数值分析课后习题解答
数值分析课后习题全解(可编辑优质文档)
数值分析课后习题全解(可编辑优质文档)(可以直接使用,可编辑完整版资料,欢迎下载)第5章 数值分析课后习题全解第5章:解线性方程组的直接方法1. 证明:由消元公式及A 的对称性得(2)211,,2,3,..........,1111111a a j i a a a a a a i j na a ijij j j iji =-=-== 故2A对称2.证明:(1)因A 对称正定,故,)0,1,2,......,e i ni >=aii=(Ae i其中i e =(0,…,0,1,0,...,0)T 为第i 个单位向量.(2)由A 的对称性及消元公式得111211122222n n nn n n u u u d d u u d d u d d ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(2)ij a =ija -1111i j a a a =ji a -111j a a 1i a =(2)ji a ,I,j=2,…,n故2A 也对称.又 11120Ta a A ⎡⎤⎢⎥⎣⎦=1L A 1TAL其中 1L =211111111.....1n a a a a ⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦显然1L 非其异,从而对任意的x ≠0,有1TL X ≠0,(x,1L A 1TL X)=(1TL x, A 1TL X)>0 (由A 的正定性) 故11T L AL 正定.又11T L AL =11200a A ⎡⎤⎢⎥⎣⎦,而11a >0,故2A 正定. 3.证明 由矩阵乘法简单运算即得证.4.解 设有分解4232125316⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦=123431231αααα⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦1231111βββ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦由公式11,1111,2,3,,,2,3,.1i i i i ii i b a c b i n c i n αβαβααβ-==⎧⎪=+=⎨⎪==-⎩其中i b ,i a ,i c 分别是系数矩阵的主对角线元素及下边和上边的次对角线元 素.故有112233414,272,27397,7138513αβαβαβα⎧==⎪⎪⎪=-=-⎪⎨⎪==⎪⎪⎪=⎩从而有4232125316⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦=4732392785113⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦11221771131⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦故 1y =64=32, 2y =12372y --=573y =21022039137y -=, 4y =3518513y +=故4x =1,3x =420711313x -=,2x =352177x +=,1x =231122x -= 5. 解 (1)设U 为上三角阵1112112222n n nn n u u u x u u x u x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦=12n d d d ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦因nn n u x =n d ,故n x =nnnd u . 因 10001010302171101⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎢⎦⎣ii i u x +1n ij j j i u x =+∑=id ,故i x =1ni ij ij i iid u xu =+-∑,i=n-1,n-2,,1当U 为下三角阵时11212212n n nn u u u u u u ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦12n x x x ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦= 12n d d d ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦得,1x =111d u , 1x =11i i ij jj iid u x u -=-∑,i=2,3,…,n.(2)除法次数为n,乘法次数为1+2+…+(n-1)=n(n-1)/2 故总的乘法次数为n+n(n-1)/2=n(n+1)/2. (3)设U 为上三角阵,1U-=S,侧S 也是上三角阵.由11121222n n nn u u u u s u ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦11121222n n nn s s s s s s ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=111⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦得 1ii iis u =, i=1,2,…,nij s =-1jik kjk i iiusu =+∑,j=i+1,i+2,…,n; i=n-1,n-2,…,1当U 为下三角阵时,由11212212n n nn d d d d d d ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦11212212n n nn s s s s s s ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦= 111⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦得 1ii iis u =,i=1,2,…,n ij s =11i ik kjk iiusu -=-∑,i=2,3,…,n;j=1,2,…,i-16. 证明 (1)因A 是对称正定阵,故存在唯一的分解A=L TL ,其中L 是具有正对 角元素的下三角阵.从而 1A -=(L TL )1-=(TL )1-L 1-=(L 1-)TL 1-(A 1-)T =11()TT L L --⎡⎤⎣⎦=11()T L L --=1A -故1A -是对称矩阵.又1L -非奇异,故对任意的 x ≠0,有1L -x ≠0,故1Tx A -X=11()T T x L L x --=11()()T L x L x -->0故1A -是对称正定矩阵,即1A -也对称正定.(2)由A 对称正盯,故A 的所有顺序主子式均不为零,从而A 有唯一的 Doolittle 分解A=L U.又U=1122nn u u u ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦1121111222111n n u u uu u u ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=D 0U 其中D 为对三角阵, 0U 为单位上三角阵,于是 A=U L =D L 0U又 A=TA =TO U D TL由分解的唯一性即得T O U =L从而有 A=D L TL 又由A 的对称正定性知 1d =1D >0, i d =1ii D D ->0 (i=2,3,…,n) 故 D=12n d d d ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=⎤⎥⎢⎥⎢⎥⎢⎢⎣⎤⎥⎢⎥⎢⎥⎢⎢⎣=12D 12D 故A=L D TL =L12D12D TL =(L 12D )(L 12D )T =LL T其中L=L 12D 为三角元为正的下三角矩阵.7. 解[A|I]=21311000310701001242001010150001⎡--⎤⎢⎥⎢⎥⎢⎥--⎢⎥-⎢⎦⎣-> 101500010138010302330011011111002⎡-⎤⎢⎥--⎢⎥⎢⎥⎢⎥---⎢⎦⎣-> 1015010138010300319021700431101⎡-⎤⎢⎥--⎢⎥⎢⎥--⎢⎥---⎢⎦⎣->421410003333010110114192170010333385542500013333⎡⎤---⎢⎥⎢⎥-⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥---⎢⎥⎣⎦-> 410231685178517100033641130100851785170010191538851785170001314585178517⎤--⎥⎥⎡⎥-⎢⎥⎢⎥⎢⎥---⎢⎥⎣⎥⎥--⎦->1A -=4102316851785173364113851785171953885178517314585178517⎡⎤--⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥--⎣⎦=0.04705890.58823530.27058820.94117650.38823530.35294120.48235290.76470590.22352940.29411760.03529410.47058820.03529410.05882350.04705890.2941176--⎡⎤⎢⎥-⎢⎥⎢⎥---⎢⎥--⎣⎦8. 解 设有分解2112112112112-⎡⎤⎢⎥--⎢⎥⎢⎥--⎢⎥--⎢⎥⎢⎥-⎣⎦= 123451111ααααα⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎢⎥⎢⎥-⎣⎦123451111βββββ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦由公式11,1111,(2,3,4,5),(2,3,4)i i i i i i i b c b i c i ααβαβααβ-==⎧⎪=+=⎨⎪==⎩其中i b ,i a ,i c 分别是系数矩阵的主角线元素及其下边和上边的次对角线元 素,则有12α=, 232α=, 343α=, 454α=, 565α= 112β=-, 223β=-, 334β=-, 445β=-由12345231120410305140615y y y y y ⎡⎤⎢⎥⎢⎥-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥-⎢⎥⎣⎦得1y =12,213y =,314y =,415y =,516y = 由112213314415⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥-⎢⎥⎣⎦123451213141516x x x x x ⎡⎤⎢⎥⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦得5x =16,4x =13,3x =12,2x =23,1x =569.解 设211123131-⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦=121312123231323111111d l l l d l l l d ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦由矩阵乘法得1d =2, 2112l =-, 3112l = 252d =-,3275l =-3275d =由123141152617125y y y ⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥-⎣⎦得 14y =,27y =,3695y = 由12311122245717256927155x x x ⎡⎤⎡⎤-⎡⎤⎢⎥⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎣⎦ 得 123111222247514175256927123559x x x ⎡⎤⎡⎤⎡⎤-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎣⎦⎣⎦故3x =239=2.555 555 6,279x ==0.777 777 8,1x =109=1.111 111 1 10. 解 A 中2∆=0,故不能分解。
数值分析课后习题及答案
第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。
[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。
3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。
X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。
若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。
数值分析课后习题答案
0 1
0 10 1 1 0 0 0 1
0 0 12 1 1 2 0 0 0
1 2
0 0 0 1 1 0
1 2
1 2
1 2
1
0 0 0 1 0
1 2
1 2
0
1 2
1 2
0
0
0
341 1 1
2-5.对矩阵A进行LDLT分解和GGT分解,并求解方程组
Ax=b,其中
16 4 8
1
A 4 5 4 , b 2
8 4 22
3
解
16 A 4
4 5
84
44 11
2-3(1).对矩阵A进行LU分解,并求解方程组Ax=b,其中
2 1 1 A1 3 2
4 ,b6
1 2 2
5
解
2 A 1
1 3
1 2
2 11
22
1
5 2
1
3 21来自,所以 A12
1
2 1 1
5 3
2-2(1).用列主元Gauss消元法解方程组
3 2 6x1 4 10 7 0x2 7 5 1 5x3 6
解
3 2 6 4 10 7 0 7 10 7 0 7
r1r2
消元
10 7 0 7 3 2 6 4 0 0.1 6 6.1
r=0.5101-n/3.162…<0.5101-n/3<0.01% 因此只需n=5.即取101/2=3.1623
数值分析第三版课本习题及答案
第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式1n n Y Y -=( n=1,2,…)计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字27.982).8. 当N 充分大时,怎样求211Ndx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2?10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小. 11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12.计算61)f =,1.4≈,利用下列等式计算,哪一个得到的结果最好?3--13.()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式ln(ln(x x =-计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b cs a b c ∆∆∆∆≤++第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令2000011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xx x ----==证明()n V x 是n 次多项式,它的根是01,,n x x -,且101101()(,,,)()()n n n n V x V x x x x x x x ---=--.2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3. 给出f (x )=ln x 的数值表用线性插值及二次插值计算ln 0.54 的近似值.4. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i)0()(0,1,,);nkkj jj x l x x k n =≡=∑ii)()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()xf x e =的等距节点函数表,若用二次插值求xe 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?9. 若2n n y =,求4n y ∆及4n y δ.10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)k f x k m ∆≤≤是m k -次多项式,并且()0(m lf x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆.12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n n n n f x a a x a x a x --=++++有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i)若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+.16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦及0182,2,,2f ⎡⎤⎣⎦.17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限.19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()n x ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差.23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差. 24. 给定数据表如下:试求三次样条插值并满足条件i) (0.25) 1.0000,(0.53)0.6868;S S '='=ii)(0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明 i)[][][][]222()()()()2()()()bbbba a a a f x dx S x dx f x S x dx S x f x S x dx "-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n ==,式中i x 为插值节点,且01n a x x x b =<<<=,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =.3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式.5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一? 9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式. 10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nT x 是在[]0,1上带权ρ=的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式. 13. 设()xf x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若nf L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差. 15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n nF x H ∈也是奇(偶)函数.17. 求a 、b 使[]220sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义 ()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.sin (1)arccos ()n n x u x +=是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin 2f x x=在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.26. 用最小二乘法求一个形如2y a bx =+的经验公式,使它与下列数据拟合,并求均方误差.27.28. 在某化学反应里,根据实验所得分解物的浓度与时间关系如下:用最小二乘拟合求.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: (1)101()()(0)()hh f x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f h A f A fh --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x fx -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)1,4n =⎰; (4),6n =.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4.用辛普森公式求积分1xedx-⎰并计算误差.5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2baf f x dx b a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰.6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7.用复化梯形公式求积分()b af x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8.1xedx-,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是S a =θ,这里a 是椭圆的半长轴,c是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长.10. 证明等式3524sin3!5!n nnnππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计误差.()f x 的值由下表给出:第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。
数值分析课程第五版课后习题答案(李庆扬等)
数值分析课程第五版课后习题答案(李庆扬等)数值分析课程第五版课后习题答案(李庆扬等)第一章:数值分析导论1. 解答:数值分析是一门研究如何使用计算机来解决数学问题的学科。
它包括了从数学理论到计算实现的一系列技术。
数值分析的目标是通过近似的方式求解数学问题,其结果可能不是完全精确的,但是能够满足工程或科学应用的要求。
2. 解答:数值分析在实际应用中起着重要的作用。
它可以用于求解复杂的数学方程、计算机模拟及建模、数据的统计分析等等。
数值分析是科学计算和工程计算的基础,对许多领域都有着广泛的应用,如物理学、经济学、生物学等。
3. 解答:数值方法指的是使用数值计算的方式来求解数学问题。
与解析方法相比,数值方法一般更加灵活和高效,可以处理一些复杂的数学问题。
数值方法主要包括了数值逼近、插值、数值积分、数值微分、线性方程组的求解、非线性方程的求根等。
4. 解答:计算误差是指数值计算结果与精确解之间的差异。
在数值计算中,由于计算机的有限精度以及数值计算方法本身的近似性等因素,都会导致计算误差的产生。
计算误差可以分为截断误差和舍入误差两种。
第二章:数值误差分析1. 解答:绝对误差是指实际值与精确值之间的差异。
例如,对于一个计算出的数值近似解x和精确解x_0,其绝对误差为| x - x_0 |。
绝对误差可以衡量数值近似解的精确程度,通常被用作评估数值计算方法的好坏。
2. 解答:相对误差是指绝对误差与精确解之间的比值。
对于一个计算出的数值近似解x和精确解x_0,其相对误差为| (x - x_0) / x_0 |。
相对误差可以衡量数值近似解相对于精确解的精确度,常用于评估数值计算方法的收敛速度。
3. 解答:舍入误差是由于计算机的有限精度而引起的误差。
计算机中使用的浮点数系统只能表示有限的小数位数,因此在进行数值计算过程中,舍入误差不可避免地会产生。
舍入误差会导致计算结果与精确结果之间存在差异。
4. 解答:误差限度是指对于给定的数值计算问题,所能容忍的误差范围。
数值分析课程第五版课后习题答案
数值分析课程第五版课后习题答案课后习题一:a) 求解非线性方程f(x) = x^3 - 2x - 5的根。
解答:可使用牛顿迭代法来求解非线性方程的根。
牛顿迭代法的迭代公式为:x_(n+1) = x_n - f(x_n)/f'(x_n),其中x_n为第n次迭代的近似解。
对于给定的方程f(x) = x^3 - 2x - 5,计算f'(x)的导数为f'(x) = 3x^2 - 2。
选择一个初始近似解x_0,并进行迭代。
迭代的终止条件可以选择两次迭代间的解的差值小于某个预设的精度。
b) 计算矩阵加法和乘法的运算结果。
解答:设A和B为两个矩阵,A = [a_ij],B = [b_ij],则A和B的加法定义为C = A + B,其中C的元素为c_ij = a_ij + b_ij。
矩阵乘法定义为C = A * B,其中C的元素为c_ij = ∑(a_ik * b_kj),k的取值范围为1到矩阵的列数。
c) 使用插值方法求解函数的近似值。
解答:插值方法可用于求解函数在一组给定点处的近似值。
其中,拉格朗日插值法是一种常用的方法。
对于给定的函数f(x)和一组插值节点x_i,i的取值范围为1到n,利用拉格朗日插值多项式可以构建近似函数P(x),P(x) = ∑(f(x_i) * l_i(x)),其中l_i(x)为拉格朗日基函数,具体表达式为l_i(x) = ∏(x - x_j)/(x_i - x_j),j的取值范围为1到n并且j ≠ i。
课后习题二:a) 解决数值积分问题。
解答:数值积分是求解定积分的数值近似值的方法。
常用的数值积分方法包括矩形法、梯形法和辛普森法。
矩形法采用矩形面积的和来近似曲边梯形的面积,梯形法采用等距离子区间上梯形面积的和来近似曲边梯形的面积,而辛普森法则利用等距离子区间上梯形和抛物线面积的加权和来近似曲边梯形的面积。
b) 使用迭代方法求解线性方程组。
解答:线性方程组的求解可以通过迭代方法来进行。
数值分析第四版课后习题答案
第一章习题解答1、 在下列各对数中,x 是精确值 a 的近似值。
3.14,7/100)4(143.0,7/1)2(0031.0,1000/)3(1.3,)1(========x a x a x a x a ππ试估计x 的绝对误差和相对误差。
解:(1)0132.00416.01.3≈=≈−=−=aee x a e r π (2)0011.00143.0143.07/1≈=≈−=−=a ee x a e r (3)0127.000004.00031.01000/≈=≈−=−=aee x a e r π (4)001.00143.03.147/100≈=≈−=−=aee x a e r2、已知四个数:001.0,25.134,0250.0,3.264321====x x x x 。
试估计各近似数的有效位数和误差限,并估计运算3211x x x =μ和1431/x x x =μ的相对误差限。
解:21111121101901.0,1021,3,10263.06.23−−⨯≈=⨯==⨯==x x x x n x r δδδ22214212102.0,1021,3,10250.00250.0−−−⨯≈=⨯==⨯==x x x x n x r δδδ 43332333103724.0,1021,5,1013425.025.134−−⨯≈=⨯==⨯==x x x x n x r δδδ 5.0,1021,1,101.0001.04443424==⨯==⨯==−−x x x x n x r δδδ 由相对误差限公式:i r ini n in ni i ir x x fx x f x x x f x x f u δδδ∂∂=∂∂=∑∑==1111),,(),,()(所以有:232123113211103938.0)(1)(−⨯≈++=x x x x x x x x x r δδδμμδ4971.0)(1)(4133141214311≈++−=x x x x x x x x x x r δδδμμδ 3、设精确数a>0,x 是a的近似值,x 的相对误差限是0.2,求㏑x 的相对误差限。
数值分析第三版课本习题及答案
第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式11783100n n Y Y -=-( n=1,2,…)计算到100Y .若取783≈27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字(783≈27.982).8. 当N 充分大时,怎样求211Ndx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2?10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小. 11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若02 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12. 计算6(21)f =-,取2 1.4≈,利用下列等式计算,哪一个得到的结果最好?36311,(322),,9970 2.(21)(322)--++13. 2()ln(1)f x x x =--,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式22ln(1)ln(1)x x x x --=-++计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b cs a b c ∆∆∆∆≤++第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令200011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xx x ----==证明()n V x 是n 次多项式,它的根是01,,n x x - ,且101101()(,,,)()()n n n n V x V x x x x x x x ---=-- .2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3. 给出f (x )=ln x 的数值表用线性插值及二次插值计算ln 0.54 的近似值.x 0.4 0.5 0.6 0.7 0.8 ln x -0.916291-0.693147-0.510826-0.357765-0.2231444. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i) 0()(0,1,,);nk kj j j x l x x k n =≡=∑ii)()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()xf x e =的等距节点函数表,若用二次插值求xe 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?9. 若2n n y =,求4n y ∆及4n y δ.10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)kf x k m ∆≤≤是m k -次多项式,并且()0(m lf x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆.12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n nn n f x a a x a x a x --=++++ 有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i)若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x = ;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+ .16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦ 及0182,2,,2f ⎡⎤⎣⎦ . 17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限.19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()n x ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差.23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差. 24. 给定数据表如下:j x 0.25 0.30 0.39 0.45 0.53 j y0.50000.54770.62450.67080.7280试求三次样条插值()S x 并满足条件i) (0.25) 1.0000,(0.53)0.6868;S S '='= ii)(0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明 i)[][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n == ,式中i x 为插值节点,且01n a x x x b =<<<= ,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =.3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式.5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一? 9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式.10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nTx 是在[]0,1上带权21x x ρ=-的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式.13. 设()x f x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若nf L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差. 15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n nF x H ∈也是奇(偶)函数.17. 求a 、b 使[]220sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义 ()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.[]2sin (1)arccos ()1n n x u x x +=-是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin2f x x =在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.26. 用最小二乘法求一个形如2y a bx =+的经验公式,使它与下列数据拟合,并求均方误差.i x 19 25 31 38 44 i y19.032.349.073.397.827. 观测物体的直线运动,得出以下数据:时间t (秒) 0 0.9 1.9 3.0 3.9 5.0 距离s (米) 010305080110求运动方程.28. 在某化学反应里,根据实验所得分解物的浓度与时间关系如下:时间 0 5 10 15 20 25 30 35 40 45 50 55 浓度0 1.272.162.863.443.874.154.374.514.584.624.64用最小二乘拟合求()y f t =.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: (1)101()()(0)()hh f x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)91,4xdx n =⎰; (4)260sin ,6dx n π-ϕ=⎰.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. 用辛普森公式求积分1x e dx-⎰并计算误差.5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2baf f x dx b a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰.6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8. 用龙贝格方法计算积分12x e dxπ-⎰,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是22201()sin cS a d a π=-θθ⎰,这里a 是椭圆的半长轴,c是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长.10. 证明等式3524sin3!5!n nn n ππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计误差.()f x 的值由下表给出:x1.0 1.1 1.2 1.3 1.4 ()f x0.25000.22680.20660.18900.1736第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。
数值分析课后习题部分参考答案.doc
数值分析课后习题部分参考答案Chapter 1(P10) 5.求厲的近似值x*,使其相对误差不超过0.1%。
解:V2 = 1.4 ••- o设X*有"位有效数字,则le(x*)lV0.5xl0xl(T"。
,*““0.5x10-" 牛(x )1< ] 。
从而,丨<故,若0.5x10-" <0.1%,则满足要求。
解之得,M>4O %* =1.414 O(P10) 7.正方形的边长约100cm ,问测量边长时误差应多大,才能保证面积的误差不超过1 cm2 o解:设边长为a ,则a心100cm。
设测量边长时的绝对误差为e,由误差在数值计算的传播,这时得到的面积的绝对误差有如下估计:® 2xl00xe…按测量要求,l2xl00xel<l解得,lel< 0.5x10 2 oChapter 2(P47) 5.用三角分解法求下列矩阵的逆矩阵:‘1 1 -1]A = 2 1 0 。
J j 0丿解:设A1 =(«0 /)=分别求如下线性方程组:先求A的LU分解(利用分解的紧凑格式),气1)1 (1)1 (-D-(2)2(D-1(0)2、⑴1(-1)2 (0) —3,(1 0 0、 ri 1 -1] 即,厶=2 1 0 ,U =0-12 J 2 1丿<0 0-3经直接三角分解法的回代程,分别求解方程组,1 0Ly =0 和 Ua = v ,得,a = 0J3 2 3 1(P47) 6.分别用平方根法和改进平方根法求解方程组:(1 2 1 -3兀1)2 50 -5兀2 2 10 14 1 x 3 16 、一 -5 1 15丿3解:平方根法:先求系数矩阵4的Cholesky 分解(利用分解的紧凑格式),'(1)1、< 1 0 0 0、(2)2(5)1,即,L =2 1 0 0 (1)1 (0)-2 (14)3 1 -2 3 、(_3) _ 3 (-5)1 (1)2 (15<-31 2 b216 改进平方根Ly = 和 II x = y ,得,x = 先求系数矩阵A 的形如A = LDU 的分解,其中厶-(/y .)4x4为单位下二角矩阵,D = diag{d l ,d 2,d 3,d 4}为对角矩阵。
数值分析第三版课本习题及答案
数值分析第三版课本习题及答案第⼀章绪论1.设x>0,x得相对误差为δ,求得误差、2.设x得相对误差为2%,求得相对误差、3.下列各数都就是经过四舍五⼊得到得近似数,即误差限不超过最后⼀位得半个单位,试指出它们就是⼏位有效数字:4.利⽤公式(3、3)求下列各近似值得误差限:其中均为第3题所给得数、5.计算球体积要使相对误差限为1%,问度量半径R时允许得相对误差限就是多少?6.设按递推公式( n=1,2,…)计算到、若取≈27、982(五位有效数字),试问计算将有多⼤误差?7.求⽅程得两个根,使它⾄少具有四位有效数字(≈27、982)、8.当N充分⼤时,怎样求?9.正⽅形得边长⼤约为100㎝,应怎样测量才能使其⾯积误差不超过1㎝?10.设假定g就是准确得,⽽对t得测量有±0、1秒得误差,证明当t增加时S得绝对误差增加,⽽相对误差却减⼩、11.序列满⾜递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多⼤?这个计算过程稳定吗?12.计算,取,利⽤下列等式计算,哪⼀个得到得结果最好?13.,求f(30)得值、若开平⽅⽤六位函数表,问求对数时误差有多⼤?若改⽤另⼀等价公式计算,求对数时误差有多⼤?14.试⽤消元法解⽅程组假定只⽤三位数计算,问结果就是否可靠?15.已知三⾓形⾯积其中c为弧度,,且测量a ,b ,c得误差分别为证明⾯积得误差满⾜第⼆章插值法1.根据(2、2)定义得范德蒙⾏列式,令证明就是n次多项式,它得根就是,且、2.当x= 1 , 1 , 2 时, f(x)= 0 , 3 , 4 ,求f(x)得⼆次插值多项式、3.给出f(x)=ln x得数值表⽤线性插值及⼆次插值计算ln 0、54 得近似值、4.,研究⽤线性插值求cos x 近似值时得总误差界、5.设,k=0,1,2,3,求、6.设为互异节点(j=0,1,…,n),求证:i)ii)7.设且,求证8.在上给出得等距节点函数表,若⽤⼆次插值求得近似值,要使截断误差不超过,问使⽤函数表得步长应取多少?9.若,求及、10.如果就是次多项式,记,证明得阶差分就是次多项式,并且为正整数)、11.证明、12.证明13.证明14.若有个不同实根,证明15.证明阶均差有下列性质:i)若,则;ii)若,则、16.,求及、17.证明两点三次埃尔⽶特插值余项就是并由此求出分段三次埃尔⽶特插值得误差限、18.求⼀个次数不⾼于4次得多项式,使它满⾜并由此求出分段三次埃尔⽶特插值得误差限、19.试求出⼀个最⾼次数不⾼于4次得函数多项式,以便使它能够满⾜以下边界条件,,、20.设,把分为等分,试构造⼀个台阶形得零次分段插值函数并证明当时,在上⼀致收敛到、21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处得与得值,并估计误差、22.求在上得分段线性插值函数,并估计误差、23.求在上得分段埃尔⽶特插值,并估计误差、24.给定数据表如下:i)ii)25.若,就是三次样条函数,证明i)[][][][] 222()()()()2()()()b b b ba a a af x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-";ii) 若,式中为插值节点,且,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'?、26. 编出计算三次样条函数系数及其在插值节点中点得值得程序框图(可⽤(8、7)式得表达式)、第三章函数逼近与计算1. (a)利⽤区间变换推出区间为得伯恩斯坦多项式、(b)对在上求1次与三次伯恩斯坦多项式并画出图形,并与相应得马克劳林级数部分与误差做⽐较、 2. 求证:(a)当时,、 (b)当时,、3. 在次数不超过6得多项式中,求在得最佳⼀致逼近多项式、4. 假设在上连续,求得零次最佳⼀致逼近多项式、5. 选取常数,使达到极⼩,⼜问这个解就是否唯⼀?6. 求在上得最佳⼀次逼近多项式,并估计误差、7. 求在上得最佳⼀次逼近多项式、8. 如何选取,使在上与零偏差最⼩?就是否唯⼀? 9. 设,在上求三次最佳逼近多项式、 10. 令,求、11. 试证就是在上带权得正交多项式、12. 在上利⽤插值极⼩化求1得三次近似最佳逼近多项式、13. 设在上得插值极⼩化近似最佳逼近多项式为,若有界,证明对任何,存在常数、,使14. 设在上,试将降低到3次多项式并估计误差、15. 在上利⽤幂级数项数求得3次逼近多项式,使误差不超过0、005、16. 就是上得连续奇(偶)函数,证明不管就是奇数或偶数,得最佳逼近多项式也就是奇(偶)函数、 17. 求、使为最⼩、并与1题及6题得⼀次逼近多项式误差作⽐较、 18. 、,定义()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+??问它们就是否构成内积?19. ⽤许⽡兹不等式(4、5)估计得上界,并⽤积分中值定理估计同⼀积分得上下界,并⽐较其结果、 20. 选择,使下列积分取得最⼩值:、21. 设空间,分别在、上求出⼀个元素,使得其为得最佳平⽅逼近,并⽐较其结果、 22. 在上,求在上得最佳平⽅逼近、23. 就是第⼆类切⽐雪夫多项式,证明它有递推关系、24. 将在上按勒让德多项式及切⽐雪夫多项式展开,求三次最佳平⽅逼近多项式并画出误差图形,再计算均⽅误差、25.把在上展成切⽐雪夫级数、26.⽤最⼩⼆乘法求⼀个形如得经验公式,使它与下列数据拟合,并求均⽅误差、27.28.在某化学反应⾥,根据实验所得分解物得浓度与时间关系如下:29.编出⽤正交多项式做最⼩⼆乘拟合得程序框图、30.编出改进FFT算法得程序框图、31.现给出⼀张记录,试⽤改进FFT算法求出序列得离散频谱第四章数值积分与数值微分1.确定下列求积公式中得待定参数,使其代数精度尽量⾼,并指明所构造出得求积公式所具有得代数精度:(1);(2);(3);(4)、2.分别⽤梯形公式与⾟普森公式计算下列积分:(1); (2);(3); (4)、3.直接验证柯特斯公式(2、4)具有5次代数精度、4.⽤⾟普森公式求积分并计算误差、5.推导下列三种矩形求积公式:(1);(2);(3)、6.证明梯形公式(2、9)与⾟普森公式(2、11)当时收敛到积分、7.⽤复化梯形公式求积分,问要将积分区间分成多少等分,才能保证误差不超过(设不计舍⼊误差)?8.⽤龙贝格⽅法计算积分,要求误差不超过、9.卫星轨道就是⼀个椭圆,椭圆周长得计算公式就是,这⾥就是椭圆得半长轴,就是地球中⼼与轨道中⼼(椭圆中⼼)得距离,记为近地点距离,为远地点距离,公⾥为地球半径,则、我国第⼀颗⼈造卫星近地点距离公⾥,远地点距离公⾥,试求卫星轨道得周长、10.证明等式试依据得值,⽤外推算法求得近似值、11.⽤下列⽅法计算积分并⽐较结果、(1)龙贝格⽅法;(2)三点及五点⾼斯公式;(3)将积分区间分为四等分,⽤复化两点⾼斯公式、12.⽤三点公式与五点公式分别求在1、0,1、1与1、2处得导数值,并估计误差、得值由下表给出:第五章常微分⽅程数值解法1、就初值问题分别导出尤拉⽅法与改进得尤拉⽅法得近似解得表达式,并与准确解相⽐较。
数值分析课后习题答案
x2 6.6667x2 8.205
再解
1
15 56
x31.785,7得 x35.769
1 25069x4 0.47847x4 1.4872
1 x5 5.3718 x5 5.3718
2-10.证明下列不等式:
(1)x-yx-z+z-y; (2)|x-y|x-y;
证明 (1)x-y=(x-z)+(z-y)x-z+z-y
b.用Gauss消元法
102 x y 1 x y 2
回代得解: y=1, x=0.
102 x Байду номын сангаасy 1
100y 100
再用列主元Gauss消元法
102 x y 1 x y 2
回代得解: y=1, x=1.
x y
y 1
2
2-8.用追赶法求解方程组:
4 1
x1 100
1 4 1
x2 0
3-8.判定求解下列方程组的SOR方法的收敛性.
2 1 0 0 x1 1
1
0 0
2 1 0
1 2 1
0 12
x2 x3 x4
0 00
解 直接可验证系数矩阵A是负定矩阵,所以-A是对称
1-3.为了使101/2的相对误差小于0.01%,试问应取几位 有效数字?
解 因为101/2=3.162…=0.3162…10,若具有n位有效 数字,则其绝对误差限为0.5 101-n ,于是有
r=0.5101-n/3.162…<0.5101-n/3<0.01% 因此只需n=5.即取101/2=3.1623
1 2
0
12 1,
1 2
1 2
0
12
数值分析课后部分习题答案
证明 由差商的定义 (a) 如果 F ( x ) = cf ( x ) ,则
F [ x0 , x1 ,⋯ , xn ] =
=
F [ x1 , x2 ,⋯ , xn ]-F [ x0 , x1 ,⋯ , xn− 1 ] x n − x0
cf [ x1 , x2 , ⋯ , xn ]-cf [ x0 , x1 ,⋯ , xn −1 ] x n − x0 f [ x1 , x2 , ⋯ , xn ]-f [ x0 , x1 ,⋯ , xn−1 ] = cf [ x0 , x1 , ⋯ , xn ] . x n − x0
1 1 1 1 |e( x*)| ≤ × 10m − n = × 10−2 , |e( y*)| ≤ × 10m − n = × 10 −2 , 2 2 2 2 1 1 |e( z*)| ≤ × 10 m − n = × 10 −2 , 2 2 | e( y * z*) |≈| z * e ( y*) + y * e ( z *) |≤ z * | e ( y *) | + y * | e (z *) |
m − n = −3 ,所以, n = 4 ; z * = 0.00052 = 0.52 × 10−3 ,即 m = −3
1 1 × 10m − n = × 10−3 , 2 2
由有效数字与绝对误差的关系得 即
m − n = −3 ,所以, n = 0 .
1 1 × 10m − n = × 10−3 , 2 2
1 1 ≤ 2.35 × × 10−2 + 1.84 × × 10−2 = 2.095 × 10−2 , 2 2 1 | e( x * + y * z*) |≈| e( x*) + e( y * z*) |≤ × 10 −2 + 2.095 × 10−2 2 1 = 0.2595 × 10−1 ≤ × 10−1 , 2
(完整版)数值分析课后习题答案
第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。
解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1.2.4)有已知x*的相对误差满足,而,故即2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。
解:直接根据定义和式(1.2.2)(1.2.3)则得有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.下列公式如何才比较准确?(1)(2)解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。
(1)(2)4.近似数x*=0.0310,是 3 位有数数字。
5.计算取,利用:式计算误差最小。
四个选项:第二、三章插值与函数逼近习题二、三1. 给定的数值表用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。
线性插值时,用0.5及0.6两点,用Newton插值误差限,因,故二次插值时,用0.5,0.6,0.7三点,作二次Newton插值误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h 应取多少?解:用误差估计式(5.8),令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这里p≤n+1.解:,由均差对称性可知当有而当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知的函数表求出三次Newton均差插值多项式,计算f(0.23)的近似值并用均差的余项表达式估计误差.解:根据给定函数表构造均差表由式(5.14)当n=3时得Newton均差插值多项式N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3) 由此可得f(0.23) N3(0.23)=0.23203由余项表达式(5.15)可得由于7. 给定f(x)=cosx的函数表用Newton等距插值公式计算cos 0.048及cos 0.566的近似值并估计误差解:先构造差分表计算,用n=4得Newton前插公式误差估计由公式(5.17)得其中计算时用Newton后插公式(5.18)误差估计由公式(5.19)得这里仍为0.5658.求一个次数不高于四次的多项式p(x),使它满足解:这种题目可以有很多方法去做,但应以简单为宜。
数值分析课后题答案
数值分析 第二章2.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。
解:0120121200102021101201220211,1,2,()0,()3,()4;()()1()(1)(2)()()2()()1()(1)(2)()()6()()1()(1)(1)()()3x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------==-+--则二次拉格朗日插值多项式为220()()k k k L x y l x ==∑0223()4()14(1)(2)(1)(1)23537623l x l x x x x x x x =-+=---+-+=+- 6.设,0,1,,j x j n =为互异节点,求证:(1)0()nkkj j j x l x x=≡∑ (0,1,,);k n =(2)0()()0nk jj j xx l x =-≡∑ (0,1,,);k n =证明(1) 令()kf x x = 若插值节点为,0,1,,j x j n =,则函数()f x 的n 次插值多项式为0()()nk n j j j L x x l x ==∑。
插值余项为(1)1()()()()()(1)!n n n n f R x f x L x x n ξω++=-=+又,k n ≤(1)()0()0n n f R x ξ+∴=∴=0()nk kj j j x l x x =∴=∑ (0,1,,);k n =000(2)()()(())()()(())nk j j j n nj i k i k j j j i nnik ii kj j i j x x l x C x x l x C x x l x =-==-==-=-=-∑∑∑∑∑0i n ≤≤又 由上题结论可知()nk ij jj x l x x ==∑()()0ni k i ik i k C x x x x -=∴=-=-=∑原式∴得证。
数值分析第5版课后答案
数值分析第5版课后答案该科目:数值分析适合年级:研究生及以上题型一:选择题1. 数值分析的主要研究对象是:A. 数值计算方法B. 数值计算机器C. 数值计算结果D. 数值计算过程2. 数值计算方法不可以解决的问题是:A. 导数的计算B. 积分的计算C. 微分方程的求解D. 等式的求解3. 下述哪个数值计算方法的计算机程序与解析方法的计算机程序相同:A. 数值逼近法B. 插值法C. 求解非线性方程的法D. 数值微积分4. 下述哪个数值计算方法不属于插值法:A. 牛顿插值法B. 拉格朗日插值法C. 分段插值法D. 辗转相消插值法5. 下述哪个数值计算方法不属于数值微积分:A. 数值积分B. 复化求积公式C. 龙贝格求积公式D. 杜汉求积公式答案:1-A、2-D、3-C、4-D、5-D题型二:填空题1. 理解复化求积公式,对于数值积分的准确度影响较大的主要有两个因素。
一是∆x的大小,这个因素可以通过增加______的数量来得到优化,即可以用增加区间的方法来降低误差;二是f(x)在所积区间上的变化率,如果f''(x)变化范围大,则误差大,误差变化规律主要是______型。
2. 当计算公式为∫f(x)dx时,为了防止舍入误差的产生,通常都采取尽可能多的方式使用对偶的数字,这种方法叫______。
3. 当使用拉格朗日插值公式求解区间[3,4]内f(x)=e^x , 求在x=3.5处的插值多项式P(x),则带入拉格朗日的插值公式,得到答案为P(3.5)=______。
4. 如果插值用的插值点的横坐标相等,这样的插值称为______插值。
5. 当区间划分的精度x越小,则时域精度τ也会________。
答案:1-∆x、振荡、2-对偶数码(Baud complement)、3-e^3.5-0.0881(2)、4-重复、5-增加。
题型三:判断题1. 龙贝格求积公式在划分区间上使用的步长是解析式算出的()。
数值分析课后习题及答案
数值分析课后习题及答案第一章绪论(12)第二章插值法(40-42)2、当时,,求的二次插值多项式。
[解]。
3、给出的数值表用线性插值及二次插值计算的近似值。
X 0.4 0.5 0.6 0.7 0.8 -0.916291 -0.693147 -0.510826 -0.357765 -0.223144 [解]若取,,则,,则,从而。
若取,,,则,,,则,从而补充题:1、令,,写出的一次插值多项式,并估计插值余项。
[解]由,可知,,余项为,故。
2、设,试利用拉格朗日插值余项定理写出以为插值节点的三次插值多项式。
[解]由插值余项定理,有,从而。
5、给定数据表:,1 2 4 6 7 4 1 0 1 1 求4次牛顿插值多项式,并写出插值余项。
[解]一阶差商二阶差商三阶差商四阶差商 1 42 1 -34 0 6 17 1 0 由差商表可得4次牛顿插值多项式为:,插值余项为。
第三章函数逼近与计算(80-82)26、用最小二乘法求一个形如的经验公式,使它与下列数据相拟合,并求均方误差。
19 25 31 38 44 19.0 32.3 49.0 73.3 97.8[解]由。
又,,,故法方程为,解得。
均方误差为。
27、观测物体的直线运动,得出以下数据:时间t(秒)0 0.9 1.9 3.0 3.9 5.0 距离s(米)0 10 30 5080 110 [解]设直线运动为二次多项式,则由。
,。
又,,,故法方程为,解得。
故直线运动为。
补充题:1、现测得通过某电阻R的电流I及其两端的电压U如下表:I ……U ……试用最小二乘原理确定电阻R的大小。
[解]电流、电阻与电压之间满足如下关系:。
应用最小二乘原理,求R使得达到最小。
对求导得到:。
令,得到电阻R为。
2、对于某个长度测量了n次,得到n个近似值,通常取平均值作为所求长度,请说明理由。
[解]令,求x使得达到最小。
对求导得到:,令,得到,这说明取平均值在最小二乘意义下误差达到最小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课后习题解答第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。
解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1.2.4)有已知x*的相对误差满足,而,故即2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。
解:直接根据定义和式(1.2.2)(1.2.3)则得有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.下列公式如何才比较准确?(1)(2)解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。
(1)(2)4.近似数x*=0.0310,是 3 位有数数字。
5.计算取,利用:式计算误差最小。
四个选项:第二、三章插值与函数逼近习题二、三1. 给定的数值表用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。
线性插值时,用0.5及0.6两点,用Newton插值误差限,因,故二次插值时,用0.5,0.6,0.7三点,作二次Newton插值误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h应取多少?解:用误差估计式(5.8),令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这里p≤n+1.解:,由均差对称性可知当有而当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知的函数表求出三次Newton均差插值多项式,计算f(0.23)的近似值并用均差的余项表达式估计误差.解:根据给定函数表构造均差表由式(5.14)当n=3时得Newton均差插值多项式N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3) 由此可得f(0.23) N3(0.23)=0.23203由余项表达式(5.15)可得由于7. 给定f(x)=cosx的函数表用Newton等距插值公式计算cos 0.048及cos 0.566的近似值并估计误差解:先构造差分表计算,用n=4得Newton前插公式误差估计由公式(5.17)得其中计算时用Newton后插公式(5.18)误差估计由公式(5.19)得这里仍为0.5658.求一个次数不高于四次的多项式p(x),使它满足解:这种题目可以有很多方法去做,但应以简单为宜。
此处可先造使它满足,显然,再令p(x)=x2(2-x)+Ax2(x-1)2由p(2)=1求出A=,于是9. 令称为第二类Chebyshev多项式,试求的表达式,并证明是[-1,1]上带权的正交多项式序列。
解:因10. 用最小二乘法求一个形如的经验公式,使它拟合下列数据,并计算均方误差.解:本题给出拟合曲线,即,故法方程系数法方程为解得最小二乘拟合曲线为均方程为11. 填空题(1) 满足条件的插值多项式p(x)=( ).(2) ,则f[1,2,3,4]=( ),f[1,2,3,4,5]=( ).(3) 设为互异节点,为对应的四次插值基函数,则=( ),=( ).(4) 设是区间[0,1]上权函数为ρ(x)=x的最高项系数为1的正交多项式序列,其中,则=( ),=( )答:(1)(2)(3)(4)第4章数值积分与数值微分习题41. 分别用复合梯形公式及复合Simpson公式计算下列积分.解本题只要根据复合梯形公式(6.11)及复合Simpson 公式(6.13)直接计算即可。
对,取n=8,在分点处计算f(x)的值构造函数表。
按式(6.11)求出,按式(6.13)求得,积分2. 用Simpson公式求积分,并估计误差解:直接用Simpson公式(6.7)得由(6.8)式估计误差,因,故3. 确定下列求积公式中的待定参数,使其代数精确度尽量高,并指明求积公式所具有的代数精确度.(1)(2)(3)解:本题直接利用求积公式精确度定义,则可突出求积公式的参数。
(1)令代入公式两端并使其相等,得解此方程组得,于是有再令,得故求积公式具有3次代数精确度。
(2)令代入公式两端使其相等,得解出得而对不准确成立,故求积公式具有3次代数精确度。
(3)令代入公式精确成立,得解得,得求积公式对故求积公式具有2次代数精确度。
4. 计算积分,若用复合Simpson公式要使误差不超过,问区间要分为多少等分?若改用复合梯形公式达到同样精确度,区间应分为多少等分?解:由Simpson公式余项及得即,取n=6,即区间分为12等分可使误差不超过对梯形公式同样,由余项公式得即取n=255才更使复合梯形公式误差不超过5. 用Romberg求积算法求积分,取解:本题只要对积分使用Romberg算法(6.20),计算到K=3,结果如下表所示。
于是积分,积分准确值为0.7132726.用三点Gauss-Legendre求积公式计算积分.解:本题直接应用三点Gauss公式计算即可。
由于区间为,所以先做变换于是本题精确值7.用三点Gauss-Chebyshev求积公式计算积分解:本题直接用Gauss-Chebyshev求积公式计算即于是,因n=2,即为三点公式,于是,即故8. 试确定常数A,B,C,及α,使求积公式有尽可能高的代数精确度,并指出所得求积公式的代数精确度是多少.它是否为Gauss型的求积公式?解:本题仍可根据代数精确度定义确定参数满足的方程,令对公式精确成立,得到由(2)(4)得A=C,这两个方程不独立。
故可令,得(5)由(3)(5)解得,代入(1)得则有求积公式令公式精确成立,故求积公式具有5次代数精确度。
三点求积公式最高代数精确度为5次,故它是Gauss型的。
第五章解线性方程组的直接法习题五1. 用Gauss消去法求解下列方程组.解本题是Gauss消去法解具体方程组,只要直接用消元公式及回代公式直接计算即可。
故2. 用列主元消去法求解方程组并求出系数矩阵A的行列式detA的值解:先选列主元,2行与1行交换得消元3行与2行交换消元回代得解行列式得3. 用Doolittle分解法求的解.解:由矩阵乘法得再由求得由解得4. 下述矩阵能否作Doolittle分解,若能分解,分解式是否唯一?解:A中,若A能分解,一步分解后,,相互矛盾,故A不能分解,但,若A中1行与2行交换,则可分解为LU对B,显然,但它仍可分解为分解不唯一,为一任意常数,且U奇异。
C可分解,且唯一。
5. 用追赶法解三对角方程组Ax=b,其中解:用解对三角方程组的追赶法公式(3.1.2)和(3.1.3)计算得6. 用平方根法解方程组解:用分解直接算得由及求得7. 设,证明解:即,另一方面故8.设计算A的行范数,列范数及F-范数和2范数解:故9.设为上任一种范数,是非奇异的,定义,证明证明:根据矩阵算子定义和定义,得令,因P非奇异,故x与y为一对一,于是10. 求下面两个方程组的解,并利用矩阵的条件数估计.,即,即解:记则的解,而的解故而由(3.12)的误差估计得表明估计略大,是符合实际的。
11.是非题(若"是"在末尾()填+,"不是"填-):题目中(1)若A对称正定,,则是上的一种向量范数()(2)定义是一种范数矩阵()(3)定义是一种范数矩阵()(4)只要,则A总可分解为A=LU,其中L为单位下三角阵,U为非奇上三角阵()(5)只要,则总可用列主元消去法求得方程组的解()(6)若A对称正定,则A可分解为,其中L为对角元素为正的下三角阵()(7)对任何都有()(8)若A为正交矩阵,则()答案:(1)(+)(2)(-)(3)(+)(4)(-)(5)(+)(6)(+)(7)(-)(8)(+)第六章解线性方程组的迭代法习题六1.证明对于任意的矩阵A,序列收敛于零矩阵解:由于而故2. 方程组(1) 考查用Jacobi法和GS法解此方程组的收敛性.(2) 写出用J法及GS法解此方程组的迭代公式并以计算到为止解:因为具有严格对角占优,故J法与GS法均收敛。
(2)J法得迭代公式是取,迭代到18次有GS迭代法计算公式为取3. 设方程组证明解此方程的Jacobi迭代法与Gauss-Seidel迭代法同时收敛或发散解:Jacobi迭代为其迭代矩阵,谱半径为,而Gauss-Seide 迭代法为其迭代矩阵,其谱半径为由于,故Jacobi迭代法与Gauss-Seidel法同时收敛或同时发散。
4. 下列两个方程组Ax=b,若分别用J法及GS法求解,是否收敛?解:Jacobi法的迭代矩阵是即,故,J法收敛、GS法的迭代矩阵为故,解此方程组的GS法不收敛。
5. 设,detA≠0,用,b表示解方程组Ax=f的J法及GS法收敛的充分必要条件.解J法迭代矩阵为,故J法收敛的充要条件是。
GS法迭代矩阵为由得GS法收敛得充要条件是6. 用SOR方法解方程组(分别取ω=1.03,ω=1,ω=1.1)精确解,要求当时迭代终止,并对每一个ω值确定迭代次数解:用SOR方法解此方程组的迭代公式为取,当时,迭代5次达到要求若取,迭代6次得7. 对上题求出SOR迭代法的最优松弛因子及渐近收敛速度,并求J法与GS法的渐近收敛速度.若要使那么J法GS法和SOR法各需迭代多少次? 解:J法的迭代矩阵为,故,因A为对称正定三对角阵,最优松弛因子J法收敛速度由于,故若要求,于是迭代次数对于J法,取K=15对于GS法,取K=8对于SOR法,取K=58. 填空题(1)要使应满足().(2) 已知方程组,则解此方程组的Jacobi迭代法是否收敛().它的渐近收敛速度R(B)=().(3) 设方程组Ax=b,其中其J法的迭代矩阵是().GS法的迭代矩阵是().(4) 用GS法解方程组,其中a为实数,方法收敛的充要条件是a满足().(5) 给定方程组,a为实数.当a满足(),且0<ω<2时SOR迭代法收敛.答:(1)(2)J法是收敛的,(3)J法迭代矩阵是,GS法迭代矩阵(4)满足(5)满足第七章非线性方程求根习题七1.用二分法求方程的正根,使误差小于0.05解使用二分法先要确定有根区间。
本题f(x)=x2-x-1=0,因f(1)=-1,f(2)=1,故区间[1,2]为有根区间。
另一根在[-1,0]内,故正根在[1,2]内。
用二分法计算各次迭代值如表。
其误差2. 求方程在=1.5附近的一个根,将方程改写成下列等价形式,并建立相应迭代公式.(1) ,迭代公式.(2) ,迭代公式.(3),迭代公式.试分析每种迭代公式的收敛性,并选取一种收敛最快的方法求具有4位有效数字的近似根解:(1)取区间且,在且,在中,则L<1,满足收敛定理条件,故迭代收敛。