六年级奥数-第十一讲.数论综合(二).教师版

合集下载

六年级的的奥数.数论综合.教师版.docx

六年级的的奥数.数论综合.教师版.docx

数论综合(二)教学目标:1、掌握质数合数、完全平方数、位值原理、进制问题的常见题型;2、重点理解和掌握余数部分的相关问题,理解“将不熟悉转化成熟悉”的数学思想例题精讲:板块一质数合数【例 1 】有三张卡片,它们上面各写着数字1, 2,3,从中抽出一张、二张、三张,按任意次序排列出来,可以得到不同的一位数、二位数、三位数,请你将其中的质数都写出来.【解析】抽一张卡片,可写出一位数1, 2,3;抽两张卡片,可写出两位数12, 13,21, 23, 31, 32;抽三张卡片,可写出三位数123, 132, 213, 231, 312, 321,其中三位数的数字和均为6,都能被 3 整除,所以都是合数.这些数中,是质数的有:2,3, 13,23, 31.【例 2 】三个质数的乘积恰好等于它们和的11 倍,求这三个质数.【解析】设这三个质数分别是 a 、b、 c ,满足 abc11( a b c) ,则可知 a 、b、 c 中必有一个为11,不妨记为 a ,那么bc11b c ,整理得( b 1)( c1)12,又 12 112 2 6 3 4 ,对应的 b 2 、c 13或 b 3 、 c7 或 b 4 、 c 5 (舍去),所以这三个质数可能是2, 11,13或 3,7, 11.【例 3 】用 1,2, 3, 4,5,6,7,8,9 这 9 个数字组成质数,如果每个数字都要用到并且只能用一次,那么这 9 个数字最多能组成多少个质数【解析】要使质数个数最多,我们尽量组成一位的质数,有2、3、5、7 均为一位质数,这样还剩下1、4、6、8、 9 这 5 个不是质数的数字未用.有1、4、 8、 9 可以组成质数 41、 89,而 6 可以与 7 组合成质数67.所以这 9 个数字最多可以组成 6 个质数.【例 4 】有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数.求这两个整数分别是多少【解析】两位数中,数字相同的两位数有11、22、 33、 44、 55、 66、77、88、99 共九个,它们中的每个数都可以表示成两个整数相加的形式,例如33 1 32 2 31330 L L16 17 ,共有16种形式,如果把每个数都这样分解,再相乘,看哪两个数的乘积是三个数字相同的三位数,显然太繁琐了.可以从乘积入手,因为三个数字相同的三位数有111、 222、 333、 444、555、 666、 777、 888、999,每个数都是 111 的倍数,而11137 3 ,因此把这九个数表示成一个两位数与一个一位数或两个两位数相乘时,必有一个因数是37 或 37的倍数,但只能是37 的 2 倍 ( 想想为什么 )3 倍就不是两位数了.把九个三位数分解: 111373、22237674 3、333379 、 444371274 6 、555 37 15 、 6663718749、 7773721、 88837247412、 9993727.把两个因数相加,只有( 74 3 )77 和( 3718)55 的两位数字相同.所以满足题意的答案是74和3, 37 和 18.板块二余数问题【例 5 】 (年全国小学数学奥林匹克试题) 有两个自然数相除,商是17,余数是13,已知被除数、除数、2003商与余数之和为 2113,则被除数是多少【解析】被除数除数商余数被除数除数+17+13=2113,所以被除数除数=2083,由于被除数是除数的17 倍还多13,则由“和倍问题”可得:除数=(2083-13)÷(17+1)=115 ,所以被除数 =2083-115=1968 .【例 6 】已知 2008 被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个【解析】本题为一道余数与约数个数计算公式的小综合性题目.由题意所求的自然数一定是2008-10 即 1998的约数,同时还要满足大于10 这个条件.这样题目就转化为1998 有多少个大于 10的约数,1998 2 33 37 ,共有(1+1)×(3+1)×(1+1)=16个约数,其中1,2, 3, 6,9 是比 10小的约数,所以符合题目条件的自然数共有11 个.【例 7 】有一个整数,除39, 51, 147 所得的余数都是3,求这个数.【解析】 ( 法 1) 39 3 36 ,147 3 144, (36,144)12,12 的约数是 1,2,3,4,6,12 ,因为余数为 3 要小于除数,这个数是 4,6,12;( 法 2) 由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任 意两数差的公约数. 51 39 12 , 147 39 108 , (12,108) 12 ,所以这个数是 4,6,12 .【例 8 】 ( 2005 年全国小学数学奥林匹克试题) 有一个整数,用它去除 70,110,160 所得到的 3 个余数之和是 50,那么这个整数是 ______.【解析】 (70110 160)50 290 , 503 16...... 2,除数应当是 290 的大于 17 小于 70 的约数,只可能是29 和 58, 110 58 1...... 52 , 52 50 ,所以除数不是58.70 29 2, 110 29 3...... , 160 29 5...... ,12 23 15 50,所以除数是29 (12)2315 【巩固】 ( 2002 年全国小学数学奥林匹克试题) 用自然数 n 去除 63, 91, 129 得到的三个余数之和为 25,那么 n=________ .【解析】n 能整除 63 91 129 25 258.因为 25 3 8...1,所以 n 是 258 大于 8 的约数.显然, n 不能大于 63.符合条件的只有 43.【例 9 】 一个大于 10 的自然数去除 90、164 后所得的两个余数的和等于这个自然数去除220 后所得的余数,则这个自然数是多少【解析】 这个自然数去除 90、164 后所得的两个余数的和等于这个自然数去除 90 164 254 后所得的余数,所以 254 和 220 除以这个自然数后所得的余数相同,因此这个自然数是 254 220 34 的约数,又大 于 10,这个自然数只能是 17 或者是 34.如果这个数是 34,那么它去除 90、 164、 220 后所得的余数分别是 22、 28、16,不符合题目条件;如果这个数是 17,那么他去除 90、 164、220 后所得的余数分别是 5、11、 16,符合题目条件,所以 这个自然数是 17. 【例 10 】甲、乙、丙三数分别为 603,939,393.某数 A 除甲数所得余数是 A 除乙数所得余数的 2 倍, A 除乙数所得余数是 A 除丙数所得余数的 2 倍.求 A 等于多少【解析】 根据题意,这三个数除以 A 都有余数,则可以用带余除法的形式将它们表示出来:603 A K 1 L L r 1 939 A K 2 L L r 2 393 A K 3 L L r 3由于 r 12r 2 , r 22r 3 ,要消去余数 r 1 , r 2 , r 3 ,我们只能先把余数处理成相同的,再两数相减.这样我们先把第二个式子乘以 2,使得被除数和余数都扩大2 倍,同理,第三个式子乘以4.于是我们可以得到下面的式子:603 AK 1 L L r 1 939 2A 2 K 2 L L 2r 2 393 4A 2K 3 L L 4r 3这样余数就处理成相同的.最后两两相减消去余数,意味着能被 A 整除.939 2 603 1275 , 393 4 603 969, 1275,969513 17 .51 的约数有 1、 3、 17、 51,其中 1、3 显然不满足,检验 17 和 51 可知 17 满足,所以 A 等于 17.【例 11 】 ( 2003 年南京市少年数学智力冬令营试题)22003 与 20032 的和除以 7 的余数是 ________.【解析】 找规律.用 7 除 23, 456,⋯的余数分别是 2,4, 1, 2,4, 1, 2, 4, 1,⋯, 2 2, 2 , 2 2 , 2 , 2的个数是 3 的倍数时,用 7 除的余数为 1; 2 的个数是 3 的倍数多 1 时,用 7 除的余数为 2; 2 的个 数是 3 的倍数多 2 时,用 7 除的余数为4.因为 22003 23 6672,所以 22003 除以 7 余 4.又两个数的积除以 7 的余数,与两个数分别除以 7 所得余数的积相同. 而 2003 除以 7 余 1,所以 2003 2除以 7 余 1.故22003与 20032的和除以 7 的余数是 4 15.【巩固】 22008 20082 除以 7 的余数是多少【解析】 238除以 7的余数为 1, 2008 3 669 1 ,所以 2200823 669+1(23 )6692 ,其除以 7 的余数为:6692 2 ; 2008 除以 7 的余数为227 的余数,为 1;所以16,则 2008 除以 7 的余数等于 6 除以2200820082 除以 7 的余数为: 2 1 3 .【例 12 】 ( 2009 年走美初赛六年级) 有一串数: 1, 1, 2, 3, 5, 8,⋯⋯,从第三个数起,每个数都是前两个数之和,在这串数的前 2009 个数中,有几个是 5 的倍数【解析】 由于两个数的和除以 5 的余数等于这两个数除以 5 的余数之和再除以 5 的余数.所以这串数除以 5 的余数分别为: 1, 1,2, 3, 0, 3, 3,1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4,1, 0, 1, 1, 2, 3, 0,⋯⋯ 可以发现这串余数中,每 20 个数为一个循环,且一个循环中,每 5 个数中第五个数是由于 2009 5 401L 4 ,所以前 2009 个数中,有 401 个是 5 的倍数.5 的倍数.【巩固】著名的裴波那契数列是这样的:1、 1、2、3、 5、 8、 13、 21⋯⋯这串数列当中第 2008 个数除以 3所得的余数为多少【解析】 斐波那契数列的构成规则是从第三个数起每一个数都等于它前面两个数的和,由此可以根据余数定理将裴波那契数列转换为被 3 除所得余数的数列: 1、 1、 2、 0、 2、 2、 1、 0、 1、1、 2、 0⋯⋯第九项和第十项连续两个是 1,与第一项和第二项的值相同且位置连续,所以裴波那契数列被 3 除的余数每 8 个一个周期循环出现,由于 2008 除以 8 的余数为 0,所以第 2008 项被 3 除所得的余数为第 8 项被 3 除所得的余数,为 0.【例 13 】 ( 1997 年全国小学数学奥林匹克试题 ) 将 12345678910111213......依次写到第 1997 个数字,组成一个1997 位数,那么此数除以 9 的余数是 ________ .【解析】 本题第一步是要求出第 1997 个数字是什么,再对数字求和.1~9 共有 9 个数字, 10~99 共有 90 个两位数,共有数字: 90 2 180 ( 个 ) , 100~999共 900 个三位数,共有数字: 900 3 2700 ( 个) ,所以数连续写,不会写到 999,从 100 开始是 3 位数,每三个数字表示一个数, (1997 9 180) 3 602......2 ,即有 602 个三位数,第 603 个三位数只写了它的百位和十位.从100 开始的第 602 个三位数是 701,第 603 个三位数是 9,其中 2 未写出来.因为连续 9 个自然数之和能被 9 整除,所以排列起来的 9 个自然数也能被 9 整除, 702 个数能分成的组 数是:702 9 78 ( 组 ) ,依次排列后,它仍然能被 9 整除,但 702 中 2 未写出来,所以余数为 9-2 7 .【例 14 】有 2 个三位数相乘的积是一个五位数,积的后四位是 1031,第一个数各个位的数字之和是10,第二个数的各个位数字之和是 8,求两个三位数的和 .【解析】 本题条件仅给出了两个乘数的数字之和,同时发现乘积的一部分已经给出,即乘积的一部分数字之和已经给出,我们可以采用弃九法原理的倒推来构造出原三位数.因为这是一个一定正确的算式,所以一定可以满足弃九法的条件,两个三位数除以 9 的余数分别为 1 和 8,所以等式一边除以 9 的余数为 8,那么□ 1031 除以 9 的余数也必须为 8,□只能是 3.将 31031 分解质因数发现仅有一种情况可以满足是两个三位数的乘积,即 31031 31 1001 143 217所以两个三位数是 143 和 217,那么两个三位数的和是360【例 15 】设 20092009 的各位数字之和为A , A 的各位数字之和为B , B 的各位数字之和为C , C 的各位数字之和为 D ,那么 D9 的余数相同, 所以 20092009 与 A 、B 、C 、D【解析】 由于一个数除以9 的余数与它的各位数字之和除以除以 9 都同余,而 2009 除以 9 的余数为 2,则 2009 2009除以 9 的余数与 2 2009 除以 9 的余数相同,而 2664除以 9 的余数为200926 334 5633459 的余数为 51,所以 222 除以 2 除以 9 的余数,即为 5.另一方面,由于 20092009 100002009 108036 ,所以 20092009 的位数不超过 8036 位,那么它的各位数字之和不超过 9 8036 72324 ,即 A ;那么 A 的各位数字之和 B9 5 45 , B 的各位数字之72324和 C 9 2 18 , 小于 18 且除以 9 的余数为 5,那么 C 为 5 或 14, 的各位数字之和为 5,即 D 5 .CC板块三 完全平方数【例 16 】从 1 到 2008 的所有自然数中,乘以 72 后是完全平方数的数共有多少个 【解析】 完全平方数,其所有质因数必定成对出现.而 72 23322 6 6 ,所以满足条件的数必为某个完全平方数的2 倍,由于 2 31 31 19222008 2 322 2、⋯⋯、 22都满足题意,即32 2048,所以 2 1 、 2 2 31 所求的满足条件的数共有31 个.【例 17 】一个数减去100 是一个平方数,减去63 也是一个平方数,问这个数是多少【解析】设这个数减去2,减去 100为B2,则 A2B2A B A B100633737 1,63 为A可知 A B 37 ,且 A B 1 ,所以 A19 , B18,这样这个数为 182100424 .【巩固】能否找到这么一个数,它加上24,和减去30 所得的两个数都是完全平方数【解析】假设能找到,设这两个完全平方数分别为A2、 B 2 ,那么这两个完全平方数的差为54A B A B ,由于 A B 和 A B的奇偶性质相同,所以A B A B不是 4的倍数,就是奇数,不可能是像54这样是偶数但不是4的倍数.所以 54 不可能等于两个平方数的差,那么题中所说的数是找不到的.【例 18 】有 5 个连续自然数,它们的和为一个平方数,中间三数的和为立方数,则这五个数中最小数的最小值为.【解析】考查平方数和立方数的知识点,同时涉及到数量较少的连续自然数问题,设未知数的时候有技巧:一般是设中间的数,这样前后的数关于中间的数是对称的.设中间数是 x,则它们的和为5x,中间三数的和为3x . 5x 是平方数,设 5 x2225 a ,则 x 5a,3x15a23 5 a 2是立方数,所以 a2至少含有3 和 5 的质因数各 2 个,即 a2至少是 225,中间的数至少是1125,那么这五个数中最小数的最小值为1123.板块四位值原理【例19 】 ( 美国小学数学奥林匹克) 把一个两位数的十位与个位上的数字加以交换,得到一个新的两位数.果原来的两位数和交换后的新的两位数的差是45,试求这样的两位数中最大的是多少如【解析】设原来的两位数为ab ,交换后的新的两位数为ba,根据题意,ab ba(10a b) (10b a )9(a b)45 ,a b 5 ,原两位数最大时,十位数字至多为9,即a9 ,b 4 ,原来的两位数中最大的是94.【巩固】将一个四位数的数字顺序颠倒过来,得到一个新的四位数( 这个数也叫原数的反序数) ,新数比原数大8802.求原来的四位数.【解析】设原数为 abcd ,则新数为dcba,dcba abcd (1000d100c 10b a)(1000a 100b10c d)999( d a)90(c b) .根据题意,有 999( d a)90(c b)8802 , 111(d a)10 (c b)97888890 .推知 d a8 , c b9 ,得到 d9 , a 1, c9 , b0 ,原数为1099.【例 20 】 ( 第五届希望杯培训试题) 有 3 个不同的数字,用它们组成 6 个不同的三位数,如果这 6 个三位数的和是 1554,那么这 3 个数字分别是多少【解析】设这六个不同的三位数为abc,acb, bac,bca, cab, cba ,因为 abc100a10b c , acb100a10c b ,⋯⋯,它们的和是:222(a b c)1554 ,所以a b c15542227 ,由于这三个数字互不相同且均不为0,所以这三个数中较小的两个数至少为 1, 2,而 7 (1 2) 4 ,所以最大的数最大为4;又1 2 367 ,所以最大的数大于 3,所以最大的数为4,其他两数分别是1, 2.【巩固】 ( 迎春杯决赛 ) 有三个数字能组成 6 个不同的三位数,这 6 个三位数的和是2886,求所有这样的 6 个三位数中最小的三位数.【解析】设三个数字分别为a、 b、 c,那么6 个不同的三位数的和为:abc acb bac bca cab cba2(a b c) 1002( a b c)102(a b c)222( a b c)所以 a b c 288622213,最小的三位数的百位数应为1,十位数应尽可能地小,由于十位数与个位数之和一定,故个位数应尽可能地大,最大为9,此时十位数为13 19 3,所以所有这样的 6 个三位数中最小的三位数为139.【巩固】 a, b, c 分别是0 : 9 中不同的数码,用a, b,c 共可组成六个三位数,如果其中五个三位数之和是2234 ,那么另一个三位数是几【解析】由 a ,b, c 组成的六个数的和是222(a b c) .因为223422210 ,所以 a b c 10 .若 a b c11,则所求数为222112234208,但 2081011,不合题意.若 a b c12,则所求数为222122234430 ,但 430712,不合题意.若 a b c13,则所求数为222132234652, 6 5213,符合题意.若 a b c14,则所求数为222142234874,但 8741914 ,不合题意.若 a b c15,则所求数2221522341096,但所求数为三位数,不合题意.所以,只有 a b c 13时符合题意,所求的三位数为652.板块五进制问题【例 21 】在几进制中有 4 13 100【解析】利用尾数分析来解决这个问题:由于 (4)10(3)10(12)10,由于式中为100,尾数为 0,也就是说已经将12 全部进到上一位.所以说进位制n 为12的约数,也就是12,6, 4, 3,2 中的一个.但是式子中出现了4,所以 n 要比 4 大,不可能是4, 3,2 进制.另外,由于(4)10(13)10(52)10,因为52100,也就是说不到10 就已经进位,才能是100,于是知道n 10 ,那么n不能是12.所以, n 只能是 6.【巩固】算式 1534 25 43214是几进制数的乘法【解析】注意到尾数,在足够大的进位制中有乘积的个位数字为45 20 ,但是现在为 4 ,说明进走20 4 16 ,所以进位制为16 的约数,可能为16、 8、 4 或 2.因为原式中有数字5,所以不可能为4、 2 进位,而在十进制中有1534 25 38350 43214,所以在原式中不到10 就有进位,即进位制小于10,于是原式为8 进制.【例 22】在 6 进制中有三位数abc ,化为9 进制为 cba ,求这个三位数在十进制中为多少【解析】(abc)6 =a× 62+ b× 6+c=36a+6b+c ;(cba)9=c× 92+b×9+a=81c+9b+a;所以 36a+6b+c=81c+9b+a ;于是 35a=3b+80c ;因为 35a 是 5 的倍数,80c 也是 5 的倍数.所以 3b 也必须是 5 的倍数,又(3 ,5)=1 .所以, b=0 或 5.①当 b=0,则 35a=80c;则 7a=16c;(7 ,16)=1 ,并且 a、c≠ 0,所以 a=16,c=7.但是在6, 9 进制,不可以有一个数字为16.②当 b=5,则 35a=3× 5+80c ;则 7a=3+16c; mod7 后, 3+2c≡ 0.所以 c=2 或者 2+7k(k为整数 ) .因为有 6 进制,所以不可能有9 或者 9 以上的数,于是 c=2;35a=15+80× 2,a=5.所以 (abc)6 =(552)6=5× 62+5×6+2=212.这个三位数在十进制中为212.课后练习:练习 1 .三个质数的乘积恰好等于它们的和的7 倍,求这三个质数.【解析】设这三个质数分别是 a 、b、 c ,满足 abc7( a b c) ,则可知 a 、b、 c 中必有一个为7,不妨记为 a ,那么bc7 b c,整理得(b1)(c1)8 ,又8 1 82 4 ,对应的 b 2、c9( 舍去 ) 或b 3、c5,所以这三个质数可能是3, 5,7练习 2 .有一个大于 1 的整数,除45,59,101 所得的余数相同,求这个数.【解析】这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据同余定理,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.1014556,4514,14,的约数有1,2,7,14,所以这个数可能为2,7,14.59(56,14)14练习 3 .将 1 至 2008 这 2008 个自然数,按从小到大的次序依次写出,得一个多位数:L ,试求这个多位数除以 9 的余数.【解析】以这个八位数为例,它被9 除的余数等于19 99 2 00 0 被 9 除的余数,但是由于1999与 1 9 9 9 被 9 除的余数相同, 2000 与 2 0 0 0 被 9 除的余数相同, 所以就与 1999 2000被 9 除的余数相同.由此可得,从 1 开始的自然数L被 9 除的余数与前 2008 个自然数之和除以 9 的余数相同.根据等差数列求和公式,这个和为: 1 2008 20082017036 ,它被 9 除的余数为 1. 2另外还可以利用连续 9 个自然数之和必能被 9 整除这个性质,将原多位数分成 9,61718,⋯⋯, 0062007 , 2008 等数,可见它被 9 除的余数与 2008 被 9 除的余数相同.因此,此数被 9 除的余数为 1.练习 4 . 在 7 进制中有三位数abc ,化为 9 进制为 cba ,求这个三位数在十进制中为多少【解析】 首先还原为十进制: (abc )7 a 72b 7c 49a 7b c ; (cba)9 c 92b 9 a 81c 9b a .于是 49a 7b c 81c 9b a ;得到 48a 80c 2b ,即 24a 40c b .因为 24a 是 8 的倍数, 40c 也是 8 的倍数,所以 b 也应该是 8 的倍数,于是 b 0 或 8.但是在 7 进制下,不可能有 8 这个数字.于是 b 0 , 24a 40c ,则 3a 5c . 所以 a 为 5 的倍数, c 为 3 的倍数. 所以, a 0 或 5,但是,首位不可以是 0,于是 a 5 , c3 ;所以 (abc)7 (503)7 549 3 248 .于是,这个三位数在十进制中为248.月测备选:【备选 1】某质数加 6 或减 6 得到的数仍是质数,在 50 以内你能找出几个这样的质数把它们写出来 .【解析】 有六个这样的数,分别是 11, 13, 17, 23, 37, 47.【备选 2】 ( 2002 年全国小学数学奥林匹克试题) 两数相除,商 4 余 8,被除数、除数、商数、余数四数之和等于 415,则被除数是 _______.(415 4 88)(4 1) 79【解析】 因为被除数减去8 后是除数的,4 倍,所以根据和倍问题可知, 除数为所以,被除数为79 4 8 324.【备选 3】 1016 与正整数 a 的乘积是一个完全平方数,则 a 的最小值是 ________.【解析】 先将 1016 分解质因数: 10163a 是一个完全平方数,所以至少为42,故2 127 ,由于 1016 2127 a 最小为 2 127 254.【 备选 4】在几进制中有 125 125 16324【解析】 注 意 (125)10 (125)10 (15625)10 ,因为 15625 16324,所以一定是不到10 就已经进位,才能得到16324,所以 n 10 .再注意尾数分析,(5)10 (5)10 (25)10 ,而 16324 的末位为 4,于是 25 4 21 进到上一位.所以说进位制 n为21 的约数,又小于 10,也就是可能为7 或 3.因为出现了 6,所以 n只能是 7.。

小学六年级奥数_数论教师版word

小学六年级奥数_数论教师版word

除法等【例 1】5【分析】7或9,9,9,8,8.这样我们接着用11的整除特征,发现符合条件的有99979,97999,98989.【例 2】 已知ABCA 是一个四位数,若两位数AB 是一个质数,BC 是一个完全平方数,CA是一个质数与一个不为1的完全平方数之积,则满足条件的所有四位数是_____________.【分析】 本题综合利用数论知识,因为AB 是一个质数,所以B 不能为偶数,且同时BC 是一个完全平方数,则符合条件的数仅为16、36,当1B =时,满足AB 是一个质数的数有11,31,41,61,71,时,此时同时保证CA 是一个质数与一个不为1的完全平方数之积,只有3163符合;当3B =,满足AB 是一个质数的数有13,23,43,53,73,83,此时同时保证第 5讲数论(一)CA 是一个质数与一个不为1的完全平方数之积,只有8368符合.【例 1】 2001个连续的自然数之和为a b c d ⨯⨯⨯,若a 、b 、c 、d 都是质数,则a b c d +++的【分析】A 的[拓展][分析][铺垫][分析]即得=37,2171327132【例 2】 N 为自然数,且1N +,2N +、……、9N +与690都有大于l 的公约数.N 的最小值为_______.【分析】 69023523=⨯⨯⨯,连续9个数中,最多有5个是2的倍数,也有可能有4个是2的倍数,如果有5个连续奇数,这5个连续奇数中最多有2个3的倍数,1个5的倍数,1个23的倍数,所以必然有一个数不是2、3、5、23的倍数,即与690没有大于l 的公约数.所以9个数中只有4个奇数,这个数中,有2个3的倍数,1个5的倍数,1个23的倍数,则1N +、3N +、5N +、7N +、9N +是偶数,剩下的4个数中2N +、8N +是3的倍数(5个偶数当中只有5N +是3的倍数),还有4N +、6N +的最小【例 3288和4x ,2或【例 4……,请求出这个数.【分析】 ⑴首先可以断定编号是2,3,4,5,6,7号的同学说的一定都对.不然,其中说的不对的编号乘以2后所得编号也将说得不对,这样就与“只有编号相邻的两位同学说的不对”不符合.因此,这个数能被2,3,4,5,6,7都整除. 其次利用整除性质可知,这个数也能被2×5,3×4,2×7都整除,即编号为10,12,14的同学说的也对.从而可以断定说的不对的编号只能是8和9. ⑵这个数是2,3,4,5,6,7,10,11,12,13,14,15的公倍数,由于上述十二个数的最小公倍数是60060,因为60060是一个五位数,而十二个数的其他公倍数均不是五位数,所以1号同学写的数就是60060.[拓展] 一个两位数有6个约数,且这个数最小的3个约数和为10,那么此数为几? [分析] 最小的三个约数中必然包括约数1,除去1以外另外两个约数和是9,由于9是1个奇数,所以这两个约数的奇偶性质一定是相反的,其中一定有一个是偶数,如果一个数包含偶约数,那么它一定是2的倍数,即2是它的约数.于是显然的,2是这个数第二小的约数,而第三小的约数是7,所以这个两位数是14的倍数,由于这个两位数的约数中不含3、4、5、6,所以这个数只能是14或98,其中有6个约数的是98. 【例 5】【分析】[铺垫][分析]225、【例 6】【分析】176A B 但是这四个数中任何两个数的最大公约数都不是11,由此得出C 不能是11.现在考虑17C =,那么18717170D =-=,A 和B 是170的约数,又要是17的倍数,有34,85,170三个数,其中只有34和85的最大公约数是17,因此,A 和B 分别是34和85,3485119A B +=+=.【例 7】 已知A 是一个有12个约数的合数,8A 、10A 有24个约数,12A 有40个约数,求15A 有多少个约数?【分析】 设235a b c A d =⨯⨯⨯,d 中不含有2、3、5因子,那么A 的约数个数有()()()11112a b c N +++=①(其中N 为d 的约数个数) 8A 的约数个数为()()()41124a b c N +++=,与①比较得到421a a +=+,于是2a =, )(31n a a +)()221212*********a a P P P P P P -+++++++++10A 的约数个数为()()()()()21241224a b c N b c N +++=++=,与①比较2312c c +=+,于是1c =, 12A 的约数个数为()()()()32110240a b c N b N +++=+=,与①比较得到221b b +=+,于是0b =,将a 、b 、c 代入①得到2N =,15A 的约数个数为()()()12236a b c N +++=.[铺垫]已知偶数A 不是4的整数倍,它的约数的个数为12,求4A 的约数的个数. [分析] 将A 分解,2A B =,其中B 是奇数,它的约数的个数为()1112N +=,(其中N 为B 的约数个数),则4A 的约数个数为()1324N +=.【例 8【例 9[ 3x .5x 3【例10】 志诚小学三四年级的学生人数比一二年级的学生人数多100人,但比五六年级的学生人数少53人,已知五六年级的学生人数和一二年级的学生人数都是完全平方数,那么志诚中学总的学生人数有多少人?(请写出最现实的答案)【分析】 五六年级的人数和一二年级的学生人数都是完全平方数,所以可以设五六年级的学生人数为2A ,一二年级的学生人数为2B ,则()()153A B A B =+-,而1533317=⨯⨯,所以,()A B +与()A B -可能为153和1;17和9;51和3,由这三个答案得到的A 和B 的值分别为:77和76,13和4,27和24,显然由前两组答案得到的学校人数不符合现实,所以27A =,24B =为最佳结果.此时五六年级的学生人数为729人,一二年级的学生人数为576人,三四年级的学生人数为676,学校的总人数为7295766761981++=人.[铺垫]能否找到这么一个数,它加上24,和减去30所得的两个数都是完全平方数?[分析]假设能找到,设这两个完全平方数分别为2A、2B,那么这两个完全平方数的差为()()-的奇偶性质相同,所以()()+-不A BA B A B+和()=+-,由于()54A B A BA B是4的倍数,就是奇数,所以54不可能等于两个平方数的差,所以这样的数找不到.【例11】一个正整数若能表示为两个正整数的平方差,则称这个数为“智慧数”,比如16=2253-,16就是一个“智慧数”,那么从1开始的自然数列中,第2003个“智慧数”是_______.【分析】22“智慧1~【例12】【分析】3或8.先设103+=+,当4k=,9时满足条件,但9k=时较大a k=+,则28196280280a k的两位数大于100不合题意.再设108k=,6时满足条件.=+,可求得1a k所以一共有(43,57)、(18,32)、(68,82)三组答案.(法二)()()()()22+-=+++-=+,()a a a a a a a141414287a+是100的倍数,所以287()7a+是25的倍数,符合条件的a只有18、43、68.1.两个连续自然数的平方和等于365,又有三个连续自然数的平方和等于365,则这两个连续自然数为_______,这三个连续自然数为_______.【分析】22101112365++=,所以这三个+=,所以这两个连续自然数为13、14,2221314365连续自然数为10、11、12.2.有n个自然数相加:123n aaaL (和恰好是三个相同数字组成的三位数),++++=那么n=__________.Array【分析】n为36.3.【分析】9A有b=,4.12个【分析】34=⨯,13=⨯,23 5.【分析】,即互311=⨯,143均这里推出一种分法:将26、35分为一组,91、34、33分为一组,而143、63、85分为一组.【分析】。

数论综合二

数论综合二

学习奥数的优点1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。

2、训练学生良好的数学思维习惯和思维品质。

要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。

3、锻炼学生优良的意志品质。

可以培养持之以恒的耐心和克服困难的信心,以及战胜难题的勇气。

可以养成坚韧不拔的毅力4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。

学科培优数学“数论综合二”学生姓名授课日期教师姓名授课时长知识定位在整个数学领域,数论被当之无愧的誉为“数学皇后”。

翻开任何一本数学辅导书,数论的题型都占据了显著的位置。

在小学各类数学竞赛和小升初考试中,我们系统研究发现,直接运用数论知识解题的题目分值大概占据整张试卷总分的30%左右,而在竞赛的决赛试题和小升初一类中学的分班测试题中,这一分值比例还将更高。

知识梳理涉及知识点多、解题过程比较复杂的整数综合题,以及基本依靠数论手段求解的其他类型问题.例题精讲【试题来源】【题目】一台计算器大部分按键失灵,只有数字“7”和“0”以及加法键“+”尚能使用,因此可以输入77,707这样只含数字7和0的数,并且进行加法运算.为了显示出222222,最少要按“7”键多少次?【答案】21【解析】222222÷7=31746,即222222=70000×3+7000×1+700×7+70×4+7×6,而70000,7000,700,70,7均只用按一次7,所以222222最少只用按3+1+7+4+6=21次“7”键即可显示.【知识点】数论综合二【适用场合】当堂例题【难度系数】3【试题来源】【题目】有一批图书总数在1000本以内,若按24本书包成一捆,则最后一捆差2本;若按28本书包成一捆,最后一捆还是差2本书;若按32本包一捆,则最后一捆是30本.那么这批图书共有本.【答案】670【解析】经分析发现,原书的本书如果多2本,那么原来书的数目就会同时是24,28,32的倍数,而,[24,28,32]=672,且原书的本书不超过1000本,所以原来的书有672-2=670(本)【知识点】数论综合二【适用场合】当堂例题【难度系数】2【试题来源】【题目】一个五位数恰好等于它各位数字和的2007倍,则这个五位数是 .【答案】2007×18和2007×27【解析】这个五位数等于各位数字之和乘以2007,2007是3,3,223,三个数字之积,所以这个五位数是9的倍数,各位数字之和也是9的倍数(一个数是9的倍数,那么它的各位数字之和也是9的倍数,)所以这个五位数可能是2007×9,2007×18,2007×27,2007×36……容易得出:2007×18和2007×27符合题目.【知识点】数论综合二【适用场合】当堂例题【难度系数】3【试题来源】【题目】在纸上写着一列自然数1,2,…,98,99.一次操作是指将这列数中最前面的三个数划去,然后把这三个数的和写在数列的最后面.例如一次操作后得到4,5,…,98,99,6;而两次操作后得到7,8,…,98,99,6,15.这样不断进行下去,最后将只剩下一个数,则最后剩下的数是 .【答案】4950【解析】观察规律发现,最后一个数字即为1到99的和,为4950.【知识点】数论综合二【适用场合】当堂例题【难度系数】3【试题来源】【题目】有两种规格的9箱钢珠,每箱300个,甲种钢珠每个10克,乙种钢珠每个11克,将这9箱钢珠编为1~9号,然后依次从1~9号箱中取出20,21,22,23,24,25,26,27,28,个钢珠,这些钢珠共重5555克。

六年级奥数最详细全面-数论教师版

六年级奥数最详细全面-数论教师版

六年级奥数最详细全面-数论教师版数论数论问题本身范围很广,我们考察小学奥数的内容,完全平方数等知识点跟基础课内容结合很紧密,但又是小奥的重难点,我们有必要加以重视.本讲需要学生掌握的知识点有:平方数性质、平方差公式、约数个数定理、约数和定理、辗转相除法等.本讲内容中,平方数部分是数论中最基本的部分,学生应当学会熟练运用平方差公式,对于约数和倍数部分,老师应当更注重其中的逻辑过程,可以适当用一些代数的方法将题目讲的更明白和透彻.专题回顾【例 1】一个5位数,它的各位数字和为43,且能被11整除,求所有满足条件的5位数.【分析】现在我们有两个入手的选择,可以选择数字和,也可以选择被11整除,但我们发现被11整除性质的运用要有具体的数字,而现在没有,所以我们选择先从数字和入手.5位数数字和最大的为9×5=45,这样43的可能性只有9,9,9,9,7或9,9,9,8,8.这样我们接着用11的整除特征,发现符合条件的有99979,97999,98989.【例 2】已知ABCA 是一个四位数,若两位数AB 是一个质数,BC 是一个完全平方数,CA 是一个质数与一个不为1的完全平方数之积,则满足条件的所有四位数是_____________.【分析】 本题综合利用数论知识,因为AB 是一个质数,所以B 不能为偶数,且同时BC 是一个完全平方数,则符合条件的数仅为16、36,当1B =时,满足AB 是一个质数的数有11,31,41,61,71,时,此时同时保证CA 是一个质数与一个不为1的完全平方数之积,只有3163符合;当3B =,满足AB 是一个质数的数有13,23,43,53,73,83,此时同时保证CA 是一个质数与一个不为1的完全平方数之积,只有8368符合.【例 1】 2001个连续的自然数之和为a b c d ⨯⨯⨯,若a 、b 、c 、d 都分解质因数专题精讲是质数,则a b c d +++的最小值是多少?【分析】 遇到等量关系的表述时,先将其转化为数学语言.设这2001个连续自然数中最小的一个是A ,则最大的一个是2000A +(遇到多个连续自然数问题,转化时一般均采用假设法,自己需要的量,题目中没有时,可以设未知数),则它们的和是:()()()20002001100020011000323292A A A A ++=+⨯=+⨯⨯⨯,则()1000A +是质数,所以A 的最小值是9.a b c d +++的最小值是:1009323291064+++=.[拓展] 101个连续的非零自然数的和恰好是四个不同的质数的积,那么这个最小的和应该是_______. [分析] 设这101个自然数中最小的数为a ,则101个连续自然数的和为:a +(a +1)+(a +2)+……+(a +100)=(a +a +100)×101÷2=(a +50)×101因为101是质数,所以a +50必须是3个质数的乘积,要使和最小.经检验a +50=66=2×3×11最小,所以和最小为66×101=6666.[铺垫] 已知□△×△□×□〇×☆△=□△□△□△,其中□、△、〇、☆分别表示不同的数字,那么四位数〇△□☆是多少?[分析] 因为□△□△□△=□△10101⨯,所以在题述等式的两边同时约去□△即得△□×□〇×☆△=10101.作质因数分解得10101371337=⨯⨯⨯,由此可知该数分解为3个两位数乘积的方法仅有211337⨯⨯.注意到两位数△□的十位数字和个位数字分别在另外的两位数□〇和☆△中出现,所以△□=13,□〇=37,☆△=21.即〇=7,△=1,□=3,☆=2,所求的四位数是7132.【例 2】N为自然数,且1N+与690都有大N+、……、9N+,2于l的公约数.N的最小值为_______.【分析】69023523=⨯⨯⨯,连续9个数中,最多有5个是2的倍数,也有可能有4个是2的倍数,如果有5个连续奇数,这5个连续奇数中最多有2个3的倍数,1个5的倍数,1个23的倍数,所以必然有一个数不是2、3、5、23的倍数,即与690没有大于l的公约数.所以9个数中只有4个奇数,这个数中,有2个3的倍数,1个5的倍数,1个23的倍数,则1N+、9N+是偶数,剩下的4N+、5N+、7N+、3个数中2N+是3的倍数(5个偶数当中只有N+、8N+一个是5的倍N+、6N+是3的倍数),还有45数,一个是23的倍数.剩下的可以用中国剩余定理求解,5N+是2和3的倍数,且相邻两个数中一个是23的倍数,另一个是5的倍数,显然524N+=是最小解,所以N的最小值为19.【例 3】 已知,甲乙两数的最小公倍数是288,最大公约数是4,甲乙两数不是288和4中的数,那么甲乙两数的乘积为多少?和为多少?【分析】 设甲乙两个数为4x ,4y ,(x 和y 都不等于1或72),则x ,y 两数互质,于是4x ,4y 的最小公倍数为4xy ,所以288724xy ==,327223=⨯,由于x ,y 互质,所以2或3不可能在x ,y 的因子中都出现,所以x ,y 一个是8一个是9,所以两数的乘积等于44441152y x xy ⨯=⨯=,和为()4448968x y +=⨯+=.【例 4】 有15位同学,每位同学都有编号,它们是1号到15号.1号同学写了一个自然数,2号说:“这个数能被2整除”,3号说“这个数能被3整除”,……,依次下去,每位同学都说,这个数能被他的编号数整除,1号作了一一验证,只有编号相邻的两位同学说得不对,其余同学都对,问:⑴说得不对的两位同学,他们的编号是哪两个连续自然数?⑵如果约数、倍数告诉你,1号写的数是五位数,请求出这个数.【分析】⑴首先可以断定编号是2,3,4,5,6,7号的同学说的一定都对.不然,其中说的不对的编号乘以2后所得编号也将说得不对,这样就与“只有编号相邻的两位同学说的不对”不符合.因此,这个数能被2,3,4,5,6,7都整除.其次利用整除性质可知,这个数也能被2×5,3×4,2×7都整除,即编号为10,12,14的同学说的也对.从而可以断定说的不对的编号只能是8和9.⑵这个数是2,3,4,5,6,7,10,11,12,13,14,15的公倍数,由于上述十二个数的最小公倍数是60060,因为60060是一个五位数,而十二个数的其他公倍数均不是五位数,所以1号同学写的数就是60060.[拓展]一个两位数有6个约数,且这个数最小的3个约数和为10,那么此数为几?[分析]最小的三个约数中必然包括约数1,除去1以外另外两个约数和是9,由于9是1个奇数,所以这两个约数的奇偶性质一定是相反的,其中一定有一个是偶数,如果一个数包含偶约数,那么它一定是2的倍数,即2是它的约数.于是显然的,2是这个数第二小的约数,而第三小的约数是7,所以这个两位数是14的倍数,由于这个两位数的约数中不含3、4、5、6,所以这个数只能是14或98,其中有6个约数的是98.【例 5】 两数乘积为2800,而且己知其中一数的约数个数比另一数的约数个数多1,那么这两个数分别是___________、___________.【分析】 422800257=⨯⨯,由于其中一数的约数个数比另一数的约数个数多1,所以这两个数中有一个数的约数为奇数个,这个数为完全平方数.故这个数只能为22、42、25、2225⨯或4225⨯.经检验,只有两数分别为42和257⨯时符合条件,所以这两个数分别是16和175.[铺垫] 在三位数中,恰好有9个约数的数有多少个? [分析] 91933=⨯=⨯,所以9个约数的数可以表示为一个质数的8次方,或者两个不同质数的平方的乘积,前者在三位数中只有256符合条件,后者中符合条件有100、196、484、676、225、441,所以符合条件的有7个. 约数个数定理:设自然数n 的质因子分解式如312123n a a a a n p p p p .那么n 的约数个数为()()()()()1231111nd n a a a a =++++自然数的约数和为【例 6】 两个整数A 、B 的最大公约数是C ,最小公倍数是D ,并且已知C 不等于1,也不等于A 或B ,187C D +=,那么A B +等于多少?【分析】 最大公约数C ,当然是最小公倍数D 的约数,因此C 是187的约数,1871117=⨯,C 不等于1,只能是11C =或者17C =.如果11C =,那么18711176D =-=.A 和B 都是176的约数,A 和B 不能是11,只能是22,44,88,176这四个数中的两个,但是这四个数中任何两个数的最大公约数都不是11,由此得出C 不能是11.现在考虑17C =,那么18717170D =-=,A 和B 是170的约数,又要是17的倍数,有34,85,170三个数,其中只有34和85的最大公约数是17,因此,A 和B 分别是34和85,3485119A B +=+=.【例 7】 已知A 是一个有12个约数的合数,8A 、10A 有24个约数,12A 有40个约数,求15A 有多少个约数?【分析】 设235a b cA d =⨯⨯⨯,d 中不含有2、3、5因子,那么A 的约数个数有()()()11112a b c N +++=①(其中N 为d 的约数个数)8A 的约数个数为()()()41124a b c N +++=,与①比较得到421a a +=+,于是2a =, 10A的约数个数为()()()()()21241224a b c N b c N +++=++=,与①比较2312cc +=+,于是1c =, 12A的约数个数为()()()()32110240a b c N b N +++=+=,与①比较得到221b b +=+,于是0b =,将a 、b 、c 代入①得到2N =,15A 的约数个数为()()()12236a b c N +++=.[铺垫]已知偶数A 不是4的整数倍,它的约数的个数为12,求4A 的约数的个数.[分析] 将A 分解,2A B =,其中B 是奇数,它的约数的个数为()1112N +=,(其中N 为B 的约数个数),则4A 的约数个数为()1324N +=.【例 8】 要使129m n ⨯这个积是56的倍数,并要使m n +最小,则___,___m n ==.【分析】 分析题意,为同一个数可以由两种乘积的形式表示.关于因数乘积表示形式,类比联系我们所学的知识点:质因数的唯一分解式:()3121231,212......,...,n b b b b n n n a p p p p p p p b b b =⨯⨯⨯⨯为质因数,为自然数则2212923m n m m n +⨯=⨯是555623=⨯的倍数,则得到()25,25m m n m n ≥⎧⎨+≥⎩为整数,使m n +最小,则31m n =⎧⎨=⎩.【例 9】 从1到2008的所有自然数中,乘以72后是完全平方数的数共有多少个?【分析】 完全平方数,所有质因数必成对出现.327223266=⨯=⨯⨯,所以满足条件的数必为某个完全平方数的2倍,2313119222008232322048⨯⨯=<<⨯⨯=,共31个. 完全平方数[铺垫]有5个连续自然数,它们的和为一个平方数,中间三数的和为立方数,则这五个数中最小数的最小值为_____.[分析]考查平方数和立方数的知识点,同时涉及到数量较少的连续自然数问题,设未知数的时候有技巧.设中间数是x,则它们的和为5x, 中间三数的和为3x.5x是平方数,设2231535==⨯⨯是立方数,x a a=⨯,则25x a=.22x a55所以2a至少含有3和5的质因数各2个, 2a至少是225,中间的数至少是1125.最小数的最小值为1123.【例10】志诚小学三四年级的学生人数比一二年级的学生人数多100人,但比五六年级的学生人数少53人,已知五六年级的学生人数和一二年级的学生人数都是完全平方数,那么志诚中学总的学生人数有多少人?(请写出最现实的答案)【分析】五六年级的人数和一二年级的学生人数都是完全平方数,所以可以设五六年级的学生人数为2A,一二年级的学生人数为2B,则()()=+-,而1533317153A B A B=⨯⨯,所以,()-可能为153和1;17和9;51和3,由这A BA B+与()三个答案得到的A和B的值分别为:77和76,13和4,27和24,显然由前两组答案得到的学校人数不符合现实,所以27A=,24B=为最佳结果.此时五六年级的学生人数为729人,一二年级的学生人数为576人,三四年级的学生人数为676,学校的总人数为++=人.7295766761981[铺垫]能否找到这么一个数,它加上24,和减去30所得的两个数都是完全平方数?[分析] 假设能找到,设这两个完全平方数分别为2A 、2B ,那么这两个完全平方数的差为()()54A B A B =+-,由于()A B +和()A B -的奇偶性质相同,所以()()A B A B +-不是4的倍数,就是奇数,所以54不可能等于两个平方数的差,所以这样的数找不到.【例11】 一个正整数若能表示为两个正整数的平方差,则称这个数为“智慧数”,比如16=2253-,16就是一个“智慧数”,那么从1开始的自然数列中,第2003个“智慧数”是_______.【分析】 22a b -=()()a b a b +-.因为()a b +与()a b -同奇同偶,所以“智慧数”是奇数或是4的倍数.对于任何大于1的奇数21n +(1n ≥),当1a n =+,b n =时,都有22a b -=22(1)n n +-=21n +.即任何大于1的奇数都是“智慧数”.对于任何大于4的4的倍数4n (2n ≥),当1a n =+,1b n =-时,都有22a b -=22(1)(1)n n +--=4n .即任何大于4的4的倍数都是“智慧数”.除了1和4以外,非“智慧数”都是不能被4整除的偶数,“智慧数”约占全部正整数的34.3200326714÷≈,为26724668÷=,加上1和4这两个非“智慧数”,在1~2672中共有非“智慧数”668+2=670(个),有“智慧数”2672-670=2002(个).所以第2003个“智慧数”是2673.【例12】 (2008年清华附中入学考试题)有两个两位数,它们的差是14,将它们分别平方,得到的两个平方数的末两位数(个位数和十位数)相同,那么这两个两位数是 (请写出所有可能的答案). 【分析】(法一)设这两个数分别是a 和14a +,则2a 与()214a +两个数的末两位相同,即2a 与()228196a a ++的末两位相同,所以()28196a +是100的倍数,a 个位只能是3或8.先设103a k =+,则28196280280a k +=+,当4k =,9时满足条件,但9k =时较大的两位数大于100不合题意.再设108a k =+,可求得1k =,6时满足条件.所以一共有(43,57)、(18,32)、(68,82)三组答案. (法二)()()()()22141414287a a a a a a a +-=+++-=+,()287a +是100的倍数,所以()7a +是25的倍数,符合条件的a 只有18、43、68. 1. 两个连续自然数的平方和等于365,又有三个连续自然数的平方和等于365,则这两个连续自然数为_______,这三个连续自然数为_______.【分析】 221314365+=, 所以这两个连续自然数为13、14,222101112365++=101112巩固精练2.有n 个自然数相加:123n aaa ++++= (和恰好是三个相同数字组成的三位数),那么n =__________.【分析】 (1)1232n n n aaa +++++==,(1)221112337n n aaa a a +==⨯⨯=⨯⨯⨯,由于a 是个一位数,n 与1n +是两个相邻的整数,只有当6a =,36n =时满足题意,所以所求的n 为36.3. 已知A 有12个约数,9A 有24个约数,15A 有36个约数,5A有多少个约数?【分析】 设35a b A B =,有()()1112a b N ++=个约数,(N 为B 的约数个数),于是9A 有()()3124a b N ++=个约数,所以1a =,15A 有()3236b N +=个约数,由此求得0b =,6N =,所以5A 有()()12424a b N N ++==个约数.4. A 、B 两数都只含有质因数3和2,它们的最大公约数是18.已知A 有12个约数,B 有8个约数,那么A B +=______.【分析】 121823=⨯,A 、B 至少含有两个3和一个2.因为A 有12个约数,121122634=⨯=⨯=⨯,所以A 可能是1523⨯、3223⨯或2323⨯,B 有8个约数,81824=⨯=⨯,所以1323B =⨯,于是A 只能是3223⨯,故32132323126A B +=⨯+⨯=.5. 把26、33、34、35、63、85、91、143分成若干组,要求每一组中任意两个数的最大公约数为1.那么最少要分几组?【分析】 本题是一道关于最大公约数的问题.我们知道两个数的最大公约数为1,即互质,相当于它们的质因数分解式中没有相同的质因数.这就提示我们将题目所给的数字质因数分解.将题目中的数字质因数分解如下:26213=⨯,33311=⨯,34217=⨯,3557=⨯,26337=⨯,85517=⨯,91713=⨯,1431113=⨯.由于题目要求将这些数字分组,满足每组中任意两个数的最大公约数为1,而26、91、143均含质因数13,因此它们两两不在同一组,于是这些数至少应分为3组.我们这里推出一种分法:将26、35分为一组,91、34、33分为一组,而143、63、85分为一组.。

六年级奥数数论综合讲座

六年级奥数数论综合讲座

六年级奥数数论综合讲座数论综合(一)涉及知识点多、解题过程比较复杂的整数综合题,以及基本依靠数论手段求解的其他类型问题..如果把任意n个连续自然数相乘,其积的个位数字只有两种可能,那么n是多少?【分析与解】我们知道如果有5个连续的自然数,因为其内必有2的倍数,也有5的倍数,则它们乘积的个位数字只能是0。

所以n小于5.:当n为4时,如果其内含有5的倍数(个位数字为O 或5),显然其内含有2的倍数,那么它们乘积的个位数字为0;如果不含有5的倍数,则这4个连续的个位数字只能是1,2,3,4或6,7,8,9;它们的积的个位数字都是4;所以,当n为4时,任意4个连续自然数相乘,其积的个位数字只有两科可能.:当n为3时,有1×2×3的个位数字为6,2×3×4的个位数字为4,3×4×5的个位数字为0,……,不满足.:当n为2时,有1×2,2×3,3×4,4×5的个位数字分别为2,6,4,0,显然不满足.至于n取1显然不满足了.所以满足条件的n是4.2.如果四个两位质数a,b,c,d两两不同,并且满足,等式a+b=c+d.那么,(1)a+b的最小可能值是多少?(2)a+b的最大可能值是多少?【分析与解】两位的质数有11,13,17,19,23,29,3l,37,41,43,47,53,59,6l,67,71,73,79,83,89,97.可得出,最小为11+19=13+17=30,最大为97+71=89+79=168.所以满足条件的a+b最小可能值为30,最大可能值为168..如果某整数同时具备如下3条性质:①这个数与1的差是质数;②这个数除以2所得的商也是质数;③这个数除以9所得的余数是5.那么我们称这个整数为幸运数.求出所有的两位幸运数.【分析与解】条件①也就是这个数与1的差是2或奇数,这个数只能是3或者偶数,再根据条件③,除以9余5,在两位的偶数中只有14,32,50,68,86这5个数满足条件.其中86与50不符合①,32与68不符合②,三个条件都符合的只有14.所以两位幸运数只有14.4.在555555的约数中,最大的三位数是多少? 【分析与解】×111×100×5×7×11×13×37显然其最大的三位数约数为777.5.从一张长2002毫米,宽847毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形.按照上面的过程不断地重复,最后剪得正方形的边长是多少毫米?【分析与解】从长2002毫米、宽847毫米的长方形纸板上首先可剪下边长为847毫米的正方形,这样的正方形的个数恰好是2002除以847所得的商.而余数恰好是剩下的长方形的宽,于是有:2002÷847=2……308,847÷308=2……231,308÷231=1……77.231÷77=3.不难得知,最后剪去的正方形边长为77毫米..已知存在三个小于20的自然数,它们的最大公约数是1,且两两均不互质.请写出所有可能的答案.【分析与解】设这三个数为a、b、c,且a<b<c,因为两两不互质,所以它们均是合数.小于20的合数有4,6,8,9,10,12,14,15,16,18.其中只含1种因数的合数不满足,所以只剩下6,10,12,14,15,18这6个数,但是14=2×7,其中质因数7只有14含有,无法找到两个不与14互质的数.所以只剩下6,10,12,15,18这5个数存在可能的排列.所以,所有可能的答案为(6,10,15);(10,12,15);(10,15,18)..把26,33,34,35,63,85,91,143分成若干组,要求每一组中任意两个数的最大公约数是1.那么最少要分成多少组?【分析与解】26=2×13,33=3×11,34=2×17,35=5×7,63= ×7,85=5×17,91=7×13,143=11×13.由于质因数13出现在26、91、143三个数中,故至少要分成三组,可以分成如下3组:将26、33、35分为一组,91、34、33分为一组,而143、63、85分为一组.所以,至少要分成3组..图10-1中两个圆只有一个公共点A,大圆直径48厘米,小圆直径30厘米.两只甲虫同时从A出发,按箭头所指的方向以相同的速度分别爬了几圈时,两只甲虫首次相距最远?【分析与解】圆内的任意两点,以直径两端点得距离最远.如果沿小圆爬行的甲虫爬到A点,沿大圆爬行的甲虫恰好爬到B点,两甲虫的距离便最远.小圆周长为×30=307r,大圆周长为48 ,一半便是24 ,30与24的最小公倍数时120.120÷30=4.120÷24=5.所以小圆上甲虫爬了4圈时,大圆上甲虫爬了5个圆周长,即爬到了过A的直径另一点B.这时两只甲虫相距最远..设a与b是两个不相等的非零自然数.(1)如果它们的最小公倍数是72,那么这两个自然数的和有多少种可能的数值?(2)如果它们的最小公倍数是60,那么这两个自然数的差有多少种可能的数值?【分析与解】 (1)a与b的最小公倍数72=2×2×2×3×3,有12个约数:1,2,3,4,6,8,9,12,18,24,36,72.不妨设a>b.:当a=72时,b可取小于72的11种约数,a+b≥72+1=73;:当a=36时,b必须取8或24,a+b的值为44或60,均不同第一种情况中的值;:当a=24时,b必须取9或18,a+b的值为33或42,均不同第一、二种情况中的值;当a=18时,b必须取8,a+b=26,不同于第一、二、三种情况的值;:当a=12时,b无解;:当a=9时,b必须取8,a+b=17,不同于第一、二、三、四情况中的值.总之,a+b可以有ll+2+2+1+1=17种不同的值.(2)60=2×2×3×5,有12个约数:1,2,3,4,5,6,10,12,15,20,30,60.a、b为60的约数,不妨设a>b.:当a=60时,b可取60外的任何一个数,即可取11个值,于是a-b可取11种不同的值:59,58,57,56,55,54,50,48,45,40,30;.当a=30时,b可取4,12,20,于是a-b可取26,18,10;:当a=20时,b可取3,6,12,15,所以a-b可取17,14,8,5;当a=15时,b可取4,12,所以a-b可取11,3; : 当a=12时,b可取5,10,所以a-b可取7,2.总之,a-b可以有11+3+4+2+2=22种不同的值.0.狐狸和黄鼠狼进行跳跃比赛,狐狸每次跳米,黄鼠狼每次跳米,它们每秒钟都只跳一次.比赛途中,从起点开始每隔米设有一个陷阱,当它们之中有一个掉进陷阱时,另一个跳了多少米?【分析与解】由于÷ = ,÷ = .所以狐狸跳4个米的距离时将掉进陷阱,黄鼠狼跳2个米的距离时,将掉进陷阱.又由于它们都是一秒钟跳一次,因此当狐狸掉进陷阱时跳了11秒,黄鼠狼掉进陷阱时跳了9秒,因此黄鼠狼先掉进陷阱,此时狐狸跳了9秒.距离为9× =40.5(米).11.在小于1000的自然数中,分别除以18及33所得余数相同的数有多少个?(余数可以为0)【分析与解】我们知道18,33的最小公倍数为[18,33]=198,所以每198个数一次.~198之间只有1,2,3,…,17,198(余O)这18个数除以18及33所得的余数相同,而999÷198=5……9,所以共有5×18+9=99个这样的数.2.甲、乙、丙三数分别为603,939,393.某数A除甲数所得余数是A除乙数所得余数的2倍,A除乙数所得余数是A除丙数所得余数的2倍.求A等于多少?【分析与解】由题意知4倍393除以A的余数,等于2倍939除以A的余数,等于甲603除以A的余数.即603÷A=a……k;(2×939)÷A=b……k;(4×393)÷A=c……k.于是有(1878-603)÷A=b-a;(1878-1572)÷A=b-c;(1572-603)÷A=c-a.所以A为1275,306,969的约数,(1275,306,969)=17×3=51.于是,A可能是51,17(不可能是3,因为不满足余数是另一余数的4倍).当A为51时,有603÷51=11……42;939÷51=18……21;393÷51=7……36.不满足;当A为17时,有603÷17=35……8;939÷17=55……4;393÷17=23……2;满足.所以,除数4为17..证明:形如11,111,1111,11111,…的数中没有完全平方数.【分析与解】我们知道奇数的完全平方数是奇数,偶数的完全平方数为偶数,而奇数的完全平方数除以4余1,偶数的完全平方数能被4整除.现在这些数都是奇数,它们除以4的余数都是3,所以不可能为完全平方数.评注:设奇数为2n+1,则它的平方为 +4n+1,显然除以4余1..有8个盒子,各盒内分别装有奶糖9,17,24,28,30,31,33,44块.甲先取走一盒,其余各盒被乙、丙、丁3人所取走.已知乙、丙取到的糖的块数相同且为丁的2倍.问:甲取走的一盒中有多少块奶糖?【分析与解】我们知道乙、丙、丁三人取走的七盒中,糖的块数是丁所取糖块数的5倍.八盒糖总块数为9+17+24+28+30+31+33+44=216.从216减去5的倍数,所得差的个位数字只能是1或6.观察各盒糖的块数发现,没有个位数字是6的,只有一个个位数字是1的数31.因此甲取走的一盒中有3l块奶糖.15.在一根长木棍上,有三种刻度线.第一种刻度线将木棍分成10等份;第二种将木棍分成12等份;第三种将木棍分成15等份.如果沿每条刻度线将木棍锯断,那么木棍总共被锯成多少段?【分析与解】 10,12,15的最小公倍数[10,12,15]=60,把这根木棍的作为一个长度单位,这样,木棍10等份的每一等份长6个单位;12等份的每等份长5个单位;15等份的每等份长4单位.不计木棍的两个端点,木棍的内部等分点数分别是9,11,14(相应于10,12,15等份),共计34个.由于5,6的最小公倍数为30,所以10与12等份的等分点在30单位处相重,必须从34中减1.又由于4,5的最小公倍数为20,所以12与15等份的等分点在20单位和40单位两处相重,必须再减去2.同样,6,4的最小公倍数为12,所以15与10等份的等分点在12,24,36,48单位处相重,必须再减去4.由于这些相重点各不相同,所以从34个内分点中减去1,再减去2,再减去4,得27个刻度点.沿这些刻度点把木棍锯成28段.数论综合(二)进位制的概念、四则运算法则及整数在不同进位制之间的转化,利用恰当的进位制解数论问题.取整符号[]与取小数部分符号{}的定义与基本性质,包含这两种符号的算式与方程的求解.两次与分式不定方程,不便直接转化为不定方程的数论问题.各种数论证明题.典型问题1.算式1534×25=43214是几进位制数的乘法? 【分析与解】注意到尾数,在足够大的进位制中有乘积的个位数字为4×5=20,但是现在为4,说明进走20-4=16,所以进位制为16的约数:16、8、4、2.因为原式中有数字5,所以不可能为4,2进位,而在十进制中有1534×25=38350<43214,所以在原式中不到10就有进位,即进位制小于10,于是原式为8进制.2.求方程19[x]-96{x}=0的解的个数.【分析与解】有{x}为一个数的小数部分,显然小于1,则96{x}小于96,而19[x]=96{x},所以19[x]小于96,即[x]小于,又[x]为整数,所以[x]可以取0,1,2,3,4,5,对应有6组解.进一步计算有0,1 ,为原方程的解.3.一个自然数与自身相乘的结果称为完全平方数.已知一个完全平方数是四位数,且各位数字均小于7.如果把组成它的数字都加上3,便得到另外一个完全平方数.求原来的四位数.【分析与解】设这个四位数为…………………………………①每位数字均加3,并且没有进位,为…………………………………………………②有②-①得:3333= =(n-m)(n+m) ………………………………③将3333分解质因数,有3333=3×11×101,其有(1+1)(1+1)(1+1)=8个约数,但是有n+m>n-m,所以只有4种可能满足题意,一一考察,如下表:如上表,只有1156,4489满足,即原来这个四位数为1156.4.将表示成两个自然数的倒数之和,请给出所有的答案.【分析与解】设有,化简有(a-6)(b-6)=6=2×2×3×3,评注:形如 (t为己知常数)的解法及解的个数.(t为已知常数)类问题,可以通过计算,转化为(A-t)×(B-t)= ;我们将分解质因数后,再令(A-t)其中一个为的一个约数(A-t)=a,那么A=a+t,则 (t为已知常数),所以,一般公式为 (a为t的一个约数);设的约数有x个,则A、B有组(调换顺序算一种).注意有一组解A、B相等,就是5.在给定的圆周上有2000个点.任取一点标上数1;按顺时针方向从标有1的点往后数2个点,在第2个点上标上数2;从标有2的点再往后数3个点,在第3个点上标上数3;……;依此类推,直至在圆周上标出1993.对于圆周上的这些点,有的点可能标上多个数,有的点可能没有被标数.问标有数1993的那个点上标的最小数是多少?【分析与解】记标有1为第1号,序号顺时针的依次增大.当超过一圈时,编号仍然依次增加,如1号也是2001号,4001号,……则标有2的是1+2号,标有3的是1+2+3号,标有4的是1+2+3+4,…,标有1993的是1+2+3+…+021号.021除以2000的余数为1021,即圆周上的第1021个点标为1993.那么1021+2000n=1+2+3+…+k= ,即2042+4000n=k(k+1).当n=0时,k(k+1)=2042,无整数解;当n=1时,k(k+1)=6042,无整数解;当n=2时,k(k+1)=10042,无整数解;当n=3时,k(k+1)=14042,有118×119=14042,此时标有118;随着n的增大,k也增大.所以,标有1993的那个点上标出的最小数为118.6.有些三位数,如果它本身增加3,那么新的三位数的各位数字的和就减少到原来三位数的.求所有这样的三位数.【分析与解】设这个三位数为,数字和为a+b+c,如果没有进位,那么,显然数字和增加了3,不满足,所以一定有进位,则 +3= ,数字和为0+(b+1)+(c+3-10)= ,则a+b+c=9,而c+3必须有进位,所以c只能为7,8,9.一一验,如下表:验证当十位进位及十位、个位均进位时不满足.所以,原来的三位数为207,117或108.7.将某个17位数各位数字的排列顺序颠倒,再将得到的新数与原来的数相加.试说明,所得的和中至少有一个数字是偶数.【分析与解】先假设和的各位数字全是奇数,设这个17位数为,则a+d为奇数,b+c的和小于10,于是十位不向前进位,从而去掉前后各两个两位数字所得的13位数仍具有题述性质.依次类推6次后,得到一位数,它与自身相加的和的个位数字必是偶数,矛盾.即开始的假设不正确,所以和中至少有一个数字是偶数.数论综合(三)内容概述具有相当难度,需要灵活运用各种整数知识,或与其他方面内容相综合的数论同题.典型问题2.有3个自然数,其中每一个数都不能被另外两个数整除,而其中任意两个数的乘积却能被第三个数整除.那么这样的3个自然数的和的最小值是多少?【分析与解】设这三个自然数为A,B,C,且A= × ,B= × ,C= × ,当、、c均是质数时显然满足题意,为了使A,B,C的和最小,则质数、、应尽可能的取较小值,显然当、、为2、3、5时最小,有A=2×3=6, B=3×5=15,C=5×2=10.于是,满足这样的3个自然数的和的最小值是6+15+10=31.4.对于两个不同的整数,如果它们的积能被和整除,就称为一对“好数”,例如70与30.那么在1,2,…,16这16个整数中,有“好数”多少对?【分析与解】设这两个数为、,且,有 =×( + ),即当 =2时,有,即( -2)×( -2)=22=4,有,但是要求≠ .所以只有满足;当 =3时,有,即( -3)×( -3)=32=9,有,但是要求≠ .所以只有满足;……逐个验证的值,“好数”对有3与6,4与12,6与12,10与15.所以“好数”对有4个.6.甲、乙两人进行下面的游戏:两人先约定一个自然数N,然后由甲开始,轮流把0,1,2,3,4,5,6,7,8,9这10个数字中的一个填入图28-1的某个方格中,每一方格只能填一个数字,但各方格所填的数字可以重复.当6个方格都填有数字后,就形成一个六位数.如果这个六位数能被N整除,那么乙获胜;如果这个六位数不能被N整除,那么甲获胜.设N小于15,问当N取哪几个数时.乙能取胜?【分析与解】当N取2,4,6,8,10,12,14这7个偶数时,当甲将某个奇数放到最右边的方格中,则这个六位数一定是奇数,奇数显然不能被偶数整除,所以此时乙无法取胜;而当N取5时,当甲在最右边的方格内填人一个非0非5的数字时,则这个六位数一定不能被5整除,所以此时乙无法获胜:此时还剩下1,3,7,9,11,13这6个数,显然当N取l时,乙一定获胜;当N取3或9时,只要数字对应是3或9的倍数时,这个六位数就能被对应的3或9整除,显然乙可以做到;当N取7,1l或13时,只要前三位数字和与后三位数字和的差对应是7,11,13的倍数时,这个六位数就对应是7,11,13的倍数,乙可以做到.于是,当N取1,3,7,9,11,13时,乙适当的操作能保证自己一定获胜.8.已知与的最大公约数是12,与的最小公倍数是300,与的最小公倍数也是300.那么满足上述条件的自然数,,共有多少组?【分析与解】300=12× ,是、的倍数,而12是、的最大公约数,所以、有5种可能,即12 12×5 12× 12 1212 12 12 12×5 12×由于、中总有一个为12,则= × × ,其中x可以取0、1、2中的任意一个,y可以取0、1中的任意一个,这样满足条件的自然数、、共有5×3×2=30组.10.圆周上放有N枚棋子,如图28-2所示,B点的那枚棋子紧邻A点的棋子.小洪首先拿走B点处的1枚棋子,然后沿顺时针方向每隔1枚拿走2枚棋子,这样连续转了10周,9次越过A.当将要第10次越过A处棋子取走其他棋子时,小洪发现圆周上余下20多枚棋子.若N是14的倍数,请精确算出圆周上现在还有多少枚棋子?【分析与解】设圆周上余枚棋子,从第9次越过A处拿走2枚棋子到第10次将要越过A处棋子时,小洪拿了2 枚棋子,所以在第9次将要越过A处棋子时,圆周上有3 枚棋子..依次类推,在第8次将要越过A处棋子时,圆周上有32 枚棋子,…,在第1次将要越过A处棋子时,圆周上有3 枚棋子,在第1次将要越过A处棋子之间,小洪拿走了2(3 -1)+枚棋子,所以N=2(3 -1)+1+3 =310 -1. N=310 -1=59049 -l是14的倍数,N是2和7的公倍数,所以必须是奇数;又N=(7×8435+4) -1=7×8435 +4 -1,所以4 -1必须是7的倍数.当 =21,25,27,29时,4 -1不是7的倍数,当=23时,4 -1=91=7×13,是7的倍数.所以.圆周上还有23枚棋子.12.是否存在一个六位数A,使得A,2A,3A,…,500000A中任意一个数的末尾6个数码不全相同?【分析与解】显然A的个位数字不能为偶数,不然500,000A的后6位为000,000;而A的个位数字也不能为5,不然200,000A的后6位为000,000.于是A的个位数字只能为1,3,7,9.对于任何一个六位数A(个位数字为1,3,7,9),均存在六位数,使得×A≡111,111(mod 1,000,000).如果存在 500,000,使得×A≡(mod 1,000,000),那么那个A即为题中所求的值.(说明见评注)当有A时, A显然满足上面的条件.所以888,889即为所求的A.评注:如果存在 500,000,使得×A≡111,111(mod 1,000,000),那么那个A即为题中所求的值.这是因为如果对于上面的A,还存在一个六位数B,使得B×A=111,111(mod 1,000,000),那么有( ×A-B ×A)=0(mod 1,000,000),即( -B)×A≡0(mod 1,000,000).因为A不含有质因数2、5,所以( -B)为1,000,000的倍数, -B≥1,000,000,那么 1,000,000,与为六位数矛盾.也就是说不存在小于等于500,000的t,使得 A的后六位为111,111,那么也不可能使得 A的后6位相同.已知m,n,k为自然数,m≥n≥k, 2 +2 -2 是100的倍数,求m+n - k后的最小值.【分析与解】方法一:首先注意到100=22×52.如果n=k,那么2m是100的倍数,因而是5的倍数,这是不可能的.所以n-k≥1.被22整除,所以k≥2.设 =m-k, =n-k,则≥ ,且都是整数.2a+2b-1被52整除,要求 + +k=m+n-k的最小值.不难看出210+21-1=1025,能被25整除,所以 ++k的最小值小于10+l+2=13.而且在 =10, =1,k=2时,上式等号成立.还需证明在+ ≤10时,2a+2b-l不可能被25整除.有下表a21,2,31,2,3,41,22≤3时,2a+2b-18+8=16不能被52整除.其他表中情况,不难逐一检验,均不满足被25整除的要求.因此 + -k即m+n-k的最小值是13.方法二:注意到有100=2×2×5×5,4∣ .所以k最小为2.还有25∣ ,令m-k=x, n-则有≡l(mod 25)因为5去除2,22,23,24,25余数分别为2,4,3,1,2;余数是4个一周期.于是,x=4p+2,y=4q+1;或者是x=4P+3,y=4Q+3.(1)x=4p+2,y=4q+1时当x=2,y=1,于是不是100的倍数;当x=6,y=l,于是不是100的倍数;当x=10,y=l,于是是 l00的倍数;(2)x=4P+3,y=4Q+3当x=3,y=3,于是不是l00的倍数;当x=7,y=3,于是不是l00的倍数:其余的将超过(1)种情况,所以,最小为m+n-k=12+3-2=13.数论综合(四)内容概述主要是“小升初”综合素质测试中较难的数论问题. 1.任意选取9个连续的正整数,即它们的乘积为P,最小公倍数为Q.我们知道,P除以Q所得到的商必定是自然数,那么这个商的最大可能值是多少?【分析与解】将9个连续的正整数作因式分解,如果某个质数是其中至少两个分解式的因子,那么次数最高的那个方幂会包含在最小公倍数Q中,而其他方幂的乘积则出现在P除以Q的商中.显然这样的质数必定小于9,只可能是2,3,5或7.记P÷Q=R,则R的质因数必定取自2,3,5,7.两个不同的7的倍数至少相差7,因此在9个连续正整数中,最多有两个数含有质因数7.当有两个数是7的倍数是,可能它们都不能被7×7整除,也可能其中一个数是7×7的倍数,而另一个不是.于是R的质因数分解式中7的幂次最高是1.类似的分析,R中最多包含一个质因数5.在9个连续的正整数中,恰有3个数是3的倍数,其中一个数能被9整除,而另一两个数仅能被3整除,因此R中所包含的质因数3的幂次必定为2.在9个连续的正整数中,最多有5个数是偶数.此时,除去含有2的幂次最高的数外,其余的4的数含有质因数2最多的情形是:其中有2个仅为2的倍数,有1个是4的倍数,另一个是8的倍数.即R的质因数分解式中2的幂次最多是1+1+2+3=7.综上所述,R的最大值是27×32×5×7=40320.事实上,对于9个连续正整数560,561,…,568,P除以Q所得到的商恰是40320.2.老师在黑板上依次写了三个数21、7、8,现在进行如下的操作,每次将这三个数中的某些数加上2,其他数减去1,试问能否经过若干次这样的操作后,使得:(1)三个数都变成12? (2)三个数变成23、15、19?【分析与解】如果两个数都加上2,那么它们的差不变;如果两个数都减去1,那么它们的差也不变;如果一个数加上2,一个数减去1,那么它们的差增大或减小3.所以,不管怎样,它们的差增大或减小3的倍数.也就是说,不管怎么操作,这两个数的差除以3的余数是不变的.21与7的差除以3的余数为2;21与8的差除以3的余数为1;7与8的差除以3的余数为1.(1)三个数都变成12,那么它们的差除以3的余数都是0,显然与开始给出的三个数之间差的余数有变化,所以不满足;(2)三个数变成23、15、19,它们之间差除以3的余数依次为:23与15的差除以3的余数为2;23与19的差除以3的余数为1;15与19的差除以3的余数为1.也就是说与开始给出的三个数之间差的余数没变化,所以满足.3.对于n个奇质数,如果其中任意奇数个数的和仍是质数,那么称这些数构成“奇妙数组”,而n就是这个数组的“阶数”.例如11,13,17就是“奇妙数组”,因为11,13,17和11+13+17=41都是质数.(1)证明:“奇妙数组”的“阶数”最大值为4;(2)对于“阶数”为4的“奇妙数组”,求这4个质数的乘积的最小值.【分析与解】 (1)假设a、b、c、d、e能组成一个5阶“奇妙数组”,那么a、b、c、d一定可以组成一个四阶“奇妙数组”,考虑除以3的余数情况,不能存在3的数它们除以3的余数相同,并且验证只能是1,1,2,2.则e除以3不管是余0,1,2都能在这五个数中找到三个数,它们的和是3的倍数,且大于3,所以无法组成5阶“奇妙数组”.但是如97,73,4l,53满足(它们的三个数和依次为167,191,223,2ll均是质数).所以存在最大的4阶“奇妙数组”.(2)写出所有除以3余1的质数:7,13,19,31,37,43,61,67,73,79,97;写出所有除以3余2的质数:(2,5),11,17,23,29,41,47,53,59,71,83,89.很容易知道2是不能含有,不然其他两个奇质数与2的和为大于2的偶数,显然不是质数,5也很容易验证不满足;有7,13,11,23满足(和依次为47,4l,43,31).它们的乘积为7×13×11×23=23023.所以4阶“奇妙数组”的4个数最小乘积为23023.评注:四阶的“奇妙数组”还有很多,如97,13,41,53.它们的三个数和依次为107,191,163,均是质数.。

6年级奥数数论综合问题(2)例题解析

6年级奥数数论综合问题(2)例题解析

【内容概述】我们在本讲不着重讨论n进制中运算问题,我们是关心n这个数字,即为几进制.对于进位制我们要注意本质是:n进制就是逢n进一.但是,作为数论的一部分,具体到每道题则其方法还是较复杂的.说明:在本讲中数字,不特加说明,均为十进制.【例题】题1.计算:(234)7+(656)7[分析与解]我们必须注意到7进制的运算必须是逢7进1,如下:于是,和为(1223)7题2.在几进制中有4×13=100.[分析与解]我们利用尾数分析来求解这个问题:不管在几进制均有(4)10×(3)10=(12)10.但是,式中为100,尾数为0.也就是说已经将12全部进到上一位.所以说进位制n为12的约数,也就是12,6,4,3,2.但是出现了4,所以不可能是4,3,2进制.我们知道(4)10×(13)10=(52)10,因52<100,也就是说不到10就已经进位,才能是100,于是我们知道n<10.所以,n只能是6.题6.在6进制中有三位数abc,化为9进制为cba,求这个三位数在十进制中为多少?[分析与解](abc)6=a×62+b×6+c=36a+6b+c;(cba)9=c×92+b×9+a=81c+9b+a.所以36a+6b+c=81c+9b+a;于是35a=3b+80c;因为35a是5的倍数,80c也是5的倍数.所以3b也必须是5的倍数,又(3,5)=1.所以,b=0或5.①当b=0,则35a=80c;则7a=16c;(7,16)=1,并且a、c≠0,所以a =16,c=7;但是在6、9进制,不可以有一个数字为16.②当b=5,则35a=3×5+80c;则7a=3+16c;mod7后,3+2c≡0.所以c=2或者2+7k(k为整数).因为有6进制,所以不可能有9或者9以上的数,于是c=2.于是,35a=15+80×2;a=5.于是(abc)6=(552)6=5×62+5×6+2=212.所以,这个三位数在十进制中为212.题7.N是整数,它的b进制表示是777,求最小的正整数b,使得N是十进制整数的四次方.[分析与解]我们将b进制中数改写为10进制,则(777)b=7×b2+7×b+7;则有7×b2+7×b+7=x4,我们知道N是7的倍数,所以x4也是7的倍数,又7为质数,所以x是7的倍数.于是,令x=7t,则7×b2+7×b+7=2401t3,则b2+b+1=343t4;当t=1时,b2+b+1=343,b(b+1)=342,则b=18;因为t最小,所以b也是最小的.所以有最小在18进制有(777)18=(74)10.题8.设1987可以在b进制中写成三位数,且x+y+z=1+9+8+7,试确定出所有可能的x、y、z及b.题9.(1)证明10201在大于2的任何进制的记数法中,都是一个合数.(2)证明10101在任何进制的记法中,都是一个合数.[分析与解](1)设在b进制,则(10201)b=1×b4+2×b2+1=(b2+1)2;所以不管在何进制,均是一个非1的完全平方数,当然是一个合数.(2)设在a进制,则(10101)=1×a4+1×a2+1=(a2+1)2-a2=(a2+1-a)(a2+1+a);a可以将其表达为两个均不为1的整数乘积,显然为合数.例10.下列加法算式是( )进制的不同字母代表不同的数字.[分析与解]于是,我们知道n=4,所以为4进制,则A+B+C+D=3+1+2+0=6.题11.称n个相同的数a相乘叫做a的n次方,记做a n,并规定a0=1.如果某个自然数可以写成2的两个不同次方(包括零次方)的和,我们就称这样的数为“双子数”,如9=23+20,36=25+22.它们都是双子数,那么小于1040的双子数有_______个.[分析与解]我们注意到与二进制的联系:(9=23+20)10=(1001)2,(36=25+22)10=(100100)2,写成2的两个不同次方(包括零次方)的和这样的数改写为二进制后只含有2个1,我们知道:(1040=210+24)10=(10000000000+10000)2=(10000010000)2,这样二进制为11位数,但是11位数有限制;我们先看10位数,于是(**********),这样10位数,选择2个数位填1,其他为0,所以为;再考虑11位数,于是(1000001****),只有4个“*”和紧邻的“1”于是有5种选择;所以,共有+5=50种选择方法.所以这样的“双子数”为50个.题12.一个非零自然数,如果它的二进制表示中数码1的个数是偶数,则称之为“坏数”.例如:18=(10010)2是“坏数”.试求小于1024的所有坏数的个数.[分析与解]我们现把2004转化为二进制:(1024)10=210=(10000000000)2.于是,在二进制中为11位数,但是我们只用看10位数中情况,于是为==45+210+210+45+1=511.于是,小于1024的“坏数”有511个.题16.试求(22006-1)除以992的余数是多少?[分析与解]我们注意到被除数与2的次幂有关,所以,我们试图通过2进制来解决.题17.一个10进制的三位数,把它分别化为9进制和8进制数后,就又得到了2个三位数.凌老师发现这3个三位数的最高位数字恰好是3、4、5,那么这样的三位数一共有多少个?[分析与解]我们设(3ab)10=(4cd)9=(5ef)8;我们知道(4cd)9在(400)9~(488)9之间,也就是4×92~5×92-1,也就是324~406;还知道(5ef)8在(500)8~(577)8之间,也就是5×82~6×82-1,也就是320~383;又知道(3ab)10在(300)10~(399)10之间.所以,这样的三位应在在324~383之间,于是有383-324+1=60个三位数满足条件.题18.一袋花生共有2004颗,一只猴子第一天拿走一颗花生,从第二天起,每天拿走的都是以前各天的总和.①如果直到最后剩下的不足以一次拿走时却一次拿走,共需多少天?②如果到某天袋里的花生少于已拿走的总数时,这一天它又重新拿走一颗开始,按原规律进行新的一轮.如此继续,那么这袋花生被猴子拿光的时候是第几天?。

奥数 六年级竞赛 数论(二).教师版word

奥数 六年级竞赛 数论(二).教师版word

小学奥数数论内容中,余数相关问题是最成体系的,也是各类竞赛考试中的重点.⑴同余性质是解决同余问题的重要依据,复习简单同余问题,学会灵活运用同余性质解决同余问题. ⑵熟练掌握余数定理在多位数除法以及高次冥末尾数字求解中的基本运用.⑶能用凑同余的办法解决一个数除以多个数,得不同余数的问题,学会使用中国剩余定理.带余除法:一般地,如果a 是整数,b 是整数()0b ≠,那么一定有另外两个整数q 和r ,0r b ≤<,使得a b q r =⨯+.当0r =时,我们称a 能被b 整除.当0r ≠时,我们称a 不能被b 整除,r 为a 除以b 的余数,q 为a 除以b 的不完全商(亦简称为商).用带余数除式又可以表示为a b q r ÷= ,0r b ≤<.同余式:若两个整数a ,b 被自然数m 除有相同的余数,那么称a ,b 对于模m 同余,用“同余式”表示为()mod a b m ≡意味着(我们假设a b ≥)a b mk -=,k 是整数,即()|m a b -.若两个数a ,b 除以同一个数c 得到的余数相同,则a ,b 的差一定能被c 整除.余数定理:①两数的和除以m 的余数等于这两个数分别除以m 的余数和.实例:7321÷= ,5312÷= ,这样()753+÷的余数就等于()123+÷的余数.②两数的差除以m 的余数等于这两个数分别除以m 的余数差.实例:8322÷= ,4311÷= ,这样()843-÷的余数就等于()213-÷的余数.③两数的积除以m 的余数等于这两个数分别除以m 的余数积.实例:7321÷= ,5312÷= ,这样()753⨯÷的余数就等于()123⨯÷的余数. 第 6讲数论(二)【例 1】 有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是______.【分析】 (70110160)50290++-=,503162÷= ,除数应当是290的大于17小于70的约数,只可能是29和58,11058152÷= ,5250>,所以除数不是58.7029212÷= ,11029323÷= ,16029515÷= ,12231550++=,所以除数是29.【例 2】 一个两位数被它的各位数字之和去除,问余数最大是多少?【分析】 设两位数ab (a 表示十位数字,b 表示个位数字)1091ab a b a a b a b a b+==++++ 由于余数不会超过除数a b +的值,所以我们对a b +的值从最大值18开始往小进行尝试搜索:当18a b +=,此时余数为9. 当17a b +=,则两位数为89、98,余数为4、13.当16a b +=,则两位数为97、88、79,余数为1、8、15.则余数最大的为15,因为接下来,除数最大为15,这样余数中最大的也只可能为14,所以余数最大的是15.【例 1】 一个自然数除429、791、500所得的余数分别是5a +、2a 、a ,求这个自然数和a 的值. [分析] 将这些数转化被该自然数除后余数为2a 的数:()42952848-⨯=,791、50021000⨯=,这些数被这个自然数除所得的余数都是2a ,同余. 将这三个数相减,得到84879157-=、1000848152-=,所求的自然数一定是57和152的公约数,而()57,15219=,所以这个自然数是19的约数,显然1是不符合条件的,经过验证,当这个自然数是19时,除429、791、500所得的余数分别为11、12、6,6a =时成立,所以这个自然数是19,6a =.[拓展]已知60,154,200被某自然数除所得余数分别是1a -,2a ,31a -,求该自然数的值. [分析] 自然数61,154,201被该数除所得余数分别是a ,2a ,3a .自然数2613721=与154同余,611549394⨯=与201同余,所以除数是3567和9193的公约数,运用辗转相除法可得到该除数为29.经过检验成立.[拓展]甲、乙、丙三数分别为603,939,393.某数A 除甲数所得余数是A 除乙数所得余数的2倍,A 除乙数所得余数是A 除丙数所得余数的2倍.求A 等于多少?[分析] 设这个数为M ,则11603M A r ÷=22939M A r ÷=33393M A r ÷=122r r =,232r r =,要消去余数1r ,2r ,3r ,我们只能先把余数处理成相同的,再两数相减.这样我们先把第二个式子乘以2,这样被除数和余数都扩大2倍,同理,第三个式子乘以4. 这样我们可以得到下面的式子:11603M A r ÷=()22939222M A r ⨯÷=()33393424M A r ⨯÷=这样余数就处理成相同的.最后两两相减消去余数,意味着能被M 整除.93926031275⨯-=,3934603969⨯-=,()1275,30651317==⨯.603,939,393这三个数有公约数3.51317÷=.则A 等于17.【例 2】 一个自然数减去它的各位数字之和得到的差值,称为“好数”.例如,根据()757757738-++=是“好数”.在四位数20□○的方框中填入某个恰当的数字后,可以使得无论圆圈内填入09 中的哪个数字,该四位数都不是“好数”,那么在方框中应填写数字__________.【分析】 注意到所有“好数”都是9的倍数,但9的倍数不一定都是好数.200x 对应的“好数”是20021998x x --=;201x 对应的“好数”是201212007x x ---=;202x 对应的“好数”是202222016x x ---=;…… …… ……209x 对应的“好数”是209292079x x ---=;210x 对应的“好数”是210212097x x ---=;即在20□○中“好数”只能是2007、2016、2025、2034、2043、2052、2061、2070、2079、2097. 所以,如果在20□○的“□”内填入8,则不管“○”填入什么数都不能是“好数”.【例 3】 (南京市“兴趣杯”少年数学邀请赛决赛)现有糖果254粒,饼干210块和桔子186个.某幼儿园大班人数超过40.每人分得一样多的糖果,一样多的饼干,也分得一样多的桔子.余下的糖果、饼干和桔子的数量的比是:1:3:2,这个大班有_____名小朋友,每人分得糖果_____粒,饼干_____块,桔子_____个.【分析】 法一:设大班共有a 名小朋友.由于余下的糖果、饼干和桔子的数量之比是1:3:2,所以余下的糖果、桔子数目的和正好等于余下的饼干数,从而254186210+-一定是a 的倍数,即2541862102301230102325+-==⨯=⨯=⨯⨯是a 的倍数.同样,225418632223142327⨯-==⨯=⨯⨯也一定是a 的倍数.所以,a 只能是232⨯的因数.但40a >,所以46a =.此时25446524=⨯+,21046372=⨯+,18646348=⨯+.故大班有小朋友46名,每人分得糖果5粒,饼干3块,桔子3个.法二:如果糖果有25461524⨯=粒,饼干有2102420⨯=块,橘子有1863558⨯=个,那么余下的糖果、饼干、橘子的个数相等,所以1524、420、558这三个数的相互之差是大班人数的倍数,152********-=,558420138-=,()1104,138138=,所以幼儿园大班人数是138的大于40的约数,即138、69、46,经过检验,其中只有46满足条件.每人分得糖果5粒、饼干3块、橘子3块.【例 4】 试求105253168⨯的末两位数.【分析】 分别考虑这两个幂除以4和25所得的余数.首先考虑4,253除以4余数是1,所以25310除以4的余数仍是1;168是4的倍数,它的5次方仍是4的倍数,即除以4的余数为0,则原数除以4的余数也是0.再考虑25,253除以25余3,则只需看310除以25的余数,又310=27×27×27×3,则310除以25的余数为2×2×2×3=24;168除以25余18,则只需看51832432418=⨯⨯除以25的余数,可知余数为18;又2418432⨯=除以25的余数为7,所以原式除以25的余数即为7.两位数中,能被4整除,除以25余7的数只有32,则原式的末两位即为32.[拓展]试求20082007的末两位数.[分析]200720007=+,所以20082007的末两位数与20087的末两位数相同. ()()100450220082100425027749492401====,2401被100除余1所以5022401被100除得的余数等于5021,所以20082007的末两位数是01.[拓展]求89143除以7的余数.[分析] 法一:∵()1433mod7≡(143被7除余3)∴()89891433mod7≡(89143被7除所得余数与893被7除所得余数相等)而63729=,()7291mod7≡∴()8966655143333335mod7≡⨯⨯⨯⨯≡≡个. 89于是余数以6为周期变化.所以335mod7≡≡.【例 5】1234200512342005+++++ 除以10所得的余数为多少? 【分析】 求结果除以10的余数即求其个位数.从1到2005这2005个数的个位数字是10个一循环的,而对一个数的幂方的个位数,我们知道它总是4个一循环的,因此把每个加数的个位数按20个(20是4和10的最小公倍数)一组,则不同组中对应的数字应该是一样的.首先计算123420123420+++++ 的个位数字,为4.2005个加数中有100组另5个数,100组的个位数是4100400⨯=的个位数即0,另外5个数为20012001、20022002、20032003、20042004、20052005,它们和的个位数字是1476523++++=的个位数 3,所以原式的个位数字是3,即除以10的余数是3.【例 6】 求{10031203308L 个除以19的余数. 【分析】 法一:{{{10161003101312033081266406332=-L L L 个个个 {{101310132063326332=⨯-L L 个个 {1013196332=⨯L 个 所以{10031203308L 个除以19的余数为0. 法二:首先计算120308被19除所得余数为0,120330812030810228=⨯+,228也是19的倍数,所以1203308也是19的倍数.12033308120330810228=⨯+,所以1203308也是19的倍数.以此递推可得到{10031203308L 个也是19的倍数.[拓展](2008年奥数网杯)已知20082008200820082008a = 个,问:a 除以13所得余数是______.[分析]2008除以13余6,10000除以13余3, 注意到200820082008100002008=⨯+;20082008200820082008100002008=⨯+;2008200820082008200820082008100002008=⨯+;根据这样的递推规律求出余数的变化规律:20082008除以13余6361311⨯+-=,200820082008除以13余1136390⨯+-=,即200820082008是13的倍数,而2008除以3余1,所以20082008200820082008a = 个除以13的余数与2008除以13的余数相同,为6.【例 7】 对任意的自然数n ,证明2903803464261n n n n A =--+能被1897整除.【分析】18977271=⨯,7与271互质,因为29035(mod 7)≡,8035(mod7)≡,4642(mod 7)≡,2612(mod7)≡,所以,290380346426155220(mod7)n n n n n n n n A =--+≡--+≡,故A 能被7整除.又因为2903193(mod 271)≡,803261(mod 271)≡,464193(mod 271)≡,所以29038034642611932611932610(mod271)n n n n n n n n A =--+≡--+≡,故A 能被271整除. 因为7与271互质,所以A 能被1897整除.【例 8】 在下表中填入自然数,要求第一行中所填入的自然数从左到右依次是31,32,33, ,第中填入的自然数从左到右依次是13,23,33, ,第三行中填入的自然数是同一列当中第一行、7【分析】 第一行的数被7除所得余数依次是1,1,6,1,6,6,0,……,以7为周期.第二行的数被7除所得的余数依次是3,2,6,4,5,1……,以6为周期.第三行的自然数如果除以7余1,那么对应第一行、第二行的自然数被7除,只有0+1和6+2两种情况,其中第一种情况下,对应的列数能被7和6整除,所以在第42列才能出现该情况,第二种情况下,对应的列数被7除余3,5,6,被6除余2,符合条件的最小列数是20.“物不知数问题”一般解题步骤:①凑“多”相同,即把余数处理成相同 条件:余数与除数的和相同②凑“缺”相同,即把余数处理成缺的数字相同 条件:除数与余数的差相同③先考虑上面两种,如果都不行,可使用逐步满足法或使用“中国剩余定理” .④逐步满足法:先满足条件一,得N ,再用“M N =+已满足除数公倍数”来满足下一个条件.《孙子算经》中有记载:“今有物不知其数:三三数之余二,五五数之余三,七七数之余二,问物几何?”它的意思就是,有一些物品,如果3个3个的数,最后剩2个;如果5个5个的数,最后剩3个;如果7个7个的数,最后剩2个;求这些物品一共有多少?这个问题人们通常把它叫作“孙子问题”, 西方数学家把它称为“中国剩余定理”.到现在,这个问题已成为世界数学史上闻名的问题.到了明代,数学家程大位把这个问题的算法编成了四句歌诀:三人同行七十稀,五树梅花廿一枝;七子团圆正半月,除百零五便得知.用现在的话来说就是:一个数用3除,除得的余数乘70;用5除,除得的余数乘21;用7除,除得的余数乘15.最后把这些乘积加起来再减去105的倍数,就知道这个数是多少.《孙子算经》中这个问题的算法是:702213152233⨯+⨯+⨯=;23310510523--=;所以这些物品最少有23个.得出问题中的系数70、21、15,实际上是非常巧妙的构造过程,这三个数满足以下条件70是5和7的公倍数,且被3除余1;21是3和7的公倍数,且被5除余1;15是3和5的公倍数,且被7除余1.在这样的条件下,任意一个系数乘以对应余数所得的积,被对应除数除后所得的余数恰好等于对应余 数,且该积仍然能被其他两个除数整除,因此三个积相加并不相互影响各自被对应除数除后所得的余数. 即702115a b c ++是被3除余a ,被5除余b ,被7除余c 的数.【例 9】 一个大于10的数,除以3余1,除以5余2,除以11余7,问满足条件的最小自然数是多少?【分析】 法一:仔细分析可以发现321527⨯+=+=,所以这个数可以看成被3、5、11除余7,[]3,5,11165=,所以这个数最小是1657172+=.法二:事实上,如果没有“大于10”这个条件,7即可符合条件,在7的基础上加上3,5,11的最小公倍数,得到172即为所求的数.[铺垫]一个大于10的数,除以5余3,除以7余1,除以9余8,问满足条件的最小自然数为____. [分析] 根据总结,我们发现三个数中两个数的除数与余数的和都是53718+=+=,这样我们可以把余数都处理成8,所以[]5,7,9315=,所以这个数最小为3158323+=.[铺垫]一个小于200的数,它除以11余8,除以13余10,这个数是多少?[分析] 根据总结,我们发现这两个除数与余数的差都等于11813103-=-=,观察发现这个数加上3后就能同时被11和13整除,所以[]11,13143=,所以这个数是1433140-=.【例10】 一个数除以3余2,除以5余3,除以7余4,问满足条件的最小自然数为____.【分析】 法一:根据总结,我们发现前面两种都不符合,所以可以使用普遍适用的“中国剩余定理”,步骤如下:分别找出除以7余7的公倍数,除以3余2的5、7的公倍数,分别是:60、63、35可见60+63+35=158满足我们的条件,但不是最小的自然数,处理方法就是减去最小公倍数的若干倍,使结果小于最小公倍数.所以答案为:158-105=53.法二:逐步构造符合条件的最小自然数,首先求符合前两个条件的最小自然数,用3不断加2,当2被加上两个3时得到8,检验符合前两个条件,再用3和5的最小公倍数不断加8,当8被加上3个15,得到53,检验符合三个条件.法三:逐步构造符合条件的最小自然数,首先求符合后面两个条件的最小自然数,用7不断加4,当4被加上两个7时得到18,检验符合后两个条件,再用7和5的最小公倍数不断加18,当18被加上1个35,得到53,检验符合三个条件.【例11】有连续的三个自然数a、1a+,它们恰好分别是9、8、7的倍数,求这三个自然数中最a+、2小的数至少是多少?【分析】法一:由1a+是7的倍数,得到a被7除余5,运用中国a+是8的倍数,得到a被8除余7,由2剩余定理求a:(⨯+⨯=495是满足各个余数条件的最小441728854527值,所以a至少是495.法二:a、1a++也分别是9、a++、27a+、18a+、2a+恰好分别是9、8、7的倍数,那么9a+的最小值是987504⨯⨯=,即a至少是495.8、7的倍数,即9a+是9、8、7的倍数,9【例12】一个数除以3、5、7、11的余数分别是2、3、4、5,求符合条件的最小的数:【分析】将33210×5=1050被11除余5,由此可知770+693+165+1050=2678是符合条件的一个值,又3、5、7、11的最小公倍数是1155,所以2678-1155×2=368是符合条件的最小值.[拓展]一个数除以2、3、5、7、11的余数分别是1、2、3、4、5,求符合条件的最小数.[分析]本题实际上就是求被3、5、7、11除的余数分别是2、3、4、5的最小奇数,符合条件的最小偶数是368,只要将368加上3×5×7×11就能求得符合条件的最小奇数,这个数是368+3×5×7×11=1523.1. 有一个自然数,用它分别去除63,90,130都有余数,3个余数的和是25.这3个余数中最大的一个是多少?【分析】 由于这三个数除以这个自然数后所得的余数和为25,所以63、90、130的和除以这个自然数后所得的余数为25,所以63+90+130-25=258能被这个自然数整除.258=2×3×43,显然当除数为2、3、6时,3个余数的和最大为3×(2-1)=3,3×(3-1)=6,3×(6-1)=15,所以均不能满足条件.当除数为43×2、43×3、43×6时,它除63的余数均是63,所以也不满足.那么除数只能是43,它除63,90,130的余数依次为20,4,1,余数的和为25,满足. 显然这3个余数中最大的为20.2. ()200831312008+被13除所得的余数是多少?【分析】31被13除所得的余数为5,31n 当n 取1,2,3, 时31n 被13除所得余数分别是5,12,8,1,5,12, 所以200831被13除余1.2008被13除所得的余数是6,6n 当n 取1,2,3, 时,6n 被13除所得的余数分别是6,10,8,9,2,12,7,3,5,4,11,1,6, 所以316被13除所得的余数等于76被13除所得的余数,即7,所以()200831312008+被13除所得的余数是178+=.3. 一个自然数除以7、8、9后分别余3、5、7,而所得的三个商的和是758,这个数是___________.【分析】 这个数加上11后能被7、8、9整除.7、8、9的最小公倍数是789504⨯⨯=,所以除以7,8,9后分别余3、5、7的数最小为50411-.504分别除以7、8、9所得的商之和是897879191⨯+⨯+⨯=,则50411-分别除以7、8、9所得的商之和是19123185-⨯=.7581851913=+⨯,所以这个数为5041150432005-+⨯=.4. 一个数除以5余3,除以6余4,除以7余1,求适合条件的最小的自然数.【分析】 “除以5余3”即“加2后被5整除”,同样“除以6余4”即“加2后被6整除”.[]5,6228-=,即28适合前两个条件.分析[]285,6x +⨯中能满足“除以7余1”的x 的值.可得到4x =是满足条件的最小值,所以,适合条件的最小的自然数是28304148+⨯=.5. 将一些水果装盘(少于100)个,如果7个7个装盘则剩下2个不能装,如果11个11个装盘则剩下6个不能装盘,如果13个13个装盘,那么还剩下7个不能装盘,那么这些水果有多少个?【分析】 11×13的倍数:143、286、429,……其中被7除余2的有429;7×13的倍数:91,182,……除以11余6的有182;7×11的倍数:77,154,……除以13余7的有462.1824624291073++=,由于水果数少于100,所以水果数有1073100172-=个.选绿色包装——减少垃圾灾难每人每年丢掉的垃圾重量超过人体平均重量的五六倍.北京年产垃圾430万吨,日产垃圾1.2万吨,人均每天扔出垃圾约1千克,相当于每年堆起两座景山.我国目前垃圾的产生量是1989年的4倍,其中很大一部分是过度包装造成的.不少商品特别是化妆品、保健品的包装费用已占到成本的30%—50%.过度包装不仅造成了巨大的浪费,也加重了消费者的经济负担,同时还增加了垃圾量,污染了环境.我们选购产品的时候还是以使用价值为主,尽量避免选购过度包装的产品,减少垃圾的制造量.拒子入门子发是战国时期楚国的一位将军.一次,他带兵与秦国作战,前线断了粮草,他派人向楚王告急.使者顺便去看望子发的老母.老人问使者:“兵士都好吗?”使者回答:“还有点儿豆子,只能一粒一粒分着吃.”“你们将军呢?”母亲问.使者回答道:“将军每餐都能吃到肉和米饭,身体很好.”子发得胜归来,母亲紧闭大门不让他进家门,并派人去告诉子发:“你让士兵饿着肚子打仗,自己却有吃有喝,这样做将军,打了胜仗也不是你的功劳.”母亲又说:“越王勾践伐吴的时候,有人献给他一罐酒,越王让人把酒倒在江的上游,叫士兵们一起饮下游的水.虽然大家没尝到酒味,却鼓舞了全军的士气,提高了战斗力.现在你却只顾自己不顾士兵,你不是我的儿子,你不要进我的门.”子发听了母亲的批评,向母亲认了错,决心改正,才得以进家门.俗话说:“子不教,父之过.”子女成长的好坏,长辈有着极大的责任.父母为了使孩子成长成参天大树,就必须在我们心中植下博爱之心,有了博爱之心,才有施爱于他人的可能.多以有时候,责备也蕴涵着父母对子女深沉的爱.。

六年级奥数讲义-数论综合(含答案)

六年级奥数讲义-数论综合(含答案)

学科培优数学“数论综合”学生姓名授课日期教师姓名授课时长数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。

数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。

因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。

任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。

”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。

涉及知识点多、解题过程比较复杂的整数综合题,以及基本依靠数论手段求解的其他类型问题.【题目】己知五个数依次是13,12, 15, 25,20它们每相邻的两个数相乘得四个数,这四个数每相邻的两个数相乘得三个数,这三个数每相邻的两个数相乘得两个数,这两个数相乘得一个数。

请问最后这个数从个位起向左数、可以连续地数到几个0?【题目】有4个不同的自然数,它们当中任意2个数的和是2的倍数,任意3个数的和是3的倍数.为了使得这4个数的和尽可能地小,这4个数分别是多少?【题目】将数字4,5,6,7,8,9各使用一次,组成一个被667整除的6位数,那么,这个6位数除以667的结果是.【题目】在小于5000的自然数中,能被11整除,并且数字和为13的数,共有多少个?【题目】从1,2,3,……n中,任取57个数,使这57个数必有两个数的差为13,则n的最大值为_______。

【题目】一个自然数与自身相乘的结果称为完全平方数。

已知一个完全平方数是四位数,且各位数字均小于7。

如果把组成它的数字都加上3,便得到另外一个完全平方数,求原来的四位数。

【题目】4个不同的真分数的分子都是1,它们的分母有2个是奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等.这样的奇数和偶数很多,小明希望这样的2个偶数之和尽量地小,那么这个和的最小可能值是多少?【题目】有一电话号码是 ABC-DEF-GHIJ ,其中每个字母代表一个不同的数字。

六年级奥数-.数论综合.教师版.docx

六年级奥数-.数论综合.教师版.docx

数论综合(二)教学目标:1、掌握质数合数、完全平方数、位值原理、进制问题的常见题型;2、重点理解和掌握余数部分的相关问题,理解“将不熟悉转化成熟悉”的数学思想例题精讲:板块一质数合数【例 1】有三张卡片,它们上面各写着数字1, 2, 3,从中抽出一张、二张、三张,按任意次序排列出来,可以得到不同的一位数、二位数、三位数,请你将其中的质数都写出来.【解析】抽一张卡片,可写出一位数1, 2, 3;抽两张卡片,可写出两位数12, 13, 21, 23, 31, 32;抽三张卡片,可写出三位数123, 132,213, 231, 312,321 ,其中三位数的数字和均为6,都能被 3 整除,所以都是合数.这些数中,是质数的有:2,3, 13, 23, 31.【例 2】三个质数的乘积恰好等于它们和的11 倍,求这三个质数.【解析】设这三个质数分别是 a 、b、 c ,满足 abc11( a b c) ,则可知 a 、b、 c 中必有一个为11,不妨记为 a ,那么bc 11 b c,整理得 (b 1)(c 1)12,又12 1 12 2 6 3 4,对应的、b 2c 13或 b 3 、 c7 或 b 4 、 c 5 (舍去),所以这三个质数可能是2, 11, 13 或 3, 7, 11.【例 3】用 1, 2, 3, 4,5, 6, 7, 8, 9 这 9 个数字组成质数,如果每个数字都要用到并且只能用一次,那么这 9 个数字最多能组成多少个质数?【解析】要使质数个数最多,我们尽量组成一位的质数,有2、3、5、7 均为一位质数,这样还剩下1、4、6、8、 9 这 5 个不是质数的数字未用.有1、 4、 8、 9 可以组成质数41、 89,而 6可以与 7 组合成质数67.所以这 9 个数字最多可以组成 6 个质数.【例 4】有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数.求这两个整数分别是多少?【解析】两位数中,数字相同的两位数有11、22、33、44、55、66、77、88、99 共九个,它们中的每个数都可以表示成两个整数相加的形式,例如33132 2 31330L L16 17 ,共有16种形式,如果把每个数都这样分解,再相乘,看哪两个数的乘积是三个数字相同的三位数,显然太繁琐了.可以从乘积入手,因为三个数字相同的三位数有111、 222、 333、 444、555、 666、 777、 888、999,每个数都是 111 的倍数,而11137 3 ,因此把这九个数表示成一个两位数与一个一位数或两个两位数相乘时,必有一个因数是37 或 37的倍数,但只能是37 的 2倍 (想想为什么? )3 倍就不是两位数了.把九个三位数分解:111373、22237 674 3、333379 、 444371274 6 、555 37 15 、 666 3718749、 7773721、 88837247412、 9993727.把两个因数相加,只有 ( 74 3 )77 和( 37 18 )55的两位数字相同.所以满足题意的答案是74 和 3,37和 18.板块二余数问题【例 5】( 2003年全国小学数学奥林匹克试题)有两个自然数相除,商是17,余数是 13,已知被除数、除数、商与余数之和为2113,则被除数是多少?【解析】被除数除数商余数被除数除数+17+13=2113,所以被除数除数=2083,由于被除数是除数的 17 倍还多 13,则由“和倍问题” 可得:除数 =(2083-13) ÷(17+1)=115,所以被除数 =2083-115=1968 .【例 6】已知2008被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个?【解析】本题为一道余数与约数个数计算公式的小综合性题目.由题意所求的自然数一定是2008-10 即 1998的约数,同时还要满足大于10 这个条件.这样题目就转化为1998 有多少个大于10 的约数,1998 2 3337 ,共有(1+1)×(3+1)×(1+1)=16个约数,其中1,2,3, 6, 9 是比 10 小的约数,所以符合题目条件的自然数共有11 个.【例 7】有一个整数,除39, 51, 147 所得的余数都是3,求这个数.【解析】 (法 1) 393 36, 147 3144 , (36,144) 12, 12 的 数是 1,2,3,4,6,12 ,因 余数 3要小于除数, 个数是 4,6,12;(法 2)由于所得的余数相同,得到 个数一定能整除 三个数中的任意两数的差,也就是 它是任意两数差的公 数.51 39 12, 147 39 108 , (12,108) 12 ,所以 个数是 4,6,12 .【例 8】(2005 年全国小学数学奥林匹克 )有一个整数,用它去除70, 110, 160 所得到的 3 个余数之和是 50,那么 个整数是 ______.【解析】(70 110160) 50 290 , 503 16...... 2,除数 当是 290 的大于 17 小于70 的 数,只可能是29 和 58, 11058 1...... 52, 52 50 ,所以除数不是 58.7029 2, 110 29 3...... , 160 29 5...... , 1223 15 50 ,所以除数是29......12 23 15【巩固】 (2002 年全国小学数学奥林匹克 )用自然数n 去除 63, 91, 129 得到的三个余数之和25,那么 n=________.【解析】n 能整除 63 91 129 25 258 .因 25 3 8...1,所以 n 是 258 大于 8 的 数. 然, n 不能大于 63.符合条件的只有 43.【例 9】一个大于 10 的自然数去除 90、164 后所得的两个余数的和等于 个自然数去除 220 后所得的余数,个自然数是多少?【解析】 个自然数去除90、164 后所得的两个余数的和等于 个自然数去除 90 164 254 后所得的余数, 所以 254 和 220 除以 个自然数后所得的余数相同,因此 个自然数是 254220 34 的 数,又大 于 10, 个自然数只能是 17 或者是 34.如果 个数是34 ,那么它去除 90、 164、 220 后所得的余数分 是 22、28、 16,不符合 目条件; 如果 个数是17,那么他去除 90、164、220 后所得的余数分 是 5、11、16,符合 目条件,所以 个自然数是 17.【例 10】 甲、乙、丙三数分 603,939,393.某数 A 除甲数所得余数是A 除乙数所得余数的 2 倍, A 除 乙数所得余数是 A 除丙数所得余数的 2 倍.求 A 等于多少?【解析】 根据 意, 三个数除以 A 都有余数, 可以用 余除法的形式将它 表示出来:603 A K 1 L L r 1 939 AK 2 L L r 2 393 A K 3 L L r 3由于 r 12r 2 , r 22r 3 ,要消去余数 r 1 , r 2 , r 3 ,我 只能先把余数 理成相同的,再两数相减.我 先把第二个式子乘以2,使得被除数和余数都 大2 倍,同理,第三个式子乘以4.于是我 可以得到下面的式子:603 A K 1 L L r 1 939 2A 2 K 2 L L 2r 2 393 4 A 2K 3 L L 4r 3余数就 理成相同的.最后两两相减消去余数,意味着能被A 整除.939 2 603 1275 , 393 4603 969,1275,969 51 3 17 .51 的 数有1、3、 17、 51,其中1、3 然不 足, 17 和 51 可知 17 足,所以 A 等于 17. 【例 11】 (2003 年南京市少年数学智力冬令) 22003 与 20032 的和除以 7 的余数是 ________.【解析】 找 律.用7 除 2, 2 2, 2 3 , 2 4 , 2 5 , 2 6 , ⋯的余数分 是 2,4, 1, 2, 4, 1, 2, 4, 1, ⋯, 2 的个数是 3 的倍数 ,用7 除的余数 1; 2 的个数是 3 的倍数多 1 ,用 7 除的余数 2;2 的个数是 3 的倍数多 2 ,用 7 除的余数 4.因 2 2003 23 6672,所以 2 2003 除以 7 余 4.又两个数的除以 7 的余数,与两个数分 除以 7 所得余数的 相同.而 2003 除以 7 余 1,所以 20032除以 7 余1.故 22003与 20032 的和除以 7 的余数是 4 1 5 .【巩固】 22008 20082 除以 7 的余数是多少?【解析】 238除以 7 的余数 1, 20083 669 1 ,所以 2200823669+1(23 )6692 ,其除以 7 的余数 :66922 ; 2008 除以7 的余数2的余数等于27 的余数,1;所以16, 2008 除以 7 6 除以 2200820082 除以 7 的余数 : 21 3 .【例 12】 (2009 年走美初 六年)有一串数: 1,1, 2, 3, 5, 8, ⋯⋯,从第三个数起,每个数都是前两个 数之和,在 串数的前2009 个数中,有几个是 5 的倍数?【解析】 由于两个数的和除以 5 的余数等于 两个数除以 5 的余数之和再除以 5 的余数.所以 串数除以 5 的余数分 : 1, 1, 2,3, 0, 3,3, 1, 4, 0, 4, 4, 3, 2,0, 2, 2, 4, 1,0 ,1, 1, 2, 3, 0, ⋯⋯ 可以 串余数中,每 20 个数 一个循 ,且一个循 中,每 5 个数中第五个数是由于 2009 5 401L 4 ,所以前 2009 个数中,有 401 个是 5 的倍数.5 的倍数.【巩固】着名的裴波那契数列是 的:1、 1、2、3、 5、 8、 13、 21⋯⋯ 串数列当中第2008 个数除以 3所得的余数 多少?【解析】 斐波那契数列的构成 是从第三个数起每一个数都等于它前面两个数的和,由此可以根据余数定理将裴波那契数列 被 3 除所得余数的数列:1 、1、 2、 0、 2、 2、 1、 0、1、 1、 2、 0⋯⋯ 第九 和第十 两个是 1,与第一 和第二 的 相同且位置 ,所以裴波那契数列被 3 除 的余数每 8 个一个周期循 出 ,由于 2008 除以 8 的余数 0,所以第 2008 被 3 除所得的余数 第 8 被 3 除所得的余数, 0.【例 13】 (1997 年全国小学数学奥林匹克)将 12345678910111213......依次写到第 1997 个数字, 成一个1997 位数,那么此数除以 9 的余数是 ________.【解析】 本 第一步是要求出第 1997 个数字是什么,再 数字求和.1~9 共有 9 个数字, 10~99 共有 90 个两位数,共有数字: 90 2 180 (个 ), 100~999共 900 个三位数,共有数字: 900 3 2700 (个 ),所以数 写,不会写到 999,从 100 开始是 3 位数,每三个数字表示一个数, (1997 9 180) 3 602......2 ,即有 602 个三位数, 第 603 个三位数只写了它的百位和十位.从100 开始的第 602 个三位数是 701,第 603 个三位数是9,其中 2 未写出来.因9 个自然数之和能被 9 整除,所以排列起来的 9 个自然数也能被 9 整除, 702 个数能分成的 数是:702 9 78 ( ),依次排列后, 它仍然能被 9 整除,但 702 中 2 未写出来,所以余数 9-2 7 .【例 14】 有 2 个三位数相乘的 是一个五位数, 的后四位是 1031,第一个数各个位的数字之和是 10,第二个数的各个位数字之和是 8,求两个三位数的和 .【解析】 本 条件 出了两个乘数的数字之和,同 乘 的一部分已 出,即乘 的一部分数字之和已 出,我 可以采用弃九法原理的倒推来构造出原三位数.因 是一个一定正确的算式, 所以一定可以 足弃九法的条件,两个三位数除以 9 的余数分 1 和 8,所以等式一 除以9 的余数 8,那么□ 1031 除以 9 的余数也必 8,□只能是 3.将 31031 分解 因数 有一种情况可以 足是两个三位数的乘 ,即 31031 31 1001 143 217所以两个三位数是 143 和 217,那么两个三位数的和是360【例 15】20092009 的各位数字之和A , A 的各位数字之和B , B 的各位数字之和C , C 的各位数字之和 D ,那么 D ?9 的余数相同, 所以 20092009 与 A 、B 、C 、D【解析】 由于一个数除以9 的余数与它的各位数字之和除以除以 9 都同余,而 2009 除以 9 的余数 2, 20092009除以 9 的余数与 2 2009 除以 9 的余数相同,而 2664除以 9 的余数1,所以200926 334 56 33459 的余数 522 2 除以 2 除以 9 的余数,即 5.另一方面,由于 2009 2009 100002009 108036 ,所以 20092009 的位数不超 8036 位,那么它的各位数字之和不超 9 8036 72324 ,即 A ;那么A 的各位数字之和B 9 5 45 , B 的各位数字之72324C D 5和, 小于 18 且除以 9 的余数 5,那么 5 或 14, 的各位数字之和 5,即 .C 9 2 18 CC板块三 完全平方数【例 16】 从 1 到 2008 的所有自然数中,乘以 72 后是完全平方数的数共有多少个?【解析】 完全平方数,其所有 因数必定成 出 .而 72 23322 6 6 ,所以 足条件的数必 某个完全平方数的 2 倍,由于 2 31 31 1922 2008 2 3222、⋯⋯、 22都 足 意,即32 2048,所以 2 1 、 2 2 31 所求的 足条件的数共有31 个.【例 17】一个数减去100 是一个平方数,减去63 也是一个平方数,个数是多少?【解析】个数减去22, A2B2A B A B1006337 37 1,63 A,减去 100 B可知 A B 37 ,且 A B 1 ,所以 A19,B18,个数 182100424 .【巩固】能否找到么一个数,它加上24,和减去30所得的两个数都是完全平方数?【解析】假能找到,两个完全平方数分A2、 B 2 ,那么两个完全平方数的差54 A B A B ,由于 A B 和 A B的奇偶性相同,所以A B A B 不是 4的倍数,就是奇数,不可能是像54是偶数但不是 4 的倍数.所以54不可能等于两个平方数的差,那么中所的数是找不到的.【例 18】有 5 个自然数,它的和一个平方数,中三数的和立方数,五个数中最小数的最小.【解析】考平方数和立方数的知点,同涉及到数量少的自然数,未知数的候有技巧:一般是中的数,前后的数关于中的数是称的.中数是 x,它的和5x,中三数的和3x. 5x 是平方数,5x22, x2,5a5a3x 15a2 3 5 a 2是立方数,所以 a2至少含有 3和 5的因数各 2 个,即 a2至少是 225,中的数至少是1125,那么五个数中最小数的最小1123.板块四位值原理【例 19】 (美国小学数学奥林匹克)把一个两位数的十位与个位上的数字加以交,得到一个新的两位数.如果原来的两位数和交后的新的两位数的差是45,求的两位数中最大的是多少?【解析】原来的两位数ab ,交后的新的两位数ba ,根据意,ab ba (10a b)(10b a ) 9(a b) 45 ,a b 5 ,原两位数最大,十位数字至多9,即a9 ,b 4 ,原来的两位数中最大的是94.【巩固】将一个四位数的数字序倒来,得到一个新的四位数(个数也叫原数的反序数),新数比原数大8802.求原来的四位数.【解析】原数 abcd ,新数dcba,dcba abcd (1000d100c 10b a)(1000a 100b10c d)999( d a) 90(c b) .根据意,有 999( d a)90(c b)8802 , 111(d a)10 (c b)97888890 .推知 d a8 , c b9 ,得到 d9 , a 1, c9 , b0 ,原数1099.【例 20】 (第五届希望杯培)有 3个不同的数字,用它成 6 个不同的三位数,如果 6 个三位数的和是 1554,那么 3 个数字分是多少?【解析】六个不同的三位数abc,acb, bac,bca, cab, cba ,因 abc100a10b c , acb100a10c b ,⋯⋯,它的和是:222 (a b c)1554 ,所以a b c15542227 ,由于三个数字互不相同且均不0 ,所以三个数中小的两个数至少1, 2,而 7 (1 2) 4 ,所以最大的数最大4;又1 2 367 ,所以最大的数大于 3,所以最大的数4,其他两数分是1, 2.【巩固】 (迎春杯决 )有三个数字能成 6 个不同的三位数, 6 个三位数的和是2886,求所有的 6 个三位数中最小的三位数.【解析】三个数字分a、 b、 c,那么 6 个不同的三位数的和:abc acb bac bca cab cba2(a b c) 1002( a b c)102(a b c)222( a b c)所以 a b c 288622213,最小的三位数的百位数1,十位数尽可能地小,由于十位数与个位数之和一定,故个位数尽可能地大,最大9,此十位数13 19 3,所以所有的 6 个三位数中最小的三位数139.【巩固】 a , b , c 分别是 0 : 9 中不同的数码,用 a , b , c 共可组成六个三位数,如果其中五个三位数之和是2234 ,那么另一个三位数是几?【解析】 由 a , b , c 组成的六个数的和是 222 (a b c) .因为 2234 222 10 ,所以 a b c 10 .若 ab c 11,则所求数为 222 11 2234 208 ,但 2 0 8 10 11 ,不合题意. 若 a b c 12 ,则所求数为 222 12 2234 430 ,但 4 3 0 7 12 ,不合题意. 若 a b c 13 ,则所求数为 222 13 2234 652 , 6 5 2 13 ,符合题意.若 ab c14 ,则所求数为 222 14 2234 874 ,但 8 7 4 19 14 ,不合题意. 若 a bc 15 ,则所求数 222 15 2234 1096,但所求数为三位数,不合题意. 所以,只有 a b c 13时符合题意,所求的三位数为 652.板块五进制问题【例 21】 在几进制中有 4 13 100? 【解析】 利用尾数分析来解决这个问题:由于 (4)10(3)10 (12)10 ,由于式中为 100,尾数为 0,也就是说已经将12 全部进到上一位.所以说进位制 n 为 12 的约数,也就是 12, 6, 4,3, 2 中的一个. 但是式子中出现了 4,所以 n 要比 4 大,不可能是 4, 3, 2 进制. 另外,由于 (4)10 (13)10 (52)10 ,因为 52 100,也就是说不到 10 就已经进位,才能是 100,于是知道 n 10 ,那么 n 不能是 12.所以, n 只能是 6 .【 巩固】算式 1534 25 43214是几进制数的乘法?【解析】 注 意到尾数,在足够大的进位制中有乘积的个位数字为 4 5 20 ,但是现在为4 ,说明进走20 4 16 ,所以进位制为 16 的约数,可能为 16、 8、 4 或 2. 1534 25 38350 43214,所以在因为原式中有数字 5,所以不可能为 4、 2 进位,而在十进制中有 原式中不到 10 就有进位,即进位制小于 10,于是原式为 8 进制. 【例 22】 在 6 进制中有三位数 abc ,化为 9 进制为 cba ,求这个三位数在十进制中为多少 ?【解析】 (abc)6 =a × 62+ b × 6+c=36a+6b+c ; (cba)9=c × 92+b × 9+a=81c+9b+a ;所以 36a+6b+c=81c+9b+a ;于是 35a=3b+80c ;因为 35a 是 5 的倍数, 80c 也是 5 的倍数.所以 3b 也必须是 5 的倍数,又(3,5)=1.所 以, b=0 或 5.①当 b=0,则 35a=80c ;则 7a=16c ; (7,16)=1,并且 a 、c ≠ 0,所以 a=16, c=7.但是在 6,9 进制, 不可以有一个数字为 16.②当 b=5,则 35a=3× 5+80c ;则 7a=3+16c ;mod 7 后, 3+2c ≡ 0.所以 c=2 或者 2+7k(k 为整数 ).因为有 6 进制,所以不可能有 9 或者 9 以上的数, 于是 c=2;35a=15+80× 2,a=5.所以 (abc)6 =(552)6=5× 62+5× 6+2=212.这个三位数在十进制中为212.课后练习:练习 1. 三个质数的乘积恰好等于它们的和的 7 倍,求这三个质数.【解析】设这三个质数分别是a 、b 、c ,满足 abc 7( a b c) ,则可知 a 、 b 、 c 中必有一个为 7,不妨记 为 a ,那么 bc 7 b c ,整理得 (b 1)(c 1)8 ,又 8 1 8 2 4 ,对应的 b 、c 舍去 或 b 、2 9( )3 c5,所以这三个质数可能是 3, 5,7练习 2. 有一个大于 1 的整数,除 45,59,101 所得的余数相同,求这个数 .【解析】 这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据同余定理,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差 的公约数. 101 45 56 , 45 14 , 14 , 的约数有 1,2,7,14 ,所以这个数可能为 2,7,14.59 (56,14) 14 练习 3. 将 1 至 2008这 2008 个 自 然 数 , 按 从 小 到 大 的 次 序 依 次 写 出 , 得 一 个 多 位 数 :12345678910111213 L20072008,试求这个多位数除以9 的余数.【解析】 以 19992000 这个八位数为例,它被 9 除的余数等于1 9 9 92 00 0 被 9 除的余数,但是由于 1999 与 1 9 9 9 被 9 除的余数相同, 2000 与 2 00 被 9 除的余数相同, 所以 19992000就与 19992000 被 9 除的余数相同.由此可得,从 1 开始的自然数 12345678910111213 L 20072008被 9 除的余数与前 2008 个自然数之 和除以 9 的余数相同.根据等差数列求和公式, 个和 : 1 2008 2008 9 除的余数 1.2 2017036 ,它被另外 可以利用9 个自然数之和必能被 9 整除 个性 ,将原多位数分成 123456789 , 101112131415161718 ,⋯⋯, 199920002001200220032004200520062007,2008 等数,可 它被9 除的余数与 2008 被 9 除的余数相同. 因此,此数被9 除的余数 1.4. 在 7 制中有三位数 abc ,化 9 制 cba ,求 个三位数在十 制中 多少?【解析】 首先 原 十 制:(abc )7a 72b 7c 49a 7b c ; (cba)9c92 b9 a 81c 9ba .于是 49a 7b c 81c 9b a ;得到 48a 80c 2b ,即 24a 40c b .因 24a 是 8 的倍数, 40c 也是 8 的倍数,所以 b 也 是8 的倍数,于是 b 0 或 8.但是在 7 制下,不可能有 8 个数字.于是 b 0 , 24a 40c , 3a 5c .所以 a 5 的倍数, c 3 的倍数.所以, a 0 或 5,但是,首位不可以是 0,于是 a 5 , c3 ;所以 (abc)7 (503)7 5 49 3 248 .于是, 个三位数在十 制中248.月 :【 1】某 数加6 或减 6 得到的数仍是 数,在50 以内你能找出几个 的 数?把它 写出来.【解析】 有六个 的数,分 是11,13, 17, 23,37, 47.【 2】 (2002 年全国小学数学奥林匹克)两数相除,商 4 余 8,被除数、除数、商数、余数四数之和等于 415, 被除数是 _______.(415 48 8)(4 1) 79【解析】 因 被除数减去8 后是除数的,4 倍,所以根据和倍 可知, 除数所以,被除数 79 4 8 324.【 3】 1016 与正整数 a 的乘 是一个完全平方数, a 的最小 是 ________.【解析】 先将 1016分解 因数: 1016 31016 a 是一个完全平方数,所以至少 422 127 ,由于 2 127 ,故a 最小 2127 254.【4】在几 制中有 125 125 16324?【解析】 注 意 (125)10 (125)10 (15625)10 ,因 1562516324,所以一定是不到10 就已 位,才能得到16324,所以 n 10.再注意尾数分析,(5)10(5)10 (25)10 ,而 16324 的末位4,于是 254 21 到上一位.所以 位制 n21 的 数,又小于 10,也就是可能7 或 3.因 出 了6,所以 n只能是 7.。

部编版数学六年级上册第11讲.进位制进阶

部编版数学六年级上册第11讲.进位制进阶

第11讲六年级暑期数论中的计数六年级秋季数论中的规律六年级秋季进位制进阶六年级寒假数论模块综合选讲(一)六年级春季数论模块综合选讲(二)掌握进位制间的相互转化,利用n进制解决数论相关问题漫画释义知识站牌1.掌握进制间的互化,尤其是特殊进制间的简便互化;2.掌握用进位制的思想解决问题;3.探索其他进制下小数的意义.二进制在计算机中的运用由于人的双手有十个手指,人类发明了十进位制记数法.然而,十进位制和电子计算机却没有天然的联系,所以在计算机的理论和应用中难以畅通无阻.究竟为什么十进位制和计算机没有天然的联系?和计算机联系最自然的计数方法又是什么呢?这要从计算机的工作原理说起.计算机的运行要靠电流,对于一个电路节点而言,电流通过的状态只有两个:通电和断电.计算机信息存储用硬磁盘和软磁盘,对于磁盘上的每一个记录点而言,也只有两个状态:磁化和未磁化.近年来用光盘记录信息的做法也越来越普遍,光盘上每一个信息点的物理状态有两个:凹和凸,分别起着聚光和散光的作用.由此可见,计算机所使用的各种介质所能表现的都是两种状态,如果要记录十进位制的一位数,至少要有四个记录点(可有十六个信息状态),但此时又有六个信息状态闲置,这势必造成资源和资金的大量浪费.因此,十进位制不适合于作为计算机工作的数字进位制.那么该用什么样的进位制呢?人们从十进位制的发明中得到启示:既然每种介质都是具有两个状态的,最自然的进位制当然是二进位制.二进位制所需要的计数的基本符号只要两个,即0和1.可以用1表示通电,0表示断电;或1表示磁化,0表示未磁化;或1表示凹点,0表示凸点.总之,二进位制的一个数位正好对应计算机介质的一个信息记录点.用计算机科学的语言,二进位制的一个数位称为一个比特(bit ),8个比特称为一个字节(byte ).那么生活中常用的十进制数在计算机中是怎么用二进制表示呢?一、进制的认识我们常用的进制为十进制,特点是“逢十进一”。

六年级奥数讲义-数论综合(含答案)

六年级奥数讲义-数论综合(含答案)

学科培优数学“数论综合”学生姓名授课日期教师姓名授课时长数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。

数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。

因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。

任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。

”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。

涉及知识点多、解题过程比较复杂的整数综合题,以及基本依靠数论手段求解的其他类型问题.【题目】己知五个数依次是13,12, 15, 25,20它们每相邻的两个数相乘得四个数,这四个数每相邻的两个数相乘得三个数,这三个数每相邻的两个数相乘得两个数,这两个数相乘得一个数。

请问最后这个数从个位起向左数、可以连续地数到几个0?【题目】有4个不同的自然数,它们当中任意2个数的和是2的倍数,任意3个数的和是3的倍数.为了使得这4个数的和尽可能地小,这4个数分别是多少?【题目】将数字4,5,6,7,8,9各使用一次,组成一个被667整除的6位数,那么,这个6位数除以667的结果是.【题目】在小于5000的自然数中,能被11整除,并且数字和为13的数,共有多少个?【题目】从1,2,3,……n中,任取57个数,使这57个数必有两个数的差为13,则n的最大值为_______。

【题目】一个自然数与自身相乘的结果称为完全平方数。

已知一个完全平方数是四位数,且各位数字均小于7。

如果把组成它的数字都加上3,便得到另外一个完全平方数,求原来的四位数。

【题目】4个不同的真分数的分子都是1,它们的分母有2个是奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等.这样的奇数和偶数很多,小明希望这样的2个偶数之和尽量地小,那么这个和的最小可能值是多少?【题目】有一电话号码是 ABC-DEF-GHIJ ,其中每个字母代表一个不同的数字。

高斯小学奥数六年级下册含答案第11讲_数论综合练习

高斯小学奥数六年级下册含答案第11讲_数论综合练习

5. (1) 答案:12 •解答:要被 72 整除,要求同时是 8 和 9 的倍数•由 8 的整除性,说明 23b 是 8 的倍数,b 2 •由 9 的
整除性质,说明 a 1 2
3 2 是 9 的倍数,a 1 •
(2) 答案:36.解答:由 10 20 b 1 a2 10 20 63 ab 是 99 的倍数,所以 ab 36 .
n 3 两数互质,因而两个数中必有一个数是
8 的倍数,也
必有一个数是 25 的倍数•于是有四种情形:
84n
25 n 3
、 8n 3 、 84 n 、
25 4 n 25 4 n 25 n
8 n 3 •每种情形对应的
3
最小 n 的值分别是 28、171、196、203 .所以所求的最小值是 28.
9
3
的小数部分即可,小数部分之和为
■ 12,所以结果为-.
99 9
9
3.
答案:4 •解答:Z 0&3571 草,是循环小数,循环节长度是 6 •小数点后第 2010 个数字是 4.
4. 答案:16、4896 .解答:
2010 2 3 5 67,约数有 1
1
7
1 67 4896 .
1 1 1 1 16 个,约数之和是
6. 6400,那么这两个自
然数的和是 _________•
两个自然数的最大公约数是 100,最小公倍数是 20100,这两个自然数的差是
7._____________________________________________________ 已知 a 是质数,b 是偶数,且 a2 b 2010, 则 a b ____________________________________________________

六年级奥数-第十一讲.数论综合(二).教师版

六年级奥数-第十一讲.数论综合(二).教师版

第十一讲 数论综合(二)教学目标:1、 掌握质数合数、完全平方数、位值原理、进制问题的常见题型;2、 重点理解和掌握余数部分的相关问题,理解“将不熟悉转化成熟悉”的数学思想例题精讲:板块一 质数合数【例 1】 有三张卡片,它们上面各写着数字1,2,3,从中抽出一张、二张、三张,按任意次序排列出来,可以得到不同的一位数、二位数、三位数,请你将其中的质数都写出来.【解析】 抽一张卡片,可写出一位数1,2,3;抽两张卡片,可写出两位数12,13,21,23,31,32;抽三张卡片,可写出三位数123,132,213,231,312,321,其中三位数的数字和均为6,都能被3整除,所以都是合数.这些数中,是质数的有:2,3,13,23,31.【例 2】 三个质数的乘积恰好等于它们和的11倍,求这三个质数.【解析】 设这三个质数分别是a 、b 、c ,满足11abc a b c =++(),则可知a 、b 、c 中必有一个为11,不妨记为a ,那么11bc b c =++,整理得(1b -)(1c -)12=,又121122634=⨯=⨯=⨯,对应的2b =、13c =或3b =、7c =或4b =、5c = (舍去),所以这三个质数可能是2,11,13或3,7,11.【例 3】 用1,2,3,4,5,6,7,8,9这9个数字组成质数,如果每个数字都要用到并且只能用一次,那么这9个数字最多能组成多少个质数?【解析】 要使质数个数最多,我们尽量组成一位的质数,有2、3、5、7均为一位质数,这样还剩下1、4、6、8、9这5个不是质数的数字未用.有1、4、8、9可以组成质数41、89,而6可以与7组合成质数67.所以这9个数字最多可以组成6个质数.【例 4】 有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数.求这两个整数分别是多少?【解析】 两位数中,数字相同的两位数有11、22、33、44、55、66、77、88、99共九个,它们中的每个数都可以表示成两个整数相加的形式,例如331322313301617=+=+=+==+ ,共有16种形式,如果把每个数都这样分解,再相乘,看哪两个数的乘积是三个数字相同的三位数,显然太繁琐了.可以从乘积入手,因为三个数字相同的三位数有111、222、333、444、555、666、777、888、999,每个数都是111的倍数,而111373=⨯,因此把这九个数表示成一个两位数与一个一位数或两个两位数相乘时,必有一个因数是37或37的倍数,但只能是37的2倍(想想为什么?)3倍就不是两位数了.把九个三位数分解:111373=⨯、222376743=⨯=⨯、333379=⨯、4443712746=⨯=⨯、5553715=⨯、6663718749=⨯=⨯、7773721=⨯、88837247412=⨯=⨯、9993727=⨯.把两个因数相加,只有(743+)77=和(3718+)55=的两位数字相同.所以满足题意的答案是74和3,37和18.板块二 余数问题【例 5】 (2003年全国小学数学奥林匹克试题)有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是多少?【解析】 被除数+除数+商+余数=被除数+除数+17+13=2113,所以被除数+除数=2083,由于被除数是除数的17倍还多13,则由“和倍问题”可得:除数=(2083-13)÷(17+1)=115,所以被除数=2083-115=1968.【例 6】 已知2008被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个?【解析】 本题为一道余数与约数个数计算公式的小综合性题目.由题意所求的自然数一定是2008-10即1998的约数,同时还要满足大于10这个条件.这样题目就转化为1998有多少个大于10的约数,319982337=⨯⨯,共有(1+1)×(3+1)×(1+1)=16个约数,其中1,2,3,6,9是比10小的约数,所以符合题目条件的自然数共有11个.【例 7】 有一个整数,除39,51,147所得的余数都是3,求这个数.【解析】 (法1) 39336-=,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,14739108-=,(12,108)12=,所以这个数是4,6,12.【例 8】 (2005年全国小学数学奥林匹克试题)有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是______.【解析】(70110160)50290++-=,50316......2÷=,除数应当是290的大于17小于70的约数,只可能是29和58,11058 1......52÷=,5052>,所以除数不是58.7029 2......12÷=,11029 3......23÷=,16029 5......15÷=,50152312=++,所以除数是29【巩固】 (2002年全国小学数学奥林匹克试题)用自然数n 去除63,91,129得到的三个余数之和为25,那么n=________.【解析】 n 能整除258251299163=-++.因为2538...1÷=,所以n 是258大于8的约数.显然,n 不能大于63.符合条件的只有43.【例 9】 一个大于10的自然数去除90、164后所得的两个余数的和等于这个自然数去除220后所得的余数,则这个自然数是多少?【解析】 这个自然数去除90、164后所得的两个余数的和等于这个自然数去除90164254+=后所得的余数,所以254和220除以这个自然数后所得的余数相同,因此这个自然数是25422034-=的约数,又大于10,这个自然数只能是17或者是34.如果这个数是34,那么它去除90、164、220后所得的余数分别是22、28、16,不符合题目条件;如果这个数是17,那么他去除90、164、220后所得的余数分别是5、11、16,符合题目条件,所以这个自然数是17.【例 10】 甲、乙、丙三数分别为603,939,393.某数A 除甲数所得余数是A 除乙数所得余数的2倍,A 除乙数所得余数是A 除丙数所得余数的2倍.求A 等于多少?【解析】 根据题意,这三个数除以A 都有余数,则可以用带余除法的形式将它们表示出来:11603A K r ÷= 22939A K r ÷= 33393A K r ÷=由于122r r =,232r r =,要消去余数1r , 2r , 3r ,我们只能先把余数处理成相同的,再两数相减.这样我们先把第二个式子乘以2,使得被除数和余数都扩大2倍,同理,第三个式子乘以4.于是我们可以得到下面的式子:11603A K r ÷= ()22939222A K r ⨯÷= ()33393424A K r ⨯÷=这样余数就处理成相同的.最后两两相减消去余数,意味着能被A 整除.93926031275⨯-=,3934603969⨯-=,()1275,96951317==⨯.51的约数有1、3、17、51,其中1、3显然不满足,检验17和51可知17满足,所以A 等于17.【例 11】 (2003年南京市少年数学智力冬令营试题) 20032与22003的和除以7的余数是________.【解析】 找规律.用7除2,22,32,42,52,62,...的余数分别是2,4,1,2,4,1,2,4,1, (2)个数是3的倍数时,用7除的余数为1;2的个数是3的倍数多1时,用7除的余数为2;2的个数是3的倍数多2时,用7除的余数为4.因为20033667222⨯+=,所以20032除以7余4.又两个数的积除以7的余数,与两个数分别除以7所得余数的积相同.而2003除以7余1,所以22003除以7余1.故20032与22003的和除以7的余数是415+=.【巩固】2008222008+除以7的余数是多少? 【解析】328=除以7的余数为1,200836691=⨯+,所以200836691366922(2)2⨯==⨯+,其除以7的余数为:669122⨯=;2008除以7的余数为6,则22008除以7的余数等于26除以7的余数,为1;所以2008222008+除以7的余数为:213+=.【例 12】 (2009年走美初赛六年级)有一串数:1,1,2,3,5,8,……,从第三个数起,每个数都是前两个数之和,在这串数的前2009个数中,有几个是5的倍数?【解析】 由于两个数的和除以5的余数等于这两个数除以5的余数之和再除以5的余数.所以这串数除以5的余数分别为:1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,3,0,……可以发现这串余数中,每20个数为一个循环,且一个循环中,每5个数中第五个数是5的倍数.由于200954014÷= ,所以前2009个数中,有401个是5的倍数.【巩固】著名的裴波那契数列是这样的:1、1、2、3、5、8、13、21……这串数列当中第2008个数除以3所得的余数为多少?【解析】 斐波那契数列的构成规则是从第三个数起每一个数都等于它前面两个数的和,由此可以根据余数定理将裴波那契数列转换为被3除所得余数的数列:1、1、2、0、2、2、1、0、1、1、2、0……第九项和第十项连续两个是1,与第一项和第二项的值相同且位置连续,所以裴波那契数列被3除的余数每8个一个周期循环出现,由于2008除以8的余数为0,所以第2008项被3除所得的余数为第8项被3除所得的余数,为0.【例 13】 (1997年全国小学数学奥林匹克试题)将12345678910111213......依次写到第1997个数字,组成一个1997位数,那么此数除以9的余数是 ________.【解析】 本题第一步是要求出第1997个数字是什么,再对数字求和.19~共有9个数字,1099~共有90个两位数,共有数字:902180⨯= (个), 100999~共900个三位数,共有数字:90032700⨯= (个),所以数连续写,不会写到999,从100开始是3位数,每三个数字表示一个数,(19979180)3602......2--÷=,即有602个三位数,第603个三位数只写了它的百位和十位.从100开始的第602个三位数是701,第603个三位数是9,其中2未写出来.因为连续9个自然数之和能被9整除,所以排列起来的9个自然数也能被9整除,702个数能分成的组数是:702978÷= (组),依次排列后,它仍然能被9整除,但702中2未写出来,所以余数为9-27 =.【例 14】 有2个三位数相乘的积是一个五位数,积的后四位是1031,第一个数各个位的数字之和是10,第二个数的各个位数字之和是8,求两个三位数的和.【解析】 本题条件仅给出了两个乘数的数字之和,同时发现乘积的一部分已经给出,即乘积的一部分数字之和已经给出,我们可以采用弃九法原理的倒推来构造出原三位数.因为这是一个一定正确的算式,所以一定可以满足弃九法的条件,两个三位数除以9的余数分别为1和8,所以等式一边除以9的余数为8,那么□1031除以9的余数也必须为8,□只能是3.将31031分解质因数发现仅有一种情况可以满足是两个三位数的乘积,即31031311001143217=⨯=⨯所以两个三位数是143和217,那么两个三位数的和是360【例 15】 设20092009的各位数字之和为A ,A 的各位数字之和为B ,B 的各位数字之和为C ,C 的各位数字之和为D ,那么D =?【解析】 由于一个数除以9的余数与它的各位数字之和除以9的余数相同,所以20092009与A 、B 、C 、D 除以9都同余,而2009除以9的余数为2,则20092009除以9的余数与20092除以9的余数相同,而6264=除以9的余数为1,所以()334200963345652222⨯+==⨯除以9的余数为52除以9的余数,即为5.另一方面,由于20092009803620091000010<=,所以20092009的位数不超过8036位,那么它的各位数字之和不超过9803672324⨯=,即72324A ≤;那么A 的各位数字之和9545B <⨯=,B 的各位数字之和9218C <⨯=,C 小于18且除以9的余数为5,那么C 为5或14,C 的各位数字之和为5,即5D =.板块三 完全平方数【例 16】 从1到2008的所有自然数中,乘以72后是完全平方数的数共有多少个?【解析】 完全平方数,其所有质因数必定成对出现.而327223266=⨯=⨯⨯,所以满足条件的数必为某个完全平方数的2倍,由于2313119222008232322048⨯⨯=<<⨯⨯=,所以221⨯、222⨯、……、2231⨯都满足题意,即所求的满足条件的数共有31个.【例 17】 一个数减去100是一个平方数,减去63也是一个平方数,问这个数是多少?【解析】 设这个数减去63为2A ,减去100为2B ,则()()221006337371A B A B A B -=+-=-==⨯,可知37A B +=,且1A B -=,所以19A =,18B =,这样这个数为218100424+=.【巩固】 能否找到这么一个数,它加上24,和减去30所得的两个数都是完全平方数?【解析】 假设能找到,设这两个完全平方数分别为2A 、2B ,那么这两个完全平方数的差为()()54A B A B =+-,由于()A B +和()A B -的奇偶性质相同,所以()()A B A B +-不是4的倍数,就是奇数,不可能是像54这样是偶数但不是4的倍数.所以54不可能等于两个平方数的差,那么题中所说的数是找不到的.【例 18】 有5个连续自然数,它们的和为一个平方数,中间三数的和为立方数,则这五个数中最小数的最小值为 .【解析】 考查平方数和立方数的知识点,同时涉及到数量较少的连续自然数问题,设未知数的时候有技巧:一般是设中间的数,这样前后的数关于中间的数是对称的.设中间数是x ,则它们的和为5x , 中间三数的和为3x .5x 是平方数,设2255x a =⨯,则25x a =,2231535x a a ==⨯⨯是立方数,所以2a 至少含有3和5的质因数各2个, 即2a 至少是225,中间的数至少是1125,那么这五个数中最小数的最小值为1123.板块四 位值原理【例 19】 (美国小学数学奥林匹克)把一个两位数的十位与个位上的数字加以交换,得到一个新的两位数.如果原来的两位数和交换后的新的两位数的差是45,试求这样的两位数中最大的是多少?【解析】 设原来的两位数为ab ,交换后的新的两位数为ba ,根据题意,(10)(10)9()45ab ba a b b a a b -=+--=-=,5a b -=,原两位数最大时,十位数字至多为9,即9a =,4b =,原来的两位数中最大的是94.【巩固】 将一个四位数的数字顺序颠倒过来,得到一个新的四位数(这个数也叫原数的反序数),新数比原数大8802.求原来的四位数.【解析】 设原数为abcd ,则新数为dcba ,(100010010)(100010010)999()90()dcba abcd d c b a a b c d d a c b -=+++-+++=-+-.根据题意,有999()90()8802d a c b -+-=,111()10()97888890d a c b ⨯-+⨯-==+.推知8d a -=,9c b -=,得到9d =,1a =,9c =,0b =,原数为1099.【例 20】 (第五届希望杯培训试题)有3个不同的数字,用它们组成6个不同的三位数,如果这6个三位数的和是1554,那么这3个数字分别是多少?【解析】 设这六个不同的三位数为,,,,,abc acb bac bca cab cba , 因为10010abc a b c =++,10010acb a c b =++,……,它们的和是:222()1554a b c ⨯++=,所以15542227a b c ++=÷=,由于这三个数字互不相同且均不为0,所以这三个数中较小的两个数至少为1,2,而7(12)4-+=,所以最大的数最大为4;又12367++=<,所以最大的数大于3,所以最大的数为4,其他两数分别是1,2.【巩固】 (迎春杯决赛)有三个数字能组成6个不同的三位数,这6个三位数的和是2886,求所有这样的6个三位数中最小的三位数.【解析】 设三个数字分别为a 、b 、c ,那么6个不同的三位数的和为:2()1002()102()222()abc acb bac bca cab cba a b c a b c a b c a b c +++++=++⨯+++⨯+++=⨯++所以288622213a b c ++=÷=,最小的三位数的百位数应为1,十位数应尽可能地小,由于十位数与个位数之和一定,故个位数应尽可能地大,最大为9,此时十位数为13193--=,所以所有这样的6个三位数中最小的三位数为139.【巩固】 a ,b ,c 分别是09 中不同的数码,用a ,b ,c 共可组成六个三位数,如果其中五个三位数之和是2234,那么另一个三位数是几?【解析】 由a ,b ,c 组成的六个数的和是222()a b c ⨯++.因为223422210>⨯,所以10a b c ++>.若11a b c ++=,则所求数为222112234208⨯-=,但2081011++=≠,不合题意.若12a b c ++=,则所求数为222122234430⨯-=,但430712++=≠,不合题意.若13a b c ++=,则所求数为222132234652⨯-=,65213++=,符合题意.若14a b c ++=,则所求数为222142234874⨯-=,但8741914++=≠,不合题意.若15a b c ++≥,则所求数2221522341096≥⨯-=,但所求数为三位数,不合题意.所以,只有13a b c ++=时符合题意,所求的三位数为652.板块五 进制问题【例 21】 在几进制中有413100⨯=?【解析】 利用尾数分析来解决这个问题:由于101010(4)(3)(12)⨯=,由于式中为100,尾数为0,也就是说已经将12全部进到上一位.所以说进位制n 为12的约数,也就是12,6,4,3,2中的一个.但是式子中出现了4,所以n 要比4大,不可能是4,3,2进制.另外,由于101010(4)(13)(52)⨯=,因为52100<,也就是说不到10就已经进位,才能是100,于是知道10n <,那么n 不能是12.所以,n 只能是6.【巩固】 算式153********⨯=是几进制数的乘法?【解析】 注意到尾数,在足够大的进位制中有乘积的个位数字为4520⨯=,但是现在为4,说明进走20416-=,所以进位制为16的约数,可能为16、8、4或2.因为原式中有数字5,所以不可能为4、2进位,而在十进制中有1534253835043214⨯=<,所以在原式中不到10就有进位,即进位制小于10,于是原式为8进制.【例 22】 在6进制中有三位数abc ,化为9进制为cba ,求这个三位数在十进制中为多少?【解析】 (abc )6 =a ×62+b ×6+c=36a+6b+c ;(cba )9=c ×92+b ×9+a=81c+9b+a ;所以36a+6b+c=81c+9b+a ;于是35a=3b+80c ;因为35a 是5的倍数,80c 也是5的倍数.所以3b 也必须是5的倍数,又(3,5)=1.所以,b=0或5.①当b=0,则35a=80c ;则7a=16c ;(7,16)=1,并且a 、c ≠0,所以a=16,c=7.但是在6,9进制,不可以有一个数字为16.②当b=5,则35a=3×5+80c ;则7a=3+16c ;mod 7后,3+2c ≡0.所以c=2或者2+7k (k 为整数).因为有6进制,所以不可能有9或者9以上的数,于是c=2;35a=15+80×2,a=5.所以(abc )6 =(552)6 =5×62+5×6+2=212.这个三位数在十进制中为212.课后练习:练习 1. 三个质数的乘积恰好等于它们的和的7倍,求这三个质数.【解析】 设这三个质数分别是a 、b 、c ,满足7()abc a b c =++,则可知a 、b 、c 中必有一个为7,不妨记为a ,那么7bc b c =++,整理得(1)(1)8b c --=,又81824=⨯=⨯,对应的b =2、c =9(舍去)或b =3、c =5,所以这三个质数可能是3,5,7练习 2. 有一个大于1的整数,除45,59,101所得的余数相同,求这个数.【解析】 这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据同余定理,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.1014556-=,594514-=,(56,14)14=,14的约数有1,2,7,14,所以这个数可能为2,7,14.练习 3. 将1至2008这2008个自然数,按从小到大的次序依次写出,得一个多位数:12345678910111213 20072008,试求这个多位数除以9的余数.【解析】 以19992000这个八位数为例,它被9除的余数等于()19992000+++++++被9除的余数,但是由于1999与()1999+++被9除的余数相同,2000与()2000+++被9除的余数相同,所以19992000就与()19992000+被9除的余数相同.由此可得,从1开始的自然数12345678910111213 20072008被9除的余数与前2008个自然数之和除以9的余数相同.根据等差数列求和公式,这个和为:()12008200820170362+⨯=,它被9除的余数为1.另外还可以利用连续9个自然数之和必能被9整除这个性质,将原多位数分成123456789,101112131415161718,……,199920002001200220032004200520062007,2008等数,可见它被9除的余数与2008被9除的余数相同.因此,此数被9除的余数为1.练习 4. 在7进制中有三位数abc ,化为9进制为cba ,求这个三位数在十进制中为多少?【解析】 首先还原为十进制:27()77497abc a b c a b c =⨯+⨯+=++;29()99819cba c b a c b a =⨯+⨯+=++.于是497819a b c c b a ++=++;得到48802a c b =+,即2440a c b =+.因为24a 是8的倍数,40c 也是8的倍数,所以b 也应该是8的倍数,于是0b =或8.但是在7进制下,不可能有8这个数字.于是0b =,2440a c =,则35a c =.所以a 为5的倍数,c 为3的倍数.所以,0a =或5,但是,首位不可以是0,于是5a =,3c =;所以77()(503)5493248abc ==⨯+=.于是,这个三位数在十进制中为248.月测备选:【备选1】某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?把它们写出来.【解析】 有六个这样的数,分别是11,13,17,23,37,47.【备选2】(2002年全国小学数学奥林匹克试题)两数相除,商4余8,被除数、除数、商数、余数四数之和等于415,则被除数是_______.【解析】 因为被除数减去8后是除数的4倍,所以根据和倍问题可知,除数为7914884415=+÷---)()(,所以,被除数为3248479=+⨯.【备选3】1016与正整数a 的乘积是一个完全平方数,则a 的最小值是________.【解析】 先将1016分解质因数:310162127=⨯,由于1016a ⨯是一个完全平方数,所以至少为422127⨯,故a最小为2127254⨯=.【备选4】在几进制中有12512516324⨯=?【解析】 注意101010(125)(125)(15625)⨯=,因为1562516324<,所以一定是不到10就已经进位,才能得到16324,所以10n <.再注意尾数分析,101010(5)(5)(25)⨯=,而16324的末位为4,于是25421-=进到上一位.所以说进位制n 为21的约数,又小于10,也就是可能为7或3.因为出现了6,所以n 只能是7.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一讲 数论综合(二)教学目标:1、 掌握质数合数、完全平方数、位值原理、进制问题的常见题型;2、 重点理解和掌握余数部分的相关问题,理解“将不熟悉转化成熟悉”的数学思想例题精讲:板块一 质数合数【例 1】 有三张卡片,它们上面各写着数字1,2,3,从中抽出一张、二张、三张,按任意次序排列出来,可以得到不同的一位数、二位数、三位数,请你将其中的质数都写出来.【解析】 抽一张卡片,可写出一位数1,2,3;抽两张卡片,可写出两位数12,13,21,23,31,32;抽三张卡片,可写出三位数123,132,213,231,312,321,其中三位数的数字和均为6,都能被3整除,所以都是合数.这些数中,是质数的有:2,3,13,23,31.【例 2】 三个质数的乘积恰好等于它们和的11倍,求这三个质数.【解析】 设这三个质数分别是a 、b 、c ,满足11abc a b c =++(),则可知a 、b 、c 中必有一个为11,不妨记为a ,那么11bc b c =++,整理得(1b -)(1c -)12=,又121122634=⨯=⨯=⨯,对应的2b =、13c =或3b =、7c =或4b =、5c = (舍去),所以这三个质数可能是2,11,13或3,7,11.【例 3】 用1,2,3,4,5,6,7,8,9这9个数字组成质数,如果每个数字都要用到并且只能用一次,那么这9个数字最多能组成多少个质数?【解析】 要使质数个数最多,我们尽量组成一位的质数,有2、3、5、7均为一位质数,这样还剩下1、4、6、8、9这5个不是质数的数字未用.有1、4、8、9可以组成质数41、89,而6可以与7组合成质数67.所以这9个数字最多可以组成6个质数.【例 4】 有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数.求这两个整数分别是多少?【解析】 两位数中,数字相同的两位数有11、22、33、44、55、66、77、88、99共九个,它们中的每个数都可以表示成两个整数相加的形式,例如331322313301617=+=+=+==+,共有16种形式,如果把每个数都这样分解,再相乘,看哪两个数的乘积是三个数字相同的三位数,显然太繁琐了.可以从乘积入手,因为三个数字相同的三位数有111、222、333、444、555、666、777、888、999,每个数都是111的倍数,而111373=⨯,因此把这九个数表示成一个两位数与一个一位数或两个两位数相乘时,必有一个因数是37或37的倍数,但只能是37的2倍(想想为什么?)3倍就不是两位数了.把九个三位数分解:111373=⨯、222376743=⨯=⨯、333379=⨯、4443712746=⨯=⨯、5553715=⨯、6663718749=⨯=⨯、7773721=⨯、88837247412=⨯=⨯、9993727=⨯.把两个因数相加,只有(743+)77=和(3718+)55=的两位数字相同.所以满足题意的答案是74和3,37和18.板块二 余数问题【例 5】 (2003年全国小学数学奥林匹克试题)有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是多少?【解析】 被除数+除数+商+余数=被除数+除数+17+13=2113,所以被除数+除数=2083,由于被除数是除数的17倍还多13,则由“和倍问题”可得:除数=(2083-13)÷(17+1)=115,所以被除数=2083-115=1968.【例 6】 已知2008被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个?【解析】 本题为一道余数与约数个数计算公式的小综合性题目.由题意所求的自然数一定是2008-10即1998的约数,同时还要满足大于10这个条件.这样题目就转化为1998有多少个大于10的约数,319982337=⨯⨯,共有(1+1)×(3+1)×(1+1)=16个约数,其中1,2,3,6,9是比10小的约数,所以符合题目条件的自然数共有11个.【例 7】 有一个整数,除39,51,147所得的余数都是3,求这个数.【解析】 (法1) 39336-=,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,14739108-=,(12,108)12=,所以这个数是4,6,12.【例 8】 (2005年全国小学数学奥林匹克试题)有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是______.【解析】 (70110160)50290++-=,50316......2÷=,除数应当是290的大于17小于70的约数,只可能是29和58,11058 1......52÷=,5052>,所以除数不是58.7029 2......12÷=,11029 3......23÷=,16029 5......15÷=,50152312=++,所以除数是29【巩固】 (2002年全国小学数学奥林匹克试题)用自然数n 去除63,91,129得到的三个余数之和为25,那么n=________.【解析】 n 能整除258251299163=-++.因为2538...1÷=,所以n 是258大于8的约数.显然,n 不能大于63.符合条件的只有43.【例 9】 一个大于10的自然数去除90、164后所得的两个余数的和等于这个自然数去除220后所得的余数,则这个自然数是多少?【解析】 这个自然数去除90、164后所得的两个余数的和等于这个自然数去除90164254+=后所得的余数,所以254和220除以这个自然数后所得的余数相同,因此这个自然数是25422034-=的约数,又大于10,这个自然数只能是17或者是34.如果这个数是34,那么它去除90、164、220后所得的余数分别是22、28、16,不符合题目条件;如果这个数是17,那么他去除90、164、220后所得的余数分别是5、11、16,符合题目条件,所以这个自然数是17.【例 10】 甲、乙、丙三数分别为603,939,393.某数A 除甲数所得余数是A 除乙数所得余数的2倍,A 除乙数所得余数是A 除丙数所得余数的2倍.求A 等于多少?【解析】 根据题意,这三个数除以A 都有余数,则可以用带余除法的形式将它们表示出来:11603A K r ÷= 22939A K r ÷= 33393A K r ÷=由于122r r =,232r r =,要消去余数1r , 2r , 3r ,我们只能先把余数处理成相同的,再两数相减.这样我们先把第二个式子乘以2,使得被除数和余数都扩大2倍,同理,第三个式子乘以4.于是我们可以得到下面的式子:11603A K r ÷= ()22939222A K r ⨯÷= ()33393424A K r ⨯÷=这样余数就处理成相同的.最后两两相减消去余数,意味着能被A 整除.93926031275⨯-=,3934603969⨯-=,()1275,96951317==⨯.51的约数有1、3、17、51,其中1、3显然不满足,检验17和51可知17满足,所以A 等于17.【例 11】 (2003年南京市少年数学智力冬令营试题) 20032与22003的和除以7的余数是________.【解析】 找规律.用7除2,22,32,42,52,62,…的余数分别是2,4,1,2,4,1,2,4,1,…,2的个数是3的倍数时,用7除的余数为1;2的个数是3的倍数多1时,用7除的余数为2;2的个数是3的倍数多2时,用7除的余数为4.因为20033667222⨯+=,所以20032除以7余4.又两个数的积除以7的余数,与两个数分别除以7所得余数的积相同.而2003除以7余1,所以22003除以7余1.故20032与22003的和除以7的余数是415+=.【巩固】 2008222008+除以7的余数是多少?【解析】 328=除以7的余数为1,200836691=⨯+,所以200836691366922(2)2⨯==⨯+,其除以7的余数为:669122⨯=;2008除以7的余数为6,则22008除以7的余数等于26除以7的余数,为1;所以2008222008+除以7的余数为:213+=.【例 12】 (2009年走美初赛六年级)有一串数:1,1,2,3,5,8,……,从第三个数起,每个数都是前两个数之和,在这串数的前2009个数中,有几个是5的倍数?【解析】 由于两个数的和除以5的余数等于这两个数除以5的余数之和再除以5的余数.所以这串数除以5的余数分别为:1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,3,0,……可以发现这串余数中,每20个数为一个循环,且一个循环中,每5个数中第五个数是5的倍数. 由于200954014÷=,所以前2009个数中,有401个是5的倍数.【巩固】著名的裴波那契数列是这样的:1、1、2、3、5、8、13、21……这串数列当中第2008个数除以3所得的余数为多少?【解析】 斐波那契数列的构成规则是从第三个数起每一个数都等于它前面两个数的和,由此可以根据余数定理将裴波那契数列转换为被3除所得余数的数列:1、1、2、0、2、2、1、0、1、1、2、0……第九项和第十项连续两个是1,与第一项和第二项的值相同且位置连续,所以裴波那契数列被3除的余数每8个一个周期循环出现,由于2008除以8的余数为0,所以第2008项被3除所得的余数为第8项被3除所得的余数,为0.【例 13】 (1997年全国小学数学奥林匹克试题)将12345678910111213......依次写到第1997个数字,组成一个1997位数,那么此数除以9的余数是 ________.【解析】 本题第一步是要求出第1997个数字是什么,再对数字求和.19~共有9个数字,1099~共有90个两位数,共有数字:902180⨯= (个), 100999~共900个三位数,共有数字:90032700⨯= (个),所以数连续写,不会写到999,从100开始是3位数,每三个数字表示一个数,(19979180)3602......2--÷=,即有602个三位数,第603个三位数只写了它的百位和十位.从100开始的第602个三位数是701,第603个三位数是9,其中2未写出来.因为连续9个自然数之和能被9整除,所以排列起来的9个自然数也能被9整除,702个数能分成的组数是:702978÷= (组),依次排列后,它仍然能被9整除,但702中2未写出来,所以余数为9-27 =.【例 14】 有2个三位数相乘的积是一个五位数,积的后四位是1031,第一个数各个位的数字之和是10,第二个数的各个位数字之和是8,求两个三位数的和.【解析】 本题条件仅给出了两个乘数的数字之和,同时发现乘积的一部分已经给出,即乘积的一部分数字之和已经给出,我们可以采用弃九法原理的倒推来构造出原三位数.因为这是一个一定正确的算式,所以一定可以满足弃九法的条件,两个三位数除以9的余数分别为1和8,所以等式一边除以9的余数为8,那么□1031除以9的余数也必须为8,□只能是3.将31031分解质因数发现仅有一种情况可以满足是两个三位数的乘积,即31031311001143217=⨯=⨯所以两个三位数是143和217,那么两个三位数的和是360【例 15】 设20092009的各位数字之和为A ,A 的各位数字之和为B ,B 的各位数字之和为C ,C 的各位数字之和为D ,那么D =?【解析】 由于一个数除以9的余数与它的各位数字之和除以9的余数相同,所以20092009与A 、B 、C 、D 除以9都同余,而2009除以9的余数为2,则20092009除以9的余数与20092除以9的余数相同,而6264=除以9的余数为1,所以()334200963345652222⨯+==⨯除以9的余数为52除以9的余数,即为5.另一方面,由于20092009803620091000010<=,所以20092009的位数不超过8036位,那么它的各位数字之和不超过9803672324⨯=,即72324A ≤;那么A 的各位数字之和9545B <⨯=,B 的各位数字之和9218C <⨯=,C 小于18且除以9的余数为5,那么C 为5或14,C 的各位数字之和为5,即5D =.板块三 完全平方数【例 16】 从1到2008的所有自然数中,乘以72后是完全平方数的数共有多少个?【解析】 完全平方数,其所有质因数必定成对出现.而327223266=⨯=⨯⨯,所以满足条件的数必为某个完全平方数的2倍,由于2313119222008232322048⨯⨯=<<⨯⨯=,所以221⨯、222⨯、……、2231⨯都满足题意,即所求的满足条件的数共有31个.【例 17】 一个数减去100是一个平方数,减去63也是一个平方数,问这个数是多少?【解析】 设这个数减去63为2A ,减去100为2B ,则()()221006337371A B A B A B -=+-=-==⨯,可知37A B +=,且1A B -=,所以19A =,18B =,这样这个数为218100424+=.【巩固】 能否找到这么一个数,它加上24,和减去30所得的两个数都是完全平方数?【解析】 假设能找到,设这两个完全平方数分别为2A 、2B ,那么这两个完全平方数的差为()()54A B A B =+-,由于()A B +和()A B -的奇偶性质相同,所以()()A B A B +-不是4的倍数,就是奇数,不可能是像54这样是偶数但不是4的倍数.所以54不可能等于两个平方数的差,那么题中所说的数是找不到的.【例 18】 有5个连续自然数,它们的和为一个平方数,中间三数的和为立方数,则这五个数中最小数的最小值为 .【解析】 考查平方数和立方数的知识点,同时涉及到数量较少的连续自然数问题,设未知数的时候有技巧:一般是设中间的数,这样前后的数关于中间的数是对称的.设中间数是x ,则它们的和为5x , 中间三数的和为3x .5x 是平方数,设2255x a =⨯,则25x a =,2231535x a a ==⨯⨯是立方数,所以2a 至少含有3和5的质因数各2个, 即2a 至少是225,中间的数至少是1125,那么这五个数中最小数的最小值为1123.板块四 位值原理【例 19】 (美国小学数学奥林匹克)把一个两位数的十位与个位上的数字加以交换,得到一个新的两位数.如果原来的两位数和交换后的新的两位数的差是45,试求这样的两位数中最大的是多少?【解析】 设原来的两位数为ab ,交换后的新的两位数为ba ,根据题意,(10)(10)9()45ab ba a b b a a b -=+--=-=,5a b -=,原两位数最大时,十位数字至多为9,即9a =,4b =,原来的两位数中最大的是94.【巩固】 将一个四位数的数字顺序颠倒过来,得到一个新的四位数(这个数也叫原数的反序数),新数比原数大8802.求原来的四位数.【解析】 设原数为abcd ,则新数为dcba ,(100010010)(100010010)999()90()dcba abcd d c b a a b c d d a c b -=+++-+++=-+-.根据题意,有999()90()8802d a c b -+-=,111()10()97888890d a c b ⨯-+⨯-==+.推知8d a -=,9c b -=,得到9d =,1a =,9c =,0b =,原数为1099.【例 20】 (第五届希望杯培训试题)有3个不同的数字,用它们组成6个不同的三位数,如果这6个三位数的和是1554,那么这3个数字分别是多少?【解析】 设这六个不同的三位数为,,,,,abc acb bac bca cab cba , 因为10010abc a b c =++,10010acb a c b =++,……,它们的和是:222()1554a b c ⨯++=,所以15542227a b c ++=÷=,由于这三个数字互不相同且均不为0,所以这三个数中较小的两个数至少为1,2,而7(12)4-+=,所以最大的数最大为4;又12367++=<,所以最大的数大于3,所以最大的数为4,其他两数分别是1,2.【巩固】 (迎春杯决赛)有三个数字能组成6个不同的三位数,这6个三位数的和是2886,求所有这样的6个三位数中最小的三位数.【解析】 设三个数字分别为a 、b 、c ,那么6个不同的三位数的和为:2()1002()102()222()abc acb bac bca cab cba a b c a b c a b c a b c +++++=++⨯+++⨯+++=⨯++所以288622213a b c ++=÷=,最小的三位数的百位数应为1,十位数应尽可能地小,由于十位数与个位数之和一定,故个位数应尽可能地大,最大为9,此时十位数为13193--=,所以所有这样的6个三位数中最小的三位数为139.【巩固】 a ,b ,c 分别是09中不同的数码,用a ,b ,c 共可组成六个三位数,如果其中五个三位数之和是2234,那么另一个三位数是几?【解析】 由a ,b ,c 组成的六个数的和是222()a b c ⨯++.因为223422210>⨯,所以10a b c ++>.若11a b c ++=,则所求数为222112234208⨯-=,但2081011++=≠,不合题意.若12a b c ++=,则所求数为222122234430⨯-=,但430712++=≠,不合题意.若13a b c ++=,则所求数为222132234652⨯-=,65213++=,符合题意.若14a b c ++=,则所求数为222142234874⨯-=,但8741914++=≠,不合题意.若15a b c ++≥,则所求数2221522341096≥⨯-=,但所求数为三位数,不合题意.所以,只有13a b c ++=时符合题意,所求的三位数为652.板块五 进制问题【例 21】 在几进制中有413100⨯=?【解析】 利用尾数分析来解决这个问题:由于101010(4)(3)(12)⨯=,由于式中为100,尾数为0,也就是说已经将12全部进到上一位.所以说进位制n 为12的约数,也就是12,6,4,3,2中的一个.但是式子中出现了4,所以n 要比4大,不可能是4,3,2进制.另外,由于101010(4)(13)(52)⨯=,因为52100<,也就是说不到10就已经进位,才能是100,于是知道10n <,那么n 不能是12.所以,n 只能是6.【巩固】 算式153********⨯=是几进制数的乘法?【解析】 注意到尾数,在足够大的进位制中有乘积的个位数字为4520⨯=,但是现在为4,说明进走20416-=,所以进位制为16的约数,可能为16、8、4或2.因为原式中有数字5,所以不可能为4、2进位,而在十进制中有1534253835043214⨯=<,所以在原式中不到10就有进位,即进位制小于10,于是原式为8进制.【例 22】 在6进制中有三位数abc ,化为9进制为cba ,求这个三位数在十进制中为多少?【解析】 (abc )6 =a ×62+b ×6+c=36a+6b+c ;(cba )9=c ×92+b ×9+a=81c+9b+a ;所以36a+6b+c=81c+9b+a ;于是35a=3b+80c ;因为35a 是5的倍数,80c 也是5的倍数.所以3b 也必须是5的倍数,又(3,5)=1.所以,b=0或5.①当b=0,则35a=80c ;则7a=16c ;(7,16)=1,并且a 、c ≠0,所以a=16,c=7.但是在6,9进制,不可以有一个数字为16.②当b=5,则35a=3×5+80c ;则7a=3+16c ;mod 7后,3+2c ≡0.所以c=2或者2+7k (k 为整数).因为有6进制,所以不可能有9或者9以上的数,于是c=2;35a=15+80×2,a=5.所以(abc )6 =(552)6 =5×62+5×6+2=212.这个三位数在十进制中为212.课后练习:练习 1. 三个质数的乘积恰好等于它们的和的7倍,求这三个质数.【解析】 设这三个质数分别是a 、b 、c ,满足7()abc a b c =++,则可知a 、b 、c 中必有一个为7,不妨记为a ,那么7bc b c =++,整理得(1)(1)8b c --=,又81824=⨯=⨯,对应的b =2、c =9(舍去)或b =3、c =5,所以这三个质数可能是3,5,7练习 2. 有一个大于1的整数,除45,59,101所得的余数相同,求这个数.【解析】 这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据同余定理,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.1014556-=,594514-=,(56,14)14=,14的约数有1,2,7,14,所以这个数可能为2,7,14.练习 3. 将1至2008这2008个自然数,按从小到大的次序依次写出,得一个多位数:1234567891011121320072008,试求这个多位数除以9的余数.【解析】 以19992000这个八位数为例,它被9除的余数等于()19992000+++++++被9除的余数,但是由于1999与()1999+++被9除的余数相同,2000与()2000+++被9除的余数相同,所以19992000就与()19992000+被9除的余数相同.由此可得,从1开始的自然数1234567891011121320072008被9除的余数与前2008个自然数之和除以9的余数相同.根据等差数列求和公式,这个和为:()12008200820170362+⨯=,它被9除的余数为1.另外还可以利用连续9个自然数之和必能被9整除这个性质,将原多位数分成123456789,101112131415161718,……,199920002001200220032004200520062007,2008等数,可见它被9除的余数与2008被9除的余数相同.。

相关文档
最新文档