湖北省黄石市经济开发区2020-2021学年八年级上学期期末数学试题

合集下载

人教版 2020-2021学年第一学期八年级数学上册期末模拟测试题(含答案)

人教版 2020-2021学年第一学期八年级数学上册期末模拟测试题(含答案)

2020-2021学年第一学期八年级数学上册期末模拟测试题一、选择题(每小题3分,共30分)1.在给出的一组数据0,π,5,3.14,39,227中,无理数的个数有( )A .1B .2C .3D .52.等腰三角形的腰长为10,底边长为12,则其底边上的高为( ) A .13 B .8 C .25 D .643.如图,把“QQ ”笑脸放在直角坐标系中,已知左眼A 的坐标是(-2,3),嘴唇C 点的坐标为(-1,1),则此“QQ ”笑脸右眼B 的坐标是( )A .(0,3)B .(0,1)C .(-1,2)D .(-1,3)4.若方程x -2=0的解也是直线y =(2k -1)x +10与x 轴的交点的横坐标,则k 的值为( )A .2B .0C .-2D .±25.在方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =1中,如果⎩⎪⎨⎪⎧x =12,y =-1是它的一个解,那么a ,b 的值是( )A .a =4,b =0B .a =12,b =0 C .a =1,b =2 D .a ,b 不能确定6.某校九年级(1)班全体学生2020年初中毕业体育考试的成绩统计如表:根据表中的信息判断,下列结论中错误的是( ) A .该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分7.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP =20°,∠ACP=50°,则∠A+∠P的度数是( )A.70°B.80°C.90°D.100°8.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③不等式kx+b<x+a的解集为x<3中,正确的个数是( )A.0 B.1 C.2 D.39.下列说法:①如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a,b,c(a>b=c),那么a2∶b2∶c2=2∶1∶1,其中正确的是( )A.①②B.①③C.①④D.②④10.如图所示中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是( )A.y=4n-4 B.y=4n C.y=4n+4 D.y=n2二、填空题(每小题3分,共18分)11.16的平方根是____;-125的立方根是____.12.已知P 1(a -1,5)和P 2(2,b -1)关于x 轴对称,则(a +b)2 020的值为____.13.已知x ,y 是二元一次方程组⎩⎪⎨⎪⎧x -2y =3,2x +4y =5的解,则代数式x 2-4y 2的值为____.14.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,-2,+1,0,+2,-3,0,+1,则这组数据的方差是____.15.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离到达点B 200 m ,结果他在水中实际游了520 m ,则该河流的宽度为____m .16.对于两个不相等的实数a ,b ,定义一种新的运算如下:a*b =a +ba -b(a +b >0),如:3*2=3+23-2=5,那么7*(6*3)=3.三、解答题(共72分) 17.计算: (1)1212-(313+2); (2)(5-25)2;(3)23(375-12-27); (4)(3+2-1)(3-2+1).18.解下列方程组:(1)⎩⎪⎨⎪⎧y +x =1,5x +2y =8; (2)⎩⎪⎨⎪⎧x 2+y 3=132,4x -3y =18;(3)⎩⎪⎨⎪⎧x -2y =-1,x -y =2-2y ; (4)⎩⎪⎨⎪⎧x +y =-1,2x -y +3z =1,x -2y -z =6.19.已知点P(a -1,-b +2)关于x 轴的对称点为M ,关于y 轴的对称点为N ,若点M 与点N 的坐标相等.(1)求a ,b 的值;20.如图,将长方形ABCD 沿直线BD 折叠,使点C 落在点C′处,BC ′交AD 于点E ,AD =8,AB =4,求△BED 的面积.21.某校八年级有200名学生,为了向市团委推荐本年级一名学生参加团代会,按如下程序进行了民主投票,推荐的程序是:首先由全年级学生对六名候选人进行投票,每名学生只能给一名候选人投票,选出票数多的前三名;然后再对这三名候选人(记为甲、乙、丙)进行笔试和面试,两个程序的结果统计如下:请你根据以上信息解答下列问题:(1)请分别计算甲、乙、丙的得票数;(2)若规定每名候选人得一票记1分,将投票、笔试、面试三项得分按照2∶5∶3的比例计入每名候选人的总成绩,成绩最高的将被推荐,请通过计算说明甲、乙、丙哪名学生将被推荐.22.在△ABC中,∠BAC=∠BCA,CD平分∠ACB,CE⊥AB,交AB的延长线于点E,∠BCE=48°,求∠CDE的度数.23.如图,在数轴上与3,5对应的点分别是A,B,点C也在数轴上,且AB=AC,设点C表示的数为x.(1)求x的值;(2)计算|x-3|+6x+5.24.某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y1与y2的函数表达式;(2)解释图中表示的两种方案是如何付推销费的;(3)如果你是推销员,应如何选择付费方案?25.如图,一次函数y=-34x+3的图象与x轴和y轴分别交于点A和点B,将△AOB沿直线CD对折,使点A和点B重合,直线CD与x轴交于点C,与直线AB交于点D.(1)求A,B两点的坐标;(2)求OC的长;(3)设P是x轴上一动点,若使△PAB是等腰三角形,写出点P的坐标.参考答案一、选择题(每小题3分,共30分)1.在给出的一组数据0,π,5,3.14,39,227中,无理数的个数有( C )A.1 B.2 C.3 D.52.等腰三角形的腰长为10,底边长为12,则其底边上的高为( B )A.13 B.8 C.25 D.643.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(-2,3),嘴唇C点的坐标为(-1,1),则此“QQ”笑脸右眼B的坐标是( A)A.(0,3) B.(0,1) C.(-1,2) D.(-1,3)4.若方程x -2=0的解也是直线y =(2k -1)x +10与x 轴的交点的横坐标,则k 的值为( C )A .2B .0C .-2D .±25.在方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =1中,如果⎩⎪⎨⎪⎧x =12,y =-1是它的一个解,那么a ,b 的值是( A ) A .a =4,b =0 B .a =12,b =0 C .a =1,b =2 D .a ,b 不能确定6.某校九年级(1)班全体学生2020年初中毕业体育考试的成绩统计如表:根据表中的信息判断,下列结论中错误的是( D )A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分7.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP =20°,∠ACP =50°,则∠A +∠P 的度数是( C )A .70°B .80°C .90°D .100°8.一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论:①k <0;②a >0;③不等式kx +b <x +a 的解集为x <3中,正确的个数是( B )A .0B .1C .2D .39.下列说法:①如果a ,b ,c 为一组勾股数,那么4a ,4b ,4c 仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a ,b ,c(a >b =c),那么a 2∶b 2∶c 2=2∶1∶1,其中正确的是( C )A .①②B .①③C .①④D .②④10.如图所示中的圆点是有规律地从里到外逐层排列的.设y 为第n 层(n 为正整数)圆点的个数,则下列函数关系中正确的是( B )A .y =4n -4B .y =4nC .y =4n +4D .y =n 2二、填空题(每小题3分,共18分)11.16的平方根是__±2__;-125的立方根是__-5__.12.已知P 1(a -1,5)和P 2(2,b -1)关于x 轴对称,则(a +b)2 020的值为__-1__.13.已知x ,y 是二元一次方程组⎩⎪⎨⎪⎧x -2y =3,2x +4y =5的解,则代数式x 2-4y 2的值为__152__.14.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,-2,+1,0,+2,-3,0,+1,则这组数据的方差是__2.5__.15.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离到达点B 200 m ,结果他在水中实际游了520 m ,则该河流的宽度为__480__m .17.对于两个不相等的实数a ,b ,定义一种新的运算如下:a*b =a +ba -b(a +b >0),如:3*2=3+23-2=5,那么7*(6*3)=3.三、解答题(共72分) 17.计算: (1)1212-(313+2); (2)(5-25)2; 解:- 2. 解:95.(3)23(375-12-27); (4)(3+2-1)(3-2+1). 解:60. 解:2 2.18.解下列方程组:(1)⎩⎪⎨⎪⎧y +x =1,5x +2y =8; (2)⎩⎪⎨⎪⎧x 2+y 3=132,4x -3y =18;(3)⎩⎪⎨⎪⎧x -2y =-1,x -y =2-2y ; (4)⎩⎪⎨⎪⎧x +y =-1,2x -y +3z =1,x -2y -z =6.解:⎩⎨⎧x =2,y =-1. 解:⎩⎨⎧x =9,y =6. 解:⎩⎨⎧x =1,y =1.解:⎩⎨⎧x =1,y =-2,z =-1.19.已知点P(a -1,-b +2)关于x 轴的对称点为M ,关于y 轴的对称点为N ,若点M 与点N 的坐标相等.(1)求a ,b 的值;解:因为点P (a -1,-b +2)关于x 轴的对称点为M ,所以M (a -1,b -2),因为点P (a -1,-b +2)关于y 轴的对称点为N ,所以N (-a +1,-b +2),因为点M 与点N 的坐标相等,所以a -1=-a +1,b -2=-b +2,解得a =1,b =2.(2)猜想点P 的位置并说明理由.解:点P 的位置是原点.理由:因为a =1,b =2,所以点P (a -1,-b +2)的坐标为(0,0),即P 点为原点.20.如图,将长方形ABCD 沿直线BD 折叠,使点C 落在点C′处,BC ′交AD 于点E ,AD =8,AB =4,求△BED 的面积.解:由题意,易知AD ∥BC ,所以∠2=∠3.因为△BC′D 与△BCD 关于直线BD 对称,所以∠1=∠2.所以∠1=∠3.所以EB =ED.设EB =x ,则ED =x ,AE =AD -ED =8-x.在Rt △ABE 中,AB 2+AE 2=BE 2,所以42+(8-x )2=x 2.所以x =5.所以DE =5.所以S △BED =12DE·AB =12×5×4=10.21.某校八年级有200名学生,为了向市团委推荐本年级一名学生参加团代会,按如下程序进行了民主投票,推荐的程序是:首先由全年级学生对六名候选人进行投票,每名学生只能给一名候选人投票,选出票数多的前三名;然后再对这三名候选人(记为甲、乙、丙)进行笔试和面试,两个程序的结果统计如下:请你根据以上信息解答下列问题: (1)请分别计算甲、乙、丙的得票数;解:甲的票数是200×34%=68(票),乙的票数是200×30%=60(票),丙的票数是200×28%=56(票).(2)若规定每名候选人得一票记1分,将投票、笔试、面试三项得分按照2∶5∶3的比例计入每名候选人的总成绩,成绩最高的将被推荐,请通过计算说明甲、乙、丙哪名学生将被推荐.解:甲的平均成绩:68×2+92×5+85×32+5+3=85.1(分),乙的平均成绩:60×2+90×5+95×32+5+3=85.5(分),丙的平均成绩:56×2+95×5+80×32+5+3=82.7(分),因为乙的平均成绩最高,所以应该推荐乙.22.在△ABC 中,∠BAC =∠BCA ,CD 平分∠ACB ,CE ⊥AB ,交AB 的延长线于点E ,∠BCE =48°,求∠CDE 的度数.解:∵CE ⊥AB ,∴∠E =90°.在△BEC 中,∠CBE =180°-∠E -∠BCE =42°,∵∠BAC =∠BCA ,∠CBE =∠BAC +∠BCA ,∴∠BAC =∠BCA =12∠CBE =21°,又∵CD平分∠ACB ,∴∠ACD =12∠ACB =10.5°,∴∠CDE =∠ACD +∠BAC =10.5°+21°=31.5°.23.如图,在数轴上与3,5对应的点分别是A ,B ,点C 也在数轴上,且AB =AC ,设点C 表示的数为x.(1)求x 的值;解:因为数轴上A ,B 两点表示的数分别为3和5,且AB =AC ,所以3-x =5-3,解得x =23- 5.(2)计算|x -3|+6x +5.解:原式=|23-5-3|+623-5+5=5-3+3= 5.24.某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y 1与y 2的函数表达式;解:设y 1=k 1x (k 1≠0),将点(30,600)代入,可得k 1=20,所以y 1=20x.设y 2=k 2x +b (k 2≠0),将点(0,300),(30,600)代入,即⎩⎨⎧b =300,30k 2+b =600,解得⎩⎨⎧k 2=10,b =300.所以y 2=10x +300.(2)解释图中表示的两种方案是如何付推销费的;解:y 1是不推销产品没有推销费,每推销10件产品得推销费200元;y 2是保底工资300元,每推销10件产品再提成100元.(3)如果你是推销员,应如何选择付费方案?解:若业务能力强,平均每月推销都为30件时,两种方案都可以;平均每月推销大于30件时,就选择y 1的付费方案;平均每月推销小于30件时,选择y 2的付费方案.25.如图,一次函数y =-34x +3的图象与x 轴和y 轴分别交于点A 和点B ,将△AOB沿直线CD 对折,使点A 和点B 重合,直线CD 与x 轴交于点C ,与直线AB 交于点D.(1)求A ,B 两点的坐标;解:令y =0,则x =4;令x =0,则y =3,故点A 的坐标为(4,0),点B 的坐标为(0,3).(2)求OC 的长;解:设OC =x ,则AC =CB =4-x ,∵∠BOA =90°,∴OB 2+OC 2=CB 2,32+x 2=(4-x )2,解得x =78,∴OC =78.(3)设P 是x 轴上一动点,若使△PAB 是等腰三角形,写出点P 的坐标.解:设P 点坐标为(x ,0),当PA =PB 时,(x -4)2=x 2+9,解得x =78;当PA =AB 时,(x -4)2=42+32,解得x =9或x =-1;当PB =AB 时,x 2+32=42+32,解得x =-4(x =4,舍去).∴P 点坐标为(错误!,0),(-1,0)或(9,0),(-4,0).1、三人行,必有我师。

2020-2021学年湖北省武汉市青山区八年级(上)期末数学试卷及参考答案

2020-2021学年湖北省武汉市青山区八年级(上)期末数学试卷及参考答案

)+f

)+…+f( )+f(1)+f(2)+…+f(2019)+f(2020)的值为( )
A.2021
B.2020
C.2019.5
D.2020.5
二、填空题(本大题共有 6 小题,每小题 3 分,共 18 分)下列各题不需要写出解答过程,)当分式
的值为 0 时,x 的值为

12.(3 分)把 0.00002 用科学记数法表示为

13.(3 分)计算:
=.
14.(3 分)如图,△ABC 中,∠ACB=90°,∠B=30°,AC=5cm,P 为 BC 边的垂直平
分线 DE 上一个动点,则△ACP 周长的最小值为
cm.
15.(3 分)贾老师用四个大小、形状完全相同的小长方形围成了一个大正方形,如果大正
23.(10 分)已知,在△ABC 中,∠BAC=90°,∠BCA=30°,AB=5,D 为直线 BC 上
一动点,以 AD 为边作等边△ADE(A,D,E 三点逆时针排列),连接 CE.
(1)如图 1,若 D 为 BC 中点,求证:AE=CE;
(2)如图 2,试探究 AE 与 CE 的数量关系,并证明你的结论;
说明、证明过程、演算步骤或画出图形.
第 2页(共 5 页)
17.(8 分)计算: (1)(a﹣4)(a+1);
18.(8 分)分解因式: (1)x2﹣9;
19.(8 分)先化简,再求值:
(2)ax2+2axy+ay2. (2)ax2+2axy+ay2.
,其中 x=5.
20.(8 分)如图,在 7×5 的网格中,横、纵坐标均为整数的点叫做格点,如 A(2,3)、B

湖北省黄石市黄石港区黄石八中教联体2023-2024学年八年级上学期期中数学试题

湖北省黄石市黄石港区黄石八中教联体2023-2024学年八年级上学期期中数学试题

湖北省黄石市黄石港区黄石八中教联体2023-2024学年八年级上学期期中数学试题一、单选题1.下列长度的三条线段不能组成三角形的是()A .1,2,3B .2,3,4C .3,4,5D .4,5,62.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A .B .C .D .3.如图所示,一扇窗户打开后,用窗钩AB 即可固定,这里所用的数学道理是()A .两定确定一条直线B .两点之间线段最短C .三角形的稳定性D .垂线段最短4.如图,直线a b ∥,将含30︒角的直角三角板的直角顶点放在直线b 上,使140∠=︒,则2∠的度数为()A .55︒B .60︒C .65︒D .70︒5.如图,ABC ADE △△≌,30B ∠=︒,40E ∠=︒,则DAE ∠的大小为()A .∠B =∠D B .8.若ABC ,1AB =,AC A .32B .9.如图,在锐角ABC 中,则BPC ∠=()二、填空题三、解答题17.如图,ABC 中,24B ∠=︒,52C ∠=︒,AD 是ABC 的角平分线,求ADC ∠的度数.18.如图,点E ,F 在BC 上,BE CF =,AB DC =,B C ∠=∠,AF 与DE 交于点G .求证:ABF DCE ≌△△.19.如图,在ABC 中,DM 、EN 分别垂直平分AC 和BC 交AB 于M 、N .(1)若12cm AB =,求MCN △的周长;(2)若120ACB ∠=︒,求MCN ∠的度数.20.如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A=∠D ,AB=DC .(1)求证:△ABE ≌△DCE ;(2)当∠AEB=60°,求∠EBC 的度数.21.如图,在锐角ABC 中,=45ABC ∠︒,点D 为BC 的中点,AE BC ⊥于点E ,点F 在AE 上,且EF EC =,CG BF ∥交FD 的延长线于点G .(1)求证:BF AC =;(2)试判断线段AC 与线段CG 的关系,并证明你的结论.22.如图,ABC ,ABC ∠的平分线与ACB ∠的外角平分线交于点D ,过点D 作DE BC ⊥于E .(1)如图1,若68BAC ∠=︒,求BDC ∠的度数;(2)如图2,连AD ,求证:AD 平分CAM ∠;(3)如图3,若ABC 周长为20,求BE 的长.23.在Rt ABC △中,90ACB ∠=︒,30A ∠=︒,BD 是ABC 的角平分线,DE AB ⊥于点E .(1)如图1,连接EC ,求证:EBC 是等边三角形;(2)当点M 是线段AC 上的一点(不与点A ,C ,D 重合),以BM 为一边,在BM 的下方作60BMG ∠=︒,MG 交DE 延长线于点F .请你在图2中画出完整图形(如需要亦可用备用图),探究MD ,DF 与AD 之间的数量关系,并说明理由;(3)当点M 在直线AC 上运动,以BM 为一边,在BM 的下方作60BMF ∠=︒,MF 交直线DE 于点F ,若10AB =,请直接写出CF 的最小值.24.在ABC 中,90BAC ∠=︒,AB AC =.(1)如图1,若A 、B 两点的坐标分别是()0,4,(3,0)-,直接写出点C 的坐标______;(2)如图2,BC 与y 轴交于点D ,取AB 的中点E ,连DE ,CE ,若CE x ∥轴,求证:CE AD DE =+;(3)如图3,若15OAB ∠=︒,M 为OA 上一点,且AC MC =,求证:AM BM =.。

2020--2021学年上学期人教版 八年级数学试题

2020--2021学年上学期人教版 八年级数学试题

2020-2021上学期人教版八年级数学期末试卷一.选择题(共12小题)1.在预防新冠疫情期间,到公共场所都要佩戴口罩,据了解口罩的规格有两种:儿童款(长14cm)和成人款(长17cm),其中超过标准长度的数量记为正数,不足的数量记为负数.质量监督局检查了四个药店的儿童口罩,结果如下,从长度的角度看,最接近标准的儿童口罩是()A.+0.09B.﹣0.21C.+0.15D.﹣0.062.若|a|=a,则a表示()A.正数B.负数C.非正数D.非负数3.已知方程x2﹣3x=0,下列说法正确的是()A.方程的根是x=3B.只有一个根x=0C.有两个根x1=0,x2=3D.有两个根x1=0,x2=﹣34.x、y、c是有理数,则下列判断错误的是()A.若x=y,则x+2c=y+2c B.若x=y,则a﹣cx=a﹣cyC.若x=y,则=D.若=,则x=y5.点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是()A.(﹣2,3)或(﹣2,﹣3)B.(﹣2,3)C.(﹣3,2)或(﹣3,﹣2)D.(﹣3,2)6.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2019个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是()A.(1,0)B.(0,1)C.(﹣1,1)D.(﹣1,﹣2)7.下列属于圆柱体的是()A.B.C.D.8.沿图中虚线旋转一周,能围成的几何体是()A.B.C.D.9.如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔,若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋10.下列说法:①已知△ABC中,AB=6,AC=8,则中线AD的取值范围是1≤AD≤7;②两边和一角对应相等的两个三角形全等;③如果两个三角形关于某直线成轴对称,那么它们是全等三角形;④一腰上的中线也是这条腰上的高的等腰三角形是等边三角形.其中正确的有()A.1个B.2个C.3D.4个11.某校为了解七年级14个班级学生吃零食的情况,下列做法中,比较合理的是()A.了解每一名学生吃零食情况B.了解每一名女生吃零食情况C.了解每一名男生吃零食情况D.每班各抽取7男7女,了解他们吃零食情况12.把25枚棋子放入右图的三角形内,那么一定有一个小三角形中至少放入()枚.A.6B.7C.8D.9二.填空题(共6小题)13.如果汽车向东行驶30千米记作+30千米,那么向西行驶20千米记作千米.14.若x=﹣1为方程x2﹣m=0的一个根,则m的值为.15.点M(﹣2,3)到x轴和y轴的距离之和是.16.个完全相同的圆锥形铁块,可以熔铸成一个与它们等底等高的圆柱.17.如图,在矩形ABCD中,AB=8,BC=4,一发光电子开始置于AB边的点P处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45°,当发光电子与矩形的边碰撞2020次后,它与AB边的碰撞次数是.18.小芸为了解同学们最感兴趣的在线学习方式,设计了如下的调查问题(选项不完整):你最感兴趣的一种在线学习方式是()(单选)A.B.C.D.其他她准备从“①在线听课,②在线讨论,③在线学习2~3小时,④用手机在线学习,⑤在线阅读”中选取三个作为该问题的备选答案,合理的选取是.(填序号)三.解答题(共9小题)19.在抗洪抢险过程中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天航行路程记录如下:(单位:千米)15,﹣7,18,9,﹣3,6,﹣8(1)通过计算说明B地在A地的什么位置;(2)已知冲锋舟每千米耗油0.5升,油箱容量为40升,若冲锋舟在救援前将油箱加满,请问该冲锋舟在救援过程中是否还需要补充油?20.把下列各数填在相应的括号内:﹣,0,﹣30,,+20,﹣2.6,π,0.,0.3030030003…(每两个3之间逐次增加一个0).正有理数集合:{…};负数集合:{…};整数集合:{…}.21.阅读理解题:下面是小明将等式x﹣4=3x﹣4进行变形的过程:x﹣4+4=3x﹣4+4,①x=3x,②1=3.③(1)小明①的依据是.(2)小明出错的步骤是,错误的原因是.(3)给出正确的解法.22.关于x的方程x﹣2m=﹣3x+4与2﹣x=m的解互为相反数.(1)求m的值;(2)求这两个方程的解.23.已知当m,n都是实数.且满足2m=8+n时,称p(m﹣1,)为“开心点”.(1)判断点A(5,3),B(4,10)是否为“开心点”,并说明理由;(2)若点M(a,2a﹣1)是“开心点”,请判断点M在第几象限?并说明理由.24.综合与实践某“综合与实践”小组开展了“长方体纸盒的制作”实践活动,他们利用边长为acm的正方形纸板制作出两种不同方案的长方体盒子(图1为无盖的长方体纸盒,图2为有盖的长方体纸盒),请你动手操作验证并完成任务.(纸板厚度及接缝处忽略不计)动手操作一:根据图1方式制作一个无盖的长方体盒子.方法:先在纸板四角剪去四个同样大小边长为bcm的小正方形,再沿虚线折合起来.问题解决:(1)该长方体纸盒的底面边长为cm;(请你用含a,b的代数式表示)(2)若a=24cm,b=6cm,则长方体纸盒的底面积为多少cm2;动手操作二:根据图2方式制作一个有盖的长方体纸盒.方法:先在纸板四角剪去两个同样大小边长为bcm的小正方形和两个同样大小的小长方形,再沿虚线折合起来.拓展延伸:(3)该长方体纸盒的体积为多少cm3?(请你用含a,b的代数式表示)25.如图,△ABC中,∠ABC=45°,点A关于直线BC的对称点为P,连接PB并延长.过点C作CD⊥AC,交射线PB于点D.(1)如图①,∠ACB为钝角时,补全图形,判断AC与CD的数量关系:;(2)如图②,∠ACB为锐角时,(1)中结论是否仍成立,并说明理由.26.甲、乙两种水稻试验品种连续5年的平均单位面积产量(单位:t/hm2)如表,试根据这组数据估计哪一种水稻品种好.品种第1年第2年第3年第4年第5年甲9.89.910.11010.2乙9.410.310.89.79.8 27.若从1,2,3,…,n中任取5个两两互素的不同的整数a1,a2,a3,a4,a5,其中总有一个整数是素数,求n的最大值.2020-2021上学期人教版八年级数学期末试卷参考答案与试题解析一.选择题(共12小题)1.【分析】根据题意可知绝对值最小的即为最接近标准的儿童口罩,即可得出答案.【解答】解:根据题意得:|﹣0.06|<|+0.09|<|+0.15|<|﹣0.21|,故选:D.2.【分析】根据绝对值的意义解答即可.【解答】解:∵|a|=a,∴a为非负数,故选:D.3.【分析】本题应对方程进行变形,提取公因式x,将原式化为两式相乘的形式,再根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【解答】解:原方程变形为:x(x﹣3)=0,∴x=0或x﹣3=0,∴x=0或x=3,故选:C.4.【分析】根据等式的性质一一判断即可.【解答】解:A、根据等式的性质1可得出,若x=y,则x+2c=y+2c,原变形正确,故此选项不符合题意;B、根据等式的性质1和2得出,若x=y,则a﹣cx=a﹣cy,原变形正确,故此选项不符合题意;C、由x=y得出=必须c≠0,当c=0时不成立,故本选项符合题意;D、根据等式的性质2可得出,若=,则x=y,原变形正确,故此选项不符合题意;故选:C.5.【分析】根据题意,判断出点P所在的象限,再根据点到y轴的距离是点的横坐标的绝对值,到x轴的距离是点的纵坐标的绝对值,判断即可.【解答】解:∵点P在y轴左侧,∴点P在第二象限或第三象限,∵点P到x轴的距离是3,到y轴距离是2,∴点P的坐标是(﹣2,3)或(﹣2,﹣3),故选:A.6.【分析】由点A,B,C,D的坐标可得出四边形ABCD为矩形及AB,AD的长,由矩形的周长公式可求出矩形ABCD的周长,结合2019=202×10﹣1可得出细线的另一端在线段AD上且距A点1个单位长度,结合点A的坐标即可得出结论.【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=2,AD=3,四边形ABCD为矩形,∴C矩形ABCD=(3+2)×2=10.∵2019=202×10﹣1,∴细线的另一端在线段AD上,且距A点1个单位长度,∴细线的另一端所在位置的点的坐标是(1,1﹣1),即(1,0).故选:A.7.【分析】根据圆柱体的形状解答即可.【解答】解:A、图形是正方体,不符合题意;B、图形是梯形,不符合题意;C、图形属于圆柱体,符合题意;D、图形是圆,不符合题意;故选:C.8.【分析】根据“面动成体”可知,将长方形沿着长边所在的直线旋转一周,形成的几何体是圆柱,得出判断即可.【解答】解:将长方形沿着一边旋转一周,所形成的几何体是圆柱,故选:B.9.【分析】利用轴对称画出图形即可.【解答】解:如图所示:,该球最后落入的球袋是4号袋,故选:D.10.【分析】根据三角形的三边关系,全等三角形的判定,等边三角形的判定,轴对称的性质一一判断即可.【解答】解:①已知△ABC中,AB=6,AC=8,则中线AD的取值范围是1≤AD≤7,错误,应该是中线AD的取值范围是1<AD<7.②两边和一角对应相等的两个三角形全等,错误,SSA不一定全等.③如果两个三角形关于某直线成轴对称,那么它们是全等三角形,正确.④一腰上的中线也是这条腰上的高的等腰三角形是等边三角形,正确.故选:B.11.【分析】根据样本抽样的原则要求,逐项进行判断即可.【解答】解:根据样本抽样具有普遍性、代表性和可操作性,选项D比较合理,选项A为普查,没有必要,也不容易操作;选项B、C仅代表男生或女生的情况,不能反映全面的情况,不具有代表性,故选:D.12.【分析】把4个小三角形看作4个抽屉,把25枚棋子看作25个元素,那么每个抽屉需要放25÷4=6…1,所以每个抽屉需要放6枚,剩余的1枚无论怎么放,总有一个抽屉里至少有6+1=7,所以,至少有一个小三角形内至少要放7枚棋子,即可得出结论.【解答】解:25÷4=6……1,6+1=7(枚),故选:B.二.填空题(共6小题)13.【分析】根据正数和负数表示相反意义的量,向东行驶记为正,可得向西行驶的表示方法.【解答】解:如果汽车向东行驶30千米记作+30千米,那么向西行驶20千米记作﹣20千米.故答案为:﹣20.14.【分析】把x=﹣1代入方程得1﹣m=0,然后解一元一次方程即可.【解答】解:把x=﹣1代入方程得1﹣m=0,解得m=1.故答案为1.15.【分析】根据点的坐标与其到坐标轴的距离的关系进行解答.【解答】解:点M(﹣2,3)到x轴的距离为:3,到y轴的距离为:2,故点M(﹣2,3)到x轴和y轴的距离之和是:3+2=5.故答案为:5.16.【分析】根据圆柱的体积是同底同高的圆锥的体积的三倍解答即可.【解答】解:因为圆柱的体积是同底同高的圆锥的体积的三倍,所以3个完全相同的圆锥形铁块,可以熔铸成一个与它们等底等高的圆柱.故答案为:3.17.【分析】如图,以AB为x轴,AD为y轴,建立平面直角坐标系,根据反射角与入射角的定义可以在格点中作出图形,可以发现,在经过6次反射后,发光电子回到起始的位置,即可求解.【解答】解:如图以AB为x轴,AD为y轴,建立平面直角坐标系,根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(6,0),且每次循环它与AB边的碰撞有2次,∵2020÷6=336…4,当点P第2020次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(2,0),∴它与AB边的碰撞次数是=336×2+1=673次,故答案为:673.18.【分析】根据题意可得“①在线听课,②在线讨论,⑤在线阅读”合理.【解答】解:根据题意可知:①在线听课,②在线讨论,⑤在线阅读,作为该问题的备选答案合理,故答案为:①②⑤.三.解答题(共9小题)19.【分析】(1)求出所有正负数之和,可以判断B点位置;(2)求所有正负数的绝对值之和,即为行程总和,在确定所需油量即可求解.【解答】解:(1)15﹣7+18+9﹣3+6﹣8=30(千米),答:B地在A地东面30千米;(2)15+7+18+9+3+6+8=66(千米),66×0.5=33<40,答:不需补充.20.【分析】按照有理数的分类填写即可.【解答】解:正有理数集合:{,+20,0.…}负数集合:{,﹣30,﹣2.6…}整数集合:{0,﹣30,+20…}故答案为:,+20,0.;,﹣30,﹣2.6;0,﹣30,+20.21.【分析】根据等式的性质解答即可.【解答】解:(1)小明①的依据是等式的两边都加(或减)同一个数(或整式),结果仍得等式;(2)小明出错的步骤是③,错误的原因是等式两边都除以0;(3)x﹣4=3x﹣4,x﹣4+4=3x﹣4+4,x=3x,x﹣3x=0,﹣2x=0,x=0.故答案为:等式的两边都加(或减)同一个数(或整式),结果仍得等式;③;等式两边都除以0.22.【分析】(1)先分别解关于x的一次方程得到x=m+1和x=2﹣m,再利用相反数的定义得到m+1+2﹣m=0,然后解关于m的方程即可;(2)把m的值分别代入x=m+1和x=2﹣m中得到两方程的解.【解答】解:(1)解方程x﹣2m=﹣3x+4得x=m+1,解方程2﹣x=m得x=2﹣m,根据题意得,m+1+2﹣m=0,解得m=6;(2)当m=6时,x=m+1=×6+1=4,即方程x﹣2m=﹣3x+4的解为x=4;当m=6时,x=2﹣m=2﹣6=﹣4,即方程2﹣x=m的解为x=﹣4.23.【分析】(1)根据A、B点坐标,代入(m﹣1,)中,求出m和n的值,然后代入2m=8+n检验等号是否成立即可;(2)直接利用“开心点”的定义得出a的值进而得出答案.【解答】解:(1)点A(5,3)为“开心点”,理由如下,当A(5,3)时,m﹣1=5,,得m=6,n=4,则2m=12,8+n=12,所以2m=8+n,所以A(5,3)是“开心点”;点B(4,10)不是“开心点”,理由如下,当B(4,10)时,m﹣1=4,,得m=5,n=18,则2m=10,8+18=26,所以2m≠8+n,所以点B(4,10)不是“开心点”;(2)点M在第三象限,理由如下:∵点M(a,2a﹣1)是“开心点”,∴m﹣1=a,,∴m=a+1,n=4a﹣4,代入2m=8+n有2a+2=8+4a﹣4,∴a=﹣1,2a﹣1=﹣3,∴M(﹣1,﹣3),故点M在第三象限.24.【分析】(1)根据折叠可得答案;(2)将a=24,b=6代入底面积的代数式计算即可;(3)根据图2的裁剪,折叠后,表示出长、宽、高进而用代数式表示体积.【解答】解:(1)根据折叠可知,底面是边长为(a﹣2b)(cm)的正方形,故答案为:(a﹣2b);(2)将a=24,b=6代入得,(a﹣2b)2=(24﹣2×6)2=144(cm2)答:长方体纸盒的底面积为144cm2;(3)裁剪后折叠成长方体的长为:(a﹣2b)cm,宽为cm,高为bcm,所以,折叠后长方体的体积为(a﹣2b)××b,即,b(a﹣2b)2,答:长方体的体积为b(a﹣2b)2.25.【分析】(1)结论:AC=CD.想办法证明,AC=CP,CD=CP即可.(2)结论不变,证明方法类似(1).【解答】解:(1)结论:AC=CD.理由:如图①中,设AB交CD于O,∵A,P关于BC对称,CA=CP,∴∠A=∠P,∠ABC=∠CBP=45°,∴∠ABP=∠ABD=90°,∵AC⊥CD,∴∠ACO=∠DBO=90°,∵∠AOC=∠DOB,∴∠D=∠A,∴∠D=∠P,∴CD=CP,∴AC=CD.故答案为:AC=CD.(2)结论不变.理由:如图②中,∵A,P关于BC对称,CA=CP,∴∠A=∠P,∠ABC=∠CBP=45°,∴∠ABP=∠ABD=90°,∵AC⊥CD,∴∠ACD=∠DBA=90°,∴∠ABD+∠ACD=180°,∴∠A+∠BDC=180°,∵∠CDP+∠BDC=180°,∴∠A=∠CDP∴∠CDP=∠P,∴CD=CP,∴AC=CD.26.【分析】首先求得平均产量,然后求得方差,进行比较即可.【解答】解:根据表格中的数据求得甲的平均数=(9.8+9.9+10.1+10+10.2)÷5=10;乙的平均数=(9.4+10.3+10.8+9.7+9.8)÷5=10,甲种水稻产量的方差是:[(9.8﹣10)2+(9.9﹣10)2+(10.1﹣10)2+(10﹣10)2+(10.2﹣10)2]=0.02,乙种水稻产量的方差是:[(9.4﹣10)2+(10.3﹣10)2+(10.8﹣10)2+(9.7﹣10)2+(9.8﹣10)2]=0.244.∴0.02<0.244,∴产量比较稳定的水稻品种是甲.因为甲、乙两种水稻单位面积产量的平均数相等,甲种方差小于乙种方差,所以甲种水稻品种好.27.【分析】只有1和它本身两个因数的数,就是质数(或素数).除了1和它本身以外,还有别的因数的数,就是合数.因为5个整数两两互素,它们的约数只能取2、3、5、7、11,又因为是合数,只能是约数的平方.所以可求解.【解答】解:若n≥49,取整数1,22,32,52,72,这五个整数是五个两两互素的不同的整数,但没有一个整数是素数,∴n≤48,在1,2,3,……,48中任取5个两两互素的不同的整数,若都不是素数,则其中至少有四个数是合数,不妨假设,a1,a2,a3,a4为合数,设其中最小的素因数分别为p1,p2,p3,p4,由于两两互素,∴p1,p2,p3,p4两两不同,设p是p1,p2,p3,p4中的最大数,则p≥7,因为a1,a2,a3,a4为合数,所以其中一定存在一个,aj≥p2≥72=49,与n≤48矛盾,于是其中一定有一个是素数,综上所述,正整数n的最大值为48.。

2020-2021学年湖北省武汉市江汉区八年级上学期期末考试数学试卷( 含答案)

2020-2021学年湖北省武汉市江汉区八年级上学期期末考试数学试卷( 含答案)
考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:
(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.
12.1.6×10-5
【分析】
绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
设∠BAD=∠BDA=x,∠E=∠CAE=y,
∴∠ABC=∠BAD+∠BDA=2x,∠ACB=∠E+∠CAE=2y,
∵∠ABC+∠ACB+∠BAC=180°,
∴2x+2y+50°=180°,
∴x+y=65°,
∴∠DAE=∠DAB+∠CAE+∠BAC=65°+50°=115°.
故答案为:115°.
【点评】
(2)若∠BAC=108°,∠D=36o,则图中共有个等腰三角形.
24.(1)先化简,再求值: ,其中a=2020;
(2)解方程: .
25.如图,所有的网格都是由边长为1的小正方形构成,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形, ABC为格点三角形.
(1)如图,图1,图2,图3都是6×6的正方形网格,点M,点N都是格点,请分别按要求在网格中作图:
解:根据题意,∠ABC=∠EDC,BC=CD,∠ACB=∠ECD,
∴能证明△ABC≌△EDC最直接的依据是ASA.
故选:C.
【点评】
本题考查证明三角形全等.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.

2021-2022学年八上期末数学题(含答案)

2021-2022学年八上期末数学题(含答案)
(2)当5是腰时,符合三角形的三边关系,
周长=4+5+5=14.
故选D.
【点睛】本题考查的知识点是等腰三角形的性质和三角形的三边关系,解题关键是进行分类讨论,还应验证各种情况是否能构成三角形进行解答.
4.平面直角坐标系中,点(a2+1,2020)所在象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
故选A.
【点睛】本题主要考查轴对称图形,掌握轴对称图形的定义并能正确识别轴对称图形是解答本题的关键.
2.下列实数0, , ,π,其中,无理数共有( )
A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分:无理数有: , .
故选B.
【点睛】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.
6.如图,点B,C在线段AD上,AB=CD,AE∥BF,添加一个条件仍不能判定△AEC≌△BFD的是( )
A.AE=BFB.CE=DFC.∠ACE=∠BDFD.∠E=∠F
【答案】B
【解析】
【分析】根据三角形全等的判定定理逐项分析即可.
【详解】解:∵AE∥BF,
∴∠A=∠FBD,
∵AB=CD,
∴AC=BD,
7.满足下列条件时, 不是直角三角形的是( )
A. , , B.
C. D. ,
【答案】C
【解析】
【分析】根据三角形内角和公式和勾股定理的逆定理判定是否为直角三角形.
【详解】解:A、 符合勾股定理的逆定理,故A选项是直角三角形,不符合题意;
B、32+42=52,符合勾股定理的逆定理,故B选项是直角三角形,不符合题意;
(3)乙车出发后小时追上甲车.

湖北省黄石市2023-2024学年八年级上学期月考数学试题

湖北省黄石市2023-2024学年八年级上学期月考数学试题

湖北省黄石市2023-2024学年八年级上学期月考数学试题学校:___________姓名:___________班级:___________考号:___________A .82A .2a b +米B 7.如图,在ABC 中,若BCF △的面积为1,则①ACD ACE ≌;②CDE ③2EH BE=;④EBC EHC S S ∆∆=A .只有①②C .只有③④二、填空题11.设x ,y 为实数,代数式12.如图,等边三角形ABC AE 与CD 交于点F ,AG13.如图,四边形ABCD 中,DBC ∠的大小=度.14.一片草原上的一片青草,到处长的一样密、一样快.头牛在60天可以吃完,则15.在ABC 中,40A ∠=︒小等于.16.某商场为了促销准备开展两轮抽奖活动.第一轮的奖品有C 的数量比是1:2:3,B 之和超过25元且不超过50少20%,F 的数量也比D 的数量少是B 的单价的两倍,F 的单价与三种奖品总价少407元,第一轮和第二轮奖品数量总和超过所有奖品的单价和数量都是整数,则奖品三、解答题17.如图,ABC ∆中,AB AC =,AD AE =,60CAD ∠=o ,C α∠=.(1)用α表示BAD ∠,则BAD ∠=_______;(2)求EDB ∠的度数.18.已知():():()7:14:9a b b c c a +++=,求:(1)如图1,求A点坐标;(2)如图2,D为y正半轴上一点,C在第二象限,CE的延长线交x轴于M,当D点在y轴正半轴上运动时,M点坐标是否变化,若不变,求M点的坐标,若变化,说明理由;(3)如图3,D在y轴负半轴上,以DA为边向右构造等边DAC△,CB交y轴于E点,△为等边三角形,连BE,试求CE,OD,如果D点在y轴负半轴上运动时,仍保持DACAE三者的数量关系,并证明你的结论.。

2020-2021学年湖北省武汉市东湖高新区八年级上学期期中数学试题及答案

2020-2021学年湖北省武汉市东湖高新区八年级上学期期中数学试题及答案

2020-2021学年湖北省武汉市东湖高新区八年级上学期期中数学试题及答案一.选择题(每题3分,共30分,下面四个答案中,只有一个是正确的)1. 下列为轴对称图形的是( )2.以下列各组线段为边,能组成三角形的是( )A.3、3、7B.2、3、5C.3、4、5D.5、6、113.下列哪个图形具有稳定性( )4. 如图,已知OF 平分∠AOB ,PD⊥OA 于D 点,PE⊥OB 于F 点,F 是OF 上的另一点,连接DF 、EF.判断图中有几对全等三角形( )A.1B.2C.3D.45.七边形的对角线数量为( )条.A.16B.21C.28D.146.下列命题中正确的是( )A.一个三角形最多有2个钝角B.直角三角形的外角不可以是锐角C.三角形的两边之差可以等于第三边D.三角形的外角一定大于相邻内角7.已知点P()关于轴对称的点在第二象限,则的取值范围为( )32,1-+a a x a A. B. C. D. 23>a 23<a 1-<a 231<<-a 8. 如图,把一张长方形纸片沿对角线折叠,∠ABE=20°,则∠ADB 的度数是( )A.40°B.35°C.45°D.30°9. 如图,在Rt ABC 中,以ABC 的一边为边画等腰三角形,使得它的第三个顶点在ABC 的其他边上,∆∆∆则可以画出的不同的等腰三角形的个数最多为( )A.7B.6C.5D.4第9题图 第10题图10. 如图,ACB 和DCE 均为等腰直角三角形,且∠ACB=∠DCE=90°,点A 、D 、E 在同一条线上,CM 平分∆∆∠DCE,连接BE.以下结论:AD=CE;②CM⊥AE;③AE=BE+2CM;④,正确的有( )○1COE S ∆BOM S ∆>A.1 个 B.2个 C.3个 D.4个二、填空题(每题3分,共18分)11.一个多边形的各内角都等于120°,它是 边形。

湖北省黄石市阳新县2022-2023学年八年级上学期期末考试数学试题(含答案解析)

湖北省黄石市阳新县2022-2023学年八年级上学期期末考试数学试题(含答案解析)

湖北省黄石市阳新县2022-2023学年八年级上学期期末考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列生活实物中,没有用到三角形的稳定性的是()A .B .C .D .2.下列等式中,从左到右的变形是因式分解的是()A .()21x x x x +=+B .()233x xy x x y +-=-+C .()226435x x x ++=+-D .()22211x x x ++=+3.如图,在ABC 中AD BC ⊥于点D E ,为AC 上一点连结BE 交AD 于点F ,若BF AC =,DF DC =,则1∠与2∠的和为()A .35︒B .40︒C .45︒D .50︒4.下列运算正确的是()A .224235a a a +=B .3332b b b ⋅=C .()5210a a =D .()236a b a b =5.如图,Rt ABC 中,90C ∠=︒,30B ∠=︒,要求用圆规和直尺作图,把它分成两个三角形,其中一个三角形是等腰三角形.其作法错误的是()A.B.C.D .6.下列说法正确的是()A .分式242x x --的值为零,则x 的值为±2B .根据分式的基本性质,等式22m mx n nx=C .把分式50.6320.75a b a b --的分子与分母的各项系数都化为整数的结果为18502112a b a b --D .分式()()3485x y x y -+是最简分式7.正六边形ABCDEF 与正方形ABMN 摆放如图所示,连接NF ,则ANF ∠的度数为()A .70︒B .80︒C .75︒D .85︒8.如图,点C 是线段BG 上的一点,以BC ,CG 为边向两边作正方形,面积分别是1S 和2S ,两正方形的面积和1220S S +=,已知BG =6,则图中阴影部分面积为()A .4B .6C .7D .89.某开发区在一项工程招标时,接到甲、乙两个工程队的投标书,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:①甲队单独完成这项工程,刚好如期完成;②乙队单独完成此项工程要比规定工期多用5天;③,剩下的工程由乙队单独做,也正好如期完工.小亮设规定的工期为x 天,根据题意列出了方程:415x x x +=+,则方案③中被墨水污染的部分应该是()A .甲先做了4天B .甲乙合作了4天C .甲先做了工程的14D .甲乙合作了工程的1410.如图,M ,A ,N 是直线l 上的三点,3AM =,5AN =,P 是直线l 外一点,且60PAN ∠=︒,1AP =,若动点Q 从点M 出发,向点N 移动,移动到点N 停止,在APQ △形状的变化过程中,依次出现的特殊三角形是()A .等腰三角形—等边三角形—直角三角形—等腰三角形B .直角三角形—等腰三角形—直角三角形—等边三角形C .等腰三角形—直角三角形—等边三角形—直角三角形D .等腰三角形—直角三角形—等腰三角形—直角三角形二、填空题11.芯片是手机、电脑等高科技产品最核心的部件,更小的芯片意味着更高的性能.目前我国芯片的量产工艺已达到14纳米,已知14纳米等于0.000000014米,请将0.000000014用科学记数法表示可记为______.12.已知()115P a -,和()221P b -,关于x 轴对称,则()2022a b +的值为______.13.已知x 2-2kxy +64y 2是一个完全平方式,则k 的值是_______.14.分式方程4233mx x x-=--无解,则m =______.15.如图,已知30AOB ∠=︒,OC 平分AOB ∠,在OA 上有一点M ,OM =,现要在,OC OA 上分别找点Q ,N ,使QM QN +最小,则其最小值为______cm .16.如图,在Rt ABC △中,90ACB ∠=︒,AC BC =,射线AF 是BAC ∠的平分线,交BC 于点D ,过点B 作AB 的垂线与射线AF 交于点E ,连接CE ,M 是DE 的中点,连接BM 并延长与AC 的延长线交于点G ,则下列结论:①BCG ACD ≅△△;②BG 垂直平分DE ;③BE CG AC +=,④2G GBE ∠=∠;把所有正确结论序号填在横线上______.三、解答题17.(1)计算:()224333a a a a ⎡⎤⋅-÷⎢⎥⎣⎦;(2)分解因式:22363x xy y -+.18.如图,点A ,E ,F 在直线l 上,AE=BF ,AC//BD ,且AC=BD ,求证:CF=DE19.在如图所示的正方形网格中,每个小正方形的边长都是1,已知△ABC 的三个顶点的坐标分别为(3,6)A -,(1,2)B -,(5,4)C -.(1)作出ABC 关于y 轴对称的111A B C △.并写出点1A 的坐标___.(2)在第(1)题的变换下,若点(,)M m n 是线段AC 上的任意一点,那么点M 的对应点1M 的坐标为____(3)在y 轴上找一点P ,使PA PB =,则P 点坐标为____20.先化简:2221211a a a a a a -+⎛⎫÷- ⎪-+⎝⎭,再从-1,0,1,2中选择一个适合的数代入求值.21.(1)已知a +b =5,ab =14-,求下列各式的值:①a 2+b 2;②(a ﹣b )2.(2)若x +32y ﹣2z +1=0,求9x •27y ÷81z 的值.22.2022年我国已成为全球最大的电动汽车市场,电动汽车在保障能源安全,改善空气质量等方面较传统汽车都有明显优势.经过对某款电动汽车和某款燃油车的对比调查发现,电动汽车平均每公里的充电费比燃油车平均每公里的加油费少0.6元.若充电费和加油费均为300元/时,电动汽车可行驶的总路程是燃油车的4倍,求这款电动汽车平均每公里的充电费.23.【阅读学习】阅读下面的解题过程:已知:2113x x =+,求241x x +的值.解:由2113x x =+知0x ≠,所以213x x+=,即13x x +=,所以2422221112327x x x x x x +⎛⎫=+=+-=-= ⎪⎝⎭.故241x x +的值为17.(1)【类比探究】上题的解法叫做“倒数法”,请你利用“倒数法”解决下面的题目:已知2131x x x =--+,求24271x x x -+的值.(2)【拓展延伸】已知1113a b +=,1114b c +=,1116a c +=,求abc ab bc ac ++的值.24.如图1,C 是线段BE 上一点,以BC 、CE 为边分别在BE 的同侧作等边△ABC 和等边△DCE ,连结AE 、BD .(1)求证:BD=AE ;(2)如图2,若M 、N 分别是线段AE 、BD 上的点,且AM=BN ,请判断△CMN 的形状,并说明理由.25.已知:如图(1),在平面直角坐标系中,点A 、点B 分别在x 轴、y 轴的正半轴上,点C 在第一象限,AC BC =,点A 坐标为(),0n ,点C 坐标为(),4m ,且2228170m n n m +--+=.(1)求出m ,n 的值;(2)求点B 的坐标,并证明ABC 为等腰直角三角形;(3)在坐标平面内有点G (点G 不与点A 重合),使得BCG 是以BC 为直角边的等腰直角三角形,请求出满足条件的点G 的坐标.参考答案:1.B【分析】根据三角形的稳定性解答即可.【详解】解:选项B 中活动衣架上没有三角形,其余A 、C 、D 选项中都含有三角形,由三角形的稳定性可知,选项B 中没有利用三角形的稳定性,故B 正确.故选:B .【点睛】本题主要考查了三角形的稳定性,正确的理解题意是解题的关键.2.D【分析】根据因式分解的定义逐个判断即可.【详解】解:A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、不是因式分解,故本选项不符合题意;D 、是因式分解,故本选项符合题意;故选:D .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键.3.C【分析】由AD BC ⊥于点D ,可以得到BDF V 和ADC △是直角三角形,根据直角三角形的判定“HL ”,可以证明Rt BDF Rt ADC ≌,得到AD BD =,进而得到1245∠+∠=︒.【详解】解:∵AD BC ⊥于点D∴90BDF ADC ∠=∠=︒在Rt BDF 和Rt ADC 中BF AC DF DC=⎧⎨=⎩∴Rt BDF Rt ADC HL ≌()∴2DBF BD AD∠∠==,∴45DBA DAB ∠=∠=︒∴12145DBF DBA ∠+∠=∠+∠=∠=︒∴1245∠∠+=︒故选:C .【点睛】本题考查了全等三角形的判定性质、等角对等边、直角三角形的两个锐角互余等知识点,证明Rt BDF Rt ADC ≌是解题的关键.4.C【分析】直接利用合并同类项法则、同底数幂的乘法法则、积的乘方以及幂的乘方运算法则依次判断即可.【详解】解:A 、22242355a a a a +=≠,该选项不符合题意;B 、33632b b b b ⋅=≠,该选项不符合题意;C 、()5210a a =,该选项符合题意;D 、()23626a b a b a b =≠,该选项不符合题意;故选:C .【点睛】本题考查了整式的运算,解决本题的关键是牢记相关运算法则.5.B【分析】对各项的尺规作图进行分析,再根据等腰三角形的判定逐个分析即可.【详解】A 选项,由作法可知,AD =AC ,即ADC △是等腰三角形,不满足题意;B 选项,在ADC △中,∵90C ∠=︒,30B ∠=︒∴12AC AB =又由作法可知,12CD BD BC ==在Rt ABC 中,AB BC>∴AC CD >,即ADC △不是等腰三角形∴AD CD >,即AD BD >,即ADB 不是等腰三角形,满足题意;C 选项,由作法可知,AD =BD ,即ADB 是等腰三角形,不满足题意;D 选项,由作法可知,()11903022BAD DAC BAC B ∠=∠=∠=⋅︒-∠=︒,∴30BAD B ∠=∠=︒,即ADB 是等腰三角形,不满足题意;故选:B .【点睛】本题考查尺规作图和等腰三角形的判定.熟知尺规作图是本题解题的关键.6.C【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案.【详解】解:A 、分式242x x --的值为零,则x 的值为−2,故此选项错误;B 、根据分式的基本性质,等式22m mx n nx=(x ≠0),故此选项错误;C 、分式50.6320.75a b a b --的分子与分母的各项系数都化为整数的结果为18502112a b a b --,故此选项正确;D 、分式()()34228555x y x y x y x y--=++,原式不是最简分式,故此选项错误;故选:C .【点睛】此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义是解题关键.7.C【分析】求出正六边形和正方形的每个内角度数,求得FAN ∠,在等腰ANF 中求底角度数.【详解】解: 正六边形ABCDEF 的每一个内角是41806120⨯︒÷=︒,正方形ABMN 的每个内角是90︒,1209030FAN ∴∠=︒-︒=︒,AN AF = ,AFN ANF ∴∠=∠,1(18030)752ANF ∴∠=︒-︒=︒;故选:C .【点睛】本题考查正多边形的内角和等腰三角形的性质,多边形的内角和公式是解题的关键.8.A【分析】设BC =a ,CG =b ,建立关于a 、b 的关系,最后求面积.【详解】解:设BC =a ,CG =b ,则21S a =,22S b =,BG =a +b =8,∴221220S S a b +=+=,∵2222()2636a b a ab b +=++==,∴2362016ab =-=,∴ab =8,∴阴影部分的面积111=84222S BC CE ab ⋅==⨯=阴影.故选:A .【点睛】本题主要考查了完全平方公式的几何背景,通过面积关系构造使用完全平方公式的条件是求解本题的关键.9.B 【详解】试题解析:由题意:415x x x +=+,可知甲做了4天,乙做了x 天.由此可以推出,开始他们合做了4天,故条件③是甲乙合做了4天.故选B .点睛:用到的等量关系为:工效×工作时间=工作总量.10.C【分析】点Q 从点M 出发,沿直线l 向点N 移动,移动到点N 停止的整个过程,逐次考虑确定三角形的形状即可判断.【详解】当点Q 移动到2MQ =,此时点Q 在点A 的左侧,且1AQ AP ==,APQ △是等腰三角形;当点Q 移动到在点A 的右侧,且1122AQ AP ==,APQ △是直角三角形;当点Q 移动到在点A 的右侧,且1AQ AP ==,APQ △是等边三角形;当点Q 移动到在点A 的右侧,且22AQ AP ==,APQ △是直角三角形;∴在形状的变化过程中,依次出现的特殊三角形是:等腰三角形—直角三角形—等边三角形—直角三角形.故选:C .【点睛】本题考查了等边三角形的判定与性质、等腰三角形的判定与性质、直角三角形的判定与性质,熟练掌握这些性质和判定是解题的关键.11.81.410-⨯【分析】由科学记数法表示绝对值小于1的数的方法可直接得到答案.【详解】解:80.0000000141.4=10-⨯故答案为:81.410-⨯.【点睛】本题考查用科学记数法表示绝对值小于1的数,熟练掌握相关知识是解题的关键.12.1【分析】根据关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数,求得,a b 的值,进而代入代数式即可求解.【详解】解:∵()115P a -,和()221P b -,关于x 轴对称,∴12,510a b -=+-=,解得3,4a b ==-,∴()2022a b +()2022341=-=,故答案为:1.【点睛】本题考查了关于x 轴对称的两个点的坐标特征,掌握关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数是解题的关键.13.8±【分析】根据完全平方公式222()2a b a ab b ±=±+即可得.【详解】解:由题意得:222264(8)x kxy y x y -+=±,即22222641664x kxy y x xy y -+=±+,所以216k =±,解得8k =±,故答案为:8±.【点睛】本题考查了完全平方公式,熟记公式是解题关键.14.2或43-【分析】先去分母,得到()210m x -=-,再分两种情况讨论即可.【详解】解:4233mx x x-=--,去分母得:264mx x -+=-,∴()210m x -=-,当20m -=时,方程无解,∴2m =,当2m ≠时,方程的增根为:3x =,∴()3210m -=-,解得:43m =-,综上:2m =或43m =-.故答案为:2或43-.【点睛】本题考查的是分式方程的无解问题,理解分式方程无解的含义是解本题的关键.15.【分析】作M 关于OC 的对称点P ,过点P 作PN OA ⊥于N ,交OC 于Q ,则此时QM QN +的值最小,可求OP OM ==,PQ MQ =,90PNO ∠=︒,再根据含30︒角的直角三角形的性质求解即可.【详解】作M 关于OC 的对称点P ,过点P 作PN OA ⊥于N ,交OC 于Q ,则此时QM QN +的值最小,∵30AOB ∠=︒,OC 平分AOB ∠,在OA 上有一点M ,∴,OA OB 关于OC 对称,∴点P 在OB 上,∴OP OM ==,PQ MQ =,90PNO ∠=︒,∵1122PN OP ==⨯=,∴QM QN PQ QN PN +=+==,故答案为:.【点睛】本题考查了含30︒角的直角三角形的性质,轴对称—最短路线问题,垂线段最短的应用,能够确定,Q N 的位置是解题的关键.16.①②③【分析】先由题意得到9045ABE ACB BCG BAC ∠=∠=∠=︒∠=︒,,再由角平分线的定义得到225BAE DAC ∠=∠=︒.,从而推出BEA ADC BDE BED ∠=∠∠=∠,则,再由三线合一定理即可证明BM DE GBE DBG ⊥∠=∠,,即可判断②;得到90MAG MGA ∠+∠=︒,再由90CBG CGB ∠+∠=︒,可得225DAC GBC ∠=∠=︒.,则225245GBE GBE ∠=︒∠=︒.,,从而可证明ACD BCG ≌,即可判断①;则CD CG =,再由AC BC BD CD ==+,可得到AC BE CG =+,即可判断③;由180675G BCG CBG ∠=︒-∠-∠=︒.,即可判断④.【详解】解:∵90ACB BE AB AC BC ∠=︒⊥=,,,∴9045ABE ACB BCG BAC ∠=∠=∠=︒∠=︒,,∴9090BAE BEA DAC ADC ∠+∠=︒∠+∠=︒,,∵AF 平分BAC ∠,∴22.5BAE DAC ∠=∠=︒,∴BEA ADC ∠=∠,又∵ADC BDE ∠=∠,∴BDE BED ∠=∠,又∵M 是DE 的中点,∴BM DE GBE DBG ⊥∠=∠,,∴BG 垂直平分DE ,90AMG ∠=︒,故②正确,∴90MAG MGA ∠+∠=︒,∵90CBG CGB ∠+∠=︒,∴22.5DAC GBC ∠=∠=︒,∴22.5GBE ∠=︒,∴245GBE ∠=︒,又∵AC BC =,∴()ASA ACD BCG ≌,故①正确;∴CD CG =,∵AC BC BD CD ==+,∴AC BE CG =+,故③正确;∵18067.5G BCG CBG ∠=︒-∠-∠=︒,∴2G GBE ∠≠∠,故④错误;故答案为:①②③.【点睛】本题主要考查了全等三角形的性质与判定,等腰三角形的性质与判定,三角形内角和定理,熟知等腰三角形的性质与判定条件是解题的关键.17.(1)32a ;(2)()23x y -【分析】(1)根据整式混合运算法则进行计算即可;(2)先提公因式,然后再用完全平方公式,分解因式即可.【详解】解:(1)原式()663633322a a a a a a =-÷=÷=;(2)原式()()222323x xy y x y =-+=-.【点睛】本题主要考查了整式混合运算和分解因式,解题的关键是熟练掌握整式混合运算法则,完全平方公式,准确计算.18.见解析.【分析】利用SAS 证明△ACF ≌△BDE ,根据全等三角形的性质即可得.【详解】∵AE =BF ,∴AF =BE ,∵AC ∥BD ,∴∠CAF =∠DBE ,又AC =BD ,∴△ACF ≌△BDE(SAS),∴CF =DE.【点睛】本题考查了全等三角形的判定与性质,熟练掌握是解题的关键.19.(1)图见解析,1(3,6)A (2),m n -()(3)(0,5)【分析】(1)利用关于y 轴对称的点的坐标特征得到点111A B C 、、的坐标,然后描点即可;(2)利用关于y 轴对称的点的坐标特征求解;(3)作AB 的垂直平分线交y 轴于P 点,从而得到P 点坐标.【详解】(1)解:如图,111A B C △为所作,点1A 的坐标为(3,6);(2)点(,)M m n 关于y 轴的对称点1M 的坐标为,m n -();故答案为:,m n -();(3)P 点坐标为(0,5);故答案为:(0,5).【点睛】本题考查了作图−轴对称变换:作轴对称后的图形的依据是轴对称的性质,掌握其基本作法是解决问题的关键(先确定图形的关键点;利用轴对称性质作出关键点的对称点;按原图形中的方式顺次连接对称点).也考查了线段垂直平分线的性质.20.1a ,12【分析】先根据分式的混合运算法则化简,再取使得分式有意义的a 的值代入计算即可.【详解】解:2221211a a a a a a -+⎛⎫÷- ⎪-+⎝⎭=()()()()21112111a a a a a a a a -+⎡⎤÷-+-⎢+⎣+⎥⎦=()()()()211111a a a a a a +-+⨯--=1a 由原式可知,a 不能取1,0,-1,∴a =2时,原式=12.【点睛】此题考查了分式的化简求值,解题的关键是记住分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的.21.(1)①512;②26;(2)19.【分析】(1)利用完全平方公式进行变形,再利用整体代入进行计算即可;(2)利用幂的乘方、积的乘方和同底数幂的乘法进行变形,再利用整体代入求值即可.【详解】解:(1)①a2+b2=(a+b)2﹣2ab=25+12=51 2;②(a﹣b)2=(a+b)2﹣4ab=25+1=26;(2)∵x+32y﹣2z+1=0,∴2x+3y﹣4z=﹣2,∴9x•27y÷81z=(32)x•(33)y÷(34)z=32x•33y÷34z=32x+3y﹣4z=3﹣2=1 9.【点睛】本题考查幂的乘方、积的乘方和同底数幂乘法的运算性质,掌握运算性质是正确计算的前提,适当变形和整体代入是关键.22.0.2元【分析】设这款电动汽车平均每公里的充电费用为x元,由题意:若充电费和加油费均为300元时,电动汽车可行驶的总路程是燃油车的4倍,列出分式方程,解方程即可.【详解】解:设这款电动汽车平均每公里的充电费用为x元,则燃油车平均每公里的加油费为0.6x+()元,根据题意,得:30030040.6x x=⨯+,解得:0.2x=,经检验,0.2x=是原方程的解,且符合题意,答:这款电动汽车平均每公里的充电费用为0.2元.【点睛】本题主要考查分式方程的应用,理解题意并找到等量关系是解题的关键.23.(1)1 5-(2)8 3【分析】(1)利用“倒数法”取已知等式的倒数,整理得到12xx+=;将所求分式取倒数,利用完全平方公式配方和整体代入的方法求得式子的值,最后取倒数即可得出结论;(2)将已知三个等式的左右两边分别相加得到111a b c++的值,将所求的分式取倒数计算出结果,利用(1)中的方法即可得出结论.【详解】(1)解:∵2131x x x =--+,∴0x ≠,∴2311x x x-+=-,∴131x x-+=-,即12x x +=,∴42271x x x -+2217x x=+-2127x x ⎛⎫=+-- ⎪⎝⎭2227=--=5-,∴2421715x x x =--+.(2)∵1113a b +=,1114b c +=,1116a c +=,∴0abc ≠,∴111111323464a b c ⎛⎫++=++= ⎪⎝⎭,∴11138a b c ++=,∴11138ab bc ac ab bc ac abc abc abc abc c a b ++=++=++=,∴83abc ab bc ac =++.【点睛】本题考查分式的化简求值,分式的加减法,倒数的意义,分式的乘除法,完全平方公式的应用,运用了恒等变换和整体代入的思想方法.本题是阅读型题目,理解并熟练运用题干中的解题思想与方法是解题的关键.24.(1)证明见解析;(2)等边三角形,理由见解析.【详解】试题分析:(1)由等边三角形的性质,可证明△DCB ≌△ACE ,可得到BD=AE ;(2)结合(1)中△DCB ≌△ACE ,可证明△ACM ≌△BCN ,进一步可得到∠MCN=60°且CM=CN ,可判断△CMN 为等边三角形.试题解析:(1)∵△ABC 、△DCE 均是等边三角形,∴AC=BC ,DC=DE ,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD ,即∠BCD=∠ACE ,在△DCB 和△ACE 中,∵AC=BC ,∠BCD =∠ACE ,DC=DE ,∴△DCB ≌△ACE (SAS ),∴BD=AE ;(2)△CMN 为等边三角形,理由如下:由(1)可知:△ACE ≌△DCB ,∴∠CAE=∠CDB ,即∠CAM=∠CBN ,∵AC=BC ,AM=BN ,在△ACM 和△BCN 中,∵AC=BC ,∠CAM=∠CBN ,AM=BN ,∴△ACM ≌△BCN (SAS ),∴CM=CN ,∠ACM=∠BCN ,∵∠ACB=60°即∠BCN+∠ACN=60°,∴∠ACM+∠ACN=60°即∠MCN=60°,∴△CMN 为等边三角形.考点:1.全等三角形的判定与性质;2.等边三角形的判定与性质.25.(1)4m =,1n =(2)点()0,7B ,证明见解析(3)满足条件的点G 的坐标为()3,3-或()3,11或()7,8【分析】(1)利用完全平方公式将2228170m n n m +--+=进行变形,可得()()22410m n -+-=,再根据平方的非负性即可求解;(2)过点C 作CM OB ⊥,CN OA ⊥,通过证明()HL BCM ACN ≅ ,利用全等三角形的性质得出3BM AN ==,MCB ACN ∠=∠,即可求解和证明;(3)分三种情况:若90GBC ∠=︒,BG BC =时,且点G 在BC 下方,若90GBC ∠=︒,BG BC =时,且点G 在BC 上方,若90GCB ∠=︒,CG BC =时,点G 在BC 上方,利用等腰直角三角形的性质和全等三角形的判定和性质求解即可.【详解】(1)解:∵2228170m n n m +--+=.∴()()22410m n -+-=,∴4m =,1n =;(2)如图(1),过点C 作CM OB ⊥,CN OA ⊥,∴90BMC ANC ∠=∠=︒,∵点()1,0A ,点()4,4C ;∴4CM CN OM ===,3AN =,又∵AC BC =,∴()HL BCM ACN ≅ ,∴3BM AN ==,MCB ACN ∠=∠,∴点()0,7B ,又∵90ACM ACN ∠+∠=︒,∴90BCM ACM ∠+∠=︒,∴ACB △为等腰直角三角形;(3)如图,若90GBC ∠=︒,BG BC =时,且点G 在BC 下方,过点G 作GF OB ⊥,过点C 作CE OB ⊥,∵90GBF EBC ∠+∠=︒,90GBF BGF ∠+∠=︒,∴EBC BGF ∠=∠,且90BEC BFG ∠=∠=︒,BG BC =,∴()AAS BGF CBE ≅△△∴4BF CE ==,GF BE =,∴3OF =,∴点()3,3G -,若90GBC ∠=︒,BG BC =时,且点G 在BC 上方,同理可求点()3,11G ,若90GCB ∠=︒,CG BC =时,点G 在BC 上方,同理可求点()7,8G ,综上满足条件的点G 的坐标为()3,3-,()3,11,或()7,8.【点睛】本题考查了全等三角形的判定和性质,非负性的应用,配方法的应用,等腰直角三角形的判定和性质,能够利用分类讨论的思想是解题的关键.。

2020--2021 学年上学期人教版 八年级数学试卷

2020--2021 学年上学期人教版 八年级数学试卷

2020-2021上学期人教版八年级数学期末试卷一.选择题(共12小题)1.10个互不相等的有理数,每9个的和都是“分母为22的既约真分数(分子与分母无公约数的真分数)”,则这10个有理数的和为()A.B.C.D.2.如图,在一个由6个圆圈组成的三角形里,把1到6这6个数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S都相等,那么S的最大值是()A.9B.10C.12D.133.已知(m2﹣9)x2﹣(m﹣3)x+6=0是以x为未知数的一元一次方程,如果|a|≤|m|,那么|a+m|+|a﹣m|的值为()A.2B.4C.6D.84.某企业接到为地震灾区生产活动房的任务,此企业拥有九个生产车间,现在每个车间原有的成品活动房一样多,每个车间的生产能力也一样.有A、B两组检验员,其中A组有8名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)检验完毕后,再去检验第三、四车间所有成品,又用去三天时间;同时这五天时间B组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,那么B组检验员人数为()A.8人B.10人C.12人D.14人5.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)→(1,0)→(1,1)→(1,2)→(2,1)→(3,0)→……,则2018分钟时粒子所在点的横坐标为()A.886B.903C.946D.9906.规定[x]表示不大于x的最大整数,例如[2.3]=2,[3]=3,[﹣2.5]=﹣3.那么函数y=x ﹣[x]的图象为()A.B.C.D.7.一个长为19cm,宽为18cm的长方形,如果把这个长方形分成若干个正方形要求正方形的边长为正整数,那么该长方形最少可分成正方形的个数()A.5个B.6个C.7个D.8个8.下图中各图形经过折叠后可以围成一个棱柱的是()A.B.C.D.9.如图,以平面镜AD和DC为两个侧面的一个黑盒子的另一个侧面BC上开有一个小孔P,一位观察者在盒外沿与BC平行方向走过时,则通过小孔能几次看到光源S所发出的光线()A.1次B.2次C.3次D.4次10.如图,在△ABC中,AB=BC,∠ABC=90°,点D、E、F分别在边AC、BC、AB上.且△CDE与△FDE关于直线DE对称.若AF=2BF,AD=7,则CD=()A.3B.5C.3D.511.某班同学参加植树,第一组植树15棵,第二组植树18棵,第三组植树14棵,第四组植树19棵.为了把这个班的植树情况清楚地反映出来,应该制作的统计图为()A.条形统计图B.折线统计图C.扇形统计图D.条形统计图、扇形统计图均可12.打字员小金连续打字14分钟,打了2 098个字符,测得她第一分钟打了112个字符,最后一分钟打了97个字符.如果测算她每一分钟所打字符的个数,则那个不成立()A.必有连续2分钟打了至少315个字符B.必有连续3分钟打了至少473个字符C.必有连续4分钟打了至少630个字符D.必有连续6分钟打了至少946个字符二.填空题(共6小题)13.已知a,b,c为三个有理数,它们在数轴上的对应位置如图所示,则|c﹣b|﹣|b﹣a|﹣|a ﹣c|=.14.20个质量分别为1,2,3,…,19,20克的砝码放在天平两边,正好达到平衡.(1)试将砝码①,②,…,⑳(①,②,…分别代表1克,2克,…的砝码)分别放在天平两边,使之达到平衡,且可从每边各取下同样多的偶数个砝码,仍能使天平保持平衡;(2)试将砝码①,②,…,⑳(①,②,…分别代表1克,2克,…的砝码)分别放在天平两边,使之达到平衡,且从每边无论怎样取下同样多个砝码,都不能再使天平保持平衡.15.如图1,平面上两条直线l1,l2相交于点O,对于平面上任意一点M,若点M到直线l1的距离为p,到直线l2的距离为q,则称有序实数对(p,q)为点M的“距离坐标”,例如,图1中点O的“距离坐标”为(0,0),点N的“距离坐标”为(3.6,4.2).(1)如图2,点A的“距离坐标”为,点B的“距离坐标”为;(2)如图3,点C,D分别在直线l1,l2上,则C,D两个点中,“距离坐标”为(3,0)的点是;(3)平面上“距离坐标”为(0,5)的点有个,“距离坐标”为(5,5)的点有个.16.如图,在长方体ABCD─EFGH中,与棱AB相交的棱有.17.如图,在平行四边形ABCD中,AC⊥AB,AB=2,AC=2.P、Q分别为边AD、DC 上的动点,D1是点D关于PQ的对称点,过点D1作D1F∥BC分别交AC、AB于点E、的最大值为.F,且满足D1E:D1F=1:3,则D1F组别(cm)145.5~152.5152.5~159.5159.5~166.5166.5~173.5频数(人)919148频率是0.28的这一小组的组中值是.三.解答题(共9小题)19.“十一”黄金周期间,某市在7天中外出旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数).日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日人数变化+1.6+0.8+0.4﹣0.4﹣0.8+0.2﹣1.4(单位:万人)(1)若9月30日外出旅游人数为5万人,求10月2日外出旅游的人数;(2)在(1)的条件下请判断七天内外出旅游人数最多的是哪天?最少的是哪天?它们相差多少万人?(3)如果这七天中最多一天出游人数为8万人,问9月30日出去旅游的人数有多少?20.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答问题.【提出问题】三个有理数a,b,c满足abc>0,求的值.【解决问题】解:由题意,得a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.①a,b,c都是正数,即a>0,b>0,c>0时,则;②当a,b,c中有一个为正数,另两个为负数时,不妨设a>0,b<0,c<0,则.综上所述,值为3或﹣1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a,b,c满足abc<0,求的值;(2)若a,b,c为三个不为0的有理数,且,求的值.21.小明课后利用方程的知识探索发现,所有纯循环小数都可以化为分数,例如,化为分数,解决方法是:设x=,即x=0.333…,将方程两边都×10,得10x=3.333…,即10x=3+0.333…,又因为x=0.333…,所以10x=3+x,所以9x=3,即x=,所以=.尝试解决下列各题:(1)把化成分数为.(2)请利用小明的方法,把纯循环小数化成分数.22.如图,已知点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0.(1)求A、B所表示的数;(2)点C在数轴上对应的数为x,且x是方程2x+1=x﹣8的解.①求线段BC的长;②在数轴上是否存在点P,使P A+PB=BC?求出点P对应的数;若不存在,说明理由.23.如图.已知A(2,0),B(5,0),点P为圆A上一动点,圆A半径为2,以PB为边作等边△PMB,求线段AM的取值范围.24.将一个正方体的表面涂上颜色.如图把正方体的棱2等分,然后沿等分线把正方体切开,能够得到8个小正方体,通过观察我们可以发现8个小正方体全是3个面涂有颜色的.如果把正方体的棱三等分,然后沿等分线把正方体切开,能够得到27个小正方体,通过观察我们可以发现这些小正方体中有8个是3个面涂有颜色的,有12个是2个面涂有颜色的,有6个是1个面涂有颜色的,还有1个各个面都没有涂色.(1)如果把正方体的棱4等分,所得小正方体表面涂色情况如何呢?把正方体的棱n等分呢?(请填写下表):棱等分数4等分n等分3面涂色的正方体个个2面涂色的正方体个个1面涂色的正方体个个个个各个面都无涂色的正方体(2)请直接写出将棱7等分时只有一个面涂色的小正方体的个数.25.如图,在等边△ABC中,点D在BC边上,点E在AC的延长线上,DE=DA.(1)求证:∠BAD=∠EDC;(2)作出点E关于直线BC的对称点M,连接DM、AM,猜想DM与AM的数量关系,并说明理由.26.李明为了了解本班同学的身高情况,随机抽取了一部分同学进行身高测量,获得如下数据(单位:cm):139,118,137,129,135,156,148,137,112,149,139,135,138,117,116,160.(1)根据以上数据填表:身高h(单位:cm)画记人数占调查人数的百分比(%)h≤120120<h≤140h>140(2)以上这种调查方式称为调查(填“全面”或“抽样”);(3)要直观地反映各身高段人数的多少,应画统计图比较合适;要直观地反映各身高段人数占被调查人数的百分比,应画统计图比较合适.27.从1、2、3、4、…、2014这2014个数中,抽取n个数,放入集合A中,从A中任意取3个数后,总有一个数能够整除另一个,试求n的最大值.2020-2021上学期人教版八年级数学期末试卷参考答案与试题解析一.选择题(共12小题)1.【分析】有条件:分母为22的既约真分数(分子与分母无公约数的真分数,用列举法逐个尝试即可得出答案.【解答】解:这10个有理数,每9个相加,一共得出另外10个数,由于原10个有理数互不相等,可以轻易得出它们相加后得出的另外10个数也是互不相等的,而这10个数根据题意都是分母22的既约真分数,而满足这个条件的真分数恰好正好有10个,∴这10项分别是:1/22,3/22,5/22,7/22,9/22,13/22,15/22,17/22,19/22,21/22.它们每一个都是原来10个有理数其中9个相加的和,那么,如果再把这10个以22为分母的真分数相加,得出来的结果必然是原来的10个有理数之和的9倍.所以,10个真分数相加得出结果为5,于是所求的10个有理数之和为5/9.故选:D.2.【分析】三个顶角分别是4,5,6,4与5之间是3,6和5之间是1,4和6之间是2,这样每边的和才能相等.【解答】解:由图可知S=3+4+5=12.故选:C.3.【分析】根据一元一次方程的定义,则x2系数为0,且x系数≠0,得出m=﹣3;由|a|≤|m|,得a﹣m≥0,a+m≤0,∴|a+m|+|a﹣m|=﹣a﹣m+a﹣m=﹣2m=6.【解答】解:∵一元一次方程则x2系数为0,且x系数≠0∴m2﹣9=0,m2=9,m=±3,﹣(m﹣3)≠0,m≠3,∴m=﹣3,|a|≤|﹣3|=3,∴﹣3≤a≤3,∴m≤a≤﹣m,∴a﹣m≥0,|a﹣m|=a﹣m,a+m≤0,|a+m|=﹣a﹣m,∴原式=﹣a﹣m+a﹣m=﹣2m=6.故选:C.4.【分析】设A组所检验的每个车间原有成品a件,每个车间1天生产b件,可得A组前两天检验的总件数和后三天检验的总件数为.根据检验员的检验速度相同,可列式等式得到a和b的关系,即可得A组一名检验员每天检验的成品数.再根据B组检验员的人数=五个车间的所有成品÷A组一名检验员每天检验的成品数,列式即可得解.【解答】解:设每个车间原有成品a件,每个车间每天生产b件产品,根据检验速度相同得:,解得a=4b;则A组每名检验员每天检验的成品数为:2(a+2b)÷(2×8)=12b÷16=b.那么B组检验员的人数为:5(a+5b)÷(b)÷5=45b÷b÷5=12(人).故选:C.5.【分析】根据点的坐标变化寻找规律即可.【解答】解:一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)→(1,0)→(1,1)→(1,2)→(2,1)→(3,0)→L,发现:当x=0时,有两个点,共2个点,当x=1时,有3个点,x=2时,1个点,共4个点;当x=3时,有4个点,x=4,1个点,x=5,1个点,共6个点;当x=6时,有5个点,x=7,1个点,x=8,1个点,x=9,1个点,共8个点;当x=10时,有6个点,x=11,1个点,x=12,1个点,x=13,1个点,x=14,1个点,共10个点;…当x=,有(n+1)个点,共2n个点;2+4+6+8+10+…+2n≤2018≤2018且n为正整数,得n=44,∵n=44时,2+4+6+8+10+…+88=1980,且当n=45时,2+4+6+8+10+…+90=2070,1980<2018<2070,∴当n=44时,x=(44×45)=990,∴1980<2018<1980+46,∴2018个粒子所在点的横坐标为990.故选:D.6.【分析】[x]还可理解为取小,分当x≥0、x<0,代入相应的点依次求解即可.【解答】解:[x]还可理解为取小,1、x﹣[x]≥0,所以y≥0;2、当x为整数时,x﹣[x]=0,此时y=0;3、y=x﹣[x]的图象为y=x(0≤x≤1)的图象向左或向右平移[x]个单位(根据[x]的±,左加右减);基于以上结论,可得:(1)当x≥0时,当x=0时,y=0﹣0=0,x=1时,y=1﹣1=0,当x=1.2时,y=1.2﹣1=0.2;x=1.5时,y=1.5﹣1=0.5,即x在两个整数之间时,y为一次函数;当x=2时,y=2﹣2=0,符合条件的为A、B;(2)当x<0时,当x=﹣1时,y=﹣1+1=0,x=﹣1.2时,y=﹣1.2+2=0.8,x=﹣2时,y=﹣2+2=0,在A、B中符合条件的为A,故选:A.7.【分析】根据正方形的边长为正整数的特点,可知长为19cm,宽为18cm的长方形,分成若干个正方形,上面两个正方形从左至右为11和8,8下面从左至右是3和5,最下面一排从左至右是7,7,5时正方形的个数最少.【解答】解:7个正方形边长分别11,8,7,7,5,5,3.另外,不可能分成5个或6个正方形,这个证明很麻烦,大概过程是通过编程列出所有可能的组合(如所有满足5个或6个数平方之和等于18×19且最大两个和不超过19的整数组合),然后对每个组合逐一否定其可行性,所以不用担心有更少正方形的组合.故选:C.8.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:选项A缺少两个底面,不能围成棱柱;选项C中折叠后没有上底面,不能折成棱柱,选项D不能组成棱柱,是因为上下两底面四个边的长不能与侧面的边等长、重合.,只有B能围成三棱柱.故选:B.9.【分析】根据光线的反射,即可确定.【解答】解:有4条:分别是:由S发出的线SP;由S发出,经过AD反射直接通过P的光线;由S发出,经过CD反射直接通过P的光线;由S发出,经过CD反射再经过AD反射通过P的光线.故选:D.10.【分析】如图,过点F作FT⊥CF交AC于T,过点T作TH⊥AB于H,设CD=x.用两种方法求出AB的长,由此构建方程求解即可.【解答】解:如图,过点F作FT⊥CF交AC于T,过点T作TH⊥AB于H,设CD=x.∵BA=BC,∠B=90°,AC=7+x,∴AB=BC=7+x,∵△CDE与△FDE关于直线DE对称,∴DC=DF,∴∠DFC=∠FCD,∵∠DFT+∠DFC=90°,∠FCD+∠CTF=90°,∴∠DFT=∠DTF,∴DF=DT=DC=x,∴AT=7﹣x,∵∠A=45°,∠AHT=90°,∴∠A=∠ATH=45°,∴AH=HT=7﹣x,∵∠AFT+∠CFB=90°,∠CFB+∠BCF=90°,∴∠AFT=∠BCF,∵AF=2BF,∴BC=AB=3BF,∴tan∠AFT=tan∠BCF==,∴FH=3HT=21﹣3x,AF=28﹣4x,∴BF=AF=14﹣2x,∵AF+BD=AB,∴28﹣4x+14﹣2x=7+x,∴x=5,∴CD=5,故选:D.11.【分析】根据题意,要表示这个班的植树情况结合三种统计图的特点,折线图体现变化情况,扇形图体现各部分的数值、比例关系,条形图体现各部分的数值大小,分析可得答案.【解答】解:根据题意,要求把这个班的植树情况清楚地反映出来,即体现数字间的关系,使用条形统计图、扇形统计图均可,故选:D.12.【分析】首先根据小金第一分钟打了112个字符,最后一分钟打了97个字符,算出中间12分钟打的字符数.再根据12分钟可以分成6段(6×2)、4段(4×3)、3段(3×4).计算出每段打的字符数,与选项比较.【解答】解:小金中间的12分钟打了2098一112﹣97=1889个字符.把这12分钟分别平均分成6段、4段、3段,每段分别是2分钟、3分钟、4分钟,∵1889÷6≈314.8,1889÷4≈472.3,1889÷3≈629.7,∴应用抽屉原理知A、B、C均成立.但1889÷2=944.5,因此如果小金每分钟所打字符个数依次是112,158,157,158,157,158,157,158,157,158,157,157,157,97,则她连续6分钟最多打了3×(158+157)=945个字符,结论D不成立.故选:D.二.填空题(共6小题)13.【分析】根据图示,可知有理数a,b,c的取值范围b>1>a>0>c>﹣1,然后根据它们的取值范围去绝对值并求|c﹣b|﹣|b﹣a|﹣|a﹣c|的值.【解答】解:根据图示知:b>1>a>0>c>﹣1,∴|c﹣b|﹣|b﹣a|﹣|a﹣c|=﹣c+b﹣b+a﹣a+c=0故答案是0.14.【分析】(1)将砝码①,③,…,⑳放在天平一边,砝码②,④,…,19克放在天平另一边,根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立,两边每次取质量和为21克的偶数个砝码即可;(2)将砝码①,②,…,14克放在天平一边,砝码15克,16克,17克,18克,19克,⑳放在天平另一边,根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立,从每边无论怎样取下同样多个砝码,都不能再使天平保持平衡.【解答】解:(1)天平一边是砝码①,③,…,⑳,天平另一边是砝码②,④,…,19克,两边每次取质量和为21克的偶数个砝码;(2)天平一边是砝码①,③,…,14克,天平另一边是砝码15克,16克,17克,18克,19克,⑳,从每边无论怎样取下同样多个砝码,都不能再使天平保持平衡.15.【分析】首先要了解,距离坐标的有序数对的构成方法,在此基础上要知道当点在某条直线上时,其对应直线上的距离坐标实际为0;同时,要通过画图,分析出到一条直线距离为定值的点在与已知直线平行的两条直线上.此时,答案就比较容易得出.【解答】解:(1)图形点A到直线l1、l2的距离分别是1.6和2.5,点B到直线l1、l2的距离分别是2.2和1.5.故答案是(1.6,2.5),(2.2,1.5)(2)“距离坐标”的两个有序数对的第一个数和第二个数分别表示点到直线l1、l2的距离,所以,到直线l1、l2的距离分别是3,0.结合已知图形,可知满足条件的为点D.故答案是:D(3)(0,5)代表点到直线l1、l2的距离分别是0和5,则所求点在直线l1上,且到l2的距离为5,这样的点在l2两侧各有一个.如图,直线AB∥CD∥l2且相邻两条直线距离为5,直线AD∥BC∥l1,且相邻两条直线距离为5,A、B、C、D四点的“距离坐标”为(5,5).故答案是:2,416.【分析】在长方体中,棱与棱之间有平行,相交(垂直),和异面等关系.【解答】解:观察图形可知,与棱AB相交的棱有AD,AE,BC,BF.故答案为AD,AE,BC,BF.17.【分析】如图,连接AD1.设AF=a,首先证明四边形AED1M是平行四边形,推出∠DMD1=30°,由题意,点D1的运动轨迹是以P为圆心,PD为半径是圆上,当点P与A重合时,D1F的值最大,过点D1作D1H⊥D于H.利用勾股定理构建方程求解即可.【解答】解:如图,连接AD1.设AF=a在AD上取一点M,使得AM=AF=a,连接MD′,在Rt△ABC中,∵∠BAC=90°,AB=2,AC=2,∴tan∠ACB==,∴∠ACB=30°,∵EF∥BC,∴∠AEF=∠ACB=30°,∴EF=2AF=2a,∵D1E=3D1F,∴ED1=a=AM,∵四边形ABCD是平行四边形,∴AD∥BCAD=BC=2AB=4,∴∠CAD=∠ACB=30°,∵AM=ED1,AM∥ED1,∴四边形AMD1E是平行四边形,∴MD1=AE=a,AE∥MD1,∴∠DMD1=∠CAD=30°,∵由题意,点D1的运动轨迹是以P为圆心,PD为半径是圆上,∴当点P与A重合时,D1F的值最大,过点D1作D1H⊥D于H.则有HD1=MD1=a,MH=a,∴AH=a,在Rt△AHD1中,则有42=(a)2+(a)2,解得a=(负根已经舍弃),∴D1F的最大值=3a=,故答案为.18.【分析】频率是0.28的人数为总人数×该组对应的频率,即频率是0.28的人数=50×0.28=14人,所以是159.5到166.5这组;根据组中值的概念可知,组中值=,则159.5到166.5段的组中值为=163.【解答】解:频率是0.28的一组的频数=50×0.28=14人,∴这一组是159.5﹣166.5组,∴组中值为=163.故本题答案为:163.三.解答题(共9小题)19.【分析】(1)根据若9月30日外出旅游人数为5万人,正数表示比前一天多的人数,负数表示比前一天少的人数,表示出10月2日外出旅游的人数,即可解决;(2)分别表示出10月1日到7日的人数,即可得出旅游人数最多的是哪天,最少的是哪天,以及它们相差多少万人;(3)设9月30日外出旅游人数记为a万人,最多一天有出游人数8万人,即:a+1.6+0.8+0.4=8,可得出a的值.【解答】解:(1)根据题意得:∵9月30日外出旅游人数为5万人,∴10月1日外出旅游人数为:5+1.6=6.6(万人),∴10月2日外出旅游人数为:6.6+0.8=7.4(万人);(2)10月3号外出旅游人数为:7.4+0.4=7.8(万人);10月4号外出旅游人数为:7.8﹣0.4=7.4(万人);10月5号外出旅游人数为:7.4﹣0.8=6.6(万人);10月6号外出旅游人数为:6.6+0.2=6.8(万人);10月7号外出旅游人数为:6.8﹣1.4=5.4(万人);10月3号外出旅游人数最多;7号最少;相差7.8﹣5.4=2.4(万人);(3)设9月30日外出旅游人数记为a万人,则a+1.6+0.8+0.4=8,解得a=5.2.故9月30日出去旅游的人数有5.2万.20.【分析】(1)仿照题目给出的思路和方法,解决(1)即可;(2)根据已知等式,利用绝对值的代数意义判断出a,b,c中负数有2个,正数有1个,判断出abc的正负,原式利用绝对值的代数意义化简计算即可.【解答】解:(1)∵abc<0,∴a,b,c都是负数或其中一个为负数,另两个为正数,①当a,b,c都是负数,即a<0,b<0,c<0时,则:=++=﹣1﹣1﹣1=﹣3;②a,b,c有一个为负数,另两个为正数时,设a<0,b>0,c>0,则=++=﹣1+1+1=1.(2)∵a,b,c为三个不为0的有理数,且,∴a,b,c中负数有2个,正数有1个,∴abc>0,∴==1.21.【分析】(1)根据阅读材料设x=0.,方程两边都乘以10,转化为1+x=10x,求出其解即可;(2)根据阅读材料设x=0.,方程两边都乘以100,转化为16+x=100x,求出其解即可;【解答】解:(1)设x=0.,即x=0.1111…,将方程两边都×10,得10x=1.1111…,即10x=1+0.1111…,又因为x=0.111…,所以10x=1+x,所以9x=1,即x=.故答案为:.(2分)(2)设x=,即x=0.1616…,将方程两边都×100,得100x=16.1616…,即100x=16+0.1616…,又因为x=0.1616…,所以100x=16+x,所以99x=16,即x=,所以=.(6分)22.【分析】(1)根据|a+3|+(b﹣2)2=0,可以求得a、b的值,从而可以求得点A、B表示的数;(2)①根据2x+1=x﹣8可以求得x的值,从而可以得到点C表示的数,从而可以得到线段BC的长;②根据题意可以列出关于点P表示的数的关系式,从而可以求得点P表示的数.【解答】解:(1)∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,解得,a=﹣3,b=2,即点A表示的数是﹣3,点B表示的数是2;(2)①2x+1=x﹣8解得,x=﹣6,∴BC=2﹣(﹣6)=8,即线段BC的长为8;②存在点P,使P A+PB=BC,设点P的表示的数为m,则|m﹣(﹣3)|+|m﹣2|=8,∴|m+3|+|m﹣2|=8,当m>2时,解得,m=3.5,当﹣3<m<2时,无解,当m<﹣3时,m=﹣4.5,即点P对应的数是3.5或﹣4.5.23.【分析】要求AM的取值范围,则先确定M点运动轨迹,由等边三角形联想共顶点的双等边结构,可构造和△PBM共顶点B的等边△ABH,则△APB≌△HBM⟹HM=P A=2,所以点M运动轨迹为以H为圆心,半径为2的圆H上的点.AM过圆心时取得相应最大和最小值.因为△PBM是等边三角形,点P在圆心为A半径为2的⊙A上运动,推出点M的运动轨迹也是圆,当点P1(4,0)时,点M与E重合,当P2(0,0)时,点M与F重合,利用点与圆的位置关系即可解决问题.【解答】解:要求AM的取值范围,则先确定M点运动轨迹.如图,由等边三角形联想共顶点的双等边结构,可构造和△PBM共顶点B的等边△ABH,则△APB≌△HBM⟹HM=P A=2,所以点M运动轨迹为以H为圆心,半径为2的圆H上的点.当点P1(4,0)时,点M与E重合,当P2(0,0)时,点M与F重合,此时△BFO和△BEP1都是等边三角形,所以BF=BO=5,BE=BP1=1,所以BH=BA=AH=3,AM过圆心时取得相应最大和最小值.点M运动轨迹为以H为圆心,半径为2的圆H上的点.AM过圆心时取得相应最大和最小值.因为圆A的半径为2,圆H的半径为2,当点A和点M在一条直线上时,HA=3,那么AM的最大值为3+2=5;最小值为3﹣2=1.所以线段AM的取值范围是:1≤AM≤5.24.【分析】(1)根据长方体的分割规律可分别得到4等分时的所得小正方体表面涂色情况,由特殊推广到一般即可得到n等分时所得小正方体表面涂色情况;(2)直接把n=7代入(1)中所得的规律中即可.【解答】解:(1)三面涂色8,8;二面涂色24,12(n﹣2),一面涂色24,6(n﹣2)2各面均不涂色8,(n﹣2)3;(2)当n=7时,6(n﹣2)2=6×(7﹣2)2=150,所以一面涂色的小正方体有150个.25.【分析】(1)根据等腰三角形的性质,得出∠E=∠DAC,根据等边三角形的性质,得出∠BAD+∠DAC=∠E+∠EDC=60°,据此可得出∠BAD=∠EDC;(2)根据轴对称作图,要证明DA=AM,只需根据有一个角是60°的等腰三角形是等边三角形,证△ADM是等边三角形即可.【解答】解:(1)如图1,∵△ABC是等边三角形,∴∠BAC=∠ACB=60°.又∵∠BAD+∠DAC=∠BAC,∠EDC+∠DEC=∠ACB,∴∠BAD+∠DAC=∠EDC+∠DEC.∵DE=DA,∴∠DAC=∠DEC,∴∠BAD=∠EDC.(2)猜想:DM=AM.理由如下:∵点M、E关于直线BC对称,∴∠MDC=∠EDC,DE=DM.又由(1)知∠BAD=∠EDC,∴∠MDC=∠BAD.∵∠ADC=∠BAD+∠B,即∠ADM+∠MDC=∠BAD+∠B,∴∠ADM=∠B=60°.又∵DA=DE=DM,∴△ADM是等边三角形,∴DM=AM.26.【分析】(1)根据数据即可直接进行画记,然后求得对应的人数,根据百分比的意义求得百分比;(2)因为是抽取了部分同学进行身高测量,因而是抽样调查;(3)根据条形统计图和扇形统计图的特点即可确定.【解答】解:(1)根据以上数据填表:身高h(单位:cm)画记人数占调查人数的百分比(%)h≤120 4 25% 120<h≤140正8 50% h>140 4 25% (2)以上这种调查方式称为抽样调查.故答案是:抽样;(3)要直观地反映各身高段人数的多少,应画条形统计图比较合适;要直观地反映各身高段人数占被调查人数的百分比,应画扇形统计图比较合适.故答案是:条形、扇形.27.【分析】首先构造两个数列:{1,2,4,8,16,32,64,128,256,512,1024};{3,6,12,24,48,96,192,384,768,1512}.共21个数,这21个数中任取三个,总有一个数为另一个数的倍数.则n≤21.由抽屉原理,构造集合,从而得到n的最大值是21.【解答】解:首先构造两个数列:{1,2,4,8,16,32,64,128,256,512,1024};{3,6,12,24,48,96,192,384,768,1512}.共21个数,这21个数中任取三个,总有一个数为另一个数的倍数.因此:n≤21.如果n>21,则构造如下集合:{1},{2,3},{4,5,6,7},{8,9,10,…,15},…,{1024,1025,…,2014},共11个集合,如果n>21,至少有某个集合中被选了大于等于3个数,而这个集合中不可能存在一个数是另一个数的倍数.矛盾.故n的最大值为21.。

必刷卷 06-2020-2021学年八年级数学上学期期末仿真必刷模拟卷(华东师大版)(解析版)

必刷卷 06-2020-2021学年八年级数学上学期期末仿真必刷模拟卷(华东师大版)(解析版)

2020-2021学年八年级上学期数学期末仿真必刷模拟卷【华东师大版】期末检测卷06姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间90分钟,试题共25题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.已知△ABC的三边a,b,c满足(a﹣4)2++|c﹣4|=0,那么△ABC是()A.不等边三角形B.等边三角形C.等腰三角形D.不能判断【解答】解:∵(a﹣4)2++|c﹣4|=0,∴a﹣4=0,b﹣4=0,c﹣4=0,∴a=b=c=4,∴△ABC的形状是等边三角形,故选:B.【知识点】非负数的性质:算术平方根、等腰三角形的判定、等边三角形的判定、非负数的性质:偶次方、非负数的性质:绝对值2.已知m=+,则()1/ 212 / 21A .4<m <5B .5<m <6C .6<m <7D .7<m <8【解答】解:m =+=4+,∵2<<3,∴6<4+<7,∴6<m <7, 故选:C .【知识点】估算无理数的大小3.某一餐桌的表面如图所示(单位:m ),设图中阴影部分面积S 1,餐桌面积为S 2,则=( )A .B .C .D .【解答】解:∵S 1=(a ﹣)(b ﹣b )+[(b •a )﹣(×)]=×+[ab ﹣]=ab ,S 2=ab ,∴==,故选:C .【知识点】整式的混合运算4.已知ab=﹣2,a﹣3b=5,则a3b﹣6a2b2+9ab3的值为()A.﹣10B.20C.﹣50D.40【解答】解:a3b﹣6a2b2+9ab3=ab(a2﹣6ab+9b2)=ab(a﹣3b)2,将ab=﹣2,a﹣3b=5代入得ab(a﹣3b)2=﹣2×52=﹣50.故a3b﹣6a2b2+9ab3的值为﹣50.故选:C.【知识点】提公因式法与公式法的综合运用5.已知:如图,∠MCN=42°,点P在∠MCN内部,P A⊥CM,PB⊥CN,垂足分别为A、B,P A=PB,则∠MCP的度数为()A.21°B.24°C.42°D.48°【解答】解:∵P A⊥CM,PB⊥CN,∴∠P AC=∠PBC=90°,3/ 21在Rt△P AC和Rt△PBC中,,∴Rt△P AC≌Rt△PBC(HL),∴∠PCM=∠PCN=∠MCN=21°;故选:A.【知识点】角平分线的性质、全等三角形的判定与性质6.在△ABC中,与∠A相邻的外角是130°,要使△ABC为等腰三角形,则∠B的度数是()A.50°B.65°C.50°或65°D.50°或65°或80°【解答】解:∠A=180°﹣130°=50°.当AB=AC时,∠B=∠C=(180°﹣50°)=65°;当BC=BA时,∠A=∠C=70°,则∠B=180°﹣50°﹣50°=80°;当CA=CB时,∠A=∠B=50°.∠B的度数为50°或65°或80°,故选:D.【知识点】等腰三角形的判定、三角形的外角性质7.在△ABC中,BC=a,AC=b,AB=c,根据下列条件不能判断△ABC是直角三角形的是()A.∠B=50°,∠C=40°B.∠A:∠B:∠C=1:2:2C.a=4,b=,c=5D.a :b :c =1:1:4/ 21【解答】解:A、∵∠B=50°,∠C=40°,∴∠A=180°﹣50°﹣40°=90°,∴△ABC是直角三角形;B、∵∠A:∠B:∠C=1:2:2∴∠A=36°,∠B=∠C=90°∴△ABC不是直角三角形;C、∵a=4,b=,c=5,∴a2+c2=b2,∴∠B=90°,∴△ABC是直角三角形.D、∵a:b:c=1:1:,∴可以假设a=b=k,c=k,∴a2+b2=c2,∴∠C=90°,∴△ABC是直角三角形,故选:B.【知识点】勾股定理的逆定理8.下列是勾股数的有()①3,4,5 ②5、12、13 ③9,40,41④13、14、15 ⑤⑥11、60、61A.6组B.5组C.4组D.3组5/ 216 / 21【解答】解:①32+42=52,是勾股数;②52+122=132,是勾股数; ③92+402=412,是勾股数; ④132+142≠152,不是勾股数; ⑤不是正整数,不是勾股数; ⑥32+42=52,是勾股数; 故是勾股数的有4组. 故选:C .【知识点】勾股数9.如图,AB ,BC 是⊙O 的两条弦,AO ⊥BC ,垂足为D ,若⊙O 的直径为5,BC =4,则AB 的长为( )A .2B .2C .4D .5【解答】解:连接OB ,∵AO ⊥BC ,AO 过O ,BC =4,∴BD=CD=2,∠BDO=90°,由勾股定理得:OD===,∴AD=OA+OD=+=4,在Rt△ADB中,由勾股定理得:AB===2,故选:A.【知识点】垂径定理、勾股定理10.对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频数表如下:估计出售2000件衬衣,其中次品大约是()A.50件B.100件C.150件D.200件【解答】解:2000×(1﹣)≈200件,故选:D.【知识点】频数(率)分布表、用样本估计总体二、填空题(本大题共6小题,每小题2分,共124分.不需写出解答过程,请把答案直接填写在横线上)11.﹣的立方根是﹣.【解答】解:∵(﹣)3=﹣,∴﹣的立方根是﹣.7/ 21故答案为:﹣.【知识点】立方根12.已知a﹣1=20172+20182,则=.【解答】解:∵a﹣1=20172+20182,∴a=20172+20182+1,∴=====4035.故答案为:4035.【知识点】算术平方根13.分解因式:﹣x2+4x﹣4=﹣﹣.【解答】解:﹣x2+4x﹣4=﹣(x2﹣4x+4)=﹣(x﹣2)2.故答案为:﹣(x﹣2)2.【知识点】因式分解-运用公式法14.如图,已知OP平分∠AOB,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.CP=,PD=6.如果点M是OP的中点,则DM的长是.8/ 219 / 21【解答】解:∵OP 平分∠AOB ,PD ⊥OA 于点D ,PE ⊥OB 于点E ,∴∠AOP =∠BOP ,PC =PD =6,∠PDO =∠PEO =90°, ∴CE ===,∵CP ∥OA , ∴∠OPC =∠AOP , ∴∠OPC =∠BOP , ∴CO =CP =,∴OE =CE +CO =+=8,∴OP ===10,在Rt △OPD 中,点M 是OP 的中点, ∴DM =OP =5; 故答案为:5.【知识点】角平分线的性质、直角三角形斜边上的中线、勾股定理的应用、等腰三角形的判定与性质15.直角三角形的两边长为3cm ,4cm ,则第三边边长为.10 / 21【解答】解:(1)若把两边都看作是直角边,那么据已知和勾股定理,设第三边长为xcm ,则:x 2=32+42=25, ∴x =5;(2)若把4cm 长的边看作斜边,设第三边长为xcm , 则:x 2+32=42, x 2=42﹣32=7, ∴x =.故答案为:5或.【知识点】勾股定理16.如图的折线统计图分别表示我市A 县和B 县在4月份的日平均气温的情况,记该月A 县和B 县日平均气温是12℃的天数分别为a 天和b 天,则a +b = .【解答】解:根据图表可得:a =7,b =5,则a +b =7+5=12. 故答案为:12.11 / 21【知识点】折线统计图三、解答题(本大题共7小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.如图,∠BAD =∠CAE =90°,AB =AD ,AE =AC ,AF ⊥CF 于点F . (1)求证:△ABC ≌△ADE ;(2)已知BF 的长为2,DE 的长为6,求CD 的长.【解答】(1)证明:∵∠BAD =∠CAE =90°∴∠BAC =90°﹣∠CAD ,∠DAE =90°∠CAD ,即∠BAC =∠DAE在△BAC 和△DAE 中,,∴△BAC ≌△DAE (SAS );(2)解:∵∠CAE =90°,AE =AC , ∴∠E =45°,由(1)可知:△ABC ≌△ADE ,∴∠BCA =∠E =45°,∠CBA =∠EDA ,CB =ED , 延长BF 到G ,使得FG =FB ,连接AG ,如图所示:12 / 21∵AF ⊥CF ,∴∠AFG =∠AFB =90°,在△AFB 和△AFG 中,,∴△AFB ≌△AFG (SAS ),∴AB =AG =AD ,∠ABF =∠G =∠CDA在△CGA 和△CDA 中,,∴△CGA ≌△CDA (AAS ), ∴CD =CG∴CD =CB +BF +FG =CB +2BF =DE +2BF =6+2×2=10.【知识点】等腰直角三角形、全等三角形的判定与性质18.在如图所示的正方形网格中,每个小正方形的边长都为1,△ABC 的顶点都在格点上(网格线的交点). (1)请在如图所示的网格平面内建立适当的平面直角坐标系,使点A 坐标为(﹣1,2),点B 的坐标为(﹣5,2);(画出直角坐标系)(2)点C 的坐标为( ﹣ , )(直接写出结果)(3)把△ABC 先向下平移6个单位后得到对应的△A 1B 1C 1,再将△A 1B 1C 1沿y 轴翻折至△A 2B 2C 2;13 / 21①请在坐标系中画出△A 2B 2C 2;②若点P (m ,n )是△ABC 边上任意一点,P 2是△A 2B 2C 2边上与P 对应的点,写出点P 2的坐标为( ﹣ , ﹣ );(直接写出结果)③试在y 轴上找一点Q ,使得点Q 到A 2,C 2两点的距离之和最小,此时,QA 2+QC 2的长度之和最小值为 .(在图中画出点Q 的位置,并直接写出最小值答案)【解答】解:(1)∵点A 坐标为(﹣1,2),点B 的坐标为(﹣5,2),如图所示:即为所画出的直角坐标系; (2)根据坐标系可知:14 / 21点C 的坐标为(﹣2,5), 故答案为:﹣2,5;(3)把△ABC 先向下平移6个单位后得到对应的△A 1B 1C 1, 再将△A 1B 1C 1沿y 轴翻折至△A 2B 2C 2; ①如图即为坐标系中画出的△A 2B 2C 2; ②点P (m ,n )是△ABC 边上任意一点, P 2是△A 2B 2C 2边上与P 对应的点, ∴点P 2的坐标为(﹣m ,n ﹣6), 故答案为:﹣m ,n ﹣6; ③根据对称性可知:在y 轴上找一点Q ,使得点Q 到A 2,C 2两点的距离之和最小, ∴连接A 2C 1交y 轴于点Q ,此时QA 2+QC 2的长度之和最小, 即为A 2C 1的长,A 2C 1=3,∴QA 2+QC 2的长度之和最小值为3.故答案为:3.【知识点】勾股定理、翻折变换(折叠问题)、作图-平移变换、轴对称-最短路线问题19.一辆卡车装满货物后,高4m 、宽2.4m ,这辆卡车能通过截面如图所示(上方是一个半圆)的隧道吗?15 / 21【解答】解:如图,由图形得半圆O 的半径为2m ,作弦EF ∥AD ,且EF =2.4m ,作OH ⊥EF 于H ,连接OF ,由OH ⊥EF ,得HF =1.2m , 在Rt △OHF 中,OH ===1.6m ,∵1.6+2=3.6<4,∴这辆卡车不能通过截面如图所示的隧道.【知识点】垂径定理、勾股定理的应用20.已知,在△ABC 中,AC =BC .分别过A ,B 点作互相平行的直线AM 和BN .过点C 的直线分别交直线AM ,BN 于点D ,E .(1)如图1.若CD =CE .求∠ABE 的大小;(2)如图2.∠ABC =∠DEB =60°.求证:AD +DC =BE .【解答】(1)解:如图1,延长AC 交BN 于点F ,∵AM∥BN,∴∠DAF=∠AFB,在△ADC和△FEC中,,∴△ADC≌△FEC(AAS),∴AC=FC,∵AC=BC,∴BC=AC=FC=AF,∴△ABF是直角三角形,∴∠ABE=90°;(2)证明:如图2,在EB上截取EH=EC,连CH,∵AC=BC,∠ABC=60°,∴△ABC为等边三角形,∵∠DEB=60°,∴△CHE是等边三角形,∴∠CHE=60°,∠HCE=60°,∴∠BHC=120°,∵AM∥BN,∴∠ADC+∠BEC=180°,∴∠ADC=120°,∴∠DAC+∠DCA=60°,又∵∠DCA+∠ACB+∠BCH+∠HCE=180°,∴∠DCA+∠BCH=60°,16/ 2117 / 21∴∠DAC =∠BCH ,在△DAC 与△HCB 中,,∴△DAC ≌△HCB (AAS ), ∴AD =CH ,DC =BH , 又∵CH =CE =HE , ∴BE =BH +HE =DC +AD , 即AD +DC =BE .【知识点】全等三角形的判定与性质21.甲、乙两个长方形的边长如图所示(m 为正整数),其面积分别为S 1,S 2.(1)填空:S 1﹣S 2=﹣(用含m 的代数式表示);(2)若一个正方形的周长等于甲、乙两个长方形的周长之和.①设该正方形的边长为x,求x的值(用含m的代数式表示);②设该正方形的面积为S3,试探究:S3与2(S1+S2)的差是否是常数?若是常数,求出这个常数,若不是常数,请说明理由,(3)若另一个正方形的边长为正整数n,并且满足条件1≤n<S1﹣S2的n有且只有4个,求m的值.【解答】解:(1)S1﹣S2=(m+7)(m+1)﹣(m+4)(m+2)=2m+1.故答案为2m+1.(2)①根据题意,得4x=2(m+7+m+1)+2(m+4+m+2)解得x=2m+7.答;x的值为2m+7.②∵S1+S2=2m2+14m+15,S3﹣2(S1+S2)=(2m+7)2﹣2(2m2+14m+15)=4m2+28m+49﹣4m2﹣28m﹣30=19.答:S3与2(S1+S2)的差是常数:19.(3)∵1≤n<2m﹣1,由题意,得5≤2m﹣1<6,解得3≤m<.∵m是整数,∴m=3.答:m的值为3.18/ 21【知识点】整式的加减、多项式乘多项式22.计算(1)﹣12+(﹣)﹣2×π0(2)1232﹣124×122(用简便方法计算)(3)(x+2y+3z)(x+2y﹣3z)(4)(4a3b﹣6a2b2+12b3)÷2ab【解答】解:(1)﹣12+(﹣)﹣2×π0=﹣1+4×1=﹣1+4=3;(2)1232﹣124×122=1232﹣(123+1)×(123﹣1)=1232﹣1232+1=1;(3)(x+2y+3z)(x+2y﹣3z)=[(x+2y)+3z][(x+2y)﹣3z]=(x+2y)2﹣9z2=x2+4xy+4y2﹣9z2;(4)(4a3b﹣6a 2b 2+12b3)÷2ab19/ 21=2a2﹣3ab+.【知识点】整式的混合运算、零指数幂、负整数指数幂、实数的运算23.计算:(1)4(x﹣1)2﹣(2x﹣5)(2x+5);(2)(﹣2)﹣2﹣(﹣1)2019﹣(π﹣2018)0;(3)(4a4b7﹣a6b7)÷(﹣ab2)3;(4)÷+•【解答】解:(1)4(x﹣1)2﹣(2x﹣5)(2x+5)=4(x2﹣2x+1)﹣(4x2﹣25)=4x2﹣8x+4﹣4x2+25=﹣8x+29(2)(﹣2)﹣2﹣(﹣1)2019﹣(π﹣2018)0;=+1﹣1=(3)(4a4b7﹣a6b7)÷(﹣ab2)3;=(4a4b7﹣a6b7)÷(﹣a3b6)=﹣4ab +a3b20/ 21(4)÷+•=×+•=+=【知识点】负整数指数幂、分式的混合运算、整式的混合运算、实数的运算、零指数幂21/ 21原创原创精品资源学科网独家享有版权,侵权必究!。

2020-2021年秋季八年级上学期期末考试数学试题(含答案) (12)

2020-2021年秋季八年级上学期期末考试数学试题(含答案)  (12)

2020-2021年秋季八年级上学期期末考试数学试题数学试题一、选择题(本大题共10小题,共30分)1.下列运算正确的是()A. a2+a2=a4B. (-b2)3=-b6C. 2x•2x2=2x3D. (m-n)2=m2-n22.一个正数的两个平方根分别是2a-1与-a+2,则a的值为()A. 1B. -1C. 2D. -23.如图,在△ABC中,∠C = 90°,AB的垂直平分线MN分别交AC,AB于点D,E.若∠CBD:∠DBA = 2 :1,则∠A为()A. 20°B. 25°C. 22.5°D. 30°4.如图,已知等腰三角形ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.∠EBC=∠BACB. AE=BEC.AE=ECD. ∠EBC=∠ABE5.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长为()A. 4B. 16C.D. 4或6.如图,在△ABC中,AB=8,BC=10,AC=6,则BC边上的高A. 8AD为()B. 9C. D. 107.用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”时应假设()A. 三角形中有一个内角小于或等于60°B. 三角形中有两个内角小于或等于60°C. 三角形中有三个内角小于或等于60°D. 三角形中没有一个内角小于或等于60°8.小明家下个月的开支预算如图所示,如果用于衣服上的支是200元,则估计用于食物上的支出是()A. 200元B. 250元C. 300元D. 3509.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A. 0.1B. 0.2C. 0.3D. 0.410.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点B落在点B′处,则重叠部分△AFC的面积为()A. 12B. 10C. 8D. 6二、填空题(本大题共5小题,共15分)11.计算:|-2|-=______.12.如图,以数轴的单位长度线段为边长作一个正方形,以表示数2 的点为圆心,正方形对角线长为半径画半圆,交数轴于点A和点B,则点A表示的数是_____________.13.如图示,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是______.14.实数,-2,π,,中,其中无理数出现的频数是______.15.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为______.三、解答题(本大题共9小题,共75分)16.(8分)已知2a-1的算术平方根是3,3a+b-1的平方根是±4,c是的整数部分,求a+2b-c的平方根.17.(8分)计算(1)(3x-2)(2x+3)-(x-1)2(2).18.(9分)如图,△ABC中,AB=BC,∠ABC=45°,BE⊥AC于点E,AD⊥BC于点D,BE与AD相交于F.(1)求证:BF=AC;(2)若CD=1,求AF的长.19.(9分)如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.(1)判断∠D是否是直角,并说明理由.(2)求四边形ABCD的面积20.(9分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=______;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为______;(4)已知该校共有1200名学生,请你估计该校约有______名学生最喜爱足球活动.21.(10分)如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?22.(10分)为整治城市街道的汽车超速现象,交警大队在某街道旁进行了流动测速.如图,一辆小汽车在某城市街道上直行,某一时刻刚好行驶到离车速检测仪A60m的C处,过了4s后,小汽车到达离车速检测仪A100m的B处,已知该段城市街道的限速为60km/h,请问这辆小汽车是否超速?23.(12分)如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)当t=2秒时,求PQ的长;(2)求出发时间为几秒时,△PQB是等腰三角形?(3)若Q沿B→C→A方向运动,则当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.参考答案1.B2.B3.C4.A5.D6.C7.D8.C9.A 10.B11.0 12.2-13.5 14.2 15.1016.解:由题意得:,………………………………………….2分∴a=5,b=2.……………………………………………………………………….4分∵9<13<16,∴3<<4.∴c=3.………………………………………………………………………………5分∴a+2b-c=6.…………………………………………………………………………7分∴a+2b-c的平方根是±.………………………………………………………….8分17.解:(1)(3x-2)(2x+3)-(x-1)2=6x2+9x-4x-6-x2+2x-1………………………………………………………………..2分=5x2+7x-7;…………………………………………………………………………4分(2)原式=x2-4y2-2xy+4y2+2xy……………………………………………………………6分=x2.………………………………………………………………………8分18.解:(1)AD⊥BD,∠BAD=45°,∴AD=BD,…………………………………………………1分∵∠BFD=∠AFE,∠AFE+∠CAD=90°,∠CAD+∠ACD=90°,∴∠BFD=∠ACD,…………………………………………..2分在△BDF和△ACD中,,∴△BDF≌△ACD(AAS),………………………………..4分∴BF=AC;……………………………………………….5分(2)连接CF,…………………………………………………………6分∵△BDF≌△ADC,∴DF=DC,∴△DFC是等腰直角三角形.……………………………………………..7分∵CD=1,CF=∵AB=BC,BE⊥AC,∴AE=EC,BE是AC的垂直平分线.∴AF=CF,………………………………………………………………8分∴AF=.………………………………………………………………9分19解:(1)连接AC,…………………………………………………1分∵∠B=90°,∴AC2=BA2+BC2=400+225=625,………………………2分∵DA2+CD2=242+72=625,…………………………………3分∴AC2=DA2+DC2,…………………………………………4分∴△ADC是直角三角形,即∠D是直角;…………………5分(2)∵S四边形ABCD=S△ABC+S△ADC,………………………………6分∴…………………….7分…………………………………………….8分=234.……………………………………………………………………9分20.(1)150 ;…………………………………………………………2分(2)“足球“的人数=150×20%=30人,……………………………..4分补全上面的条形统计图如图所示;…………5分(3)36°;…………………………………………………………………………7分(4)240…………………………………………………………………………….9分21.解:(1)根据题意得△ABE是直角三角形……………………1分AB2=BE2+AE2…………………………………………………………………………………2分∵AB=25米,BE=7米,梯子距离地面的高度AE==24米.……………….4分答:此时梯子顶端离地面24米;……………………………5分(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24-4)=20米,……………….7分∴BD+BE=DE===15,………………………………………………8分∴DE=15-7=8(米),即下端滑行了8米.……………………………………………….9分答:梯子底端将向左滑动了8米.………………………………………………………..10分22.解:超速.…………………………………………………………………………….1分理由如下:在Rt△ABC中,AC=60m,AB=100m,……………………………………………………3分由勾股定理可得BC===80m,……………………………………6分∴汽车速度为80÷4=20m/s=72km/h,……………………………………………………….8分∵72>60,……………………………………………………………………………………..9分∴这辆小汽车超速了.………………………………………………………………………10分23.(1)解:(1)BQ=2×2=4cm,……………………………………………………….1分BP=AB-AP=8-2×1=6cm,…………………………………………………………………..2分∵∠B=90°,=2(cm);………………………………………………4分(2)解:根据题意得:BQ=BP,…………………………………………………………5分即2t=8-t,……………………………………………………………………………………6分解得:;…………………………………………………………………………………7分即出发时间为秒时,△PQB是等腰三角形;………………………………………………8分(3)解:分三种情况:①当CQ=BQ时,如图1所示:则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ∴BQ=AQ,∴CQ=AQ=5∴BC+CQ=11,∴t=11÷2=5.5秒.…………………………………………9分②当CQ=BC时,如图2所示:则BC+CQ=12∴t=12÷2=6秒.………………………………………10分③当BC=BQ时,如图3所示:过B点作BE⊥AC于点E,则(cm)∴(cm),∴CQ=2CE=7.2cm,∴BC+CQ=13.2cm,∴t=13.2÷2=6.6秒.……………………………………………..11分由上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.…………….12分。

2020--2021 学年上学期人教版 八年级数学试题

2020--2021 学年上学期人教版 八年级数学试题

2020-2021上学期人教版八年级数学期末试卷一.选择题(共12小题)1.《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”如果高于海平面200米记为+200米,那么低于海平面300米应记为()A.﹣300米B.+500米C.+300米D.﹣100米2.设三个互不相等的有理数,既可表示为1、a+b、a的形式,又可表示为0、、b的形式,则a2017+b2017的值为()A.0B.﹣1C.1D.23.设■,●,▲分别表示三种不同的物体,如图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么以下方案不正确的是()A.B.C.D.4.已知方程x2k﹣1+k=0是关于x的一元一次方程,则方程的解等于()A.﹣1B.1C.D.﹣5.点A的坐标(x,y)满足(x+3)2+|y+2|=0,则点A的位置在()A.第一象限B.第二象限C.第三象限D.第四象限6.如图,已知直线l1、l2经过坐标原点O,且l1与x轴所夹锐角为15°,l2与y轴所夹锐角为30°.在直线l1和l2之间依次构造正方形A1B1C1A2、正方形A2B2C2A3,正方形A3B3C3A4正方形A4B4C4A5…点A1、点A2、点A3、点A4、点A5…依次落在直线l1上,点B1、点B2、点B3、点B4…依次落在直线l2上,且A1B1=1,则点B2020的坐标为()A.(22018,22018)B.(22017,22017)C.(22018,22018)D.(22018,22018)7.如图形状的四张纸板,按图中线经过折叠可以围成一个直三棱柱的是()A.B.C.D.8.用一个平面去截正方体,截面图形不可能是()A.B.C.D.9.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P1(﹣2,0),第2次碰到正方形的边时的点为P2,…,第n次碰到正方形的边时的点为P n,则点P2020的坐标是()A.(0,1)B.(﹣2,4)C.(﹣2,0)D.(0,3)10.在△ABC中,AB=AC,点D在边AC上,连接BD,点E在边AB上,△BCD和△BED 关于BD对称,若△ADE是等腰三角形,则∠BAC=()A.36°B.72°C.90°D.108°11.以下调查中,最适宜采用普查方式的是()A.检测某批次汽车的抗撞击能力B.调查黄河的水质情况C.调查全国中学生视力和用眼卫生情况D.检查我国“神州八号”航天飞船各零部件的情况12.要将9个参加数学竞赛的名额分配给6所学校,每所学校至少要分得一个名额,那么不同的分配方案共有()A.56种B.36种C.28种D.72种二.填空题(共6小题)13.如果小明的爸爸收入10万元记作+10万元,那么小明的爸爸支出4万元记作万元.14.已知x=﹣3是方程ax﹣6=a+10的解,则a=.15.写出一个在x轴正半轴上的点坐标.16.如图,正方体的每条棱上放置相同数目的小球,设每条棱上的小球数为a,则正方体上小球总数为(用含a的代数式表示).17.如图,在6×6的正方形网格中,选取13个格点,以其中的三个格点A,B,C为顶点画△ABC,请你在图中以选取的格点为顶点再画出一个△ABP,使△ABP与△ABC成轴对称.这样的P点有个?(填P点的个数)18.进行数据的收集调查,一般可分为以下6个步骤,但它们的顺序弄乱了.正确的顺序是.(用字母按顺序写出即可).A.明确调查问题B.记录结果C.得出结论D.确定调查对象E.展开调查F.选择调查方法.三.解答题(共9小题)19.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫(A,B,C,D都在格点上).规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)A→C(,),B→C(,),C→D(,);(2)若这只甲虫的行走路线为A→B→C→D,则该甲虫走过的路程是;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+3,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置.(4)若图中另有两个格点M、N,且M→A(2﹣a,b﹣5),M→N(4﹣a,b﹣3),则N →A应记为什么?20.在数轴上点A表示数a,点B表示数b,点C表示数c;a是最大的负整数,a、b、c 满足|a+b|+(c﹣5)2=0.(1)填空:a=,b=,c=;(2)P为数轴上一动点,其对应的数是x,当P在线段AC上,且P A+PB+PC=7时,求x的值.(3)若点P,Q分别从A,C同时出发,匀速相向运动,点P的速度为3个单位/秒,点Q的速度为1个单位/秒.当点P运动到C后迅速以原速返回A;点Q运动至B点后停止运动,同时P点也停止运动.求在此运动过程中P,Q的相遇点在数轴上对应的数.21.我们规定,若关于x的一元一次方程mx=n(m≠0)的解为n﹣m,则称该方程为差解方程,例如:5x=的解为x=﹣5,则该方程5x=就是差解方程.请根据上边规定解答下列问题(1)若关于x的一元一次方程3x=a+1是差解方程,则a=.(2)若关于x的一元一次方程3x=a+b是差解方程且它的解为x=a,求代数式4a2b﹣[2a2﹣2(ab2﹣2a2b)]的值(提示:若m+n+1=m,移项合并同类项可以把含有m的项抵消掉,得到关于n的一元一次方程,求得n=﹣1)22.计算:(1)2+(﹣1)2019+(2+1)(﹣2﹣1)﹣|﹣3×|化简:(2)﹣3(2x2﹣xy)+4(x2+xy﹣6)解方程:(3)23.在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b′),给出如下定义:若b′=,则称点Q为点P的限变点.例如:点(2,3)的限变点的坐标是(2,2),点(﹣2,﹣5)的限变点的坐标是(﹣2,5),点(1,3)的限变点的坐标是(1,3).(1)①点(,﹣1)的限变点的坐标是;②如图1,在点A(﹣2,1)、B(2,1)中有一个点是直线y=2上某一个点的限变点,这个点是;(填“A”或“B”)(2)如图2,已知点C(﹣2,﹣2),点D(2,2),若点P在射线OC和OD上,其限变点Q的纵坐标b的取值范围是b′≥m或b′≤n,其中m>n,令s=m﹣n,直接写出s的值.(3)如图3,若点P在线段EF上,点E(﹣2,﹣5),点F(k,k﹣3),其限变点Q的纵坐标b′的取值范围是﹣2≤b′≤5,直接写出k的取值范围.24.综合与实践某“综合与实践”小组开展了“长方体纸盒的制作”实践活动,他们利用边长为acm的正方形纸板制作出两种不同方案的长方体盒子(图1为无盖的长方体纸盒,图2为有盖的长方体纸盒),请你动手操作验证并完成任务.(纸板厚度及接缝处忽略不计)动手操作一:根据图1方式制作一个无盖的长方体盒子.方法:先在纸板四角剪去四个同样大小边长为bcm的小正方形,再沿虚线折合起来.问题解决:(1)该长方体纸盒的底面边长为cm;(请你用含a,b的代数式表示)(2)若a=24cm,b=6cm,则长方体纸盒的底面积为多少cm2;动手操作二:根据图2方式制作一个有盖的长方体纸盒.方法:先在纸板四角剪去两个同样大小边长为bcm的小正方形和两个同样大小的小长方形,再沿虚线折合起来.拓展延伸:(3)该长方体纸盒的体积为多少cm3?(请你用含a,b的代数式表示)25.如图,点P在∠AOB的内部,点C和点P关于OA对称,点P关于OB对称点是D,连接CD交OA于M,交OB于N.(1)①若∠AOB=60°,则∠COD=°;②若∠AOB=α,求∠COD的度数.(2)若CD=4,则△PMN的周长为.26.2020年注定是不平凡的一年,新年伊始,一场突如其来的疫情席卷全国,全国人民万众一心,抗战疫情.为了早日取得抗疫的胜利,各级政府、各大新闻媒体都加大了对防疫知识的宣传.某校为了了解初一年级共480名同学对防疫知识的掌握情况,对他们进行了防疫知识测试.现随机抽取甲、乙两班各15名同学的测试成绩(满分100分)进行整理分析,过程如下:【收集数据】甲班15名学生测试成绩分别为:78,83,89,97,98,85,100,94,87,90,93,92,99,95;100.乙班15名学生测试成绩中90≤x<95的成绩如下:91,92,94,90,93【整理数据】:班级75≤x<8080≤x<8585≤x<9090≤x<9595≤x≤100甲11346乙12354【分析数据】:班级平均数众数中位数方差甲92a9341.1乙9087b50.2【应用数据】:(1)根据以上信息,可以求出:a=分,b=分;(2)若规定测试成绩92分及其以上为优秀,请估计参加防疫知识测试的480名学生中成绩为优秀的学生共有多少人;(3)根据以上数据,你认为哪个班的学生防疫测试的整体成绩较好?请说明理由(一条理由即可).27.120人参加数学竞赛,试题共有5道大题,已知第1、2、3、4、5题分别有96、83、74、66、35人做对,如果至少做对3题便可获奖,问:这次竞赛至少有几人获奖?2020-2021上学期人教版八年级数学期末试卷参考答案与试题解析一.选择题(共12小题)1.【分析】根据相反意义的量可以用正负数来表示,高于海平面200米记为+200米,那么低于海平面300米应记为﹣300米.【解答】解:如果高于海平面200米记为+200米,那么低于海平面300米应记为﹣300米.故选:A.2.【分析】由题意三个互不相等的有理数,既可表示为1、a+b、a的形式,又可表示为0、、b的形式,可知这两个三数组分别对应相等.从而判断出a、b的值.代入计算出结果.【解答】解:∵三个互不相等的有理数,既可表示为1、a+b、a的形式,又可表示为0、、b的形式,∴这两个三数组分别对应相等.∴a+b、a中有一个是0,由于有意义,所以a≠0,则a+b=0,所以a、b互为相反数.∴=﹣1,b=1,a=﹣1.∴a2017+b2017=(﹣1)2017+12017=0.故选:A.3.【分析】根据第一个天平可得2●=▲+■,根据第二个天平可得●+▲=■,可得出答案.【解答】解:根据图示可得:2●=▲+■①,●+▲=■②,由①②可得●=2▲,■=3▲,则■+●=5▲=2●+▲=●+3▲.故选:A.4.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).根据定义可列出关于k的方程,求解即可.【解答】解:由一元一次方程的特点得,2k﹣1=1,解得:k=1,∴一元一次方程是:x+1=0解得:x=﹣1.故选:A.5.【分析】根据非负数的性质求得x,y的值,再进一步判断点的位置.【解答】解:∵(x+3)2+|y+2|=0,∴x=﹣3<0,y=﹣2<0.则点A在第三象限.故选:C.6.【分析】根据一次函数,得出OB1、OB2等的长度,继而得知B1、B2等点的坐标,从中找出规律,进而可求出点B2020的坐标.【解答】解:∵l1与x轴所夹锐角为15°,l2与y轴所夹锐角为30°,∴l1与l2所夹锐角为45°,l2与x轴所夹锐角为60°,∴△A1B1O,△A2B2O,△A3B3O,…都是等腰直角三角形,∴B1O=20,B2O=21,B3O=22,…,B n O=2n﹣1,∴点B2020的坐标为(22020﹣1×,22020﹣1×),即(22018,22018).故选:A.7.【分析】根据直三棱柱的特点作答.【解答】解:A、围成三棱柱时,两个三角形重合为同一底面,而另一底面没有,故不能围成直三棱柱;B、D的两底面不是三角形,故也不能围成直三棱柱;只有C经过折叠可以围成一个直三棱柱.故选:C.8.【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.据此选择即可.【解答】解:正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此不可能是七边形,故选:D.9.【分析】按照反弹规律依次画图,写出点的坐标,再找出规律即可.【解答】解:如图,根据反射角等于入射角画图,可知光线从P2反射后到P3(0,3),再反射到P4(﹣2,4),再反射到P5(﹣4,3),再反射到P点(0,1)之后,再循环反射,每6次一循环,2020÷6=336……4,即点P2020的坐标是(﹣2,4),故选:B.10.【分析】如图,设∠A=x.首先证明∠ABC=∠C=2x,利用三角形的内角和定理构建方程求出x即可.【解答】解:如图,设∠A=x.∵EA=ED,∴∠A=∠ADE=x,∵∠BED=∠A+∠ADE=2x,△BDE与△BDC关于BD对称,∴∠BED=∠C=2x,∵AB=AC,∴∠ABC=∠C=2x,∵∠A+∠ABC+∠C=180°,∴5x=180°,∴x=36°,∴∠A=36°,故选:A.11.【分析】检测某批次汽车的抗撞击能力不适宜用普查,可采用抽查;调查黄河的水质情况,不容易使用普查;调查全国中学生视力和用眼卫生情况,由于数量多,分布不均等因素,不适合普查,检查我国“神州八号”航天飞船各零部件的情况,必须使用普查,【解答】解:检测某批次汽车的抗撞击能力不适宜用普查,可采用抽查;调查黄河的水质情况,不容易使用普查;调查全国中学生视力和用眼卫生情况,由于数量多,分布不均等因素,不适合普查,检查我国“神州八号”航天飞船各零部件的情况,必须使用普查,故选:D.12.【分析】可以将问题转化为9个人站成一排,每所学校至少要1名,就有8个空然后插入5个板子把他们隔开,从8个里选5个即可答案.【解答】解:可以利用9个人站成一排,每所学校至少要1名,就有8个空,然后插入5个板子把他们隔开,从8个里选5个,就是C85==56,故选:A.二.填空题(共6小题)13.【分析】用正负数来表示具有意义相反的两种量:收入记作正,则支出就记为负,由此得出小明的爸爸支出4万元,记作﹣4万元.【解答】解:如果小明的爸爸收入10万元记作+10万元,那么小明的爸爸支出4万元记作﹣4万元.故答案为:﹣4.14.【分析】根据方程解的定义,将方程的解代入方程可得关于字母系数a的一元一次方程,解方程可求出a的值.【解答】解:把x=﹣3代入方程ax﹣6=a+10,得:﹣3a﹣6=a+10,解方程得:a=﹣4.故填:﹣4.15.【分析】根据x的正半轴上点的横坐标大于零,纵坐标等于零,可得答案.【解答】解:写出一个在x轴正半轴上的点坐标(1,0),故答案为:(1,0).16.【分析】每条棱上有a个小球,12条棱就有12a个小球,这时,每个顶点处的小球被多计算了2次,于是可得答案.【解答】解:因为正方体有12条棱,所以12条棱上有12a个小球,但每个顶点处的小球被多计算2次,8个顶点就被多计算2×8=16次,所以正方体上小球总数为12a﹣16,故答案为:12a﹣16.17.【分析】根据轴对称图形的性质画出图形即可.【解答】解:如图,满足条件的△ABP有2个,故答案为2.18.【分析】根据数据的收集调查的步骤,即可解答.【解答】解:进行数据的收集调查,一般可分为以下6个步骤:明确调查问题,确定调查对象,选择调查方法,展开调查,记录结果,得出结论;故答案为:ADFEBC.三.解答题(共9小题)19.【分析】(1)根据规定及实例可知A→C记为(+4,+4),B→C记为(+3,0),C→D 记为(+1,﹣3);(2)根据点的运动路径,表示出运动的距离,相加即可得到行走的总路径长;(3)按题目所示平移规律,通过平移即可得到点P的坐标,在图中标出即可.(4)根据M→A(2﹣a,b﹣5),M→N(4﹣a,b﹣3),可知4﹣a﹣(2﹣a)=2,b﹣3﹣(b﹣5)=2,从而得到点A向右走2个格点,向上走2个格点到点N,从而得到N→A应记为什么.【解答】解:(1)∵规定:向上向右走为正,向下向左走为负,∴A→C记为(+4,+4),B→C记为(+3,0),C→D记为(+1,﹣3);故答案为:+4;+4;+3;0;+1;﹣3;(2)据已知条件可知:A→B表示为:(+1,+4),B→C记为(+3,0),C→D记为(+1,﹣3);∴该甲虫走过的路线长为1+4+3+1+3=12.故答案为:12;(3)P点位置如图所示.(4)∵M→A(2﹣a,b﹣5),M→N(4﹣a,b﹣3),∴4﹣a﹣(2﹣a)=2,b﹣3﹣(b﹣5)=2,∴从而得到点A向右走2个格点,向上走2个格点到点N,∴N→A应记为(﹣2,﹣2).20.【分析】(1)由a是最大的负整数可得a为﹣1,再结合|a+b|+(c﹣5)2=0,可求得b 与c的值;(2)由P A+PB+PC=7,结合数轴上的两点所表示的距离的含义,分类去掉绝对值号,并分别解得x的值即可.(3)设运动时间为t,分两种情况分别得出关于t的方程并求解即可:①当P、Q第一次相遇时;②当P到达C点返回追上Q时.【解答】解:(1)∵a是最大的负整数,∴a=﹣1;∵|a+b|+(c﹣5)2=0,|a+b|≥0,(c﹣5)2≥0,∴a+b=0,c﹣5=0,∴b=﹣a=﹣(﹣1)=1,c=5.故答案为:﹣1,1,5;(2)∵P A+PB+PC=7,∴|x+1|+|x﹣1|+|x﹣5|=7,①当点P在线段AB上,即当﹣1≤x<1时,x+1+1﹣x+5﹣x=7,解得:x=0;②当点P在线段BC上,即当1≤x≤5时,x+1+x﹣1+5﹣x=7,解得:x=2.综上所述,x的值是0或2.(3)设运动时间为t,①当P、Q第一次相遇时,有:3t+t=5﹣(﹣1),解得:t=1.5,此时,相遇点在数轴上对应的数为5﹣1.5=3.5;②当P到达C点返回追上Q时,有:3t﹣t=5﹣(﹣1)解得:t=3,此时,相遇点在数轴上对应的数为5﹣3=2.∴在此运动过程中P,Q的相遇点在数轴上对应的数是3.5或2.21.【分析】(1)根据差解方程的定义,得到关于a的新方程,求解即可;(2)根据差解方程的定义,先求出a、b的值,再化简代数式,把a、b的值代入计算即可.【解答】解:(1)∵关于x的一元一次方程3x=a+1是差解方程,∴=a+1﹣3解,得故答案为:(2)∵关于x的一元一次方程3x=a+b是差解方程且它的解为x=a,∴a==a+b﹣3解,得,b=3.4a2b﹣[2a2﹣2(ab2﹣2a2b)]=4a2b﹣(2a2﹣2ab2+4a2b)=4a2b﹣2a2+2ab2﹣4a2b=﹣2a2+2ab2当,b=3时,原式=﹣2×+2××9=.22.【分析】(1)根据有理数的混合运算的顺序和计算方法进行计算即可;(2)按照整式加减的计算方法进行计算;(3)依照一元一次方程的求解步骤求解即可.【解答】解:(1)原式=2+(﹣1)+(﹣9)﹣1=﹣9;(2)原式=﹣6x2+3xy+4x2+4xy﹣24=﹣2x2+7xy﹣24;(3)去分母得4(7x﹣1)﹣6(5x+1)=24﹣3(3x+2)去括号得28x﹣4﹣30x﹣6=24﹣9x﹣6移项得28x﹣30x+9x=24﹣6+4+6合并同类项得7x=28系数化为1得x=4.23.【分析】(1)①利用限变点的定义直接解答即可;②先利用逆推原理求出限变点A(﹣2,1)、B(2,1)对应的原来点坐标,然后把原来点坐标代入到y=2,满足解析式的就是答案;(2)先OC,OD的关系式,再求出点P的限变点Q满足的关系式,然后根据图象求出m,n的值,从而求出S即可;(3)先求出线段的关系式,再求出点P的限变点所满足的关系式,根据图象求解即可.【解答】(1)①∵a=<2,∴b′=|b|=|﹣1|=1,∴坐标为(,1).故答案为(,1).②s=3.∵对于限变点来说,横坐标保持不变,∴限变点A(﹣2,1)对应的原来点的坐标为:(﹣2,1)或(﹣2,﹣1),限变点B(2,1]对应的原来点的坐标为:(2.2),∵(2,2)满足y=2,∴这个点是B,故答案为:B;(2)∵点C的坐标为(﹣2,﹣2),∴OC的关系式为:y=x(x≤0),∵点D的坐标为(2,﹣2),∴OD的关系式为:y=﹣x(x≥0),∴点P满足的关系式为:y=,当x≥2时:b'=一x﹣1,当0<x<2时:b'=﹣x﹣1,当x≤0时,b=|x|=﹣x,图象如图1所示,通过图象可以得出:当x≥2时,b'≤﹣3,n=﹣3,当x<2时,b'≥0,∴m=0,∴s=m﹣n=0﹣(﹣3)=3;(3)设线段E的关系式为:y=ax+c(a≠0,﹣2≤x≤k,k>﹣2),把E(﹣2,﹣5),F(k,k﹣3)代入,得,解得,∴线段EP的关系式为y=x一3(﹣2≤x≤k,k>﹣2),∴线段E上的点P的限变点Q的纵坐标满足的关系式b'=,图象如图2所示:当x=2时,b'取最小值,b'=2﹣4=﹣2,当b'=5时,x﹣4=5或﹣x+3=5,解得:x=9或x=﹣2,当b'=1时,x﹣4=1,解得:x=5,∵﹣2≤b'<5,∴由图象可知,k的取值范围是:5≤k≤9.24.【分析】(1)根据折叠可得答案;(2)将a=24,b=6代入底面积的代数式计算即可;(3)根据图2的裁剪,折叠后,表示出长、宽、高进而用代数式表示体积.【解答】解:(1)根据折叠可知,底面是边长为(a﹣2b)(cm)的正方形,故答案为:(a﹣2b);(2)将a=24,b=6代入得,(a﹣2b)2=(24﹣2×6)2=144(cm2)答:长方体纸盒的底面积为144cm2;(3)裁剪后折叠成长方体的长为:(a﹣2b)cm,宽为cm,高为bcm,所以,折叠后长方体的体积为(a﹣2b)××b,即,b(a﹣2b)2,答:长方体的体积为b(a﹣2b)2.25.【分析】(1)根据轴对称的性质,可知∠AOC=∠AOP,∠BOD=∠BOP,可以求出∠COD的度数;(2)根据轴对称的性质,可知CM=PM,DN=PN,根据周长定义可以求出△PMN的周长;【解答】解:(1)①∵点C和点P关于OA对称,∴∠AOC=∠AOP,∵点P关于OB对称点是D,∴∠BOD=∠BOP,∴∠COD=∠AOC+∠AOP+∠BOP+∠BOD=2(∠AOP+∠BOP)=2∠AOB=2×60°=120°,故答案为:120°.②∵点C和点P关于OA对称.∴∠AOC=∠AOP,∵点P关于OB对称点是D,∴∠BOD=∠BOP,∴∠COD=∠AOC+∠AOP+∠BOP+∠BOD=2(∠AOP+∠BOP)=2∠AOB=2α.(2)根据轴对称的性质,可知CM=PM,DN=PN,所以△PMN的周长为:PM+PN+MN=CM+DN+MN=CD=4,故答案为:426.【分析】由收集的数据即可得;(1)根据众数和中位数的定义求解可得;(2)用总人数乘以乙班样本中合格人数所占比例可得;(3)甲、乙两班的方差判定即可.【解答】解:(1)在78,83,89,97,98,85,100,94,87,90,93,92,99,95,100,这组数据中,100出现的次数最多,故a=100分;乙班15名学生测试成绩中,中位数是第8个数,即出现在90≤x<95这一组中,故b=91分;故答案为:100,91;(2)480×=256(人),即480名学生中成绩为优秀的学生共有256人;(3)甲班的学生掌握防疫测试的整体水平较好,∵甲班的方差<乙班的方差,∴甲班的学生掌握疫情防疫相关知识的整体水平较好.27.【分析】首先算出每一道题做错的人数,分为五个组,用不同的颜色表示,转化为染色问题,构造抽屉解决问题.【解答】解:将这120人分别编号为P1,P2,…,P120,并视为数轴上的120个点,用A k表示这120人之中未答对第k题的人所成的组,|A k|为该组人数,k=1,2,3,4,5,则|A1|=24,|A2|=37,|A3|=46,|A4|=54,|A5|=85,将以上五个组分别赋予五种颜色,如果某人未做对第k题,则将表示该人点染第k色,k=1,2,3,4,5,问题转化为,求出至少染有三色的点最多有几个?由于|A1|+|A2|+|A3|+|A4|+|A5|=246,故至少染有三色的点不多于=82个,图是满足条件的一个最佳染法,即点P1,P2,…,P85这85个点染第五色;点P1,P2,…,P37这37个点染第二色;点P38,P39,…,P83这46个点染第四色;点P1,P2,…,P24这24个点染第一色;点P25,P26,…,P78这54个点染第三色;于是染有三色的点最多有78个.因此染色数不多于两种的点至少有42个,即获奖人数至少有42个人(他们每人至多答错两题,而至少答对三题,例如P79,P80,…,P120这42个人).答:获奖人数至少有42个人.。

2020-2021学年湖北省武汉市江岸区八年级(上)期末数学试卷及参考答案

2020-2021学年湖北省武汉市江岸区八年级(上)期末数学试卷及参考答案

2020-2021学年武汉市江岸区八年级(上)期末数学试卷一、选择题(30分)1.(3分)下列图形中,不是轴对称图形的是()A.B.C.D.2.(3分)目前发现的新冠病毒其直径约为0.00012毫米,则这个数字用科学记数法表示正确的是()A.1.2×104B.1.2×10﹣4C.0.12×105D.0.12×10﹣53.(3分)分式有意义的条件是()A.x=0B.x≠0C.x=﹣1D.x≠﹣14.(3分)点P(﹣1,2)关于y轴对称点的坐标是()A.(1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)5.(3分)下列计算正确的是()A.a2•a3=a6B.(2a)3=6a3C.(a+b)2=a2+b2D.(﹣a2)3=﹣a66.(3分)如图,四边形ABCD中,∠A=80°,BC、CD的垂直平分线交于A点,则∠BCD 的度数为()A.150°B.140°C.130°D.120°7.(3分)已知a+b=2,则a2﹣b2+4b的值是()A.2B.3C.4D.68.(3分)小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.若设他上月买了x本笔记本,则根据题意可列方程()A.=1B.=1C.=1D.=19.(3分)当x分别取2020、2018、2016、…、2、0、、、…、、、时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.202010.(3分)如图,四边形ABCD中,∠DAB+∠ABC=90°,对角线AC、BD相交于O点,且分别平分∠DAB和∠ABC,若BO=4OD,则的值为()A.B.C.D.二、填空题(18分)11.(3分)计算:x2y÷xy2=.12.(3分)若x2+6x+m是完全平方式,则m=.13.(3分)已知x﹣=3,则x2+=.14.(3分)若某三角形两边长为2,4,第三边上的中线为x,则x的取值范围为.15.(3分)若关于x的方程=+1无解,则a的值是.16.(3分)如图,Rt△ABC中,∠ACB=90°,∠B=30°,AC=2,D为BC上一动点,EF垂直平分AD分别交AC于E、交AB于F,则BF的最大值为.三、解答题(72分)17.(8分)计算:(1)(2x+y)(2xy);(2)(4x6y﹣6x3)÷2x3.18.(8分)因式分解:(1)2x2﹣2;(2)x3﹣4x2y+4xy2.19.(8分)解方程:﹣1=.20.(8分)先化简,再求值:(1﹣)÷,其中a=﹣1.21.(8分)如图,是由边长为1的小正方形组成的网格,网格线的交点称为格点,△AOB 的顶点在格点上,以O为原点建立平面直角坐标系.(1)∠OAB=;O点关于直线AB的对称点的坐标为;(2)作A点关于OB的对称点F可按下列操作,要求:仅用无刻度直尺作图(保留作图过程与痕迹);①在网格中取格点C,连接AC,使AC⊥OB,则C的坐标为;②延长AO使OD=OA,则D的坐标为;③在网格中取格点E,连接DE,使DE⊥AC,则E的坐标为,AC与DE的交点F即为A点关于OB的对称点.22.(10分)武汉某道路工程项目,若由甲、乙两工程队合作20天可完工;若甲工程队先单独施工40天,再由乙工程队单独施工10天也可完工.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲、乙工程队合作施工时对道路交通有影响,单独施工时对交通无影响,且要求整个工期不能超过24天,问如何安排两队施工,对道路交通的影响会最小?23.(10分)已知△ABC中,∠BAC=60°,以AB和BC为边向外作等边△ABD和等边△BCE.(1)连接AE、CD,如图1,求证:AE=CD;(2)若N为CD中点,连接AN,如图2,求证:CE=2AN;(3)若AB⊥BC,延长AB交DE于M,DB=,如图3,则BM=.(直接写出结果)24.(12分)已知点A(0,4)、B(﹣4,0)分别为平面直角坐标系中y、x轴上一点,将线段OA绕O点顺时针旋转至OC,连接AC、BC.(1)如图1,求∠ACB的度数;(2)若∠AOC=60°,∠AOB的平分线OD交BC于D,如图2,求证:OD+BD=CD;(3)若∠AOC=30°,过A作AE⊥AC交BC于E,如图3,求BE的长.2020-2021学年湖北省武汉市江岸区八年级(上)期末数学试卷参考答案与试题解析一、选择题(30分)1.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.【解答】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意.故选:A.【点评】此题主要考查了轴对称图形,正确掌握轴对称图形的性质是解题关键.2.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00012=1.2×10﹣4.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【分析】根据分式的分母不为0列出不等式,解不等式得到答案.【解答】解:分式有意义的条件是x+1≠0,解得x≠﹣1,故选:D.【点评】本题考查的是分式有意义的条件,掌握分式的分母不为0是解题的关键.4.【分析】根据关于y轴对称,横坐标互为相反数,纵坐标不变.【解答】解:点P(﹣1,2)关于y轴对称点的坐标为(1,2).故选:A.【点评】本题考查了关于x轴、y轴对称点的坐标,注:关于y轴对称,横坐标互为相反数,纵坐标不变;关于x轴对称,纵坐标互为相反数,横坐标不变;关于原点对称,横纵坐标都互为相反数.5.【分析】分别根据同底数幂的乘法法则,幂的乘方与积的乘方运算法则,完全平方公式逐一判断即可.【解答】解:A、a2•a3=a5,故本选项不合题意;B、(2a)3=8a3,故本选项不合题意;C、(a+b)2=a2+2ab+b2,故本选项不合题意;D、(﹣a2)3=﹣a6,故本选项符合题意.故选:D.【点评】本题主要考查了同底数幂的乘法,完全平方公式以及幂的乘方与积的乘方,熟记相关公式与运算法则是解答本题的关键.6.【分析】根据垂直平分线的性质及等腰三角形的性质求解即可.【解答】解:连接AC,∵BC、CD的垂直平分线交于A点,∴AB=AC,AC=AD,∴∠B=∠ACB,∠D=∠ACD,在△ABC中,∠ACB=(180°﹣∠BAC)=90°﹣∠BAC,同理,∠ACD=90°﹣∠CAD,∴∠BCD=∠ACB+∠ACD=180°﹣(∠BAC+CAD)=180°﹣∠BAD,∵∠BAD=80°,∴∠BCD=140°.故选:B.【点评】此题考查了多边形的内角与外角,熟练掌握多边形内角和公式及等腰三角形的性质是解题的关键.7.【分析】把a2﹣b2+4b变形为(a﹣b)(a+b)+4b,代入a+b=2后,再变形为2(a+b)即可求得最后结果.【解答】解:∵a+b=2,∴a2﹣b2+4b=(a﹣b)(a+b)+4b,=2(a﹣b)+4b,=2a﹣2b+4b,=2(a+b),=2×2,=4.故选:C.【点评】本题考查了代数式求值的方法,同时还利用了整体思想.8.【分析】由设他上月买了x本笔记本,则这次买了(x+2)本,然后可求得两次每本笔记本的价格,由等量关系:每本比上月便宜1元,即可得到方程.【解答】解:设他上月买了x本笔记本,则这次买了(x+2)本,根据题意得:﹣=1,即:﹣=1.故选:B.【点评】此题考查了分式方程的应用.注意准确找到等量关系是关键.9.【分析】把互为倒数的两个数代入分式可得它们的和是0,把0代入分式得﹣1,故得出结果为﹣1.【解答】解:当x=a(a≠0)时,=,当x=时,==﹣,即互为倒数的两个数代入分式的和为0,当x=0时,=﹣1,故选:A.【点评】本题考查数字的变化规律,总结出数字的变化规律是解题的关键.10.【分析】在AB上截取AE=AD,BF=BC,连接OE、OF,根据题意易证△AOD≌△AOE (SAS),△BOC=△BOF(SAS),即得出结论∠AOD=∠AOE,∠BOC=∠BOF,OD=OE,OC=OF.继而求出∠AOD=∠BOC=∠AOE=∠BOF=∠EOF=45°,再由题意可知,==4,即又可推出,AE=AB,BE=AB,由OF平分∠BOE,得===4,可推出BF=×AB=AB,最后由BO平分∠ABC,可得==,即可求出的值.【解答】解:如图,在AB上截取AE=AD,BF=BC,连接OE,OF,∵AC、BD相交于O点,且分别平分∠DAB和∠ABC,∴∠OAB=∠OAD=∠DAB,∠OBC=∠OBA=∠ABC,在△AOD和△AOE中,,∵AD=AE,BC=BF,∴△AOD≌△AOE(SAS),同理,△BOC≌△BOF,∴∠AOD=∠AOE,OD=OE,∠BOC=∠BOF,OC=OF,∵∠DAB+∠ABC=90°,∴∠OAB+∠OBA=45°,∵∠AOD=∠BOC=∠OBA+∠OAB,∴∠AOD=∠BOC=45°,∴∠AOE=∠BOF=45°,∴∠EOF=180°﹣(∠OAB+∠OBA)﹣∠AOE﹣∠BOF=180°﹣45°﹣45°﹣45°=45°,∵AO平分∠BAD,BO=4OD,∴==4,即AB=4AD,∴AE=AB,BE=AB,∵∠EOF=∠BOF=45°,∴OF平分∠BOE,∴===,即EF=BF,∴BF=BE,∴BF=×AB=AB,∵BO平分∠ABC,∴====,故选:B.【点评】此题主要考查全等三角形的判定与性质,角平分线的判定与性质,推理论证过程较难,作出辅助线是解题的关键.二、填空题(18分)11.【分析】直接利用整式的除法运算法则计算得出答案.【解答】解:x2y÷xy2=xy﹣1.故答案为:xy﹣1.【点评】此题主要考查了整式的除法,正确掌握相关运算法则是解题关键.12.【分析】由题意,x2+6x+m是完全平方式,所以,可得x2+6x+m=(x+3)2,展开即可解答.【解答】解:根据题意,x2+6x+m是完全平方式,∴x2+6x+m=(x+3)2,解得,m=9.故答案为9.【点评】本题考查了完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号.13.【分析】将原式两边平方即可得.【解答】解:∵x﹣=3,∴x2+﹣2=9,∴x2+=11,故答案为:11.【点评】本题主要考查分式的混合运算,解题的关键是掌握完全平方公式和分式的运算法则.14.【分析】作出图形,延长中线AD到E,使DE=AD,利用“边角边”证明△ACD和△EBD全等,根据全等三角形对应边相等可得AC=BE,然后根据三角形任意两边之和大于第三边,两边之差小于第三边求出AE的范围,再除以2即可得解.【解答】解:如图,延长中线AD到E,使DE=AD,∵AD是三角形的中线,∴BD=CD,在△ACD和△EBD中,∵,∴△ACD≌△EBD(SAS),∴AC=BE,∵角形两边长为2,4,第三边上的中线为x,∴4﹣2<2x<2+4,即2<2x<6,∴1<x<3.故答案为:1<x<3.【点评】本题考查了三角形的三边关系,全等三角形的判定与性质,根据辅助线的作法,“遇中线加倍延”作出辅助线构造全等三角形是解题的关键.15.【分析】把方程去分母得到一个整式方程,把方程的增根x=2代入即可求得a的值.【解答】解:x﹣2=0,解得:x=2.方程去分母,得:ax=4+x﹣2,即(a﹣1)x=2当a﹣1≠0时,把x=2代入方程得:2a=4+2﹣2,解得:a=2.当a﹣1=0,即a=1时,原方程无解.故答案是:2或1.【点评】首先根据题意写出a的新方程,然后解出a的值.16.【分析】要使BF最大,则AF需要最小,而AF=FD,从而通过圆与BC相切来解决问题.【解答】解:方法一、∵Rt△ABC中,∠ACB=90°,∠B=30°,AC=2,∴AB=2AC=4,∵EF垂直平分AD,∴AF=DF,若要使BF最大,则AF需要最小,∴以F为圆心,AF为半径的圆与BC相切即可,∴FD⊥BD,∴AB=AF+2AF=4,∴AF=,∴BF的最大值为4﹣=,方法二:过点F作FH⊥BC于H,连接DF,设AF=x,则BF=4﹣x,∵∠B=30°,∴FH=BF=2﹣x,∴x≥2﹣x,解得x≥,∴AF最小值为,BF的最大值为4﹣=,故答案为:.【点评】本题主要考查了线段垂直平分线的性质、30°角所对直角边是斜边的一半以及圆与直线的位置关系,将BF的最大值转化为AF最小是解决本题的关键,属于压轴题.三、解答题(72分)17.【分析】(1)直接利用单项式乘多项式运算法则计算得出答案;(2)直接利用整式的除法运算法则计算得出答案.【解答】解:(1)原式=(2x•2xy)+(y•2xy)=4x2y+2xy2;(2)原式=(4x6y)÷(2x3)+(﹣6x3)÷(2x3)=2x3y﹣3.【点评】此题主要考查了整式的除法以及单项式乘多项式,正确掌握相关运算法则是解题关键.18.【分析】(1)直接提取公因式2,再利用公式法分解因式即可;(2)直接提取公因式x,再利用公式法分解因式即可.【解答】解:(1)原式=2(x2﹣1)=2(x+1)(x﹣1);(2)原式=x(x2﹣4xy+4y2)=x(x﹣2y)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.19.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:(x﹣1)2﹣(x2﹣1)=2,整理得:﹣2x+2=2,解得:x=0,检验:x=0时,分母x2﹣1≠0,∴原方程的解为x=0.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.【分析】这是个分式除法与减法混合运算题,运算顺序是先做括号内的减法,此时要注意把各分母先因式分解,确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.【解答】解:原式=•=,当a=﹣1时,原式==.【点评】考查分式的混合运算需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.21.【分析】(1)利用图象法解决问题即可.(2)根据步骤要求画出图形即可解决问题.【解答】解:(1)观察图象可知∠OAB=90°,O点关于直线AB的对称点的坐标为(2,2),故答案为:90°,(2,2).(2)图形如图所示:①C(0,﹣2);②D(﹣1,﹣1);③E(2,﹣2).故答案为:(0,﹣2),(﹣1,﹣1),(2,﹣2).【点评】本题考查轴对称变换,坐标与图形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【分析】(1)设甲工程队单独完成此项工程需要x天,则甲工程队的工作效率为,乙工程队的工作效率为(﹣),根据“甲工程队先单独施工40天,再由乙工程队单独施工10天也可完工”,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设甲、乙合作了m天,分剩下的工程由甲工程队单独完成和剩下的工程由乙工程队单独完成两种情况考虑,根据整个工期不能超过24天,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再结合要求对道路交通的影响最小即可得出结论.【解答】解:(1)设甲工程队单独完成此项工程需要x天,则甲工程队的工作效率为,乙工程队的工作效率为(﹣),依题意得:+10(﹣)=1,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴1÷(﹣)=30.答:甲工程队单独完成此项工程需要60天,乙工程队单独完成此项工程需要30天.(2)设甲、乙合作了m天.①若剩下的工程由甲工程队单独完成还需=(60﹣3m)天,依题意得:m+60﹣3m≤24,解得:m≥18;②若剩下的工程由乙工程队单独完成还需=(30﹣m)天,依题意得:m+30﹣m≤24,解得:m≥12.由①②可知m的最小值为12,∴应安排甲乙合作12天,然后再由乙队单独施工12天,对道路交通影响了会最小.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23.【分析】(1)先判断出∠DBC=∠ABE,进而判断出△DBC≌△ABE,即可得出结论;(2)先判断出△ADN≌△FCN,得出CF=AD,∠NCF=∠AND,进而判断出∠BAC=∠ACF,即可判断出△ABC≌△CFA,即可得出结论;(3)先判断出△ABC≌△HEB(ASA),得出BH=AC=2,AB=EH,再判断出△ADM ≌△HEM(AAS),得出AM=HM,即可得出结论.【解答】(1)∵△ABD和△BCE是等边三角形,∴BD=AB,BC=BE,∠ABD=∠CBE=60°,∴∠ABD+∠ABC=∠CBE+∠ABC,∴∠DBC=∠ABE,∴△ABE≌△DBC(SAS),∴AE=CD;(2)如图2,延长AN使NF=AN,连接FC,∵点N是CD中点,∴DN=CN,∵∠AND=∠FNC,∴△ADN≌△FCN(SAS),∴CF=AD,∠NCF=∠AND,∴∠ACF=∠ACD+∠NCF=∠ACD+∠ADN=60°,∴∠BAC=∠ACF,∵△ABD是等边三角形,∴AB=AD,∴AB=CF,∵AC=CA,∴△ABC≌△CFA(SAS),∴BC=AF,∵△BCE是等边三角形,∴CE=BC=AF=2AN;(3)如图3,∵△ABD是等边三角形,∴AB=AD=DB=,∠BAD=60°,在Rt△ABC中,∠ACB=90°﹣∠BAC=30°,∴AC=2AB=2,过点E作EH∥AD交AM的延长线于H,∴∠H=∠BAD=60°,∵△BCE是等边三角形,∴BC=BE,∠CBE=60°,∵∠ABC=90°,∴∠EBH=90°﹣∠CBE=30°=∠ACB,∴∠BEH=180°﹣∠EBH﹣∠H=90°=∠ABC,∴△ABC≌△HEB(ASA),∴BH=AC=2,AB=EH,∴AD=EH,∵∠AMD=∠HME,∴△ADM≌△HEM(AAS),∴AM=HM,∴BM=AM﹣AB=AH﹣AB=(AB+BH)﹣AB=BH﹣AB=(BH﹣AB)=(2﹣)=,故答案为:.【点评】此题是三角形综合题,主要考查了等边三角形的性质,含30度角的直角三角形的性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键.24.【分析】(1)由旋转的性质得出CO=OB=OA,设∠AOC=2α,由等腰三角形的性质得出∠OAC=∠OCA=90°﹣α,可得出答案;(2)在BC上取点H,使∠COH=45°,证明△DOH为等边三角形,由等边三角形的性质得出OD=OH=DH,证明△BOD≌△COH(SAS),由全等三角形的性质得出BD =CH,则可得出结论;(3)过点C作CN⊥AO于点N,过点E作EM⊥AO于点M,连接OE,证明△AEM≌△CAN(AAS),由全等三角形的性质得出AM=CN,由等腰三角形的性质证出∠BOE=∠BEO,则可得出答案.【解答】解:(1)∵A(0,4)、B(﹣4,0),∴OA=OB=4,∵将线段OA绕O点顺时针旋转至OC,∴CO=OB=OA,设∠AOC=2α,∵∠BOC=90°+2α,∴∠OBC=∠OCB=45°﹣α,∵∠AOC=2α,∴∠OAC=∠OCA=90°﹣α,∴∠ACB=∠OCA﹣∠OCB=45°;(2)证明:如图2,在BC上取点H,使∠COH=45°,∵OD平分∠AOB,∠AOB=90°,∴∠BOD=∠AOD=45°,∵∠AOC=60°,∴∠BOC=150°,∵OB=OC,∴∠OBC=∠OCB=15°,∴∠DOH=∠BOC﹣∠BOD﹣∠COH=150°﹣45°﹣45°=60°,∠ODH=∠CBO+∠BOD=15°+45°=60°,∴∠DHO=60°,∴△DOH为等边三角形,∴OD=OH=DH,∴△BOD≌△COH(SAS),∴BD=CH,∴OD+BD=DH+CH=CD;(3)过点C作CN⊥AO于点N,过点E作EM⊥AO于点M,连接OE,由(1)得∠ACB=45°,∵AE⊥AC,∴△AEC为等腰直角三角形,∴AC=AE,∵∠ACN+∠NAC=∠EAM+∠NAC=90°,∴∠ACN=∠EAM,∵∠ANC=∠AME=90°,∴△AEM≌△CAN(AAS),∴AM=CN,∵OB=OA=OC=4,∠AOC=30°,∴CN=CO=2,∴AM=2,∴M为OA的中点,∵EM⊥AO,∴AE=EO,∵∠AOB=90°,∠AOC=30°,∴∠BOC=120°,∴∠CBO=∠OCB=30°,∴∠OAC=∠OCA=75°,∴∠EAO=∠EOA=15°,∴∠BOE=75°,∴∠BEO=180°﹣∠CBO﹣∠BOE=180°﹣30°﹣75°=75°,∴∠BOE=∠BEO,∴BE=BO=4.【点评】本题是几何变换综合题,考查了等边三角形的判定与性质,角平分线的性质,旋转的性质,等腰三角形的判定与性质,等腰直角三角形的性质,坐标与图形的性质,全等三角形的判定与性质,熟练掌握等边三角形的判定与性质及全等三角形的判定与性质是解题的关键.。

2020-2021学年湖北省武汉市硚口区、经开区八年级上学期期中数学试卷 (解析版)

2020-2021学年湖北省武汉市硚口区、经开区八年级上学期期中数学试卷 (解析版)

2020-2021学年湖北省武汉市硚口区、经开区八年级(上)期中数学试卷一、选择题(共10小题).1.大自然中存在很多对称现象,下列植物叶子的图案中不是轴对称图形的是()A.B.C.D.2.下列长度的三条线段,能组成三角形的是()A.3,4,8B.5,6,10C.5,5,11D.5,6,113.下列命题,真命题是()A.全等三角形的面积相等B.面积相等的两个三角形全等C.两个角对应相等的两个三角形全等D.两边和其中一边的对角对应相等的两个三角形全等4.如图,在△ABC和△DEF中,AB=DE,AB∥DE,运用“SAS”判定△ABC≌△DEF,需补充的条件是()A.AC=DF B.∠A=∠D C.BE=CF D.∠ACB=∠DFE 5.在平面直角坐标系中,点P(﹣3,4)关于y轴的对称点的坐标为()A.(4,﹣3)B.(3,﹣4)C.(3,4)D.(﹣3,﹣4)6.用一批完全相同的正多边形能镶嵌成一个平面图案的是()A.正五边形B.正六边形C.正七边形D.正八边形7.若一个多边形的每个内角都等于150°,则这个多边形的边数是()A.10B.11C.12D.138.如图,在△ABC中,AD⊥BC,垂足为D,EF垂直平分AC,交AC于点F,交BC于点E,BD=DE,若△ABC的周长为26cm,AF=5cm,则DC的长为()A.8cm B.7cm C.10cm D.9cm9.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为()A.8B.12C.4D.610.如图,点P、Q分别是边长为4cm的等边△ABC的边AB、BC上的动点(其中P,Q不与端点重合),点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ、CP交于点M,下列结论:①AQ=CP;②∠CMQ的度数等于60°;③当△PBQ 为直角三角形时,t=秒.其中正确的结论有()A.0个B.1个C.2个D.3个二、填空题(共6小题,每小题3分,共18分)11.木工师傅在做好门框后,为了防止变形常常按如图那样钉上两根斜拉的木板条,即图中的AB、CD两根木条,其数学依据是三角形的.12.过多边形的一个顶点能引出7条对角线,则这个多边形的边数是.13.等腰三角形的周长为16cm,一边长为4cm,则腰长为cm.14.如图,线段AB、BC的垂直平分线l1、l2相交于点O,若∠1=39°,则∠AOC=.15.如图,在等腰△ABC中,AB=AC,BD是平分线,若BD=BC,则∠A的度数为.16.如图,在Rt△ABC中,∠A=90°,∠B=60°,BC=4,若E是BC上的动点,F是AC上的动点,则AE+EF的最小值为.三、解答题(共8小题,共72分)17.一个多边形的内角和比它的外角和多720°,求该多边形的边数.18.如图,DE⊥AB,CF⊥AB,垂足分别是点E、F,DE=CF,AE=BF,求证:AC∥BD.19.如图,在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,AP平分∠BAC交BD于点P,∠BDC=58°,求∠BAP的度数.20.如图,在等腰Rt△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:BE=BF;(2)连接EF,求证:∠CFE=∠CAE.21.(1)如图1,在平面直角坐标系中,A(2,﹣1),B(4,2),C(1,4).①画出△ABC关于y轴对称的△A1B1C1,并写出点A1的坐标;②判断△ABC的形状,并写出△ABC的面积;③请仅用无刻度的直尺画出∠ABC的平分线BD(保留画图痕迹).(2)如图2是4×4的正方形网格,请仅用无刻度的直尺在直线l上画出一条1个单位长度的线段MN(M在N的上方),使AM+NB的值最小(保留画图痕迹).22.已知在等腰Rt△ABC中,∠BAC=90°,AB=AC.(1)如图1,若△ADE是等腰直角三角形,∠DAE=90°,AD=AE,连接BE,CD.求证:BE⊥CD;(2)如图2,若O是BC的中点,M,N分别在AB,AC上,OM⊥ON.求证:AM=CN;(3)如图3,在(1)的基础上,G是EC的中点,连接GB并延长至点F,CF=CD.求证:∠EBG=∠BFC.23.【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD 上的点,且EF=BE+FD,探究图中∠BAE、∠FAD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE ≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD 上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,若点E在CB 的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF 与∠DAB的数量关系,并给出证明过程.24.在平面直角坐标系中,点A在y轴正半轴上,点B在x轴负半轴上,BP平分∠ABO.(1)如图1,点T在BA延长线上,若AP平分∠TAO,求∠P的度数;(2)如图2,点C为x轴正半轴上一点,∠ABC=2∠ACB,且P在AC的垂直平分线上.①求证:AP∥BC;②D是AB上一点,E是x轴正半轴上一点,连接AE交DP于H.当∠DHE与∠ABE满足什么数量关系时,DP=AE.给出结论并说明理由.参考答案一、选择题(共10小题,每小题3分,共30分)下列各题均有四个备选选项,其中有且只有一个正确,请在答题卷上将正确答案的字母代号涂黑.1.大自然中存在很多对称现象,下列植物叶子的图案中不是轴对称图形的是()A.B.C.D.解:A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不符合题意.故选:C.2.下列长度的三条线段,能组成三角形的是()A.3,4,8B.5,6,10C.5,5,11D.5,6,11解:A选项,3+4=7<8,两边之和小于第三边,故不能组成三角形B选项,5+6=11>10,10﹣5<6,两边之各大于第三边,两边之差小于第三边,故能组成三角形C选项,5+5=10<11,两边之和小于第三边,故不能组成三角形D选项,5+6=11,两边之和不大于第三边,故不能组成三角形故选:B.3.下列命题,真命题是()A.全等三角形的面积相等B.面积相等的两个三角形全等C.两个角对应相等的两个三角形全等D.两边和其中一边的对角对应相等的两个三角形全等解:A、全等三角形的面积相等,本选项说法是真命题;B、面积相等的两个三角形不一定全等,本选项说法是假命题;C、两个角对应相等的两个三角形相似,但不一定全等,本选项说法是假命题;D、两边和其中一边的对角对应相等的两个三角形不一定全等,本选项说法是假命题;故选:A.4.如图,在△ABC和△DEF中,AB=DE,AB∥DE,运用“SAS”判定△ABC≌△DEF,需补充的条件是()A.AC=DF B.∠A=∠D C.BE=CF D.∠ACB=∠DFE 解:补充BE=CF,理由如下:∵AB∥DE,∴∠ABC=∠DEF,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),故选:C.5.在平面直角坐标系中,点P(﹣3,4)关于y轴的对称点的坐标为()A.(4,﹣3)B.(3,﹣4)C.(3,4)D.(﹣3,﹣4)解:点P(﹣3,4)关于y轴的对称点的坐标为:(3,4).故选:C.6.用一批完全相同的正多边形能镶嵌成一个平面图案的是()A.正五边形B.正六边形C.正七边形D.正八边形解:根据密铺的条件可知3个正六边形能密铺,故选:B.7.若一个多边形的每个内角都等于150°,则这个多边形的边数是()A.10B.11C.12D.13解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选:C.8.如图,在△ABC中,AD⊥BC,垂足为D,EF垂直平分AC,交AC于点F,交BC于点E,BD=DE,若△ABC的周长为26cm,AF=5cm,则DC的长为()A.8cm B.7cm C.10cm D.9cm解:∵AD⊥BC,BD=DE,EF垂直平分AC,∴AB=AE=EC,∵△ABC周长26cm,AF=5cm,∴AC=10(cm),∴AB+BC=16(cm),∴AB+BE+EC=16(cm),即2DE+2EC=16(cm),∴DE+EC=8(cm),∴DC=DE+EC=8(cm),故选:A.9.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为()A.8B.12C.4D.6解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DH,在Rt△DEF和Rt△DGH中,,∴Rt△DEF≌Rt△DGH(HL),∴S△EDF=S△GDH,设面积为S,同理Rt△ADF≌Rt△ADH,∴S△ADF=S△ADH,即38+S=50﹣S,解得S=6.故选:D.10.如图,点P、Q分别是边长为4cm的等边△ABC的边AB、BC上的动点(其中P,Q不与端点重合),点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ、CP交于点M,下列结论:①AQ=CP;②∠CMQ的度数等于60°;③当△PBQ 为直角三角形时,t=秒.其中正确的结论有()A.0个B.1个C.2个D.3个解:∵△ABC是等边三角形,∴∠B=∠CAP=60°,AB=AC,根据题意得:AP=BQ,在△ABQ和△CAP中,,∴△ABQ≌△CAP(SAS),∴AQ=CP,故①正确;∵△ABQ≌△CAP,∴∠AQB=∠CPA,∵∠BAQ+∠APC+∠AMP=180°,∠BAQ+∠B+∠AQB=180°,∴∠AMP=∠B=60°,∴∠CMQ=60°,故②正确;当∠PQB=90°时,∵∠B=60°,∴∠BPQ=30°,∴BP=2BQ,∴4﹣t=2t,解得,t=,当∠BPQ=90°时,∵∠B=60°,∴∠BQP=30°,∴BQ=2BP,∴t=2(4﹣t),解得,t=,综合以上可得△PBQ为直角三角形时,t=或t=.故③不正确.故选:C.二、填空题(共6小题,每小题3分,共18分)11.木工师傅在做好门框后,为了防止变形常常按如图那样钉上两根斜拉的木板条,即图中的AB、CD两根木条,其数学依据是三角形的三角形的稳定性.解:结合图形,为防止变形钉上两条斜拉的木板条,构成了三角形,所以这样做根据的数学道理是三角形的稳定性.故答案为:三角形的稳定性.12.过多边形的一个顶点能引出7条对角线,则这个多边形的边数是10.解:∵多边形从一个顶点出发可引出7条对角线,∴n﹣3=7,解得n=10.故答案为:1013.等腰三角形的周长为16cm,一边长为4cm,则腰长为6cm.解:①4cm是腰长时,底边为:16﹣4×2=8cm,三角形的三边长分别为4cm、4cm、8cm,∵4+4=8,∴不能组成三角形,②4cm是底边长时,腰长为:×(16﹣4)=6cm,三角形的三边长分别6cm、6cm、4cm,能组成三角形,综上所述,该等腰三角形的腰长是6cm.故答案为:6.14.如图,线段AB、BC的垂直平分线l1、l2相交于点O,若∠1=39°,则∠AOC=78°.解:解法一:连接BO,并延长BO到P,∵线段AB、BC的垂直平分线l1、l2相交于点O,∴AO=OB=OC,∠BDO=∠BEO=90°,∴∠DOE+∠ABC=180°,∵∠DOE+∠1=180°,∴∠ABC=∠1=39°,∵OA=OB=OC,∴∠A=∠ABO,∠OBC=∠C,∵∠AOP=∠A+∠ABO,∠COP=∠C+∠OBC,∴∠AOC=∠AOP+∠COP=∠A+∠ABC+∠C=2×39°=78°;解法二:连接OB,∵线段AB、BC的垂直平分线l1、l2相交于点O,∴AO=OB=OC,∴∠AOD=∠BOD,∠BOE=∠COE,∵∠DOE+∠1=180°,∠1=39°,∴∠DOE=141°,即∠BOD+∠BOE=141°,∴∠AOD+∠COE=141°,∴∠AOC=360°﹣(∠BOD+∠BOE)﹣(∠AOD+∠COE)=78°;故答案为:78°.15.如图,在等腰△ABC中,AB=AC,BD是平分线,若BD=BC,则∠A的度数为36°.解:∵BD=BC,∴∠C=∠BDC,∵AB=AC,∴∠ABC=∠C,∵BD平分∠ABC,∴∠ABD=∠CBD,又∵∠BDC=∠A+∠ABD,∴∠C=∠BDC=2∠A,又∵∠A+∠ABC+∠C=180°,∴∠A+2∠C=180°,把∠C=2∠A代入等式,得∠A+2×2∠A=180°,解得∠A=36°.故答案为:36°.16.如图,在Rt△ABC中,∠A=90°,∠B=60°,BC=4,若E是BC上的动点,F是AC上的动点,则AE+EF的最小值为3.解:∵∠A=90°,∠B=60°,BC=4,∴∠C=30°,∴AB=BC=2,∴AC==2,作A关于BC的对称点D,交BC于H,过D作DF⊥AC于F,交BC于E,则此时AE+EF的值最小,且AE+EF的最小值=DF,∵S△ABC=AB•AC=BC•AH,∴AH==,∴AD=2AH=2,∵∠AHC=90°,∠C=30°,∴AF=AD=,∴DF===3,∴AE+EF的最小值为3,故答案为:3.三、解答题(共8小题,共72分)17.一个多边形的内角和比它的外角和多720°,求该多边形的边数.解:∵一个多边形的内角和比它的外角和多720°,∴这个多边形的内角和为360°+720°=1080°,设这个多边形的边数为n,则(n﹣2)•180°=1080°,解得n=8,答:该多边形的边数为8.18.如图,DE⊥AB,CF⊥AB,垂足分别是点E、F,DE=CF,AE=BF,求证:AC∥BD.【解答】证明:∵DE⊥AB,CF⊥AB,∴∠DEB=∠AFC=90°,∵AE=BF,∴AF=BE,在△DEB和△CFA中,,△DEB≌△CFA,∴∠A=∠B,∴AC∥DB.19.如图,在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,AP平分∠BAC交BD于点P,∠BDC=58°,求∠BAP的度数.解:∵∠BDC=58°,∠C=90°,∴∠DBC=90°﹣∠BDC=32°,∵BD平分∠ABC,∴∠ABD=∠DBC=32°,∴∠ABC=2∠ABD=64°,∴∠CAB=90°﹣∠ABC=26°,∵PA平分∠BAC,∴∠BAP=∠CAB=13°.20.如图,在等腰Rt△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:BE=BF;(2)连接EF,求证:∠CFE=∠CAE.【解答】(1)证明:∵∠ABC=90°,∴∠CBF=∠ABE=90°,在Rt△ABE和Rt△CBF中,,∴Rt△ABE≌Rt△CBF(HL);(2)解:∵Rt△ABE≌Rt△CBF,∴∠BCF=∠BAE,BF=BE,∵∠FBE=∠CBF=90°,∴∠BEF=∠BAC=45°,∴∠CFE+∠BCF=∠BAE+∠CAE=45°,∴∠CFE=∠CAE.21.(1)如图1,在平面直角坐标系中,A(2,﹣1),B(4,2),C(1,4).①画出△ABC关于y轴对称的△A1B1C1,并写出点A1的坐标;②判断△ABC的形状,并写出△ABC的面积;③请仅用无刻度的直尺画出∠ABC的平分线BD(保留画图痕迹).(2)如图2是4×4的正方形网格,请仅用无刻度的直尺在直线l上画出一条1个单位长度的线段MN(M在N的上方),使AM+NB的值最小(保留画图痕迹).解:(1)①如图所示,△A1B1C1即为所求,点A1的坐标为(﹣2,﹣1);②△ABC的形状为等腰直角三角形,△ABC的面积为××=;③如图所示,BD即为所求;(2)如图所示,MN即为所求.22.已知在等腰Rt△ABC中,∠BAC=90°,AB=AC.(1)如图1,若△ADE是等腰直角三角形,∠DAE=90°,AD=AE,连接BE,CD.求证:BE⊥CD;(2)如图2,若O是BC的中点,M,N分别在AB,AC上,OM⊥ON.求证:AM=CN;(3)如图3,在(1)的基础上,G是EC的中点,连接GB并延长至点F,CF=CD.求证:∠EBG=∠BFC.【解答】证明:(1)设AD与BE交于点G,CD与BE交于点H,∵∠BAC=∠DAE=90°,∴∠DAC=∠EAB,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴∠ADC=∠AEB,又∵∠DGH=∠AGE,∴∠EAG=∠DHG=90°,∴BE⊥CD;(2)连接AO,∵AB=AC,∠BAC=90°,O为BC的中点,∴OA⊥BC,OA=OB=OC,∠MAO=∠OCN=45°,∴∠AOC=∠MON=90°,∴∠AOM=∠CON,在△AOM与△CON中,,∴△AOM≌△BON(ASA),∴AM=CN;(3)如图3,延长FG至P,使GF=GP,连接PE,∵G是EC的中点,∴EG=GC,在△FCG和△PEG中,,∴△FCG≌△PEG(SAS),∴FC=PE,∠P=∠CFB,由(1)可知:BE=CD,又∵CF=CD,∴BE=PE,∴∠P=∠EBG,∴∠EBG=∠BFC.23.【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD 上的点,且EF=BE+FD,探究图中∠BAE、∠FAD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE ≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是∠BAE+∠FAD=∠EAF;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,若点E在CB 的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF 与∠DAB的数量关系,并给出证明过程.解:(1)∠BAE+∠FAD=∠EAF.理由:如图1,延长FD到点G,使DG=BE,连接AG,根据SAS可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再根据SSS可判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.故答案为:∠BAE+∠FAD=∠EAF;(2)仍成立,理由:如图2,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)∠EAF=180°﹣∠DAB.证明:如图3,在DC延长线上取一点G,使得DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,又∵AB=AD,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠FAE=∠FAG,∵∠FAE+∠FAG+∠GAE=360°,∴2∠FAE+(∠GAB+∠BAE)=360°,∴2∠FAE+(∠GAB+∠DAG)=360°,即2∠FAE+∠DAB=360°,∴∠EAF=180°﹣∠DAB.24.在平面直角坐标系中,点A在y轴正半轴上,点B在x轴负半轴上,BP平分∠ABO.(1)如图1,点T在BA延长线上,若AP平分∠TAO,求∠P的度数;(2)如图2,点C为x轴正半轴上一点,∠ABC=2∠ACB,且P在AC的垂直平分线上.①求证:AP∥BC;②D是AB上一点,E是x轴正半轴上一点,连接AE交DP于H.当∠DHE与∠ABE满足什么数量关系时,DP=AE.给出结论并说明理由.解:(1)∵BP平分∠ABO,AP平分∠TAO,∴∠PBT=∠ABO,∠TAP=∠TAO,∵∠TAO=∠ABO+∠AOB,∠TAP=∠P+∠ABP,∴∠AOB=2∠P=90°,∴∠P=45°;(2)①如图2,过点P作PE⊥AB交BA延长线于E,过点P作PF⊥BC于F,连接PC,又∵PB平分∠ABC,∴PE=PF,∵P在AC的垂直平分线上,∴PA=PC,∴∠PAC=∠PCA,在Rt△APE和Rt△CPF中,,∴Rt△APE≌Rt△CPF(HL),∴∠EPA=∠CPF,∴∠EPF=∠APC,在四边形BEPF中,∠EBF+∠BEP+∠EPF+∠PFB=180°,∴∠EBF+∠EPF=180°,∴∠ABC+∠APC=180°,∵∠APC+∠PAC+∠PCA=180°,∴∠ABC=∠PAC+∠PCA=2∠PAC,∵∠ABC=2∠ACB,∴∠ACB=∠PAC,∴AP∥BC;②当∠DHE+∠ABE=180°时,DP=AE,理由如下:如图3,在OE上截取ON=OB,连接AN,∵OB=ON,AO⊥BE,∴AB=AN,∴∠ABN=∠ANB,∵AP∥BE,BP平分∠ABE,∴∠APB=∠PBE=∠ABP,∠ABN+∠BAP=180°,∴AP=AB,∴AP=AN,∵∠ANB+∠ANE=180°,∴∠BAP=∠ANE,∵∠DHE+∠ABE=180°,∠DHE+∠ABE+∠BDH+∠BEH=360°,∴∠BDH+∠BEH=180°,∵∠ADP+∠BDP=180°,∴∠ADP=∠AEN,在△ADP和△NEA中,,∴△ADP≌△NEA(AAS),∴DP=AE.。

人教版2020-2021学年八年级数学上册期末试卷及答案

人教版2020-2021学年八年级数学上册期末试卷及答案

2020-2021学年八年级数学上册期末试卷一.选择题(共8小题)1.使分式有意义的x的取值范围为()A.x≠﹣2B.x≠2C.x≠0D.x≠±22.下列多项式中能用完全平方公式分解的是()A.x2﹣x+1B.1﹣2x+x2C.﹣a2+b2﹣2ab D.4x2+4x﹣13.如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长是()A.8B.10C.12D.144.关于x的方程无解,则m的值为()A.﹣5B.﹣8C.﹣2D.55.二班学生某次测试成绩统计如下表:则得分的众数和中位数分别是()得分(分)60708090100人数(人)7121083A.70分,70分B.80分,80分C.70分,80分D.80分,70分6.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,Q为对角线AC 上的动点,则△BEQ周长的最小值为()A.5B.6C.D.87.在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形8.如图,在▱ABCD中,AD=2AB,F是AD的中点,E是AB上一点,连接CF、EF、EC,且CF=EF,下列结论正确的个数是()①CF平分∠BCD;②∠EFC=2∠CFD;③∠ECD=90°;④CE⊥AB.A.1个B.2个C.3个D.4个二.填空题(共6小题)9.若代数式的值为零,则x的取值应为.10.某校规定学生的期末学科成绩由三部分组成,将课堂、作业和考试三项得分按1:3:6的权重确定每个人的期末成绩.小明同学本学期数学这三项得分分别是:课堂98分,作业95分,考试85分,那么小明的数学期末成绩是分.11.如果x+=3,则的值等于12.如图,△ABC中,∠ACB=90°,∠A=25°,将△ABC绕点C逆时针旋转至△DEC 的位置,点B恰好在边DE上,则∠θ=度.13.在菱形ABCD中,对角线AC、BD交于点O,若△ABC的周长为32,BD=16,则菱形ABCD的面积为14.已知:如图,△ABC的面积为12,将△ABC沿BC方向移到△A′B′C′的位置,使B′与C重合,连结AC′交A′C于D,则△C′DC的面积为.三.解答题(共10小题)15.如图,方格纸上每个小方格的边长都是1,△ABC是通过△A1B1C1旋转得到.(1)在图中标出旋转中心点O;(2)画出△ABC向下平移4个单位长度,再向右平移4个单位长度得到的△A2B2C2.16.因式分解(1)a3﹣16a;(2)8a2﹣8a3﹣2a17.计算:(1)+(﹣2bc)×;(2)先化简,再求值:(﹣1)•,其中x=﹣5.18.解分式方程(1)(2)19.某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.(1)根据图示填写下表:平均数/分中位数/分众数/分A校85B校85100(2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;(3)计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.20.如图,在▱ABCD中,G是CD上一点,连接BG且延长交AD的延长线于点E,AF=CG,∠E=30°,∠C=50°,求∠BFD的度数.21.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)试判断四边形ADCF的形状,并证明;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明.22.小明元旦前到文具超市用15元买了若干练习本,元旦这一天,该超市开展优惠活动,同样的练习本比元旦前便宜0.2元,小明又用20.7元钱买练习本,所买练习本的数量比上一次多50%,小明元旦前在该超市买了多少本练习本?23.(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:①旋转角的度数;②线段OD的长;③求∠BDC的度数.(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.24.在正方形ABCD中,BD是一条对角线,点P在CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QM⊥BD于M,连接AM,PM (如图1).(1)判断AM与PM的数量关系与位置关系并加以证明;(2)若点P在线段CD的延长线上,其它条件不变(如图2),(1)中的结论是否仍成立?请说明理由.参考答案与试题解析一.选择题(共8小题)1.使分式有意义的x的取值范围为()A.x≠﹣2B.x≠2C.x≠0D.x≠±2【分析】根据分式有意义的条件即可求出答案.【解答】解:x+2≠0,∴x≠﹣2故选:A.2.下列多项式中能用完全平方公式分解的是()A.x2﹣x+1B.1﹣2x+x2C.﹣a2+b2﹣2ab D.4x2+4x﹣1【分析】根据完全平方公式:a2±2ab+b2=(a±b)2可得答案.【解答】解:A、x2﹣x+1不能用完全平方公式分解,故此选项错误;B、1﹣2x+x2能用完全平方公式分解,故此选项正确;C、﹣a2+b2﹣2ab不能用完全平方公式分解,故此选项错误;D、4x2+4x﹣1不能用完全平方公式分解,故此选项错误;故选:B.3.如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长是()A.8B.10C.12D.14【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【解答】解:根据题意,将周长为8个单位的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故选:B.4.关于x的方程无解,则m的值为()A.﹣5B.﹣8C.﹣2D.5【分析】分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x的值,代入整式方程求出m的值即可.【解答】解:去分母得:3x﹣2=2x+2+m,由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程得:﹣5=﹣2+2+m,解得:m=﹣5,故选:A.5.二班学生某次测试成绩统计如下表:则得分的众数和中位数分别是()得分(分)60708090100人数(人)7121083A.70分,70分B.80分,80分C.70分,80分D.80分,70分【分析】根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,则中间的数(或中间两个数据的平均数)就是这组数据的中位数解答即可.【解答】解:由于总人数为7+12+10+8+3=40人,所以中位数为第20、21个数据平均数,即中位数为=80(分),因为70分出现次数最多,所以众数为70分,故选:C.6.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,Q为对角线AC 上的动点,则△BEQ周长的最小值为()A.5B.6C.D.8【分析】连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE 的长即为BQ+QE的最小值,进而可得出结论.【解答】解:连接BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE==5,∴△BEQ周长的最小值=DE+BE=5+1=6.故选:B.7.在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形【分析】由矩形的判定和菱形的判定即可得出结论.【解答】解:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;选项A错误;若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;选项B错误;若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;选项C错误;若AD平分∠BAC,则四边形AEDF是菱形;正确;故选:D.8.如图,在▱ABCD中,AD=2AB,F是AD的中点,E是AB上一点,连接CF、EF、EC,且CF=EF,下列结论正确的个数是()①CF平分∠BCD;②∠EFC=2∠CFD;③∠ECD=90°;④CE⊥AB.A.1个B.2个C.3个D.4个【分析】①只要证明DF=DC,利用平行线的性质可得∠DCF=∠DFC=∠FCB;②延长EF和CD交于M,根据平行四边形的性质得出AB∥CD,根据平行线的性质得出∠A=∠FDM,证△EAF≌△MDF,推出EF=MF,求出CF=MF,求出∠M=∠FCD =∠CFD,根据三角形的外角性质求出即可;③④求出∠ECD=90°,根据平行线的性质得出∠BEC=∠ECD,即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∵AF=DF,AD=2AB,∴DF=DC,∴∠DCF=∠DFC=∠FCB,∴CF平分∠BCD,故①正确,延长EF和CD交于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠FDM,在△EAF和△MDF中,,∴△EAF≌△MDF(ASA),∴EF=MF,∵EF=CF,∴CF=MF,∴∠FCD=∠M,∵由(1)知:∠DFC=∠FCD,∴∠M=∠FCD=∠CFD,∵∠EFC=∠M+∠FCD=2∠CFD;故②正确,∵EF=FM=CF,∴∠ECM=90°,∵AB∥CD,∴∠BEC=∠ECM=90°,∴CE⊥AB,故③④正确,故选:D.二.填空题(共6小题)9.若代数式的值为零,则x的取值应为2.【分析】分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.【解答】解:若代数式的值为零,则(x﹣2)=0或(x﹣1)=0,即x=2或1,∵|x|﹣1≠0,x≠1,∴x的取值应为2,故代数式的值为零,则x的取值应为2.10.某校规定学生的期末学科成绩由三部分组成,将课堂、作业和考试三项得分按1:3:6的权重确定每个人的期末成绩.小明同学本学期数学这三项得分分别是:课堂98分,作业95分,考试85分,那么小明的数学期末成绩是89.3分.【分析】因为数学期末成绩由课堂、作业和考试三部分组成,并按1:3:6的比例确定,所以利用加权平均数的公式即可求出答案.【解答】解:小明的数学期末成绩是=89.3(分),故答案为:89.3.11.如果x+=3,则的值等于【分析】由x+=3得x2+2+=9,即x2+=7,整体代入原式==,计算可得.【解答】解:∵x+=3,∴(x+)2=9,即x2+2+=9,则x2+=7,∵x≠0,∴原式====,故答案为:.12.如图,△ABC中,∠ACB=90°,∠A=25°,将△ABC绕点C逆时针旋转至△DEC 的位置,点B恰好在边DE上,则∠θ=50度.【分析】根据三角形内角和定理求出∠ABC,根据旋转变换的性质得到∠E=∠ABC=65°,CE=CB,∠ECB=∠DCA,计算即可.【解答】解:∵∠ACB=90°,∠A=25°,∴∠ABC=65°,由旋转的性质可知,∠E=∠ABC=65°,CE=CB,∠ECB=∠DCA,∴∠ECB=50°,∴∠θ=50°,故答案为:50.13.在菱形ABCD中,对角线AC、BD交于点O,若△ABC的周长为32,BD=16,则菱形ABCD的面积为96【分析】可设菱形ABCD的边长为x,则AC=32﹣2x,根据菱形可得AO=16﹣x,BO =8,根据勾股定理可求x,进一步得到AC,再根据菱形的面积公式即可求解.【解答】解:如图,设菱形ABCD的边长为x,则AC=32﹣2x,AO=16﹣x,BO=8,依题意有(16﹣x)2+82=x2,解得x=10,AC=32﹣2x=12,则菱形ABCD的面积为16×12÷2=96.故答案为:96.14.已知:如图,△ABC的面积为12,将△ABC沿BC方向移到△A′B′C′的位置,使B′与C重合,连结AC′交A′C于D,则△C′DC的面积为6.【分析】根据题意,可求得D为A′B′的中点,则可知△C′DC的面积为△ABC的面积的一半.【解答】解:∵将△ABC沿BC方向移到△A′B′C′的位置,使B′与C重合,∴AB∥A′B′,∵BC=CC′,∴D为A′B′的中点,∴△C′DC的面积为△ABC的面积的一半,即为6.故答案为:6.三.解答题(共10小题)15.如图,方格纸上每个小方格的边长都是1,△ABC是通过△A1B1C1旋转得到.(1)在图中标出旋转中心点O;(2)画出△ABC向下平移4个单位长度,再向右平移4个单位长度得到的△A2B2C2.【分析】(1)连接AA,BB 1,作线段AA1,BB1的垂直平分线交于点O,点O即为所求.(2)分别作出A,B,C的对应点A2,B2,C2即可.【解答】解:(1)如图,点O即为所求.(2)如图,△A2B2C2即为所求.16.因式分解(1)a3﹣16a;(2)8a2﹣8a3﹣2a【分析】(1)首先提公因式a,再利用平方差进行分解即可;(2)首先提公因式﹣2a,再利用完全平方公式进行分解即可.【解答】解:(1)原式=a(a2﹣16)=a(a+4)(a﹣4);(2)原式=﹣2a(4a2﹣4a+1)=﹣2a(2a﹣1)2.17.计算:(1)+(﹣2bc)×;(2)先化简,再求值:(﹣1)•,其中x=﹣5.【分析】(1)先计算乘法,再计算加法即可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:(1)原式=﹣=﹣=;(2)原式=•=•=﹣,当x=﹣5时,原式=﹣=﹣.18.解分式方程(1)(2)【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x﹣1=﹣1﹣2x+4,移项合并得:3x=4,解得:x=,经检验x=是分式方程的解;(2)去分母得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,分式方程无解.19.某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.(1)根据图示填写下表:平均数/分中位数/分众数/分A校858585B校8580100(2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;(3)计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.【分析】(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答;(2)根据平均数和中位数的统计意义分析得出即可;(3)分别求出A校、B校的方差即可.【解答】解:(1)A校平均数为:×(75+80+85+85+100)=85(分),众数85(分);B校中位数80(分).填表如下:平均数/分中位数/分众数/分A校858585B校8580100故答案为:85;85;80.(2)A校成绩好些.因为两个队的平均数都相同,A校的中位数高,所以在平均数相同的情况下中位数高的A校成绩好些.(3)∵A校的方差s12=×[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,B校的方差s22=×[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160.∴s12<s22,因此,A校代表队选手成绩较为稳定.20.如图,在▱ABCD中,G是CD上一点,连接BG且延长交AD的延长线于点E,AF=CG,∠E=30°,∠C=50°,求∠BFD的度数.【分析】先根据平行四边形的性质和三角形的内角和定理求出∠ABC与∠ABE度数,据此得出∠CBG度数,再证△BCG≌△EAF得出∠AEF=∠CBG,继而由三角形外角性质可得答案.【解答】解:∵四边形ABCD是平行四边形,∠C=50°,∴∠A=∠C=50°,∠ABC=180°﹣∠C=130°,AE=BC,∵∠E=30°,∴∠ABE=180°﹣∠A﹣∠E=100°,∴∠CBG=30°,在△BCG和△EAF中,∵,∴△BCG≌△EAF(SAS),∴∠CBG=∠AEF=30°,则∠BFD=∠A+∠AEF=80°.21.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)试判断四边形ADCF的形状,并证明;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明.【分析】(1)由E是AD的中点,过点A作AF∥BC,易证得△AFE≌△DBE,然后证得AF=BD=CD,即可证得四边形ADCF是平行四边形;(2)由AB⊥AC,AD是BC边上的中线,可得AD=CD=BC,然后由四边形ADCF 是平行四边形,证得四边形ADCF是菱形.【解答】(1)解:四边形CDAF是平行四边形,理由如下:∵E是AD的中点,∴AE=ED,∵AF∥BC,∴∠AFE=∠DBE,∠F AE=∠BDE,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS),∴AF=BD,∵AD是BC边中线,∴CD=BD,∴AF=CD,∴四边形CDAF是平行四边形;(2)四边形ADCF是菱形,∵AC⊥AB,AD是斜边BC的中线,∴AD=BC=DC,∵四边形ADCF是平行四边形,∴平行四边形ADCF是菱形.22.小明元旦前到文具超市用15元买了若干练习本,元旦这一天,该超市开展优惠活动,同样的练习本比元旦前便宜0.2元,小明又用20.7元钱买练习本,所买练习本的数量比上一次多50%,小明元旦前在该超市买了多少本练习本?【分析】设小明元旦前在该超市买了x本练习本,则元旦这一天在该超市买了1.5x本练习本,根据单价=总价÷数量结合元旦这天的单价比元旦前便宜0.2元,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解答】解:设小明元旦前在该超市买了x本练习本,则元旦这一天在该超市买了1.5x 本练习本,根据题意得:﹣=0.2,解得:x=6,经检验,x=6是原方程的解,且符合题意.答:小明元旦前在该超市买了6本练习本.23.(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:①旋转角的度数;②线段OD的长;③求∠BDC的度数.(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.【分析】(1)①根据等边三角形的性质得BA=BC,∠ABC=60°,再根据旋转的性质得∠OBD=∠ABC=60°,于是可确定旋转角的度数为60°;②由旋转的性质得BO=BD,加上∠OBD=60°,则可判断△OBD为等边三角形,所以OD=OB=4;③由△BOD为等边三角形得到∠BDO=60°,再利用旋转的性质得CD=AO=3,然后根据勾股定理的逆定理可证明△OCD为直角三角形,∠ODC=90°,所以∠BDC=∠BDO+∠ODC=150°;(2)根据旋转的性质得∠OBD=∠ABC=90°,BO=BD,CD=AO,则可判断△OBD 为等腰直角三角形,则OD=OB,然后根据勾股定理的逆定理,当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°.【解答】解:(1)①∵△ABC为等边三角形,∴BA=BC,∠ABC=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=60°,∴旋转角的度数为60°;②∵△BAO绕点B顺时针旋转后得到△BCD,∴BO=BD,而∠OBD=60°,∴△OBD为等边三角形;∴OD=OB=4;③∵△BOD为等边三角形,∴∠BDO=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴CD=AO=3,在△OCD中,CD=3,OD=4,OC=5,∵32+42=52,∴CD2+OD2=OC2,∴△OCD为直角三角形,∠ODC=90°,∴∠BDC=∠BDO+∠ODC=60°+90°=150°;(2)OA2+2OB2=OC2时,∠ODC=90°.理由如下:∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=90°,BO=BD,CD=AO,∴△OBD为等腰直角三角形,∴OD=OB,∵当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°,∴OA2+2OB2=OC2,∴当OA、OB、OC满足OA2+2OB2=OC2时,∠ODC=90°.24.在正方形ABCD中,BD是一条对角线,点P在CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QM⊥BD于M,连接AM,PM (如图1).(1)判断AM与PM的数量关系与位置关系并加以证明;(2)若点P在线段CD的延长线上,其它条件不变(如图2),(1)中的结论是否仍成立?请说明理由.【分析】(1)先判断出△DMQ是等腰直角三角形,再判断出△MDP≌△MQC(SAS),最后进行简单的计算即可;(2)先判断出△DMQ是等腰直角三角形,再判断出△MDP≌△MQC(SAS),最后进行简单的计算即可.【解答】解:(1)连接CM,∵四边形ABCD是正方形,QM⊥BD,∴∠MDQ=45°,∴△DMQ是等腰直角三角形.∵DP=CQ,在△MDP与△MQC中∴△MDP≌△MQC(SAS),∴PM=CM,∠MPC=∠MCP.∵BD是正方形ABCD的对称轴,∴AM=CM,∠DAM=∠MCP,∴∠AMP=180°﹣∠ADP=90°,∴AM=PM,AM⊥PM.(2)成立,理由如下:连接CM,∵四边形ABCD是正方形,QM⊥BD,∴∠MDQ=45°,∴△DMQ是等腰直角三角形.∵DP=CQ,在△MDP与△MQC中∴△MDP≌△MQC(SAS),∴PM=CM,∠MPC=∠MCP.∵BD是正方形ABCD的对称轴,∴AM=CM,∠DAM=∠MCP,∴∠DAM=∠MPC,∵∠PND=∠ANM∴∠AMP=∠ADP=90°∴AM=PM,AM⊥PM.1、三人行,必有我师。

湖北省黄石市黄石港区第八中学2020-2021学年八年级上学期数学期中考试试卷及参考答案

湖北省黄石市黄石港区第八中学2020-2021学年八年级上学期数学期中考试试卷及参考答案

湖北省黄石市黄石港区第八中学2020-2021学年八年级上学期数学期中考试试卷一、单选题1. 三角形的两边长分别为5和12,那么第三边长可能是()2. 如图,∠C=∠D,∠ABC=∠BAD,可证明△ABC≌△BAD.使用了全等三角形的判定定理()3. 等腰三角形、直角三角形、等边三角形、锐角三角形、钝角三角形和等腰直角三角形中,一定是轴对称图形的有()4. 如图,将△ABC一角折叠,若∠1+∠2=80°,则∠B+∠C=()5. 如图,平分 , , , 于 , ,则∠ACP=()6.在中,,点在上,且,则度数为()A .B .C .D .7. 若一个多边形每一个内角都为144°,则这个多边形是()边形8. 若点与点关于轴对称,则的值是()9. 如图,AD是△ABC的中线,E是AD上一点,延长BE交AC于F,若BE=AC,BF=9,CF=6,则AF的长度为()10. 如图,点P为定角∠AOB平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:①PM=PN;②OM+ON的值不变;③MN的长不变;④四边形PMON的面积不变,其中,正确结论的是()二、填空题11. 等腰三角形中有一个内角为40°,则其底角的度数是________.12. 如图,已知的六个元素,则下列甲、乙、丙三个三角形中和全等的图形是________.13. 如图,在△ABC中,∠B与∠C的平分线交于点O. 过O点作DE∥BC,分别交AB、AC于D、E.若AB=5,AC=4,则△ADE的周长是________.14. 若△ABC的∠A∶∠B∶∠C=1∶2∶3,CD⊥AB于D,则AD∶BD=________.15. 如图,∠AOB=30°,P是∠AOB内一点,OP=10,Q、R分别是OA、OB上的动点,则△PQR周长最小值是______ __,此时∠QPR=________.16. 如图,已知在等腰三角形ABC中,AB=AC,P,Q分别是边AC,AB上的点,且AP=PQ=QC=BC,则∠PCQ 的度数为________.三、解答题17. 已知:BE、CF分别是△ABC的角平分线,BE、CF交于点O,若∠BOC=115°,求∠A的度数.18. 如图,AD=AE,BD=CE,求证:∠B=∠C19. 如图,△ABC中AB、AC的垂直平分线分别交BC于E、N,若∠EAN=34°,求∠BAC的度数.20. 如图,(1)求证:∠ABC=∠A+∠C+∠ADC;(2)若∠A=52°,∠C=20°,BE、DE分别平分∠ABC和∠ADC,交于点E,求∠E的度数.21. 如图,△ABC中,AB=AC,点D为△ABC外一点,且∠BDC=∠BAC,AM⊥CD于M,求证:BD+DM=CM.22. 已知:等边△ABC,CE∥AB,D为BC上一点,且∠ADE=60°,求证:△ADE是等边三角形.23. 如图,Rt△ABC和Rt△BCD中,∠ACB=∠CBD=90°,∠BAC=30°,∠BDC=45°,延长AB、CD交于点E,延长直角边CB至F,使BF=AB,求∠F的度数.24. 如图1,AB=12,AC⊥AB,BD⊥AB,AC=BD=8。

2020--2021学年上学 期人教版 八年级 数学试题

2020--2021学年上学 期人教版 八年级 数学试题

2020-2021上学期人教版八年级数学期末试卷一.选择题(共12小题)1.给出下列说法:(1)等边三角形是等腰三角形;(2)三角形按边的相等关系分类可分为等腰三角形、等边三角形和不等边三角形;(3)三角形按角的大小分类可分为锐角三角形、直角三角形和钝角三角形.其中,正确的有()个.A.1B.2C.3D.02.有两条高在三角形外部的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定3.下列图形中,不具有稳定性的是()A.B.C.D.4.如图所示的2×2正方形网格中,∠1+∠2等于()A.105°B.90°C.85°D.95°5.如图,△ABC≌△DEC,点E在边AB上,∠DEC=75°,则∠BCE的度数是()A.25°B.30°C.40°D.75°6.如图,AE=AC,若要判断△ABC≌△ADE,则不能添加的条件为()A.DC=BE B.AD=AB C.DE=BC D.∠C=∠E7.如图,△ABC中,∠C=90°,ED垂直平分AB,若AC=12,EC=5,且△ACE的周长为30,则BE的长为()A.5B.10C.12D.138.在平面直角坐标系中,等腰△ABC的顶点A、B的坐标分别为(0,0)、(2,2),若顶点C落在坐标轴上,则符合条件的点C有()个.A.5B.6C.7D.89.已知关于与x,y的方程组,则下列结论中正确的是()①当x,y的值互为相反数时,a=20;②当2x•2y=16时,a=18;③当不存在一个实数a,使得x=y.A.①②B.①③C.②③D.①②③10.下列等式中正确的个数是()①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.A.0个B.1个C.2个D.3个11.某种病毒近似于球体,它的半径约为0.000000005米,用科学记数法表示为()A.5×108B.5×109C.5×10﹣8D.5×10﹣912.在代数式,,xy+x2,中分式有()个.A.1B.2C.3D.4二.填空题(共6小题)13.如图,在△ABC中,AD⊥BC于D,那么图中以AD为高的三角形共有个.14.如图,BD是△ABC的中线,AB=6cm,BC=4cm,则△ABD和△BCD的周长差为cm.15.如图,在由6个相同的小正方形拼成的网格中,∠1+∠2=°.16.如图,在△ABC中,∠B=40°,∠C=45°,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,则∠DAE=.17.若x m=2,x n=3,则x m+2n的值为.18.科学家在实验中检测处某微生物约为0.0000025米长,用科学记数法表示0.0000025为.三.解答题(共9小题)19.观察以下图形,回答问题:(1)图②有个三角形;图③有个三角形;图④有个三角形;…猜测第七个图形中共有个三角形.(2)按上面的方法继续下去,第n个图形中有个三角形(用含n的代数式表示结论).20.如图,在△ABC中(AC>AB),AC=2BC,BC边上的中线AD把△ABC的周长分成60和40两部分,求AC和AB的长.21.如图所示,△ABC≌△ADE,AB=AD,AC=AE,BC的延长线交DA于点F,交DE于点G,∠AED=105°,∠CAD=15°,∠B=30°,求∠1的度数.22.如图,AB=CD,DE⊥AC,BF⊥AC,E、F是垂足,DE=BF.求证:△ABF≌△CDE.23.已知:如图,∠AOB及M、N两点.请你在∠AOB内部找一点P,使它到角的两边和到点M、N的距离分别相等(保留作图痕迹).24.已知:如图,在△ABC中,AB=AC=6,BC=4,AB的垂直平分线交AB于点E,交BC的延长线于点D.(1)求CD的长;(2)求点C到ED的距离.25.对数运算是高中常用的一种重要运算,它的定义为:如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作:x=log a N,例如:32=9,则log39=2,其中a=10的对数叫做常用对数,此时log10N可记为lgN.当a>0,且a≠1,M>0,N>0时,log a(M•N)=log a M+log a N.(I)解方程:log x4=2;(Ⅱ)求值:log48;(Ⅲ)计算:(lg2)2+lg2•1g5+1g5﹣2018.26.x2•(﹣x)2•(﹣x)2+(﹣x2)327.我们知道,假分数可以化为整数与真分数的和的形式,例如:=1+.在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:像,,…,这样的分式是假分式;像,,…,这样的分式是真分式,类似的,假分式也可以化为整式与真分式的和的形式.例如:==1+;==x﹣2+.解决下列问题:(1)将分式化为整式与真分式的和的形式为:.(直接写出结果即可)(2)如果分式的值为整数,求x的整数值.2020-2021上学期人教版八年级数学期末试卷参考答案与试题解析一.选择题(共12小题)1.【分析】根据三角形的分类、三角形的三边关系进行判断.【解答】解:(1)等边三角形是一特殊的等腰三角形,正确;(2)三角形按边分类可以分为不等边三角形和等腰三角形,错误;(3)三角形按角分类应分为锐角三角形、直角三角形和钝角三角形,正确.综上所述,正确的结论2个.故选:B.2.【分析】根据三角形的高的概念,通过具体作高.发现:锐角三角形的三条高都在三角形的内部;直角三角形有两条高即三角形的两条直角边,一条在内部;钝角三角形有两条高在三角形的外部,一条在内部.【解答】解:有两条高在三角形外部的是钝角三角形.故选:C.3.【分析】根据三角形具有稳定性,四边形不具有稳定性即可判断.【解答】解:因为三角形具有稳定性,四边形不具有稳定性,故选:D.4.【分析】标注字母,然后利用“边角边”求出△ABC和△DEA全等,根据全等三角形对应角相等可得∠2=∠3,再根据直角三角形两锐角互余求解.【解答】解:如图,在△ABC和△DEA中,,∴△ABC≌△DEA(SAS),∴∠2=∠3,在Rt△ABC中,∠1+∠3=90°,∴∠1+∠2=90°.故选:B.5.【分析】利用等腰三角形的性质以及三角形的内角和定理求解即可.【解答】解:∵△ABC≌△DEC,∴∠B=∠DEC=75°,CE=CB,∴∠CEB=∠B=75°,∠B=∠CEB,∴∠BCE=180°﹣2×75°=30°,故选:B.6.【分析】根据全等三角形的判定方法一一判断即可.【解答】解:A、根据SAS可以判定两个三角形全等,本选项不符合题意.B、根据SAS可以判定两个三角形全等,本选项不符合题意.C、SSA不可以判定两个三角形全等,本选项符合题意.D、根据ASA可以判定两个三角形全等,本选项不符合题意.故选:C.7.【分析】根据线段垂直平分线的性质得出AE=BE,求出BE长即可.【解答】解:∵ED垂直平分AB,∴BE=AE,∵AC=12,EC=5,且△ACE的周长为30,∴12+5+AE=30,∴AE=13,∴BE=AE=13,故选:D.8.【分析】要使△ABC是等腰三角形,可分三种情况(①若AC=AB,②若BC=BA,③若CA=CB)讨论,通过画图就可解决问题.【解答】解:①若AC=AB,则以点A为圆心,AB为半径画圆,与坐标轴有4个交点;②若BC=BA,则以点B为圆心,BA为半径画圆,与坐标轴有2个交点(A点除外);③若CA=CB,则点C在AB的垂直平分线上,∵A(0,0),B(2,2),∴AB的垂直平分线与坐标轴有2个交点.综上所述:符合条件的点C的个数有8个.故选:D.9.【分析】已知关于与x,y的方程组,则下列结论中正确的是(①②③)①当x,y的值互为相反数时,a=20;解方程组得,根据互为相反数的两个数和为0,可得结论.②当2x•2y=16时,a=18;根据同底数幂的乘法法则得x+y=4,可得结论.③当不存在一个实数a,使得x=y.当x=y时,等式不成立,可得结论.【解答】解:已知关于与x,y的方程组,则下列结论中正确的是(①②③)①当x,y的值互为相反数时,a=20;解得:∵x,y的值互为相反数,∴x+y=0∴25﹣a+15﹣a=0解得:a=20故①正确;②当2x•2y=16时,a=18;∵2x•2y=2 x+y=24∴x+y=25﹣a+15﹣a=4解得:a=18故②正确;③当不存在一个实数a,使得x=y.若x=y,得25﹣a=15﹣a此方程无解.∴不存在一个实数a,使得x=y.故③正确.故选:D.10.【分析】①利用合并同类项来做;②③都是利用同底数幂的乘法公式做(注意一个负数的偶次幂是正数,奇次幂是负数);④利用乘法分配律的逆运算.【解答】解:①∵a5+a5=2a5,故①的答案不正确;②∵(﹣a)6•(﹣a)3•a=﹣a10故②的答案不正确;③∵﹣a4•(﹣a)5=a9,故③的答案不正确;④25+25=2×25=26.所以正确的个数是1,故选:B.11.【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000005=5×10﹣9.故选:D.12.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:这1个式子分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选:A.二.填空题(共6小题)13.【分析】由于AD⊥BC于D,图中共有6个三角形,它们都有一边在直线CB上,由此即可确定以AD为高的三角形的个数.【解答】解:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有6个,∴以AD为高的三角形有6个.故答案为:614.【分析】根据三角形的中线得出AD=CD,根据三角形的周长求出即可.【解答】解:∵BD是△ABC的中线,∴AD=CD,∴△ABD和△BCD的周长的差是:(AB+BD+AD)﹣(BC+BD+CD)=AB﹣BC=6﹣4=2cm.故答案为:2.15.【分析】连接AC,利用全等三角形的性质解答即可.【解答】解:如图所示:由图可知△ACE与△ABD与△ACF全等,∴AB=AC,∠1=∠CAE=∠ACF,∵∠CAE+∠DAC=90°,∴∠1+∠DAC=∠BAC=90°,∴△ABC是等腰直角三角形,∴∠2+∠ACF=45°,∴∠1+∠2=45°,故答案为:45.16.【分析】根据线段的垂直平分线得出AD=BD,AE=CE,推出∠B=∠BAD,∠C=∠CAE,求出∠BAD+∠CAE的度数即可得到答案.【解答】解:∵点D、E分别是AB、AC边的垂直平分线与BC的交点,∴AD=BD,AE=CE,∴∠B=∠BAD,∠C=∠CAE,∵∠B=40°,∠C=45°,∴∠B+∠C=85°,∠BAC=95°,∴∠BAD+∠CAE=85°,∴∠DAE=∠BAC﹣(∠BAD+∠CAE)=95°﹣85°=10°,故答案为:10°17.【分析】先把x m+2n变形为x m(x n)2,再把x m=2,x n=3代入计算即可.【解答】解:∵x m=2,x n=3,∴x m+2n=x m x2n=x m(x n)2=2×32=2×9=18;故答案为:18.18.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:用科学记数法表示0.0000025为2.5×10﹣6,故答案为:2.5×10﹣6.三.解答题(共9小题)19.【分析】(1)根据观察可得:图②有3个三角形;图③有5个三角形;图④有7个三角形;由此可以猜测第七个图形中共有13个三角形(2)按照(1)中规律如此画下去,三角形的个数等于图形序号的2倍减去1,据此求得第n个图形中的三角形的个数.【解答】解:(1)图②有3个三角形;图③有5个三角形;图④有7个三角形;…猜测第七个图形中共有13个三角形.(2)∵图②有3个三角形,3=2×2﹣1;图③有5个三角形,5=2×3﹣1;图④有7个三角形,7=2×4﹣1;∴第n个图形中有(2n﹣1)个三角形.故答案为3,5,7,13,(2n﹣1).20.【分析】先根据AD是BC边上的中线得出BD=CD,设BD=CD=x,AB=y,则AC=4x,根据题意得出方程组,求出方程组的解,再根据三角形的三边关系定理判断即可.【解答】解:设BD=CD=x,AB=y,则AC=2BC=4x,∵BC边上的中线AD把△ABC的周长分成60和40两部分,AC>AB,∴AC+CD=60,AB+BD=40,即,解得:,当AB=28,BC=24,AC=48时,符合三角形三边关系定理,能组成三角形,所以AC=48,AB=28.21.【分析】根据全等三角形对应角相等可得∠AED=∠ACB,∠D=∠B,再根据邻补角的定义求出∠ACF,然后根据三角形的内角和定理列出方程求解即可.【解答】解:∵△ABC≌△ADE,∴∠AED=∠ACB=105°,∠D=∠B=30°,∴∠ACF=180°﹣∠ACB=180°﹣105°=75°,由三角形的内角和定理得,∠1+∠D=∠CAD+∠ACF,∴∠1+30°=15°+75°,解得∠1=60°.22.【分析】求出∠DEC=∠BF A=90°,根据HL定理推出即可.【解答】证明:∵DE⊥AC,BF⊥AC,∴∠DEC=∠BF A=90°,在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CDE(HL).23.【分析】点P是∠AOB的平分线与线段MN的中垂线的交点.【解答】解:点P就是所求的点.(2分)如果能正确画出角平分线和中垂线的给满分24.【分析】(1)过A点作AF⊥BC于点F.根据AB=AC=6,BC=4,AF⊥BC,可得BF =FC=2,∠BF A=90°,再根据三角函数即可求出CD的长;(2)过C点作CH⊥ED于点H,根据CH⊥ED,AB⊥ED,可得∠DEB=∠DHC=90°,即CH∥AB,对应边成比例即可求出CH的长.【解答】解:如图,(1)过A点作AF⊥BC于点F.∵AB=AC=6,BC=4,AF⊥BC,∴BF=FC=2,∠BF A=90°,∴在Rt△ABF中,,∵AB的垂直平分线交AB于点E,AB=6,∴AE=BE=3,∠DEB=90°,在Rt△DEB中,,∴BD=9,∴CD=5.(2)过C点作CH⊥ED于点H,∵CH⊥ED,AB⊥ED,∴∠DEB=∠DHC=90°,∴CH∥AB,∴,∵BE=3,BD=9,CD=5,∴.∴点C到ED的距离CH为.25.【分析】(I)根据题中的新定义化简为:x2=4,解方程即可得到结果;(II)解法一:利用对数的公式:log a(M•N)=log a M+log a N,把8=4×2代入公式,即可得到结果;解法二:设log48=x,根据对数的定义得4x=8,化为底数为2的式子,可得结果;(II)(lg2)2+lg2•1g5+1g5﹣2018,=lg2(lg2+1g5)+lg5﹣2018,=lg2•1g10+lg5﹣2018(III)知道lg2+1g5=1g10=1,提公因式后利用已知的新定义化简即可得到结果.【解答】解:(I)log x4=2;∴x2=4,∵x>0,∴x=2;(II)解法一:log48=log4(4×2)=log44+log42=1+=;解法二:设log48=x,则4x=8,∴(22)x=23,∴2x=3,x=,即log48=;(II)(lg2)2+lg2•1g5+1g5﹣2018,=lg2(lg2+1g5)+lg5﹣2018,=lg2•1g10+lg5﹣2018,=lg2+1g5﹣2018,=1g10﹣2018,=1﹣2018,=﹣2017.26.【分析】根据幂的乘方和积的乘方的计算方法进行计算即可.【解答】解:原式=x2•x2•x2﹣x6=x6﹣x6=0.27.【分析】(1)由“真分式”的定义,可仿照例题得结论;(2)先把分式化为真分式,再根据分式的值为整数确定x的值.【解答】解:(1)==﹣=1﹣故答案为:1﹣(2)原式===x﹣1+因为x的值是整数,分式的值也是整数,所以x+3=±1或x+3=±3,所以x=﹣4、﹣2、0、﹣6.所以分式的值为整数,x的值可以是:﹣4、﹣2、0、﹣6.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省黄石市经济开发区2020-2021学年八年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形中,是轴对称图形的是( )A .B .C .D . 2.以下运算正确的是( )A .326)ab ab =(B .333(3)9xy x y -=-C .3412x x x •=D .22(3)9x x = 3.长方形的面积是9a 2﹣3ab +6a 3,一边长是3a ,则它的另一边长是( ) A .3a 2﹣b +2a 2B .b +3a +2a 2C .2a 2+3a ﹣bD .3a 2﹣b +2a 4.化简211m m m m--÷的结果是 ( ) A .m B .1mC .1m -D .1m m - 5.下列从左到右的变形中,属于因式分解的是( ) A .(x +1)(x ﹣1)=x 2﹣1B .x 2﹣5x +6=(x ﹣2)(x ﹣3)C .m 2﹣2m ﹣3=m (m ﹣2)﹣3D .m (a +b +c )=ma +mb +mc6.已知225a b +=,1a b -=,则ab 的值为( )A .1B .2C .3D .47.如图,等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC=45°,则∠ACE 等于( )A .15°B .30°C .45°D .60° 8.一个多边形的每个内角都是108°,那么这个多边形是( )A .五边形B .六边形C .七边形D .八边形 9.角平分线的作法(尺规作图)①以点O 为圆心,任意长为半径画弧,交OA 、OB 于C 、D 两点;②分别以C 、D 为圆心,大于CD 长为半径画弧,两弧交于点P ;③过点P 作射线OP ,射线OP 即为所求.角平分线的作法依据的是( )A .SSSB .SASC .AASD .ASA10.如图,已知AC 平分∠DAB ,CE ⊥AB 于E ,AB=AD+2BE ,则下列结论:①AB+AD=2AE ;②∠DAB+∠DCB=180°;③CD=CB ;④S △ACE ﹣2S △BCE =S △ADC ;其中正确结论的个数是( )A .1个B .2个C .3个D .4个二、填空题 11.若分式211x x --的值为0,则x=________. 12.a ,b ,c 为ΔABC 的三边,化简|a-b-c |-|a+b-c |+2a 结果是____.13.如图,AB=AC ,BD=BC,若∠A=40°,则∠ABD 的度数是_________.14.若24x x k ++是完全平方式,则k 的值为_______.15.计算2201920172018⨯-=____.16.关于x 的分式方程223242mx x x x +=--+无解,则m 的值为_______.三、解答题17.计算(1)(x ﹣3)(x +3)﹣6(x ﹣1)2(2)a 5•a 4•a ﹣1•b 8+(﹣a 2b 2)4﹣(﹣2a 4)2(b 2)418.因式分解(1)16x4﹣1(2)3ax2+6axy+3ay2 19.解方程(1)12 23 x x=+(2)32 122xx x=---20.如图:AE=DE,BE=CE,AC和BD相交于点E,求证:AB=DC21.先化简,再求值:22144(1)11x xx x-+-÷--,从1-,1,2,3中选择一个合适的数代入并求值.22.已知△ABC,顶点A、B、C都在正方形方格交点上,正方形方格的边长为1.(1)写出A、B、C的坐标;(2)请在平面直角坐标系中画出△ABC关于x轴对称的△A1B1C1;(3)在y轴上找到一点D,使得CD+BD的值最小,(在图中标出D点位置即可,保留作图痕迹)23.甲、乙两人分别从距离目的地6千米和10千米的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前20分钟到达目的地,求甲、乙的速度.24.如图1,△ABC中,AB=AC,∠BAC=90°,CD平分∠ACB,BE⊥CD,垂足E在CD 的延长线上.请解答下列问题:(1)图中与∠DBE 相等的角有: ;(2)直接写出BE 和CD 的数量关系;(3)若△ABC 的形状、大小不变,直角三角形BEC 变为图2中直角三角形BED ,∠E =90°,且∠EDB =12∠C ,DE 与AB 相交于点F .试探究线段BE 与FD 的数量关系,并证明你的结论.25.在初中数学学习阶段,我们常常会利用一些变形技巧来简化式子,解答问题. 材料一:在解决某些分式问题时,倒数法是常用的变形技巧之一,所谓倒数法,即把式子变成其倒数形式,从而运用约分化简,以达到计算目的. 例:已知:2114x x =+,求代数式x 2+21x 的值. 解:∵2114x x =+,∴21x x+=4 即21x x x+=4∴x +1x =4∴x 2+21x =(x +1x )2﹣2=16﹣2=14 材料二:在解决某些连等式问题时,通常可以引入参数“k ”,将连等式变成几个值为k 的等式,这样就可以通过适当变形解决问题.例:若2x =3y =4z ,且xyz ≠0,求x y z+的值. 解:令2x =3y =4z =k (k ≠0) 则11k k k k x 622,,,117234y z 7k k 3412x y z ===∴===++ 根据材料回答问题:(1)已知2114x x x =-+,求x +1x的值. (2)已知523a b c ==,(abc ≠0),求342b c a +的值.(3)若222222yz zx xy x y zbz cy cx az ay bx a b c++===+++++,x≠0,y≠0,z≠0,且abc=7,求xyz的值.参考答案1.C【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A 、不是轴对称图形,故本选项不符合题意;B 、不是轴对称图形,故本选项不符合题意;C 、是轴对称图形,故本选项符合题意;D 、不是轴对称图形,故本选项不符合题意.故选:C .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 2.D【分析】由积的乘方运算判断A ,由积的乘方运算判断B ,由同底数幂的运算判断C ,由积的乘方运算判断D .【详解】解:3226(),ab a b =故A 错误;333(3)27,xy x y -=-故B 错误;347x x x •=,故C 错误;22(3)9x x =,故 D 正确;故选D .【点睛】本题考查的是积的乘方运算,同底数幂的运算,掌握以上运算法则是解题的关键. 3.C【分析】根据长方形面积公式“长×宽=面积”,列出式子后进行化简计算即可。

【详解】长方形的面积=长×宽,由此列出式子(9a 2﹣3ab +6a 3)÷3a =3a ﹣b +2a 2.解:(9a 2﹣3ab +6a 3)÷3a =3a ﹣b +2a 2, 故选:C .【点睛】本题考查了用代数式表示相应的量,解决本题的关键是熟练掌握整式除法的运算法则。

4.A【分析】先化除为乘,然后按照分式乘法法则进行计算即可.【详解】 解:211m m m m--÷ =211m m m m -⨯- =m .故答案为A .【点睛】本题考查了分式的的乘除运算,掌握分式乘除运算法则是解答本题的关键.5.B【分析】根据因式分解的定义:把一个多项式写成几个因式乘积的形式,逐个判断即可.【详解】解:A 、不是因式分解,故本选不项符合题意;B 、是因式分解,故本选项符合题意;C 、不是因式分解,故本选项不符合题意;D 、不是因式分解,故本选项不符合题意;故选:B .【点睛】本题考查了因式分解的意义,解决本题的关键是熟练掌握因式分解的意义,明确因式分解的形式是几个因式乘积。

6.B【分析】由()2222,a b a ab b -=-+再把已知条件代入公式得到关于ab 的方程,解方程可得答案.【详解】解:()222222,5,1,a b a ab b a b a b -=-++=-=2152,ab ∴=-24,ab ∴=2,ab ∴=故选B .【点睛】本题考查的是完全平方式公式的应用,掌握完全平方公式是解题的关键.7.A【分析】先判断出AD 是BC 的垂直平分线,进而求出∠ECB=45°,即可得出结论.【详解】∵等边三角形ABC 中,AD ⊥BC ,∴BD=CD ,即:AD 是BC 的垂直平分线,∵点E 在AD 上,∴BE=CE ,∴∠EBC=∠ECB ,∵∠EBC=45°, ∴∠ECB=45°, ∵△ABC 是等边三角形,∴∠ACB=60°, ∴∠ACE=∠ACB-∠ECB=15°, 故选A .【点睛】此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB 是解本题的关键.8.A【分析】根据题意,计算出多边形的外角的度数,再根据外角和÷外角度数=边数可得答案.【详解】解:∵多边形的每个内角都是108°,∴每个外角是180°﹣108°=72°,∴这个多边形的边数是360°÷72°=5,∴这个多边形是五边形,故选:A .【点睛】本题考查了多边形外角和是360°这一知识点,根据题意求出,每个外角的度数是解决本题的关键。

9.A【分析】根据角平分线的作法步骤,连接CP 、DP ,由作图可证△OCP ≌△ODP ,则∠COP =∠DOP ,而证明△OCP ≌△ODP 的条件就是作图的依据.【详解】解:如下图所示:连接CP 、DP在△OCP 与△ODP 中,由作图可知:OC OD CP DP OP OP =⎧⎪=⎨⎪=⎩∴△OCP ≌△ODP (SSS )故选:A .【点睛】本题考查了角平分线的求证过程,从角平分线的作法中寻找证明三角形全等的条件是解决本题的关键。

10.C【分析】①在AE取点F,使EF=BE.利用已知条件AB=AD+2BE,可得AD=AF,进而证出2AE=AB+AD;②在AB上取点F,使BE=EF,连接CF.先由SAS证明△ACD≌△ACF,得出∠ADC=∠AFC;再根据线段垂直平分线、等腰三角形的性质得出∠CFB=∠B;然后由邻补角定义及四边形的内角和定理得出∠DAB+∠DCB=180°;③根据全等三角形的对应边相等得出CD=CF,根据线段垂直平分线的性质得出CF=CB,从而CD=CB;④由于△CEF≌△CEB,△ACD≌△ACF,根据全等三角形的面积相等易证S△ACE-S△BCE=S△ADC.【详解】解:①在AE取点F,使EF=BE,∵AB=AD+2BE=AF+EF+BE,EF=BE,∴AB=AD+2BE=AF+2BE,∴AD=AF,∴AB+AD=AF+EF+BE+AD=2AF+2EF=2(AF+EF)=2AE,∴AE=12(AB+AD),故①正确;②在AB上取点F,使BE=EF,连接CF.在△ACD与△ACF中,∵AD=AF,∠DAC=∠FAC,AC=AC,∴△ACD≌△ACF,∴∠ADC=∠AFC.∵CE垂直平分BF,∴CF=CB,∴∠CFB=∠B.又∵∠AFC+∠CFB=180°,∴∠ADC+∠B=180°,∴∠DAB+∠DCB=360-(∠ADC+∠B )=180°,故②正确;③由②知,△ACD ≌△ACF ,∴CD=CF ,又∵CF=CB ,∴CD=CB ,故③正确;④易证△CEF ≌△CEB ,所以S △ACE -S △BCE =S △ACE -S △FCE =S △ACF ,又∵△ACD ≌△ACF ,∴S △ACF =S △ADC ,∴S △ACE -S △BCE =S △ADC ,故④错误;即正确的有3个,故选C .【点睛】本题考查了角平分线性质,全等三角形的性质和判定,等腰三角形的性质,四边形的内角和定理,邻补角定义等知识点的应用,正确作辅助线是解此题的关键,综合性比较强,难度适中.11.-1【分析】根据分式有意义的条件列方程组解答即可.【详解】解:有题意得:21010x x -=⎧⎨-≠⎩解得x=-1. 故答案为x=-1.【点睛】本题考查了分式等于0的条件,牢记分式等于0的条件为分子为0、分母不为0是解答本题的关键.12.2c【分析】根据三角形三边关系,确定a-b-c ,a+b-c 的正负,然后去绝对值,最后化简即可.【详解】解:∵a,b,c为ΔABC的三边∴a-b-c=a-(b+c)<0,a+b-c=(a+b)-c>0∴|a-b-c|-|a+b-c|+2a=-(a-b-c)-(a+b-c)+2a=b+c-a-a-b+c+2a=2c【点睛】本题考查了三角形三边关系的应用,解答的关键在于应用三角形的三边关系判定a-b-c,a+b-c 的正负.13.30°;【分析】利用三角形的内角和、外角性质与等腰三角形的“等边对等角”定理计算.【详解】由AB=AC、BD=BC得∠ABC=∠ACB、∠C=∠BDC,在△ABC中,∠A=40°,∠C=∠ABC,∴∠C=∠ABC=12(180°−∠A)=12(180°−40°)=70°;在△ABD中,由∠BDC=∠A+∠ABD得∠ABD=∠BDC−∠A=70°−40°=30°故答案为30°【点睛】此题考查三角形内角和定理,等腰三角形的性质,三角形的外角性质,解题关键在于利用等边对等角14.4【分析】根据完全平方公式的特征直接进行求解即可.【详解】24x x k++是完全平方式,∴k=4.故答案为4.【点睛】本题主要考查完全平方公式,熟记公式是解题的关键.15.1-【分析】设2018,a =把原式化为()()2220192017201811a a a ⨯-=+--,从而可得答案. 【详解】解:设2018,a =()()2220192017201811a a a ∴⨯-=+--221a a =--1,=-故答案为: 1.-【点睛】本题考查的是利用平方差公式进行简便运算,掌握平方差公式是解题的关键.16.1或6或4-【分析】方程两边都乘以()()22x x +-,把方程化为整式方程,再分两种情况讨论即可得到结论.【详解】 解:223242mx x x x +=--+ ()()232222mx x x x x ∴+=-+-+ ()()2232x mx x ∴++=-()110,m x ∴-=-当1m =时,显然方程无解,又原方程的增根为:2,x =±当2x =时,15,m -=-4,m ∴=-当2x =-时,15,m -=6,m ∴=综上当1m =或4m =-或6m =时,原方程无解.故答案为:1或6或4-.【点睛】本题考查的是分式方程无解的知识,掌握分式方程无解时的分类讨论是解题的关键. 17.(1)﹣5x 2+12x ﹣15;(2)﹣2a 8b 8【分析】(1)直接利用乘法公式计算进而合并同类项得出答案;(2)直接利用积的乘方运算法则以及合并同类项法则进而计算得出答案.【详解】解:(1)原式=x 2﹣9﹣6(x 2﹣2x +1)=x 2﹣9﹣6x 2+12x ﹣6=﹣5x 2+12x ﹣15;(2)原式=a 8b 8+a 8b 8﹣4a 8b 8=﹣2a 8b 8.【点睛】本题考查了平方差公式和完全平方公式,积的运算法则,解决本题的关键是熟练掌握乘法公式。

相关文档
最新文档