祊塘连续梁0块满堂支架计算书.doc

合集下载

满堂支架计算书

满堂支架计算书

满堂支架总体施工方案本工程有现浇梁13联,取代表性3种不同梁高、桥跨进行设计和验算。

B=25.5m、标准跨径(30m+30m+30m)等高斜腹板预应力混凝土连续梁、B=25.5m、标准跨径(30m+45m+45m+30m)变高度斜腹板连续梁、B=25.5m、(35+50+35)m变高度斜腹板连续梁分别进行验算。

采用碗扣式满堂支架施工,支架搭设完成后对其预压,预压用砂袋按箱梁荷载(一期恒载+施工荷载)的1.2倍预压,在预压过程中,消除非弹性变形与基础沉降后即可卸除荷载,调整支撑。

一、B=25.5m、标准跨径(30m+30m+30m)等高斜腹板预应力混凝土连续梁箱体外模一次性立模成型,底模和内模采用1.5cm厚竹胶板,底模纵桥向采用10cm×10cm方木,间距22.5cm,方木下面横桥向为10cm×15cm方木,与支架一起组成现浇梁支撑体系。

侧模采用1.5cm 厚竹胶板和定型钢模板混合使用。

碗口支架作为支撑。

二、构架搭设主线桥工程现浇梁一共13联,以(30m+30m+30m)、(30 m +45 m +45 m +30 m)为标准联,因此验算(30m+30m+30m)、(30 m +45 m +45 m +30 m)为例进行分析。

箱梁模板支架采用碗扣式满堂支架,支架立杆长度分为2.4m、1.2m、0.9m、0.6m、0.3m几种,用以调整不同的高度,步距 1.2m。

支架立杆上下端分别安装可调式顶托和底座。

其单根最大荷载为30KN。

箱梁端(中)横梁纵向3m范围内腹板处按0.6m×0.6m间距布置立杆,跨中纵向24.3m范围内和腹板处按照0.6m ×0.6、0.6m×0.9m m间距布置立杆,翼缘板部分按0.9m×0.9m间距布置立杆。

支架上荷载计算及说明部分参照:《建筑施工碗口式钢管脚手架安全技术规范》JGJ166-2016、《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011、《建筑施工模板安全技术规范》JGJ162-2008。

满堂脚手架计算

满堂脚手架计算

满堂脚手架计算满堂脚手架计算文档模板范本
1. 引言
1.1 目的
1.2 背景
1.3 范围
1.4 定义
2. 概述
2.1 满堂脚手架的功能和特点
2.2 满堂脚手架计算的重要性
2.3 参考资料
3. 系统需求
3.1 计算硬件要求
3.2 计算软件要求
4. 数据收集
4.1 确定计算所需数据
4.2 数据采集方法
4.3 数据存储和管理
5. 计算方法
5.1 确定计算方法和理论基础 5.2 计算步骤和流程
5.3 实施考虑因素
5.4 计算结果可靠性评估
6. 满堂脚手架计算实例
6.1 实例数据收集和准备
6.2 实例计算过程和结果分析
7. 结果解释和应用
7.1 结果分析
7.2 结果的应用和可行性评估
7.3 结果的限制和不确定性
8. 总结和建议
8.1 结果总结
8.2 建议和改进措施
9. 附录
9.1 计算公式
9.2 数据表格和图表
9.3 参考文献和资料来源
10. 附件
1. 附件1:实验数据
2. 附件2:计算结果表格
3. 附件3:相关文档和资料11. 法律名词及注释
1. 名词1:注释1
2. 名词2:注释2。

祊塘连续梁0块满堂支架计算书.doc

祊塘连续梁0块满堂支架计算书.doc

中铁隧道集团合福铁路安徽段站前八标项目经理部二分部祐塘2号特大桥(40+64+40) m 连续梁0#块满堂支架计算书编制:复核:审核:日期: 年 月 日计算依据计算依据错误!未定义书签。

二. 支架总体设计方案….三、 底模及分配梁检算.… 1、 荷载大小 ......... 2、 底模检算 ......... 3、 横梁(方木)检算 4、 分配梁检算 ....... 错误!未定义书签。

错误!未定义书签。

错误!未定义书签。

错误!未定义书签。

错误!未定义书签。

错误!未定义书签。

5、顶托检算错误!未定义书签。

支架受力检算 ............................ 错误!未定义书签。

1、《无祚轨道现浇预应力混凝土连续梁(双线)》通桥(2008 )2368A-IH2、《客运专线桥梁工程施工技术指南》3、《路桥施工计算手册》4、《材料力学》5、《钢结构设计与计算》6、《建筑地基基础设计规范》7、《祐塘2号特大桥连续梁施工方案》8、《祐塘2号特大桥》合福施(桥)-142二.支架总体设计方案祐塘2号特大桥连续梁0号块采用在支架上现浇,支架采用碗扣式钢管脚手架搭设,支架均采用夕卜径(p48mg 壁厚5=3.5mm标准杆件进行组装,支架顺桥向立杆间距60cm ,横桥向立杆翼缘板处间距90cm ,底板处间距60cm ,腹板处间距为30cm ,横杆步距120cm o支架底托直接支撑在承台和已处理的地基硬化混凝土表面, 所有支架应依据搭设高度设置剪刀撑。

立杆顶端安装可调式顶托,顶托上设I22a工字钢横梁,横梁上顺桥向搭设7棍桁架调整梁底标高, 桁架上横桥向搭设净距为20cm的15x15cm方木,方木上铺设 1.5cm的竹胶板作为底模。

墩顶搭设支架间距为50cm ,顶上设10 号槽钢][型焊接作为纵向分配梁,上边铺设方木和竹胶板。

三、底模及分配梁检算图1、箱梁横断面图(单位:cm)125.8 125.8图2、横断面栓荷载分布1、荷载大小根据《路桥施工计算手册》①施工人员,机具、材料荷载:Pl=2.5kN/m2②碇冲击及振捣碇时产生的荷载:P2=2.5kN/m2③梁体自重荷载:P3=4.84x26=125.8kN/m2④模板自重荷载:P4=1.5kN/m2⑤方木荷载P5=0.2KN/m按规范进行荷载组合(按lm考虑)有:N= P1+ P2+ P3 + P4+P5 = 132.5kN/m22、底模检算根据《路桥施工计算手册》和《建筑技术》查得,竹胶合模板的力学指标取下值:[o] = 80Mpa/ [T] = 1.4Mpa横梁(方木)的间距为0.2m ,底模按跨度为0.2m三跨连续梁计算,均布荷载ql=132・3kN/m ;跨中弯矩M二q:U2/8 = :L32.3x0・22/8=0・66:L5kN・m弯曲截面系数W=bh2/6=1.0x0.0152/6=3.8xl0-5m3截面应力正o=M/W=17.4MPa < [o]=80 MPa ,满足要求。

满堂支架计算.(DOC)

满堂支架计算.(DOC)

满堂支架计算简介满堂支架是一种用于建筑中支撑结构的装置,主要用于建筑施工中的临时支撑、拆除撑和开挖撑等作用。

在使用满堂支架时需要进行详细的计算和设计,以确保施工的安全性和稳定性。

本文将介绍满堂支架计算的基本原理和方法。

基本原理满堂支架的作用是通过承载扭矩和弯曲力来支撑建筑的结构,防止结构发生变形和倒塌。

因此,在计算满堂支架的承载能力时需要考虑以下因素:•支架材料的强度和刚度•支架的外形尺寸和结构形式•施工现场的荷载和环境条件根据上述因素,可以通过力学方法进行满堂支架的计算。

计算方法计算流程•确定支架荷载。

在计算中需要将支架的分量按荷载分别处理,包括垂直、水平、剪切和扭矩四个方向上的荷载。

•计算支架的扭转刚度。

扭转刚度是指支架在受力作用下的扭转变形程度,需要根据支架材料的强度和形状进行计算。

•计算支架的弯曲刚度。

弯曲刚度是指支架在受力作用下的弯曲变形程度,同样需要根据支架材料的强度和形状进行计算。

•计算支架的承载能力。

支架的承载能力是指支架在荷载作用下的最大承载能力值,需要根据支架的构造和受力情况进行计算。

计算公式•支架荷载计算公式:支架荷载 = 分量荷载 + 载荷作用 + 摩擦力•支架的扭转刚度计算公式:Kt = GJ / L其中G为材料的剪切模量,J为截面扭转常数,L为支架的长度。

•支架的弯曲刚度计算公式:Kb = EI / L其中E为材料的弹性模量,I为截面惯性矩,L为支架的长度。

•支架的承载能力计算公式:P = Mx / Y + My / X其中Mx和My分别为支架在垂直和水平方向上的扭转力矩,X和Y分别为支架在垂直和水平方向上的截面模量。

结论满堂支架计算是建筑安全工作中不可或缺的环节,需要根据实际情况进行详细的计算和设计。

本文介绍了满堂支架计算的基本原理和方法,希望对读者了解和掌握这一领域有所帮助。

满堂支撑架计算书

满堂支撑架计算书

满堂支撑架计算书计算依据:1、《建筑施工扣件式钢管脚手架安全技术标准》T/CECS 699-20202、《建筑施工脚手架安全技术统一标准》GB51210-20163、《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-20114、《建筑施工高处作业安全技术规范》JGJ80-20165、《建筑地基基础设计规范》GB50007-20116、《建筑结构荷载规范》GB50009-20127、《钢结构设计标准》GB50017-2017一、架体参数二、荷载参数风荷载参数:0.487ωmk=ω0μzμs=0竖向封闭栏杆μs 1.195三、设计简图搭设示意图:平面图侧立面图四、板底纵向支撑次梁验算次梁增加根数n4 2 材质及类型钢管截面类型(mm) Φ48.3×3.6次梁抗弯强度设计值f(N/mm2) 205次梁截面惯性矩I(cm4) 12.71 次梁抗剪强度设计值τ(N/mm2) 125次梁截面抵抗矩W(cm3) 5.26 次梁弹性模量E(N/mm2) 206000次梁自重标准值Nc(kN/m) 0.04 次梁验算方式三等跨连续梁G1k=N c=0.04kN/m;G2k= g2k×l b/(n4+1)= 0.35×1.2/(2+1)=0.14kN/m;G3k= g4k×l b/(n4+1)= 1×1.2/(2+1)=0.4kN/m;Q1k= q k×l b/(n4+1)= 3×1.2/(2+1)=1.2kN/m;1、强度验算板底支撑钢管按均布荷载作用下的三等跨连续梁计算。

满堂支撑架平台上无集中力q=γ0×[1.3×(G1k+G2k+G3k)+1.5×Q1k]=1×[1.3×(0.04+0.14+0.4)+1.5×1.2]=2.554kN/m q1=γ0×1.3×(G1k+G2k+ G3k)= 1×1.3×(0.04+0.14+0.4)=0.754kN/mq2=γ0×1.5×Q1k= 1×1.5×1.2=1.8 kN/m计算简图M max=0.100q l l2+0.117q2l2=0.100×0.754×1.22+0.117×1.8×1.22=0.412kN·mR max=1.100q1l+1.200q2l=1.100×0.754×1.2+1.200×1.8×1.2=3.587kNV max=0.6q1la +0.617q2la =0.6×0.754×1.2+0.617×1.8×1.2=1.876kNτmax=2V max/A=2×1.876×1000/506=7.415N/mm2≤[τ]=125N/mm2满足要求!σ=M max/W=0.412×106/(5.26×103)=78.327N/mm2≤[f]=205N/mm2 满足要求!满堂支撑架平台上增加集中力最不利计算q2=1×1.5×φc×F1=1×1.5×0.7×2=2.1kN计算简图弯矩图(kN·m)M max=0.78kN·mσ=M max/W=0.78×106/(5.26×103)=148.289N/mm2≤[f]=205N/mm2 满足要求!剪力图(kN)R maxf=4.894kNV maxf=3.099kNτmax=2V max/A=2×3.099×1000/506=12.249N/mm2≤[τ]=125N/mm2满足要求!2、挠度验算q'1=G1k+G2k+G3k=0.04+0.14+0.4=0.58kN/mq'2=Q1k=1.2kN/mR'max=1.100q'1l+1.200q'2l=1.100×0.58×1.2+1.200×1.2×1.2=2.494kNνmax=(0.677q'1l4+0.990q'2l4)/(100EI)=(0.677×0.58×(1.2×103)4+0.990×1.2×(1.2×103)4)/(100×2.06×105×12.71×104)=1.252 mm≤min{1200/150,10}=8mm满足要求!满堂支撑架平台上增加集中力最不利计算q'=G1k+G2k+G3k+Q1k= 0.04+0.14+0.4+1.2=1.78kN/mq2=F1=2kN计算简图剪力图(kN) R'maxf=3.8kN变形图(mm) νmax=2.895 mm≤min{1200/150,10}=8mm满足要求!五、横向主梁验算材质及类型钢管截面类型(mm) Φ48.3×3.6主梁抗弯强度设计值f(N/mm2) 205 主梁截面惯性矩I(cm4) 12.71主梁抗剪强度设计值τ(N/mm2) 125 主梁截面抵抗矩W(cm3) 5.26主梁弹性模量E(N/mm2) 206000 主梁自重标准值Nz(kN/m) 0.04主梁验算方式三等跨连续梁横向主梁按照均布荷载和集中荷载作用下三等跨连续梁计算,集中荷载P 取板底支撑次梁传递最大支座力。

满堂支架法施工受力计算书

满堂支架法施工受力计算书

满堂支架法施工受力计算书一、支架材料(1)第一层木楞:宽100mm,长100mm抗弯强度:13N/mm^2,抗剪强度:1.3N/mm^2,弹性模量:10000N/mm^2(2)第二层木楞:宽150mm,长150mm抗弯强度:13N/mm^2,抗剪强度:1.3N/mm^2,弹性模量:10000N/mm^2(3)48mm×3.2mm 钢管:惯性矩 I=11.36cm^4,截面模量 W=4.732cm^3,截面积 A=4.504cm^2,回转半径 i=1.588cm,钢管自重: 3.54kg/m Q235钢抗拉、抗压和抗弯强度设计值: f=215N/mm^2,弹性模量:E=2.06×10^5N/mm^2。

二、计算荷载1、箱梁混凝土容重26KN/m3。

2、模板自重:外模重量523.6KN,内模重量539.1KN,底模重量267.8KN。

3、施工荷载按2KN/㎡计算。

4、混凝土振捣荷载按2KN/㎡计算。

5、恒载分项系数1.2,活载分项系数1.4。

三、受力计算(一)跨中截面1、计算假设支架横断面构造图如下所示由于箱梁横向不均匀分布,根据箱梁横断面的形状,为了使支架受力比较合理,对称中线的一半横向分为中间部分(宽3.6米)、腹板部分(宽1.8米)和翼板部分(宽2.4米),各部分的宽度内均按照均匀荷载进行假设。

2、第一层木楞检算由于箱梁横向为对称结构,为简化计算可取一半进行木楞计算。

第一层木楞长度为4m,下部支撑为间距0.6m的第二层木楞,故木楞的受力可以简化为受均布荷载作用的多跨连续梁模型计算,计算简图如下。

图中荷载计算如下 箱梁自重荷载:q1=1.2*1.04*0.3*26/2.4=4.06KN/m ;(①部分面积1.04m2) q2=1.2*2.37*0.3*26/1.8=12.32 KN/m ;(②部分面积2.37 m2) q3=1.2*(0.504+0.5688)*0.3*26/1.8=5.4 KN/m ;(③部分面积0.504m2、0.5688 m2)模板自重荷载:侧模:qm1=1.2*523.6/2/32.6/2.4*0.3=1.2KN/m;内模+底模:qm2=1.2*(267.8+539.1)/32.6/5.5*0.3=1.62KN/m; 活荷载:qh=1.4*(2+2)*0.3=1.68 KN/m;由以上计算模型可得,木楞所受最大弯矩 为M Max =0.52KN ·m ,最大剪力为Q Max =5KN 。

满堂支架计算书(调整)

满堂支架计算书(调整)

满堂支架 (碗扣式支架) 及模板计算书支撑架的计算依据《建筑施工碗扣式钢管脚手架安全技术规范》(JGJ166-2008)、《混凝土结构设计规范》GB50010-2002、《建筑结构荷载规范》(GB 50009-2001)、《钢结构设计规范》(GB 50017-2003)等规范编制。

一、综合说明由于其中模板支撑架高在6~8.5米范围内,按8.5米高计算,为确保施工安全,编制本专项施工方案。

设计范围:现浇梁高按1.5m设计,采用18mm厚竹胶板组拼。

二、搭设方案(一)基本搭设参数模板支架高H为8.5m,立杆步距h(上下水平杆轴线间的距离)取1.2m,立杆纵距l a 取0.9m,横距lb取0.9m。

立杆伸出顶层横向水平杆中心线至模板支撑点的自由长度a取0.1m。

模板底部的水平分配梁采用2[10槽钢,竖向内楞采用10cm×10cm方木,间距拟定300mm。

(二)材料及荷载取值说明本支撑架使用Φ48 ×3.5钢管,钢管上严禁打孔;采用的扣件,不得发生破坏。

模板支架承受的荷载包括模板及支架自重、新浇混凝土自重、钢筋自重,以及施工人员及设备荷载、振捣混凝土时产生的荷载等。

三、板模板支架的强度、刚度及稳定性验算荷载首先作用在板底模板上,按照“底模→底模方木→分配梁→可调托座→立杆→基础”的传力顺序,分别进行强度、刚度和稳定性验算。

其中,取与底模方木平行的方向为纵向。

(一)板底模板的强度和刚度验算(1)荷载计算,按单位宽度折算为线荷载,相关参数如下。

混凝土自重(γc)为26KN/m3,强度等级C50,坍落度为15 3cm,采用汽车泵泵输送入模,浇筑速度为1 m/h,用插入式振捣器振捣。

模板(竹胶板,厚度18mm)力学性能f w=13.5 N/mm2 (抗弯),f v=2.1 N/mm2 (抗剪),f c=10 N/mm2 (抗拉)W= bh2/6 =1000×182/6 = 5.4×104mm2 (截面最大抵抗矩)/每米宽I= bh3/12 =1000×183/12 = 4.86×105mm4 (截面惯性矩)E=8000N/mm2 (弹性模量)[w]=L/400=0.75mm10cm×10cm方木截面特征为:I=bh3/12=1004/12 mm4W=bh2/6=1003/6 mm3E=9000 N/mm2;φ48×3.5钢管材料力学特性:A=489 mm2 f =205 N/mm2I=12.19×104 mm4 W=5.08×103mm2XE=2.06×105 N/mm22 [10槽钢组合截面材料力学特性:A=2549 mm2 f =205 N/mm2=7.932×104mm3I=3.966×106 mm4 WXE=1.96×105 N/mm2模板按三跨连续梁计算,如图所示:=0.3×1 =0.3kN/m;模板自重标准值:x1=1.5×26×1 =39kN/m;新浇混凝土自重标准值:x2=2.5×1 =2.5kN/m;施工人员及设备活荷载标准值:x3振捣混凝土时产生的荷载标准值:x=2×1=2kN/m。

满堂支架方案(附计算书).doc

满堂支架方案(附计算书).doc

满堂支架方案(附计算书)目录第一节编制依据………………………………………………………………1第二节工程概况………………………………………………………………2第三节满堂脚手架搭设方案选用……………………………………………3第四节安装满堂脚手架的施工管理…………………………………………4第五节脚手架材料检测要求………………………………………………15第六节满堂脚手架安全性验算……………………………………………16第一节编制依据《建筑结构荷载规范》(GB50009-一次。

检查时应在锈蚀严重的钢管中抽取3根,在每根锈蚀严重的部位横向截断取样检查;2)钢管弯曲变形应符合规范规定;二、扣件扣件应符合《钢管脚手架扣件》GB15831-2006的技术要求,凡有变形、裂纹、砂眼等现象的扣件不得使用。

扣件的验收应符合下列规定:1)新扣件应有厂家的生产许可证、法定检验单位的检测报告和产品质量合格证。

当对扣件质量有怀疑时,应按现行的国家标准《钢管脚手架扣件》GB15831-2006的规定抽样检查;2)旧扣件使用前应进行质量检查,有裂纹、变形的严禁使用,出现滑丝螺栓必须更换;3)新旧扣件使用前应进行防锈处理。

第六节满堂脚手架安全性验算脚手架参数选取计算荷载取值(按实际施工情况取值)如下:脚手片自重标准值gk=0.45kN/m2;钢管重量:3.84kg/m(按Φ48×3.5取值);钢管验算参数选取:(按Φ48×3.2取值);截面积A=4.504cm2;惯性距I=11.357cm4;截面模量W=4.732cm3;回转半径i=1.587cm;直角、旋转扣件抗承载力为8.0KN。

由于脚手架搭设高度较高,因此计算时立杆需考虑风荷载因素。

计算取值:操作平台立杆间距为1.5m,操作面水平横杆间距0.375m,水平杆步距1.8m。

脚手架安全性核算(一)验算操作层横向水平杆抗弯强度及变形:1、计算简图钢管计算简图2、强度验算(1)作用横向水平杆线荷载标准值钢管自重标准值:P=0.0384kN/m脚手片恒荷载标准值:gk=0.45kN/m2×0.375m=0.16875kN/m活荷载标准值:qk=2.1kN/m2×0.375m=0.79kN/m(2)作用横向水平杆线荷载计算值恒荷载计算值:q1=1.2×0.113+1.2×0.0384=0.182kN/m活荷载计算值:q2=1.4×0.79=1.11kN/m(3)考虑活荷载在横向水平杆上最不利位置时与恒荷载组合的弯矩,弯矩按连续三跨考虑。

满堂式盖梁支架计算书_pdf

满堂式盖梁支架计算书_pdf

筑龙网
筑龙网
q=(G1+G2+G3+G4+G5)/(2×11.64)=3.56tf/m; Ma=-2.332×q/2=-9.66tf.m; Mc=-5.732×q/2+20.74×3.4=12.07tf.m Mc 控制设计; 321 钢桁片的截面特性:A=25.48×2 cm2;W=3570 cm3; 4、321 钢桁梁强度复核 σ=1.2×Mc×107/(3570×103)=40.57 MPa <[σ]=210MPa; 抗弯能力满足要求。 Q=20.74-2.33×3.56=12.45tf<Q 容=24.5tf。 抗剪能力满足要求。 5、 承重钢棒强度复核 A=3.14×1002/4=7854 mm W=3.14×1003/32=98125 mm3 M=20.74×0.09=1.87 tf.m Q=20.74 tf; σ = 1.2×M×107/98125=228.69 MPa <[σ]=315MPa( 钢 棒 采 用 16Mnφ100) τ=1.2×4×20.74×104/(3×7854)=42.25 MPa<[τ]=185MPa 钢棒抗弯抗剪均符合要求.
A钢结构设计规范»选取。 4)、简图
3、 荷载计算 1)、模板重量:G1=4.8T; 2)、支架重量:G2=2×0.275×5=2.75T; 3)、混凝土重量:G3=(11.46×1.75-10.96×0.35-2×1.43×0.6) ×1.9×2.5=68.89T; 4)、施工人员、材料、行走、机具荷载:G4=0.001×11.46×1.9×102 =2.18T; 5)、振动荷载:G5=0.001×11.46×1.9×102=2.18T;
筑龙网
4)、施工人员、材料、行走、机具荷载:G4=0.001×11.46×1.9×102 =2.18T; 5)、振动荷载:G5=0.001×11.46×1.9×102=2.18T; 3、抗压强度及稳定性计算 支架底部单根立柱压力 N1=(G1+G2+G3+G4+G5)/n; n=20×4=80;N1=1.23tf;安全系数取 1.2;立柱管采用 ø48×3.5 钢管: A=489mm2、i=15.8 mm;立柱按两端铰接考虑取µ=1。στµ 立柱抗压强度复核: σ=1.2×N1×104/A=25.15 MPa <[σ]=210MPa 抗压强度满足要求. 稳定性复核:λ= µL/i=76;查 GBJ17-88 得ϕ=0.807 σ=1.2×N1×104/(ϕA)=30.18 MPa <[σ]=210MPa; 稳定性满足要求. 4.扣件抗滑移计算 支架顶部单根钢管压力 N2=(G1+G3+G4+G5)/n=1tf; 扣件的容许抗滑移力 Rc=0.85tf. 使用两个扣件 2×Rc=1.7 tf>1tf. 扣件抗滑移满足设计要求. 5.在支架搭设时应在纵横向每隔 4-5 排设 45 度剪力撑。 二、悬空支架 1、说明: 1)、简图以厘米为单位。 2)、参考规范«公路桥涵施工技术规范»、«建筑钢结构设计规范»。

连续梁满堂支架计算书

连续梁满堂支架计算书

一、计算依据及参考资料1、《铁路桥梁钢结构设计规范》(TB10002.2-99)2、《公路桥涵施工技术规范》JTJ041-20003、《钢结构设计规范》GB50017-20034、《建筑施工碗扣式脚手架安全技术》JGJ 166-20085、铁四院设计图纸6、《客运专线铁路桥涵工程施工技术指南》TZ213-2005二、碗扣支架计算为了保障安全,计算采用MIDAS/Civil 软件建立整体模型计算和手工复核的方法。

1、荷载钢筋砼容重取26kN/m3;钢模板重量:双线32.7米单孔两侧模重80t ,底模8.5t ,内模为11t,共重100t ,则每延米按30.6kN/m ;方木容重为7.5kN/m³;施工荷载为2kN/㎡;倾倒砼产生的荷载为2kN/㎡,倾倒混凝土对侧模冲击产生的水平荷载取6.0kPa ;振捣砼产生的荷载取4kN/㎡。

2、碗扣支架钢管手工计算计算方法采用容许应力法,但考虑恒载的荷载系数为1.2,活载的分项系数为1.4。

(1)支架钢管轴向受力计算碗扣支架钢管断面为Φ48×3.5mm,其自由长度为m l 2.10=。

根据受压稳定原理进行承载力计算。

单根钢管回转半径:mm A I i 8.154414822=+==长细比:76/0==i l λ查表得:744.0=φ[][][]kN A P 51)4148(744.022=-⨯⨯==σπφσ即单根立杆在步距为1.2m 的条件下,最大允许承载力为51kN 。

实际计算容许的立杆轴向力采用30kN 。

因箱梁腹板处重量最大,碗扣支架立杆纵向间距60cm ,腹板下横向间距30cm ,水平步距120cm 。

按最不利的受力方式计算:单根立杆承受的重量为60cm×30cm 面积上的砼、模板、方木、施工荷载和振捣荷载以及自身的重量,其大小分别为:箱梁混凝土重:kN q 6.123.06.07.2261=⨯⨯⨯=底模模板重量:kN q 94.036.01/7.32/852=⨯=方木重量:kN q 7.1625.025.06.05.73=⨯⨯⨯⨯=施工荷载及振捣荷载:kN q 16.236.0)42(4=⨯+=作用在箱梁下方单根钢管上的总荷载:KN P KN P 30][3.214.116.22.1)7.194.06.12(==⨯+⨯++=<(2)碗扣支架顶部方木的受力计算碗扣支架顶部的方木大小为15 cm×15 cm ,顺桥向放置,间距与支架立杆间距相同即0.6m,查《桥梁计算手册》得。

满堂支架计算书

满堂支架计算书

XXX桥XXX连续梁满堂支架计算书计算:复核:技术负责人:单位:[二〇一六年五月二十一日]目录一、计算依据 (1)二、设计概述 (1)1、满堂支架布置方式 (1)2、底模 (1)3、纵梁 (1)4、横梁 (1)5、立杆 (1)6、支架搭设注意事项 (2)7、横向布置图 (2)三、材料参数 (3)四、荷载参数 (3)1、标准荷载及组合系数 (3)2、风荷载标准值 (4)3、横纵梁自重荷载计算 (5)五、底模验算 (6)1、计算模型图 (6)2、弯矩图 (6)3、剪力图 (6)4、下缘应力图 (6)6、支座反力图 (6)7、计算结果表 (6)六、纵梁验算 (7)1、计算模型图 (7)2、弯矩图 (7)3、剪力图 (7)4、下缘应力图 (7)5、变形图 (7)6、支座反力图 (7)7、计算结果表 (7)七、横梁验算 (8)1、计算模型图 (8)2、弯矩图 (8)3、剪力图 (8)4、下缘应力图 (8)5、变形图 (8)6、支座反力图 (8)7、计算结果表 (9)八、立杆验算 (9)1、第1号立杆受力计算: (9)3、结论: (13)一、计算依据1、《铁路混凝土梁支架法现浇施工技术规程》TB110-20112、《公路桥涵施工技术规范》JTG/T F50-20113、《建筑施工模板安全技术规范》JGJ162-20084、《建筑施工碗扣式钢管脚手架安全技术规范》JGJ166-20085、《混凝土结构设计规范》GB50010-20106、《建筑结构荷载规范》GB 50009-20017、《钢结构设计规范》GB 50017-20038、《建筑结构可靠度统一标准》(GB50068)9、《冷弯薄壁型钢结构技术规范》GB50018-200210、《公路桥涵地基与基础设计规范》JTG D63-200711、《混凝土模板用竹胶合板》LY/T 1574-2000二、设计概述1、满堂支架布置方式采用碗扣式满堂支架,横纵梁布置形式:先横后纵。

满堂支架的计算算例

满堂支架的计算算例

满堂支架的计算算例满堂支架是一种常见于建筑工程中的结构支撑形式,用于提供支撑和稳定的功能,以防止结构失稳或倒塌。

下面是一个关于满堂支架的计算算例,详细介绍了它的设计和计算过程。

1.引言满堂支架是建筑工程中常用的支撑结构,用于提供临时支撑和稳定性。

它一般由水平和竖直杆件组成,可以根据需要进行调整和安装。

本文将以一座三层建筑为例,计算满堂支架的设计和安装。

2.建筑结构参数建筑结构参数如下:-建筑高度:12米-楼层数:3层-楼板宽度:5米-楼板厚度:0.2米-楼板自重:2.5kN/m²-混凝土强度等级:C25-支撑点间距:3米3.设计计算3.1楼板荷载计算首先,计算楼板的总荷载。

根据楼板宽度和自重,得到每平米楼板的自重荷载为:自重荷载=楼板宽度×楼板厚度×楼板自重=5m×0.2m×2.5kN/m²=2.5kN总荷载=自重荷载×楼层数=2.5kN×3=7.5kN3.2满堂支架荷载计算接下来,计算满堂支架的荷载。

满堂支架承受的荷载包括楼板荷载和自重荷载。

楼板荷载=楼板宽度×楼板自重=5m×2.5kN/m²=12.5kN/m满堂支架荷载=楼板荷载×支撑点间距=12.5kN/m×3m=37.5kN3.3杆件计算根据支架荷载和结构参数,计算满堂支架杆件的尺寸和数量。

首先,计算竖直杆件的数量。

每层楼需要一根竖直杆件,所以总杆件数量为楼层数。

总竖直杆件数量=楼层数=3根其次,计算水平杆件的数量。

每层楼需要两根水平杆件,所以总杆件数量为楼层数的两倍。

总水平杆件数量=楼层数×2=3根×2=6根然后,计算杆件截面面积。

假设杆件材料为Q235钢,使用方管作为杆件。

方管的截面面积可根据设计要求和安全系数确定。

最后,根据杆件截面面积和长度计算杆件的弯曲强度。

通常,设计时需要考虑杆件的弯曲强度和稳定性。

满堂脚手架计算书(本工程)

满堂脚手架计算书(本工程)

满堂脚手架计算书(本工程)【第一篇:正规风格】章节:1. 引言2. 目标与背景3. 范围4. 假设与约束5. 输入数据6. 功能需求6.1 功能16.2 功能27. 软件设计8. 系统接口9. 性能需求10. 安全需求11. 维护需求12. 可测试性13. 验证与确认13.1 验证13.2 确认14. 附件1. 引言本文档旨在提供满堂脚手架计算书(本工程)的详细说明和规范,以确保计算书的准确性和一致性。

本文档适用于所有项目相关人员,包括设计师、工程师和审批人员。

2. 目标与背景满堂脚手架计算书(本工程)的目标是为了对脚手架进行计算和设计,以确保其安全可靠。

本工程目标在于计算和确定脚手架搭设的参数和相关材料。

3. 范围本文档适用于满堂脚手架计算书(本工程)的所有需求和规范。

包括脚手架材料、参数、设计计算等内容。

4. 假设与约束本文档中制定的计算和设计假设如下:- 脚手架搭设按照相关国家标准进行;- 脚手架材料符合相关标准;- 软件程序准确可靠。

5. 输入数据满堂脚手架计算书(本工程)的输入数据包括但不限于以下内容:- 起重高度;- 脚手架长度;- 脚手架横跨宽度;- 脚手架所需承重等级;- 相关材料参数等。

6. 功能需求本文档规定的满堂脚手架计算书(本工程)的功能需求如下:6.1 功能1描述功能1的详细需求和设计规范。

6.2 功能2描述功能2的详细需求和设计规范。

7. 软件设计满堂脚手架计算书(本工程)的软件设计内容包括但不限于以下方面:- 界面设计;- 数据处理;- 计算模型设计等。

8. 系统接口满堂脚手架计算书(本工程)与其他系统的接口规范如下:- 系统A接口规范;- 系统B接口规范。

9. 性能需求满堂脚手架计算书(本工程)的性能需求如下:- 响应时间;- 计算准确性。

10. 安全需求满堂脚手架计算书(本工程)的安全需求如下:- 数据安全;- 计算结果准确性。

11. 维护需求满堂脚手架计算书(本工程)的维护需求如下:- 可维护性;- 可扩展性。

满堂支架计算书【范本模板】

满堂支架计算书【范本模板】

满堂支架计算书海湖路桥箱梁断面较大,本方案计算以海湖路桥北幅为例进行计算,南幅计算与北幅相同。

海湖路桥北幅为5×30m等截面预应力混凝土箱形连续梁(标准段为单箱双室),箱梁高度1。

7m,箱梁顶宽15。

25m。

对荷载进行计算及对其支架体系进行检算。

满堂支架的计算内容为:①碗扣式钢管支架立杆强度及稳定性验算②满堂支架整体抗倾覆验算③箱梁底模下横桥向方木验算④碗扣式支架立杆顶托上顺桥向方木验算⑤箱梁底模计算⑥立杆底座和地基承载力验算⑦支架门洞计算。

1 荷载分析1.1 荷载分类作用于模板支架上的荷载,可分为永久荷载(恒荷载)和可变荷载(活荷载)两类。

⑴模板支架的永久荷载,包括下列荷载.①作用在模板支架上的结构荷载,包括:新浇筑混凝土、模板等自重.②组成模板支架结构的杆系自重,包括:立杆、纵向及横向水平杆、水平及垂直斜撑等自重。

③配件自重,根据工程实际情况定,包括:脚手板、栏杆、挡脚板、安全网等防护设施及附加构件的自重。

⑵模板支架的可变荷载,包括下列荷载。

①施工人员及施工设备荷载。

②振捣混凝土时产生的荷载。

③风荷载、雪荷载。

1.2 荷载取值(1)雪荷载根据《建筑结构荷载规范》(GB 50009—2012)查附录D。

5可知,雪的标准荷载按照50年一遇取西宁市雪压为0。

20kN/m2。

根据《建筑结构荷载规范》(GB50009-2012 )7。

1.1雪荷载计算公式如下式所示。

Sk=ur×so式中:Sk-—雪荷载标准值(kN/m2);ur——顶面积雪分布系数;So—-基本雪压(kN/m2)。

根据规《建筑结构荷载规范》(GB 50009-2012)7。

2.1规定,按照矩形分布的雪堆计算。

由于角度为小于25°,因此μr取平均值为1。

0,其计算过程如下所示。

Sk=ur×so=0.20×1=0。

20kN/m2(2)风荷载根据《建筑结构荷载规范》(GB 50009-2012)查附录D。

满堂支架计算书范文

满堂支架计算书范文

满堂支架计算书范文一、引言满堂支架是一种常见的建筑结构支撑系统,主要用于临时搭建的建筑物或者工程施工过程中的支撑。

在工程实践中,满堂支架的计算是非常重要的,它能保证施工安全,同时也是设计工作的基础。

本文将对满堂支架的计算进行详细介绍,包括计算的步骤和方法。

二、满堂支架计算的步骤1.确定支撑结构的类型:根据具体的施工条件和要求,确定所采用的满堂支架的类型。

2.了解施工现场情况:在进行支架计算之前,必须要了解施工现场的具体情况,包括地基条件、承重墙体和梁体的情况等。

3.确定荷载情况:根据设计要求和规范要求,确定满堂支架所承受的静荷载和动荷载。

4.制定临时支撑方案:根据实际情况和计算结果,制定临时支撑方案,包括支撑结构的形式、材料和布置等。

5.进行力学计算:根据支撑结构的几何形状和荷载情况,进行力学计算,包括内力计算、变形计算和稳定性计算等。

6.选择支撑材料:根据计算结果,选择适当的支撑材料,包括钢管、钢板、连接件等。

7.编制支架计算书:根据计算结果,编制详细的支架计算书,包括计算过程、结果和建议。

三、满堂支架计算的方法1.静力分析:根据满堂支架的几何形状和荷载情况,采用静力分析的方法计算支撑结构的内力和变形。

常见的计算方法包括受力分析法、力矩平衡法和弹性理论法等。

2.动力分析:对于受到动力荷载的满堂支架,需要进行动力分析,计算支撑结构的振动特性和响应。

常见的分析方法包括模态分析、频率分析和时程分析等。

3.稳定性分析:对于高层满堂支架或者受到侧向荷载作用的支撑结构,需要进行稳定性分析,保证支架的整体稳定。

常见的分析方法包括刚度矩阵法、刚度降低法和承载力法等。

4.材料选择:根据计算结果和实际情况,选择合适的支撑材料。

常见的材料包括钢管、钢板和连接件等。

材料的选择应考虑到强度、刚度、重量和经济性等因素。

5.连接设计:对于支撑结构的连接部位,应进行合理的设计,保证连接的强度和刚度。

常见的连接方式包括焊接、螺栓连接和钢筋混凝土节点等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中铁隧道集团合福铁路安徽段站前八标
项目经理部二分部
祊塘2号特大桥(40+64+40)m连续梁0#块满堂支架计算书
编制:
复核:
审核:
日期:年月日
目录
一、计算依据............................................................. 错误!未定义书签。

二、支架总体设计方案 ............................................ 错误!未定义书签。

三、底模及分配梁检算 ............................................ 错误!未定义书签。

1、荷载大小 ........................................................ 错误!未定义书签。

2、底模检算 ........................................................ 错误!未定义书签。

3、横梁(方木)检算........................................ 错误!未定义书签。

4、分配梁检算 .................................................... 错误!未定义书签。

5、顶托检算 ........................................................ 错误!未定义书签。

四、支架受力检算 .................................................... 错误!未定义书签。

一、计算依据
1、《无砟轨道现浇预应力混凝土连续梁(双线)》通桥(2008)2368A-Ⅲ
2、《客运专线桥梁工程施工技术指南》
3、《路桥施工计算手册》
4、《材料力学》
5、《钢结构设计与计算》
6、《建筑地基基础设计规范》
7、《祊塘2号特大桥连续梁施工方案》
8、《祊塘2号特大桥》合福施(桥)-142
二、支架总体设计方案
祊塘2号特大桥连续梁0号块采用在支架上现浇,支架采用碗扣式钢管脚手架搭设,支架均采用外径φ48mm、壁厚δ=3.5mm标准杆件进行组装,支架顺桥向立杆间距60cm,横桥向立杆翼缘板处间距90cm,底板处间距60cm,腹板处间距为30cm,横杆步距120cm。

支架底托直接支撑在承台和已处理的地基硬化混凝土表面,所有支架应依据搭设高度设置剪刀撑。

立杆顶端安装可调式顶托,顶托上设I22a工字钢横梁,横梁上顺桥向搭设7榀桁架调整梁底标高,桁架上横桥向搭设净距为20cm的15×15cm方木,方木上铺设1.5cm的竹胶板作为底模。

墩顶搭设支架间距为50cm,顶上设10号槽钢][型焊接作为纵向分配梁,上边铺设方木和竹胶板。

三、底模及分配梁检算
图1、箱梁横断面图(单位:cm)
125.8125.8
(尺寸单位:cm,荷载单位:kN/m,砼容重取26kN/m3)
图2、横断面砼荷载分布
1、荷载大小
根据《路桥施工计算手册》
①施工人员,机具、材料荷载:
P1=2.5kN/m2
②砼冲击及振捣砼时产生的荷载:
P2=2.5kN/m2
③梁体自重荷载:
P3=4.84×26=125.8kN/m2
④模板自重荷载:
P4=1.5kN/m2
⑤方木荷载
P5=0.2KN/m
按规范进行荷载组合(按1m考虑)有:
N= P1+ P2+ P3+ P4+P5=132.5kN/m2
2、底模检算
根据《路桥施工计算手册》和《建筑技术》查得,竹胶合模板的力学指标取下值:[σ]=80Mpa, [τ]=1.4Mpa
横梁(方木)的间距为0.2m,底模按跨度为0.2m三跨连续梁计算,均布荷载q1=132.3kN/m;
跨中弯矩M=q1l2/8=132.3×0.22/8=0.6615kN·m
弯曲截面系数W=bh2/6=1.0×0.0152/6=3.8×10-5m3
截面应力正σ=M/W=17.4MPa<[σ]=80 MPa,满足要求。

截面剪应力τ=Q/A=(1/4ql)/(bh)=(132.3/4×0.2)/(1.0×0.015)×10-3MPa=0.442MPa<[τ]=1.4 MPa,满足要求。

3、横梁(方木)检算
荷载按0.2m宽条形均布荷载,跨度0.5m三跨连续梁计算,顺纹应力[σw]=9.5Mpa,[τ]=1.4Mpa
均布荷载q1=132.5×0.2=26.5 kN/m,
跨中弯矩M=q1l2/8=26.5×0.52/8=0.83 kN·m
弯曲截面系数W=bh2/6=0.1×0.12/6=1.66×10-4m3
跨中正应力σ=M/W=5MPa<[σ]=9.5 MPa,满足要求。

跨中剪应力τ=Q/A=(1/4ql)/(bh)=(26.46/4×0.5)/(0.1×0.1)=0.33MPa<[τ]=1.4 MPa,满足要求。

4、分配梁检算
利用MIDAS对0#块下支架建立整体模型
MIDAS整体模型
底模分配梁受力计算
σ= 35.1MPa<[σ]=210 MPa,满足要求。

底模分配梁挠度验算
底模分配梁的最大挠度发生在腹板中部,工字钢的最大综合变形1.43mm包含支架的变形,支架的变形如下图
支架的最大变形f=1.399mm
梁的容许挠度[f]=L/400=600/400mm=1.5mm
跨中最大挠度fmax=1.43-1.399=0.031mm<[f]=1.5mm,满足要求!
5、顶托检算
顶托的最大应力发生在腹板下,最大应力为σ=84.6MPa<[σ]=210 MPa,满足要求。

四、支架受力检算
支架的最大应力发生在腹板下立杆处,最大应力σ=36MPa<[σ]=210 MPa满足要求!
地基承载力验算
支座下的最大反力为15.454KN,压力通过30cm的混凝土层经过45°扩散传至地基
地基承载力P0=15.454/(0.6x0.6)=42.9KPa,考虑相邻立杆压力在地基的叠加和1.5的安全系数,综上地基的承载力不应小于42.9 ×4×1.5=257.4KPa。

附注:本计算以5#墩计算,因0#块重量尺寸相同且4#墩高小于5#墩,所以4#墩支架安全系数大于5#墩,不再重复计算。

相关文档
最新文档