2.运筹学_整数规划案例

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

背包问题应用(作业) 要把7种规格的包装箱装到两辆铁路平板车上去,包装 箱的宽和高相同,但厚度和重量不同,见下表:
每辆车有10.2m长的地方可以用来装箱(类似面包片), 载重为40吨。C5, C6 , C7 ,三类包箱所占总空间 (厚度)不超过302.7cm,试建立数学模型,尽量将这 些包装箱装到平板车上去,使浪费的空间最小。
华北 北京 上海 广州 武汉 200 300 600 300 华中 400 250 400 150 华南 500 450 250 350
公司希望在满足地区需要的前提下使平均月成本最小,且还 要满足以下条件:①如果在上海设立库房,则必须也在武汉设库 房;②最多设立三个库房;③武汉和广州不能同时设立库房。 请建立一个满足上述要求的整数规划模型。
整数规划建模
应用最广泛的整数规划问题是各种类型的决策问 题,决策者希望模型能回答诸如:是否要执行某些项 目(或某些活动),在什么时候或什么地点执行等决 策问题,回答这类“是—否”或“有—无”问题可借助整 数规划中的0-1整数变量。 0-1整数变量只有两个选择,0由于它在数学上的 特性可以很好的代表“无”或“否”,而1则可以很好地 表“有”或“是”。0-1变量由于它的特殊性也被称为二 制变量、决策变量或逻辑变量。
背包问题由来以久,它是从旅行者如何选择放在 背包中的用品引出的。 旅行者可背负的重量有限,但旅行者需要携带的 物品很多,如:食品、水、衣物、帐篷、急救用品等 等,旅行者不可能将所有想携带的物品都统统背上, 他只能选择那些最重要的物品随身携带,又不超过他 可能负担的最大重量,为解决这个问题,旅行者可给 每种物品指定一个重要性系数,他的目标是在小于一 定重量的前提下,使所携带的物品的重要性系数之和 最大。
20
15
18
14
8
4
10
解:
令xi=1表示登山队员携带物品i,xi=0表示 不带物品i。则问题可写为: Max z =20x1+15x2+18x3 +14x4+8x5+4x6+10x7 s.t. 5x1+ 5x2 + 2x3 +6x4+12x5+2x6+4x7≤25 xi=1或0,i=1,2,…,7
0-1变量的作用
1. xj= 1…方案j被选中
0…方案j未被选中
2. 从n个方案中必须选中一个: 3. 从n个方案中最多选中m个:
x
x
j 1
n
j 1 n
j
1
m
j
4. 方案i只有在方案j选中时,才可能被选中:
xi x j
5. 方案i与方案j是否选中是同时的:
xi x j
与0-1变量相关的几个实际问题
1. 投资问题 现有总额为b的资金可用于投资,共有n个项目可 供投资者选择,已知项目j所需投资额为aj,投资后可 得利润cj(j = 1,2,…,n),不妨设b,aj,cj 均是 整数,试问为使所得利润最大,应选取那些项目进行 投资? 1…对项目j投资 先引入0-1变量xj,令 xj= 0…否则 n
例4:解决某市消防站的布点问题:某城市共有6个区, 每个都可以建消防站。市政府希望建设的消防站最少, 但必须满足在城市任何地区发生火警时,消防车要在 15分钟内赶到现场。据实地测定,各区之间消防车行 驶的时间见下表:请帮助该市制定一个最节省的计划。
表3.5消防车在各区行驶距离表
地区1 地区2 地区3 地区4 地区5 地区6
地区1 地区2 地区3 地区4 地区5 地区6 0 10 16 28 27 20 10 0 24 32 17 10 16 24 0 12 27 21 28 32 12 0 15 25 27 17 27 15 0 14 20 10 21 25 14 0
解:Xj=1表地区设消防站, Xj=0表地区不设消 防站。Z=消防站总数,则模型如下: MinZ=X1+X2+X3+X4+X5+X6 s.t: X1+X2≥1 X1+X2+X6≥1 X3+X4≥1 X3+X4+X5≥1 X4+X5+X6≥1 X2+X5+X6≥1 Xj=0,1;j=1,2,3,4,5,6。
max z= 150x1 +210x2 +60x3 +80x4 +180x5 s.t. 210x1 +300x2 +100x3 +130x4 +260x5 x1 +x2 +x3 x3 +x4 x1 -x5 x1, x2, x 3, x 4ຫໍສະໝຸດ Baidu x 5=0 ≤600 =1 =1 ≥0 或1
2. 背包问题
作业
区号 1 2 3 4 5 6 7 8 1 0 2 4 6 8 9 8 10 2 2 0 5 4 8 6 12 9 3 4 5 0 2 2 3 5 7 4 6 4 2 0 3 2 5 4 5 8 8 2 3 0 2 2 4 6 9 6 3 2 2 0 3 2 7 8 12 5 5 2 3 0 2 8 10 9 7 4 4 2 2 0 人口(万人) 40 30 35 20 15 50 45 60
max c j x j
j 1 n
则可得到如下整数规划问题: a j x j b
j 1
x j 0或1,j 1, ,n 2,
例1:华美公司有5个项目被列入投资计划,各项目的投 资额和期望的投资收益见下表:
项目 1 2 3 4 5 投资额(万元) 210 300 100 130 260 投资收益(万元) 150 210 60 80 180
设每个月从仓库i运往地区j的产品的货物数量为xij,引入0- 1变量yi= 1表示在Ai设立仓库,否则不设。 设每个月的总花费为z,则上述问题的数学模型为 Min z=200x11+400x12+500x13+300x21+250x22+450x23 +600x31+400x32+250x33+300x41+150x42+350x43+45000y1+5000 0y2+70000y3+40000y4 s.t. x11+x12+x13≤1000y1 x21+x22+x23≤1000y2 x31+x32+x33≤1000y3 x41+x42+x43≤1000y4 x11+x21+x31+x41≥600 x12+x22+x32+x42≥700 x13+x23+x33+x43≥800 y2-y4≤0 y1+y2+y3+y4≤3
min z cij xij ai yi
i 1 j 1 i 1 n ij n m
上述问题的数学模型为
x
j 1 m
Di yi,i 1,2, ,m b j,j 1,2, , n
x
i 1
ij
xij 0,yi 0或1
4.集合覆盖和布点问题
集合覆盖问题也是典型的整数规划问题,在集合 覆盖问题中,一个给定集合(集合一)的每一个元素 必须被另一个集合(集合二)的元素所覆盖。在满足 覆盖集合一所有元素的前提下,集合覆盖问题的目标 是求需要的集合二的元素最少,该问题之所以又称为 布点问题,是因为它常被用于一些公共设施,如:学 校、医院、商业区、消防队等设施的布点问题,解决 如何既满足公共要求,又使布的点最少,以节约投资 费用。
y3+y4 ≤ 1
工厂选址运输问题
设有n个需求点,有m个可供选择的厂址, 每个厂址只能建一个工厂,在i处建厂,生产 能力为Di,单位时间的固定成本为ai,需求点 j的需求量为bj,从厂址i到需求点j的单位运费 为Cij,问应如何选择厂址才能获得经济上的总 花费最小的方案。
设在单位时间内,从厂址i运往需 求点j的产品数量为xij, 1…在i地建厂 引入0-1变量yi= 0…否则 设在单位时间内的总花费为z,则 m
3. 工厂选址运输问题
例3.一公司考虑在四个城市:北京、上海、广州和武汉设立库房。 这些库房负责向三个地区:华北、华中和华南地区发运货物,每 个库房每月可处理货物1000件。在北京设库房每月的成本为4.5万 元。上海为5万元,广州为7万元,武汉为4万元。每个地区的月平 均需求量为:华北每月600件,华中每月700件,华南每月800件。 发运货物的费用(元/件)见下表:
该公司只有600万元资金可用于投资,由于技术上 的原因,投资受到以下约束:①在项目1、2和3中必须 有一项被选中;②项目3和4只能选一项;③项目5被选 中的前提是项目1必须被选中。问如何在上述条件下选 择一个最好的投资方案,使投资收益最大。
解:
令0-1变量为决策变量,即xi=1表示选中项目i, 否则xi=0表示项目i未被选中。则模型可以表示为:
例2 :一登山队员做登山准备,他需要携带的物品有: 食品、氧气、冰镐、绳索、帐篷、照相机和通讯设备 每种物品的重要系数和重量如下表所示,假定登山队 员可携带的最大重量为25千克。问他如何抉择?
序号 物品 重量 (千克)
1
2
3
冰镐
4
绳索
5
帐篷
6
照相 器材
7
通讯 设备
食品 氧气
5
5
2
6
12
2
4
重要系数
某市有8个区,救护车从一个区开往另一个区所需时间:
该市只有两辆救护车,且希望救护车,所在的位置能使 尽可能多的人口位于救护车在两分钟内可达到的范围内 ,请帮助该市构造一个整数规划模型来解决这个问题。
5. 指派问题
在生活中经常遇到这样的问题,某单位需要 完成n项任务,恰好有n个人可以承担这些任务, 由于每个人的专长不同,个人完成不同任务的效 率(时间、费用等)也不同。 于是产生了指派哪个人去完成哪项任务,使总 效率最高,称为指派问题(Assignment Problem)。
5.指派问题(作业) A 仰泳
37.7 43.3
B
32.9 33.1
C
33.8 42.2
D
37.0 34.9
E
35.4 41.8
蛙泳 蝶泳
自由泳
33.3
29.2
28.5
26.4
38.9
29.6
30.4
28.5
33.6
31.1
已知上面5名运动员各种姿势游泳成绩(50m), 试问如何从中选拔一个200m混合泳的接力队,使预期 比赛成绩最好。(列出整数规划模型)
相关文档
最新文档