为“唐诗”“宋词”“元曲”三类
(分别用A,B,C依次表示这三类比赛内容). 现将正面
写有A,B,C的三张完全相同的卡片背面朝上洗匀,由
选手抽取卡片确定比赛内容. 选手小明先从三张卡片中
返回
当堂小练
6. 暗箱内有三个形状、大小完全相同的小球,分别标注数
字1,2,3,甲、乙两人按照下列规则决定胜负. 从箱中
连续摸出两个小球(摸出后不放回),并将第一次摸出的
数作为十位数字,将第二次摸出的数作为个位数字,组
成一个两位数,如果这个两位数是2的倍数,则甲获胜,
如果这个两位数是3的倍数,则乙获胜,你认为这样的
胜;若m,n都不是方程x2 -5x+6=0的解,则小刚获
胜,请说明此游戏规则是否公平?
课堂讲练
【解】解x2-5x+6=0,得x1=2,x2=3.当m,n都是方
程x2-5x+6=0的解时,共有(2,2),(2,3),(3,3),
(3,2)这4种情况,则小明获胜的概率为 =
,当m,n
2022-2023学年人教版九年级数学上册 用画树状图法求概率 课件PPT
![2022-2023学年人教版九年级数学上册 用画树状图法求概率 课件PPT](https://img.taocdn.com/s3/m/f8e5b25fa55177232f60ddccda38376bae1fe054.png)
随堂练习 解:根据题意,可以画出如下树状图:
第一辆
左
直
右
第二辆 左 直 右 左 直 右 左 直 右
第三辆 左直右 左直右 左直右 左直右左直右 左直右 左直右 左直右 左直右 共有27种等可能行驶结果.
随堂练习
1
(1) P(全部继续直行) = 27 ; (2) P(两车向右,一车向左) = 1 ;
由树状图可以看出,所有可能出现的 B B B BB B C CD D E E C C D DE E H IH I H I H I H IHI 这些结果出现的可能性相等.
典例精析
A AA A A A B B B BB B C CD D E E C C D DE E H IH I H I H I H IHI
解:画树状图如图.由树状图知,共有4 种等 可能的结果,两次传球后,球恰好在B 手中的 结果只有1 种,所以两次传球后,球恰好在B 手中的概率为 1 .
4
随堂练习 1.A,B,C 三人玩篮球传球游戏,游戏规则是:第一次传球由A 将 球随机地传给B,C 两人中的某一人,以后的每一次传球都是由上 次的接球者随机地传给其他两人中的某一人. (2)求三次传球后,球恰好在A 手中的概率.
典例精析
特别提醒 1. 用列表法或画树状图法求事件的概率时,应注意各种情况出现
的可能性必须相等.
2. 当试验包含两步时,用列表法比较方便,当然此时也可用画树 状图法. 当试验在三步或三步以上时,用画树状图法比较方便, 此时,不宜用列表法.
随堂练习 1.A,B,C 三人玩篮球传球游戏,游戏规则是:第一次传球由A 将 球随机地传给B,C 两人中的某一人,以后的每一次传球都是由上 次的接球者随机地传给其他两人中的某一人. (1)求两次传球后,球恰好在B 手中的概率;
人教版九年级上册数学《用列举法求概率》概率初步研讨说课教学课件
![人教版九年级上册数学《用列举法求概率》概率初步研讨说课教学课件](https://img.taocdn.com/s3/m/2708a08951e2524de518964bcf84b9d528ea2c38.png)
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
机摸出 1 个球,然后放回箱子中,轮到下一个人摸球,三人摸到球的颜色都不相同
的概率是( D )
A.217
B.13
C.19
D.29
第二十五章 概率初步
上一页 返回导航 下一页
数学·九年级(上)·配人教
10.【陕西中考】现有A、B两个不透明袋子,分别装有3个除颜色外完全相同
数学·九年级(上)·配人教
8.三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二 个出场,丙第三个出场.由于某种原因,要求这三名运动员用抽签方式重新确定出
场顺序,求抽签后每个运动员的出场顺序都发生变化的概率.
课件
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
数学·九年级(上)·配人教
5.【教材 P140 习题 25.2T4 变式】一只昆虫在如图所示的树枝上寻觅食物,假
1
定
课件 课件
课件 课件
昆虫在
每个
岔路口
都会
随机选
择一
条路径
,则
它获取
食物
的概率
是
___3___.
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
手 抄 报 : 课 件/shouchaobao/ 课 件
数学·九年级(上)·配人教
课件
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
用画树状图法求概率(22张PPT)
![用画树状图法求概率(22张PPT)](https://img.taocdn.com/s3/m/6e5693a671fe910ef12df866.png)
⑴.取出的3个小球上恰好有1个、2个和3个元音字母的概率 分别是多少? ⑵.取出的3个小球上全是辅音字母的概率是多少?
分析: 前面“两步试验的树状图”的例题和练习其实用“列表 法”也是可以的,但本例当一次试验是从三个口袋中取球时, 列表法就不方便了,为不重不漏地列出所有可能的结果,通常 采用画树状图法.
从树形图可以看出总共有(红1,红2),(红1,蓝1),……12 种等可能情矿,而都是蓝色球体有(蓝1,蓝2),(蓝2,蓝1) 两种,故:
用树状图法求概率的“四个步骤”:
1.定:确定该试验的几个步骤、顺序、每一步可能产生的结果. 2.画:列举每一环节可能产生的结果,得到树状图. 3.数:数出全部均等的结果数m和该事件出现的结果数n. 4.算:代入公式 .
1.学习用树形图法计算概率,并通过比较概率 大小作出合理的决策. 2.会运用树形图法计算事件的概率(重点);能 根据不同情况选择恰当的方法进行列举,解决 较复杂事件概率的计算问题(难点). 3.经历探索知识过程,感受数学知识的价值和 魅力,培养合作学习的意识和探索精神.
问:你知道孙膑给田忌将军的是怎样的建议吗?
6.一个不透明的盒子中有三张卡片,卡片上面分别标有字母a,b,c,每 张卡片除字母不同外其他都相同,小玲先从盒子中随机抽出一张卡 片,记下字母后放回并搅匀;再从盒子中随机抽出一张卡片并记下 字母,用画树状图的方法,求小玲两次抽出的卡片上的字母相同的 概率. a b c 略解:画出树状图为
a
b
c
a
b
c
第一摸取 第二摸取 共12种等可能的情况;即:A 1 A 2 ,A 1 B2 ,……其中恰好能组
成一张完整图片的结果有4种,则:
新课引入的)
第一场
25.2-用列举法求概率--画树形图法
![25.2-用列举法求概率--画树形图法](https://img.taocdn.com/s3/m/57eacf67cbaedd3383c4bb4cf7ec4afe04a1b123.png)
7.小明和小丽都想去看电 影,但只有一张电影票.小 明提议:利用这三张牌,洗 匀后任意抽一张,放回,再 洗匀抽一张牌.连续抽的两
张牌结果为一张5一张4 小明去,抽到两张5的小
丽去,两张4重新抽.小明 的办法对双方公平吗?
第24页,共28页。
8.中央电视台“幸运52”栏目中的“百宝箱”互动 环节,是一种竞猜游戏,游戏规则如下:在20个 商标牌中,有5个商标牌的背面注明一定的奖金 额,其余商标牌的背面是一张哭脸,若翻到哭 脸,就不能得奖,参与这个游戏的观众有三次 翻牌机会(翻过的牌不能再翻).某观众前两次 翻牌均获得若干奖金,那么他第三次翻牌获奖的 概率是 ;
了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有几
台.
第9页,共28页。
解:(1) 树状图如下
有6种可能,分别为(A,D),(A,E),(B,D), (B,E),(C,D),(C,E).
第10页,共28页。
还可以用表格求
也清楚的看到,有6种可能,分别为(A,D),(A,
E),(B,D),(B,E),(C,D),(C,
第1页,共28页。
例4:甲口袋中装有2个相同的小球,它们分别写 有字母A和B; 乙口袋中装有3个相同的小球,它 们分别写有字母C、D和E;丙口袋中装有2个相同 的小球,它们分别写有字母H和I。从3个口袋中各 随机地取出1个小球。 (1)取出的3个小球上恰好有1个、2个和3个元音 字母的概率分别是多少?
第25页,共28页。
9.有两组卡片,第一组三张卡片上都写着A、B、B, 第二组五张卡片上都写着A、B、B、D、E。试用 列表法求出从每组卡片中各抽取一张,两张都 是B的概率。
10.将分别标有数字1,2,3 的三张卡片洗匀后,背
人教九年级数学上册《用画树状图法和列表法求概率》课件
![人教九年级数学上册《用画树状图法和列表法求概率》课件](https://img.taocdn.com/s3/m/b95a07ad1b37f111f18583d049649b6648d7091b.png)
1 4
故与桌面相接触的边上的数字都是奇数的概率是 9
36
=
14.
解析
关闭
关闭
答案
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年4月21日星期四2022/4/212022/4/212022/4/21 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年4月2022/4/212022/4/212022/4/214/21/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/4/212022/4/21April 21, 2022
关闭
画树状图如下图.
A.12可能的结果,数字和为偶数的有 4 种情况. C 故指针指向的数字和为偶数的概率是49.
关闭
解析 答案
1
2
3
3.如图所示,小明和小龙做转陀螺游戏,他们同时分别转动一个陀螺,当两个
陀螺都停下来时,与桌面相接触的边上的数字都是奇数的概率
谢谢观赏
You made my day!
我们,还在路上……
名师指导(1)列表法适用于一次试验中涉及两个因素的情
况,并且所有可能出现的结果数目较多时. (2)列表法的优点是:①避免重复、遗漏;②直观、简明、自检性强. (3)用列表法求事件发生的概率时,要注意列表时数据或事件的顺序不
能相互混淆.
课标要求 知识梳理
2.用画树状图法求概率 画树状图法是列举随机事件发生的所有可能结果的重要方法之一,因
故从 C
1,3,4,5
中任选两数,能与
2
组成“V
人教版数学九年级上册 画树状图法求概率
![人教版数学九年级上册 画树状图法求概率](https://img.taocdn.com/s3/m/cbd567b5f71fb7360b4c2e3f5727a5e9856a2703.png)
典例精析 例1 甲口袋中装有 2 个相同的小球,它们分别写有 字母 A 和 B;乙口袋中装有 3 个相同的小球,它们分 别写有字母 C,D 和 E;丙口袋中装有 2 个相同的小 球,分别写有字母 H 和 I. 从三个口袋中各随机取出 1 个小球. (1) 取出的 3 个小球上恰好有 1 个,2 个,3 个有元音
当堂小结 ① 关键要弄清楚每一步有几种结果;
关键 ② 在树状图下面对应写着所有可能的结
步骤
果,并找出事件所包含的结果数;
③ 利用概率公式进行计算. 树
状
图
① 弄清试验涉及试验因素个数或试验
步骤分几步; 注意 ② 在摸球试验一定要弄清“放回”还
是“不放回”.
当堂练习 1. 三女一男四人同行,从中任意选出两人,其性别 不同的概率为( C )
红3 红1红3
黑1 红1黑1
黑2 红1黑2
红2 红2红1
红2红3 红2黑1 红2黑2
红3 红3红1 红3红2
红3黑1 红3黑2
黑1 黑1红1 黑1红2 黑1红3
黑1黑2
黑2
黑2红1 黑2红2 黑2红3 黑2黑1
比较一下,用树状图法还是列表法更便捷?
(2) 解:不公平. ∵由树状图可知共有 20 种等可能的结果, ∴两人所取球的颜色相同有 8 种结果,则
(1) 解:先将两个红球分别记为“红1”,“红2”, 然后画树状图如下: 开始
甲
红1
红2
蓝
乙 红1 红2 蓝 红1 红2 蓝 红1 红2 蓝 (2) 解:不公平.
∵由树状图可知共有 9 种等可能的结果,
∴能配成紫色的有 4 种结果,则
∴这个游戏不公平.
类型二:不放回型
例3 小明、小军两同学做游戏,游戏规则是:一个不 透明的文具袋中,装有型号完全相同的 3 个红球和 2 个黑 球,两人先后从袋中取出一个球(不放回) ,若两人所取球 的颜色相同,则小明胜;否则,小军胜; (1) 请用树状图或列表法求出摸球游戏所有可能的结果; (2) 你觉得本游戏规则是否公平,请说明理由.
画树状图求概率-(列表法)
![画树状图求概率-(列表法)](https://img.taocdn.com/s3/m/6317ffd44431b90d6c85c7d6.png)
1.“石头、剪刀、布”是广为流传的游戏,游戏时比赛各方做“石头”、“剪刀”、“布”手势中的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势或三种手势循环不分胜负继续比赛,假定甲、乙、丙三人都是等可能地做这三种手势,那么:(1)一次比赛中三人不分胜负的概率是多少? (2)比赛中一人胜,二人负的概率是多少? 解:剪刀一A ,石头一B ,布一C ,画出树形图如下:由树形图可知,三人随机出拳的所有可能情况有27种,每种情况出现的可能性相同,其中,(1)不分胜负的有:AAA ,BBB ,CCC ,ABC ,共4个,P (三人不分胜负);274=(2)一人胜二人负的有:ACC ,AAB ,ABA ,BAA ,BBC ,CBB ,CAC ,CCA ,BCB ,共9个,P (一人胜二人负).31279==2.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,三辆汽车经过这个十字路口,求下列事件的概率: (1)三辆车全部直行;(2)两辆车向右转,一辆车向左转; (3)至少有两辆车向左转. 解:画出树形图:由树形图可知,三辆车在十字路口随机选择的情况共有27种,每种情况出现的可能性大小相同,其中,(1)三辆车全部继续直行的结果只有一个,P (三辆车全部继续直行);271= (2)两辆车向右转,一辆车向左转的结果有3个,P (两辆车向右转,一辆车向左转);91273==(3)至少有两辆车向左转的结果有7个,P (至少有两辆车向左转).277= 3.同时掷两个质地均匀的骰子,计算下列事件的概率: (1)两个骰子的点数的和是5; (2)至少有一个骰子的点数为5. 解:列表如下: 第2个 第1个 1234561 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 6(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)可能性相等.由所列表格可以发现:(1)两个骰子的点数的和是5满足两个骰子的点数相同(记为事件A )的结果有4个,即(4,1),(3,2),(2,3),(4,1),所以P(A)=41369=. (2)至少有一个骰子的点数为5(记为事件B )的结果有11个,所以P(B)=1136.4.在一个布口袋中装着只有颜色不同,其他都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中获胜的概率.解:(1)画树形图来找出所有可能情况.甲摸得球的颜色:乙摸得球的颜色或用列表法思考所有情况.列表如下:乙甲白红黑白 白,白 红,白 黑,白 红 白,红 红,红 黑,红 黑白,黑红,黑黑,黑(2)由树形图可得,该试验的所有可能情况有9种,其中乙摸到与甲相同颜色球有三种情况,每种情况出现的机会均等,乙取胜的概率为⋅=31935.一个袋子中装有红、黄、蓝三个小球,它们除颜色外均相同. (1)如果从中随机摸出一个小球,那么摸到蓝色小球的概率是多少?(2)小王和小李玩摸球游戏,游戏规则如下:先由小王随机摸出一个小球,记下颜色后放回,小李再随机摸出一个小球,记下颜色.当两个小球的颜色相同时,小王赢;当两个小球的颜色不同时,小李赢.请你分析这个游戏规则对双方是否公平?并用列表法或画树状图法加以说明. 解:(1)每个小球被摸到的机会均等,故P (摸到蓝色小球)⋅=31(2)列表思考所有可能情况:小李小王红 黄 蓝 红 红,红 红,黄 红,蓝 黄 黄,红 黄,黄 黄,蓝 蓝蓝,红蓝,黄蓝,蓝由上表可知小王和小李先后摸球的所有情况有9种,每种情况出现的可能性相同,其中小王赢的情况有3种,小李赢的情况有6种. ∴P (小王赢),3193== P (小李赢) ,3296==∵∴此游戏规则对双方是不公平的.6.如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A 、B 两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.解:列表考虑所有可能情况:转盘A两个数字之积转盘B-1 0 2 11 -1 02 1-2 2 0 -4 -2-1 1 0 -2 -1由列表可知,由两个转盘各转出一数字作积的所有可能情况有12种,每种情况出现的可能性相同,其中两个数字之积为非负数有7个,负数有5个,∴P(小力获胜),127=P(小明获胜).125=∴这个游戏对双方不公平.7.从3名男生和2名女生中随机抽取2012年伦敦奧运会志愿者.求下列事件的概率:(1)抽取1名,恰好是女生;(2)抽取2名,恰好是1名男生和1名女生.解:(1)5名学生中有2名女生,所以抽取1名,恰好是女生的概率为25;(2)共有20种情况树状图如图DJ4,恰好是1名男生和1名女生的情况数有12种,所以概率为35.图DJ48.同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数的和是5;(2)至少有一个骰子的点数为5.解:列表如下:可能性相等.由所列表格可以发现:(1)两个骰子的点数的和是5满足两个骰子的点数相同(记为事件A)的结果有4个,即(4,1),(3,2),(2,3),(4,1),所以P(A)=41.369(2)至少有一个骰子的点数为5(记为事件B)的结果有11个,所以P(B)=1136.9.在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1、2、3、4.小明先从袋中随机摸出一个小球,记下数字后不再放回,再从袋中剩下的3个小球中又随机摸出一个小球,记下数字.请用列表或画树状图的方法求出先后摸出的两个小球上的数字和为奇数的概率是多少?解:(1)根据题意可列表或树状图如下:从表或树状图可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种,∴P (和为奇数)23=.10.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元.(1)该顾客至少可得到_______元购物券,至多可得到_______元购物券; (2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率. 解:(1)10,50; (2)解:树状图如下:从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P (不低于30元)=82123=. 11.在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同;(2)两次取出小球上的数字之和大于10.(1,2) (1,3) (1,4) 2341 (1,1) (2,3) (2,4) 1342 (3,1) (3,2) (3,4) 1243 (4,1) (4,2) (4,3) 1234 第一次摸球 第二次摸球 010 20 30 102030 100 20 30 103040 0 10 30 20203050 20 300 10 503040第一次第二次 和解:(1)P (两数相同)=13.(2)P (两数和大于10)=49.12.一个不透明的布袋里装有4个大小、质地均相同的乒乓球,每个球上面分别标有1,2,3,4.小林先从布袋中随机抽取一个乒乓球(不放回去),再从剩下的3个球中随机抽取第二个乒乓球. (1)请你列出所有可能的结果;(2)求两次取得乒乓球的数字之积为奇数的概率. 解:(1)根据题意列表如下:(2)在(1)中的12种可能结果中,两个数字之积为奇数的只有2种, 所以,P (两个数字之积是奇数)21126==. 13.“学雷锋活动日”这天,阳光中学安排七、八、九年级部分学生代表走出校园参与活动,活动内容有:A .打扫街道卫生;B .慰问孤寡老人;C .到社区进行义务文艺演出.学校要求一个年级的学生代表只负责一项活动内容. (1)若随机选一个年级的学生代表和一项活动内容,请你用列表法(或画树状图)表示所有可能出现的结果;(2)求九年级学生代表到社区进行义务文艺演出的概率. 解:(1)画树状图分析如下:树形图6 76 -276 7 76 -2 -2 -2(2)九年级学生代表到社区进行义务文艺演出的概率为2163P ==.14.把一副扑克牌中的3张黑桃牌(它们的正面牌数字分别为3、4、5)洗匀后正面朝下放在桌面上.小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽取一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽取一张牌,记下牌面数字.当2张牌的牌面数字相同时,小王赢;当2张牌的牌面数字不同时,小李赢.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.解:游戏规则不公平.理由如下:列表,由表可知,所有可能出现的结果共有9种,故3193)(==牌面数字相同P ,3296)(==牌面数字不同P . ∵31<32,∴此游戏规则不公平,小李赢的可能性大.15.甲、乙两同学用一副扑克牌中牌面数字分别是3、4、5、6的4张牌做抽数游戏,游戏规则是:将这4线牌的正面全部朝下、洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,3 4 53 (3,3) (3,4) (3,5)4 (4,3) (4,4) (4,5) 5(5,3) (5,4) (5,5)小李小王再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数,若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由.解:这个游戏不公平,游戏所有可能出现的结果如下表:表中共有16种.∴63168P ==(甲获胜),105168P ==(乙获胜).∵8583≠,∴这个游戏不公平. 16.在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由. 解:树状图为: 或列表为:开始红 红 黄 蓝红 红 黄 蓝红 红 黄 蓝红 红 黄 蓝红 红 黄 蓝由上述树状图或表格知:所有可能出现的结果共有16种. ∴P (小明赢)=63168=,P(小亮赢)=105168=. ∴此游戏对双方不公平,小亮赢的可能性大.17.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是________; (2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是________; (3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.解:(1)12.(2)13. (3)根据题意,画树状图:由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44.∴P (4的倍数)41164==. 18.除颜色外完全相同的六个小球分别放到两个袋子中,一个袋子中放两个红球和一个白球,另一个袋子中放一个红球和两个白球.随机从两个袋子中分别摸出一个小球,试判断摸出两个异色小球的概率与摸出两个同色小球的概率是1 2 3 4 1第一次第二次 1 2 3 4 21 2 3 4 31 2 3 4 4开始否相等,并说明理由.解:摸出两个异色小球的概率与摸出两个同色小球的概率不相等. 画树状图如下(画出一种情况即可):∴摸出两个异色小球的概率为59,摸出两个同色小球的概率49.19.一只不透明的袋子中,装有2个白球(标有号码1、2)和1个红球,这些球除颜色外其他都相同.(1)搅匀后从中摸出一个球,摸到白球的概率是多少?(2)搅匀后从中一次摸出两个球,请用树状图(或列表法)求这两个球都是白球的概率.解:(1)p (一个球是白球)=23. (2)树状图如下(列表略):开始∴P (两个球都是白球)2163==.20.小明和小亮利用三张卡片做游戏,卡片上分别写有A ,B ,B .这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,如果两次摸到卡片字母相同则小明胜,否则小亮胜,这个游戏对双方公平吗?请说明现由.红 白 白 红红 白 白 红红 白 白 白开始 或红 红 白 白红红 白 白红红 白红开始 白2红白1 白1红白2 白1白2 红解:画树状图得:∵共有9种等可能的结果,两次摸到卡片字母相同的有5种等可能的结果,∴两次摸到卡片字母相同的概率为:;∴小明胜的概率为,小明胜的概率为,∵ ≠ ,∴这个游戏对双方不公平21.如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A、B两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.解:根据题意列树状图如下:由树状图可知,游戏结果有12中情况,其中两数之积为非负有7种,则两数之积为非负的概率为,两数之积为负的情况有5种,则两数之积为为负的概率为.≠,因此该游戏不公平。
用列表法、画树状图求概率
![用列表法、画树状图求概率](https://img.taocdn.com/s3/m/9a09fafcc1c708a1284a449f.png)
一个试验
中涉及3个因素,第
一个因素中有2种 第一个因素 A
B
可能情况;第二个
因素中有3种可能 第二个 的情况;第三个因
1
2
31
2
3
素中有2种可能的
情况,
第三个 a b a b a b a b a b a b
则其树状图如图:
n=2×3×2=12
例:有一个不透明的袋子中装有红、白、绿 三种颜色的小球各1个。除了颜色外无其他 差别。随机摸出1个小球后,记下球的颜色, 然后放回,再随机摸出一个。求下列事件的 概率。(列表或画树状图分析)
(1)两次颜色相同的概率 (2)第一次为红色,第二次为白色的概率 (3)一个白色、一个绿色的概率
知识回顾 Knowledge Review
放映结束 感谢各位的批评指导!
谢 谢!
让我们共同进步
A1
A2
B1
B2
A2 B1 B2 A1 B1 B2 A1 A1 B2 A1 A2 B1
P(小明正好穿相同的一双袜子)=
4 12
1 3
1、什么时候要用列表法? 方法归纳:
当一次试验要涉及两个因素(两组量,或一组
量操作2次),并且可能出现的结果数目较多时。
列表法中表格构造特点:
一个因素所包含的可能情况
另一
个因素
不ห้องสมุดไป่ตู้
所包含 的可能
两个因素所组合的 所有可能情况,即n
重
情况
不
漏
2、用列表法求概率的关键是什么?
关键在于正确列举出试验结果的各种可能性。
方法归纳:
当一次试验中涉及3个因素或更多的因素时,用列 表法就不方便了.为了不重不漏地列出所有可能的结果, 通常采用“树状图”.
树状图、列表法 ppt课件
![树状图、列表法 ppt课件](https://img.taocdn.com/s3/m/4246d34da45177232f60a297.png)
ppt课件
1
“剪刀,石头,布”这个 游戏公平吗
ppt课件
2
.
概率的计算公式:
关注结果的个数
所有等可能结果的个数
3. 有一对酷爱运动的年轻夫妇给他们12个月大 的婴儿拼排3块分别写有“20”,“08"和“北 京”的字块,如果婴儿能够排成"2008北京” 或者“北京2008".则他们就给婴儿奖励,假 设婴儿能将字块横着正排,那么这个婴儿能得 到奖励的概率是___________.
4(2011河南12.)现有两个不透明的袋子,其中 一个装有标号分别为1、2的两个小球,另—个装 有标号分别为 2、3、4的三个小球,小球除标号 外其它均相同,从两个袋子中各随机摸出 1个小 球,两球标号恰好相同的概率是 .
2、如图,袋中装有两个完全相同的球,分别 标有数字“1”和“2”.小明设计了一个游 戏:游戏者每次从袋中随机摸出一个球,并自 由转动图中的转盘(转盘被分成相等的三个 扇形).
1 2
3
游戏规则是: 如果所摸球上的数字与转盘转出的数字 之和为2,那么游戏者获胜.求游戏者获胜 的概率.
ppt课件 乙
4
21
老师结束寄语
我们都生活在一个充满概率的世 界里。当我们要迈出人生的一小 步时,就面临着复杂的选择,虽 然你有选择生存的方式和权利, 但你选择的概率永远达不到100%
ppt课件 22
有的同学有99 %想在学习上出 人头地的概率,但却选择了1% 等待的概率,这一等就是一生 的现象已经司空见惯了,你还 在等什么!?
九年级数学上册教学课件《用画树状图法求概率》
![九年级数学上册教学课件《用画树状图法求概率》](https://img.taocdn.com/s3/m/33d81a7d6ad97f192279168884868762cbaebb69.png)
AB 甲
CD E乙
HI 丙
解:记取出的3个小球上恰好有1个、2个、3个元
音字母分别为事件A、B、C.
P(A)=
5 12
.
P(B)=
4 12
=
1 3
.
P(C)=
1 12 .
甲
A
B
乙
C DE
C DE
丙 HI HI HI HI HI HI
n
注意 用列表法或画树状图法求概率的前提: 1.可能出现的结果只有有限个; 2.各种结果出现的可能性大小相等.
思考
列表法和画树状图法的选用:
(1)当一次试验要涉及两个因素(或两个步骤), 且可能出现的结果数目较多时,可用“列表法”; (2)当一次试验要涉及三个或更多的因素(或步 骤)时,应采用“画树状图法”.
剪断的两张分别为B1,B2.
A2 B2
解:列举出所有结果如下:
记恰好合成一张完整图片为事件A.
P(
A)
4 12
1 3
.
A1
B1
A2
B2
练习
【教材P139练习】
经过某十字路口的汽车,可能直行,也可能向左转或向
右转.如果这三种可能性大小相同,求三辆汽车经过这个十
字路口时,下列事件的概率:
(1)三辆车全部继续直行;
P(B)
3 6
1 2
.
拓展延伸
6. 两张图片形状完全相同,把两张图片全部从中间剪断, 再把四张形状相同的小图片混合在一起.从四张图片 中随机地摸取一张,接着再随机地摸取一张,则两张 小图片恰好合成一张完整图片的概率是多少?
求概率的三种方法
![求概率的三种方法](https://img.taocdn.com/s3/m/4deda61ef8c75fbfc67db2e7.png)
.求概率的方法在新课标实施以来,中考数学试题中加大了统计与概率局部的考察,表达了“学以致用〞这一理念. 计算简单事件发生的概率是重点,常用的方法有:列举法、列表法、画树状图法,这三种方法应该熟练掌握,先就有关问题加以分析. 一、列举法 例1:〔05济南〕如图1所示,打算了三张大小相同的纸片,其中两张纸片上各画一个半径相等的半圆,另一张纸片上画一个正方形.将这三张纸片放在一个盒子里摇匀,随机地抽取两张纸片,假设可以拼成一个圆形(取出的两张纸片都画有半圆形)则甲方赢;假设可以拼成一个蘑菇形(取出的一张纸片画有半圆、一张画有正方形)则乙方赢.你认为这个游戏对双方是公平的吗?假设不是,有利于谁? .分析:这个游戏不公平,因为抽取两张纸片,全部时机均等的结果为:半圆半圆,半圆正方形,正方形半圆,正方形正方形.所以取出的两张纸片都画有半圆形的概率为41. 取出的一张纸片画有半圆、一张画有正方形的概率为2142=,因为二者概率不等,所以游戏不公平. 说明: 此题采纳了一种较为有趣的试题背景,重在考查学生对概率模型的理解、以及对不确定事件发生概率值的计算.此题用列举方法,也可以用画树状图,列表法. 二、画树状图法 例2:〔06临安市〕不透明的口袋里装有白、黄、蓝三种颜色的乒乓球〔除颜色外其余都相同〕,其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为12.〔1〕试求袋中蓝球的个数.〔2〕第一次任意摸一个球〔不放回〕,第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.解析:⑴设蓝球个数为x 个,则由题意得21122=++x , 1=x答:蓝球有1个. 〔2〕树状图如下:∴ 两次摸到都是白球的概率 =61122=. 说明:解有关的概率问题首先弄清:①需要关注的是发生哪个或哪些结果.②无论哪种都是时机均等的,要对实践的分析得出概率通常用列表或画树状图来写出事件发生的结果,这样便于确定相关的概率. 此题是考查用树状图来求概率的方法,这种方法比拟直观,把全部可能的结果都一一排列出来,便于计算结果. 三、列表法 例3:〔06晋江市〕如图2,是由转盘和箭头组成的两个装置,装置A 、B 的转盘分别被平均分成三局部,装置A 上的数字是3、6、8;装置B 上的数字是4、5、7;这两个装置除了外表数字不同外,其他构造均相同,小东和小明分别同时转动A 、B 两个转盘〔一人转一个〕,如果我们规定箭头停留在较大数字的一方获胜〔如:假设A 、B 两个转盘的箭头分别停在6、4上,则小东获胜,假设箭头恰好停在分界图1 5 4 B768A 3图2.线上,则重新转一次〕,请用树状图或列表加以分析说明这个游戏公平吗? 解析:〔方法一〕画树状图: 由上图可知,全部等可能的结果共有9种,小东获胜的概率为95,小明获胜的概率为94,所以游戏不公平.由上表可知,全部等可能结果共有9种,小东获胜的概率为95,小明获胜的概率为94,所以游戏不公平.说明:用树状图法或列表法列举出的结果一目了然,当事件要经过屡次步骤〔三步以上)完成时,用这两种方法求事件的概率很有效.6开始。