一次函数与正比例函数区别
正比例函数及一次函数
,下列结论正确的是( A. 函数图象必经过点(1,2) B.函数图象经过二、四象限 C. y 随 x 的增大而减小 D. y 随 x 的增大而增大
)
问题探究
如图所示,在同一直角坐标系中,正比例函数 y k1 x 、y k2 x、 y k3 x 、y k4 x的图象分别为 l1 、 l2 、 l3 、 l4 ,
待定系数法
待定系数法 y 正比例函数中只有一个待定系数 k ,故只要有一对 x , 的值或一个非原点的点,就可以求得 k 值. 一次函数中有两个待定系数 k ,b ,需要两个独立条件 确定两个关于 k ,b 的方程,这两个条件通常为两个点或两 y 的值. 对x ,
待定系数法
1、根据函数的图象,求函数的解析式.
22Biblioteka 一次函数的性质3.已知一次函数 y 2m 4 x 3 n . n 是什么数时,y 随 x 的增大而增大; (1)当m 、 n 是什么数时,函数图象经过原点; (2)当 m 、 (3)若图象经过一、二、三象限,求 m 、 n 的取值范围.
一次函数的性质 4.函数 y kx k (k 0) 在直角坐标系中的图象可能是(
1、为缓解用电紧张的矛盾,某电力公司制定了新的用 电收费标准,每月用电量(度)与应付电费(元)的关系 如图所示.根据图象求出与的函数关系式.
一次函数图像的应用
2.小高从家骑自行车去学校上学,先走上坡路到达点A,再走下 坡路到达点B,最后走平路到达学校C,所用的时间与路程的关 系如图所示.放学后,如果他沿原路返回,且走平路、上坡路、 下坡路的速度分别保持和去上学时一致,那么他从学校到家需 要的时间是( ) A.14分钟 B.17分钟 C.18分钟 D.20分钟
一次函数与正比例函数ppt
正比例函数的图像是 经过原点的一条直线。
当 $k > 0$ 时,图像 为上升直线;当 $k < 0$ 时,图像为下 降直线。
THANKS FOR WATCHING
感谢您的观看
01
正比例函数是一种特殊的一次函数, 其表达式为y=kx(k为常数, k≠0)。
02
当x的系数为1或-1时,一次函数 退化为正比例函数。
正比例函数的图像
正比例函数的图像是一条通过原点的 直线,这是因为当x=0时,y=0。
当k>0时,图像位于第一和第三象限 ;当k<0时,图像位于第二和第四象 限。
正比例函数的性质
04 一次函数与正比例函数的 应用
一次函数在生活中的应用
01
02
03
预测股票价格
通过分析历史数据,利用 一次函数模型预测股票价 格的走势。
计算贷款利率
利用一次函数计算固定利 率和期限下的贷款还款总 额。
确定商品销售量
根据商品价格和市场需求, 利用一次函数预测商品的 销售量。
正比例函数在生活中的应用
题目
已知函数$f(x) = kx + b(k neq 0)$的图象经过点$(1,3)$和$( - 1, -3)$, 求函数的解析式。
正比例函数的习题及解析
• 解析:由题意得函数图象经过点$(1,3)$和$( - 1, -3)$,所以有 $\left{ \begin{array}{r} k + b = 3 \
正比例函数图像可以通过一次函数图 像上移或下移得到,移动的距离为 $b$。
一次函数与正比例函数
函数教学目标:理解函数的概念,会求函数值本次学案余留的作业,请家长督促学生完成,并于下次课带来给老师检查。
家长签名: 1.函数的概念一般地,在一个变化过程中有两个变量x 和y ,如果给定一个x 值,相应地就确定了一个y 值,那么我们称y 是x 的函数.其中x 是自变量,当自变量取一个值时,另一个变量就有唯一确定的值与它对应,这也是我们判断两个变量是否构成函数关系的依据.辨误区 自变量与另一个变量的对应关系若y 是x 的函数,当x 取不同的值时,y 的值不一定不同.如:y =x 2中,当x =2,或x =-2时,y 的值都是4.【例1-1】 下列关于变量x ,y 的关系式:①x -3y =1;②y =|x |;③2x -y 2=9.其中y 是x 的函数的是( ).A .①②③B .①②C .②③D .①②【例1-2】 已知y =2x 2+4,(1)求x 取12和-12时的函数值;(2)求y 取10时x 的值.谈重点 函数中变量的对应关系 当自变量取一个值时,另一个变量就会有唯一的值与之相对应;当另一个变量取某一数值,则自变量并不一定有唯一的值与之相对应,所以另一个变量与自变量并不是一一对应的关系.2.函数关系式用来表示函数关系的等式叫做函数关系式,也称为函数解析式或关系表达式. 谈重点 函数关系式中的学问①函数关系式是等式.②函数关系式中指明了哪个是自变量,哪个是函数.通常等式右边的代数式中的变量是自变量,等式左边的一个字母表示函数.③函数的解析式在书写时有顺序性.例如,y =x +1是表示y 是x 的函数.若写成x =y -1就表示x 是y 的函数.也就是说:求y 与x 的函数关系式,必须是用只含变量x 的代数式表示y ,即得到的等式(解析式)左边只含一个变量y ,右边是含x 的代数式.3.自变量的取值范围(1)使函数有意义的自变量的全体取值叫做自变量的取值范围. (2)自变量的取值范围的确定方法:首先,要考虑自变量的取值必须使解析式有意义.当解析式是整式时,自变量的取值范围是全体实数;当解析式是二次根式时,自变量的取值范围是使被开方数不小于0的实数;当解析式中含有零整数幂或负整数指数幂时,自变量的取值应使相应的底数不为0;其次,当函数解析式表示实际问题时,自变量的取值还必须使实际问题有意义.【例3】 若等腰三角形的周长为50 cm ,底边长为x cm ,一腰长为y cm ,y 与x 的函数关系式为y =12(50-x ),则变量x 的取值范围是__________.4.函数的表示方法函数的表示方法一般有三种:列表法、图象法、解析法,以解析法应用较多.有的函数可以用三种方法中的任何一种来表示,而有的只能用其中的一种或两种来表示.(1)列表法:列一张表,第一行表示自变量取的各个值,第二行表示相应的函数值,这种表示函数关系的方法称为列表法.(2)图象法:通过建立平面直角坐标系,以自变量取的每一个值为横坐标,以相应的函数值为纵坐标,描出每一个点,由所有这些点组成的图形称为这个函数的图象,这种表示函数关系的方法称为图象法.(3)解析法:用式子表示函数关系的方法称为解析法,这样的式子称为函数的解析式.析规律函数的三种表示方法三种表示方法各有优缺点,应用时要视具体情况,选择适当的表示方法,或将三种方法结合使用.①列表法:优点是能明显地显现出自变量与对应的函数值,缺点是取值有限;②图象法:优点是形象、直观、清晰地呈现出函数的一些性质,缺点是求得的函数值是近似的;③解析法:优点是简明扼要、规范准确,并且可以根据解析式列表、画图象,进而研究函数的性质;缺点是有些函数无法写出解析式,只能列出表格或画出图象来表示.【例4】你一定知道乌鸦喝水的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,乌鸦喝到了水.但是还没解渴,瓶中水面就下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地飞走了.如果设衔入瓶中石子的体积为x,瓶中水面的高度为y,下面能大致表示上面故事情节的图象是().5.怎样判定函数关系(1)从关系式判定函数由函数的定义知道,在某个变化过程中,有两个变量x和y,对于x每一个确定的值,y都有且只有一个值与之对应,当x取不同的值时,y的值可以相等也可以不相等,但如果一个x 的值对应着两个不同的y 值,那么y 一定不是x 的函数.根据这一点,我们可以判定一个关系式是否表示函数.(2)从表格中判定函数 根据函数的定义知道,从表格中理解函数仍然是先看是否只有两个变量,再看对于变量x 每一个确定的值,y 是否都有唯一的值和它对应,也就是说x 若取相同的值,y 必须是相同的值.(3)从图象上判定函数根据函数的定义知道,每一个x 值只能对应唯一的一个y 值,因此要判断哪些图形表示的是函数,只要在所给的自变量的取值范围内任作一条垂直于x 轴的直线,若直线与所给图形只有一个交点,则说明这个图形表示的是函数,若交点不止一个,则一定不是函数.【例5-2】 下列表示y 是x 的函数图象的是( ).练习:一、选择题1.下列变量之间的关系中,具有函数关系的有( )①三角形的面积与底边 ②多边形的内角和与边数 ③圆的面积与半径④y =12-x 中的y 与xA.1个B.2个C.3个D.4个2.对于圆的面积公式S =πR 2,下列说法中,正确的为( ) A.π是自变量 B.R 2是自变量 C.R 是自变量 D.πR 2是自变量3.下列函数中,自变量x 的取值范围是x ≥2的是( )A.y =x -2B.y =21-x C.y =24xD.y =2+x ·2-x4.已知函数y =212+-x x ,当x =a 时的函数值为1,则a 的值为( ) A.3 B.-1 C.-3 D.15.某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟内收2.4元,每加一分钟加收1元.则表示电话费y (元)与通话时间x (分)之间的函数关系正确的是( )二、填空题6.轮子每分钟旋转60转,则轮子的转数n与时间t(分)之间的关系是__________.其中______是自变量,______是因变量.7.计划花500元购买篮球,所能购买的总数n(个)与单价a(元)的函数关系式为______,其中______是自变量,______是因变量.8.某种储蓄的月利率是0.2%,存入100元本金后,则本息和y(元)与所存月数x之间的关系式为______.9.已知矩形的周长为24,设它的一边长为x,那么它的面积y与x之间的函数关系式为______.10.已知等腰三角形的周长为20 cm,则腰长y(cm)与底边x(cm)的函数关系式为______,其中自变量x的取值范围是______.三、解答题11.如图所示堆放钢管.(1)填表层数 1 2 3 (x)钢管总数(2)当堆到x层时,钢管总数如何表示?13.某市出租车起步价是7元(路程小于或等于2千米),超过2千米每增加1千米加收1.6元,请写出出租车费y(元)与行程x(千米)之间的函数关系式.14.一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2 m/s ,到达坡底时小球的速度达到40 m/s.(1)求小球的速度v (m/s)与时间t (s)之间的函数关系式; (2)求t 的取值范围;(3)求3.5 s 时小球的速度;(4)求n (s)时小球的速度为16 m/s.2一次函数与正比例函数教学目标:理解一次函数与正比例函数的概念及关系,会求函数的解析式本次学案余留的作业,请家长督促学生完成,并于下次课带来给老师检查。
八年级第十七章《函数及其图象》知识点
.精品文档.八年级第十七章《函数及其图象》知识点八年级第十七《函数及其图象》知识点(2)一、一次函数(一)一次函数的概念:形如y=kx+b (其中k工0),两个特征:①k工0,②x的次数为1正比例函数的概念:当b=0时的一次函数成为正比例函数,此时称y与x成正比例【注意】两个变量成正比例,即y=kx.例题1、若函数y=(-1)x|| 是一次函数,则=.2、若y-1与x+3成正比例,且当x=1时,y=2,求y与x 的函数关系式.(二)一次函数的图象及其性质:y=kx+b (" 0)1、一次函数的图象是一条直线,故使用待定系数法求直线解析式时一般需要两个点.特殊直线:直线y=x或直线y= -x上的点到两坐标轴距离相等.2、一次函数的性质(与系数k、b相关)① k决定着函数的增减性当k > 0时,y随x的增大而增大(增函数),必过第一三象限当k v 0时,y随x的增大而减小(减函数),必过第二四象限② b决定着直线与y轴交点的位置:在原点的基础上“上加下减”当b=0时,必过原点;当b>0时,沿y轴向上平移;当b v 0时,沿y轴向下平移.补充口诀:上加下减改变b, y=kx+b —y=kx+b+左加右减改变x, y=kx+b —y=k(x+)+b③斜率k的性质:平移k不变;|k|越大,直线的倾斜程度越大;k=【可用于待定系数法求解析式中的k 1④截距b的性质:与y轴交点(0, b),与x轴交点(, 0)⑤四种特殊位置关系的直线:两直线平行k相等;两直线相互垂直--> k1 • k2= -1 ;两直线关于x轴对称--> k与b均互为相反数;两直线关于y轴对称k互为相反数,b相等.⑥点(x0, y0)到直线ax+by+=0的距离d公式:d=(三)一次函数的应用1、解题关键:点的坐标,尤其是交点的坐标三种交点:①与x轴交点,y坐标为0,即(x, 0)②与y轴交点,x坐标为0,即(0, y)③两个图象的交点:联立解析式,方程组的解即为交点的x坐标和y坐标2、解题思路:①与三角形全等、直角三角形、面积、周长、线段有关的问题均转化为点的坐标【数形结合很重要,注意运用“全等(含对称)、勾股定理、等面积法(含同底等高)”等知识】②求函数解析式(含求函数值或自变量的值)均用待定系数法,其中k、b注意利用性质求得.【待定系数法思路:几个未知系数,就用几个条件构造方程】③比较大小的三种方法:【含两种方案的比较问题】代入计算法(对函数解析式已知的题目适用)增减性分析法(对k的符号已知的适用)图象分析法(对能画出大致图形的适用,借助交点和坐标轴分析)④最值问题(如最大利润):先求出自变量的取值范围(常以“有几种方案”的问题出现,需根据题意列不等式组求出);再列出关于利润的函数表达式(要化简整理成y=kx+b 的形式),最后根据增减性结合具体方案(自变量取值范围),找出最值.⑤行程问题(常以两车同向或相向为背景)图象交点的意义:两车相遇(或追上)两车的距离即为:s=y1-y2例题1、已知直线y=(k+2)x+k2-4 的图象经过原点,贝U k=.2、若一次函数y=(k+2)x-2k+3的图象不经过第四象限,则k的取值范围是.3、已知直线平行于直线y=2x,且与y轴交点到原点的距离为2,则该直线的解析式是.4、把直线y=-x+3向上平移个单位后,与直线y=2x+4的交点在第一象限,则的取值范围是.5、函数y=ax-2与y=bx+3的图象交于x轴上的一点,则=.6、一次函数y=(3a-7)x+a-2 的图象与y轴交点在x轴上方,且y随x的增大而减小,求a的取值范围.7、正比例函数y=-kx的图象经过第一三象限,在函数y=(k-2)x 的图象上有三个点(x1 , y1 )、(x2, y2)、(x3, y3), 且x1 >x2 > x3时,贝» y1、y2、y3的大小关系为.&若直线y=kx+b交坐标轴于(-2,0) 、(0,3)两点,则不等式kx+b > 0的解集是.9、函数y= -x+3,当图象在第一象限时,x的取值范围是;当-1 < x < 3时,函数的最小值是.10、直线AB过点A (0,6 )、B (-3,0 ),直线D与直线AB相互垂直,且过点(0,1 ).(1)求两直线的解析式;(2)求直线D与x轴的交点D 的坐标;(3)求直线AB上到y轴距离等于4的点的坐标;(4)求两直线的交点P的坐标;(5)求厶PAD的面积;(6)在y 轴上的是否存在点,使得S A PA=S^ PAD.11、点A为直线y=-2x+2上的点,点A到两坐标轴的距离相等,则点A的坐标为.12、把Rt △ AB放在平面直角坐标系中,点A (1,0 )、点B( 4,0 ), / AB=90°, B=5.将厶AB沿x轴向右平移,当点落在直线y=2x-6上时,求线段B扫过的面积.13、某工厂投入生产一种机器,当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x的部分对应值如下表:x (单位:台)102030y (单位:万元/台)605550(1)求y与x之间的函数关系式,并写出自变量x的50取值范围;(2)市场调查发现,这种机器每月销售量z (台)与售价a (万元/台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润. (注:利润=售价-成本)14、现从A, B两个蔬菜市场向甲、乙两地运送蔬菜,A, B 两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A地到甲地的运费为50元/吨,到乙地的运费为30元/吨;从B地到甲地的运费为60元/吨,到乙地的运费为45元/吨.(1) 设从A地往甲地运送蔬菜x吨,请完成下表:运往甲地(单位:吨)运往乙地(单位:吨)AxB(2) 设总运费为元,请写出与x的函数关系式;(3) 共有多少种运送方案?哪种方案运费最少?15、一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1 (k),出租车离甲地的距离为y2 ( k),客车行驶时间为x ( h), y1 , y2 与x 的函数关系图象如图所示:(1)根据图象,求出y1 , y2关于x的函数关系式。
初中数学知识点精讲精析 一次函数与正比例函数
4.2 一次函数与正比例函数学习目标1.理解一次函数和正比例函数的概念。
2.能根据所给条件写出简单的一次函数表达式。
3.经历一般规律的探索过程,发展学生的抽象思维能力。
知识详解1.一次函数的定义若两个变量x,y之间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x是自变量).一次函数的条件:函数是一次函数必须符合下列两个条件:(1)关于两个变量x,y的次数是1;(2)必须是关于两个变量的整式.2.正比例函数的定义对于一次函数y=kx+b,当b=0,即y=kx(k为常数,且k≠0)时,我们称y是x 的正比例函数.一次函数与正比例函数的关系:需要注意的是正比例函数是一次函数的特殊情况,特殊之处在于b=0,且k≠0,因此,正比例函数一定是一次函数,但一次函数并不一定是正比例函数.正比例函数的判断:要判断一个函数是否是正比例函数,首先看它是否为一次函数,也就是能否转化为y=kx+b(k≠0)的形式;其次要清楚正比例函数是特殊的一次函数,函数解析式能否转化为y=kx(k≠0)的形式.3.根据条件列一次函数关系式列函数关系式是培养数学应用能力和抽象思维能力的一种方法,解决这类问题的基本思路为:首先要认真审题,抓住关键词,找出问题中的变量并用字母表示,然后根据题意列出函数关系式.如何列函数关系式:列关系式时,一定要先知道两个变量,并且弄清谁是自变量.4.一次函数与正比例函数的联系与区别若两个变量x,y之间的关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数,特别地当b=0时,称y是x的正比例函数,显然正比例函数是一次函数,而一次函数不一定是正比例函数,正比例函数是一次函数的特殊情况.区别:①正比例函数是一次函数,但一次函数不一定是正比例函数;②正比例函数的图象一定经过原点及经过两个象限,但一次函数一般不经过原点,通常情况下要经过三个象限.联系:①两种函数的图象都是一条直线;②两种函数的增减性相同;③当b=0时,一次函数转化为正比例函数,因此正比例函数是一次函数的特例.5.用一次函数解决实际问题函数与我们的生活息息相关,生活中的许多问题可以通过函数得以解决,如何才能正确地确定两个变量之间的函数关系式呢?具体地说和列一元一次方程解应用题基本相似,即弄清题意和题目中的数量关系,找到能够表示应用题全部含义的一个相等的关系,根据这个相等的数量关系式,列出所需的代数式,从而列出两个变量之间的关系式.写解析式,定自变量的范围:通常确定一个函数,不仅要确定这个函数的解析式,还要确定这个函数的自变量的取值范围.【典型例题】例1. 鲁老师乘车从学校到省城去参加会议,学校距省城200千米,车行驶的平均速度为80千米/时.x小时后鲁老师距省城y千米,则y与x之间的函数关系式为()A.y=80x-200B.y=-80x-200C.y=80x+200D.y=-80x+200【答案】D【解析】依题意有y=200-80x=-80x+200.例2. 十堰市五堰商场为了增加销售额,推出“五月销售大酬宾”活动,其活动内容为:“凡五月份在该商场一次性购物超过50元以上者,超过50元的部分按9折优惠”.在大酬宾活动中,李明到该商场为单位购买单价为30元的办公用品x件(x>2),则应付货款y(元)与商品件数x的函数关系式是()A.y=27x(x>2)B.y=27x+5(x>2)C.y=27x+50(x>2)D.y=27x+45(x>2)【答案】B【解析】∵x>2,∴销售价超过50元,超过部分为30x-50,∴y=50+(30x-50)×0.9=27x+5(x>2)例3. 等腰三角形顶角的度数y与底角的度数x之间的函数关系式及x的取值范围是()A.y=100-2x(0<x≤90)B.y=180-x(0<x<90)C.y=180-2x(0<x<90)D.y=180-x(0<x≤90)【答案】C【解析】因为三角形内角和为180°,两底角相等,所以可知顶角的度数y与底角的度数x 之间的函数关系式为:y=-2x+180;x取值范围是:0<x<90.【误区警示】易错点1:根据条件列一次函数关系式1.小明每天从家去学校上学行走的路程为900米,某天他从家去上学时以每分30米的速度行走了450米,为了不迟到他加快了速度,以每分45米的速度行走完剩下的路程,设该天小明上学行走t分时行走的路程为S米,则当l5<t≤25时,s与t之间的函数关系是()A.s=30tB.s=900-30tC.S=45t-225D.s=45t-675【答案】C【解析】当l5<t ≤25时,小明的速度为每分45米,从而可得出s 与t 的关系式 易错点2:结合实际理解自变量2. 一天老王骑摩托车外出旅游,刚开始行驶时,油箱中有油9 L ,行驶了1 h 后发现已耗油1.5 L.(1)求油箱中的剩余油量Q(L)与行驶的时间t(h)之间的函数关系式,并求出自变量t 的取值范围;(2)如果摩托车以60 km/h 的速度匀速行驶,当油箱中的剩余油量为3 L 时,老王行驶了多少千米?【答案】(1)Q =9-1.5t ,由9-1.5t =0,得到t =6,故t 的取值范围为0≤t≤6.(2)由3=9-1.5t ,得t =4.于是s =vt =60×4=240(km).故老王行驶了240 km.【解析】根据油箱中原有油9 L,1 h 耗油1.5 L ,则t h 耗油1.5t L ,得到行驶t h 后油箱中剩余油量为(9-1.5t)L ,由此可得出函数关系式.【综合提升】针对训练1. 从A 地向B 地打长途电话,通话3分以内收费2.4元,3分后每增加通话时间1分加收1元,若通话时间为x (单位:分,x ≥3且x 为整数),则通话费用y (单位:元)与通话时间x (分)函数关系式是( )A .y=0.8x (x ≥3且x 为整数)B .y=2.4+x (x ≥3且x 为整数)C .y=x-0.6(x ≥3且x 为整数)D .y=x (x ≥3且x 为整数)2. 如果y 是x 的正比例函数,x 是z 的一次函数,那么y 是z 的( )A .正比例函数B .一次函数C .正比例函数或一次函数D .不构成函数关系3. 下列问题中,变量y 与x 成一次函数关系的是( )A .路程一定时,时间y 和速度x 的关系B .长10米的铁丝折成长为y ,宽为x 的长方形C .圆的面积y 与它的半径xD .斜边长为5的直角三角形的直角边y 和x1.【答案】C【解析】由题意得,通话时间不超过3分钟收费均为2.4元,超过3分钟后,每分钟收取1元,x ≥3且x 为整数,故可得函数关系式为:y=2.4+(x-3)=x-0.6(x ≥3且x 为整数).2.【答案】C【解析】根据正比例函数的定义,得y=kx ,根据一次函数的定义,得x= 1k z+b ,代入即可得出y 与z 的函数关系.3.【答案】B【解析】一次函数y=kx+b 的定义条件是:k 、b 为常数,k ≠0,自变量次数为1.课外拓展巴霍姆之死19世纪俄国文学巨匠列夫·托尔斯泰在《一个人需要很多土地吗?》这本小册子中叙述了这样一个故事。
一次函数和正比例函数的区别
一次函数和正比例函数的区别一、区别:
1、解析式不同
一次函数:y=kx+b(k≠0)
正比例函数:y=kx(k≠0)
2、函数图像不同
正比例函数图像一定经过原点,一次函数则不一定
联系:正比例函数是特殊的一次函数。
即,b=0时,一次函数变成了正比例函数。
二、联系:
①一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x 是自变量,y是因变量。
特别地,当b=0时,y=kx(k为常数,k≠0),y叫做x 的正比例函数(direct proportion function)。
②一般地,两个变量x、y之间的关系式可以表示成形如y=kx的函数(k为常数,x的次数为1,且k≠0),那么y=kx就叫做正比例函数。
正比例函数属一次函数,但一次函数却不一定是正比例函数。
正比例函数是一次函数的特殊形式。
即一次函数y=kx+b 中,若b=0,即所谓“y轴上的截距”为零,则为正比例函数。
正比例函数的关系式表示为:y=kx(k为比例系数)。
当k>0时(一三象限),k的绝对值越大,图像与y轴的距离越近;函数值y随着自变量x的增大而增大。
当K<0时(二四象限),k的绝对值越小,图像与y轴的距离越远。
自变量x 的值增大时,y的值则逐渐减小。
一次函数知识点
初中数学一次函数知识点总结:一次函数与正比例函数的概念一般的,形如y=kx+b(k,b为常数,k≠0)的函数,叫做一次函数。
特别的,当b=0时(即y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。
二、一次函数的图像:1.作法与图形:通过如下3个步骤:(1)列表.(2)描点;[一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。
一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。
正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。
(3)连线,可以作出一次函数的图象——一条直线。
因此,作一次函数的图象只需知道2点,并连成直线即可。
(通常找函数图象与x轴和y轴的交点分别是-k分之b与0,0与b).2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。
3.函数不是数,它是指某一变化过程中两个变量之间的关系。
4.k,b与函数图像所在象限:y=kx时(即b等于0,y与x成正比例):当k>0时,直线必通过第一、三象限,y随x的增大而增大;当k<0时,直线必通过第二、四象限,y随x的增大而减小。
y=kx+b时:当k>0,b>0, 这时此函数的图象经过第一、二、三象限;当k>0,b<0, 这时此函数的图象经过第一、三、四象限;当k<0,b>0, 这时此函数的图象经过第一、二、四象限;当k<0,b<0, 这时此函数的图象经过第二、三、四象限;当b>0时,直线必通过第一、二象限;当b<0时,直线必通过第三、四象限。
特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。
考点03 一次函数的图像与性质(解析版)
考点三一次函数的图像与性质知识点整合一、正比例函数的概念一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做正比例系数.二、一次函数1.一次函数的定义一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做x的一次函数.特别地,当一次函数y=kx+b中的b=0时,y=kx(k是常数,k≠0).这时,y叫做x的正比例函数.2.一次函数的一般形式一次函数的一般形式为y=kx+b,其中k,b为常数,k≠0.一次函数的一般形式的结构特征:(1)k≠0,(2)x的次数是1;(3)常数b可以为任意实数.3.注意(1)正比例函数是一次函数,但一次函数不一定是正比例函数.(2)一般情况下,一次函数的自变量的取值范围是全体实数.(3)如果一个函数是一次函数,则含有自变量x的式子是一次的,系数k不等于0,而b可以为任意实数.(4)判断一个函数是不是一次函数,就是判断它是否能化成y=kx+b(k≠0)的形式.(5)一次函数的一般形式可以转化为含x、y的二元一次方程.三、一次函数的图象及性质1.正比例函数的图象特征与性质正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线.k的符号函数图象图象的位置性质k>0图象经过第一、三象限y随x的增大而增大k<0图象经过第二、四象限y随x的增大而减小2.一次函数的图象特征与性质(1)一次函数的图象一次函数的图象一次函数y=kx+b(k≠0)的图象是经过点(0,b)和(-b k,0)的一条直线图象关系一次函数y=kx+b(k≠0)的图象可由正比例函数y=kx(k≠0)的图象平移得到;b>0,向上平移b个单位长度;b<0,向下平移|b|个单位长度图象确定因为一次函数的图象是一条直线,由两点确定一条直线可知画一次函数图象时,只要取两点即可(2)一次函数的性质函数字母取值图象经过的象限函数性质y=kx+b(k≠0)k>0,b>0一、二、三y随x的增大而增大k>0,b<0一、三、四y=kx+b(k≠0)k<0,b>0一、二、四y随x的增大而减小k<0,b<0二、三、四3.k,b的符号与直线y=kx+b(k≠0)的关系在直线y=kx+b(k≠0)中,令y=0,则x=-bk,即直线y=kx+b与x轴交于(–bk,0).①当–bk>0时,即k,b异号时,直线与x轴交于正半轴.②当–bk=0,即b=0时,直线经过原点.③当–bk<0,即k,b同号时,直线与x轴交于负半轴.4.两直线y=k1x+b1(k1≠0)与y=k2x+b2(k2≠0)的位置关系:①当k1=k2,b1≠b2,两直线平行;②当k1=k2,b1=b2,两直线重合;③当k1≠k2,b1=b2,两直线交于y轴上一点;④当k1·k2=–1时,两直线垂直.四、待定系数法1.定义:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而得出函数解析式的方法叫做待定系数法.2.待定系数法求正比例函数解析式的一般步骤(1)设含有待定系数的函数解析式为y=kx(k≠0).(2)把已知条件(自变量与函数的对应值)代入解析式,得到关于系数k的一元一次方程.(3)解方程,求出待定系数k.(4)将求得的待定系数k的值代入解析式.3.待定系数法求一次函数解析式的一般步骤(1)设出含有待定系数k、b的函数解析式y=kx+b.(2)把两个已知条件(自变量与函数的对应值)代入解析式,得到关于系数k,b的二元一次方程组.(3)解二元一次方程组,求出k,b.(4)将求得的k,b的值代入解析式.五、一次函数与正比例函数的区别与联系正比例函数一次函数区别一般形式y=kx+b(k是常数,且k≠0)y=kx+b(k,b是常数,且k≠0)图象经过原点的一条直线一条直线k,b符号的作用k的符号决定其增减性,同时决定直线所经过的象限k的符号决定其增减性;b的符号决定直线与y轴的交点位置;k,b的符号共同决定直线经过的象限求解析式的条件只需要一对x,y的对应值或一个点的坐标需要两对x,y的对应值或两个点的坐标联系比例函数是特殊的一次函数.②正比例函数图象与一次函数图象的画法一样,都是过两点画直线,但画一次函数的图象需取两个不同的点,而画正比例函数的图象只要取一个不同于原点的点即可.③一次函数y=kx+b(k≠0)的图象可以看作是正比例函数y=kx(k≠0)的图象沿y 轴向上(b>0)或向下(b<0)平移|b|个单位长度得到的.由此可知直线y=kx+b(k≠0,b≠0)与直线y=kx(k≠0)平行.④一次函数与正比例函数有着共同的性质:a.当k>0时,y的值随x值的增大而增大;b.当k<0时,y的值随x值的增大而减小.六、一次函数与方程(组)、不等式1.一次函数与一元一次方程任何一个一元一次方程都可以转化为kx+b=0(k,b为常数,且k≠0)的形式.从函数的角度来看,解这个方程就是寻求自变量为何值时函数值为0;从函数图象的角度考虑,解这个方程就是确定直线y=kx+b与x轴的交点的横坐标.2.一次函数与一元一次不等式任何一个一元一次不等式都能写成ax+b>0(或ax+b<0)(a,b为常数,且a≠0)的形式.从函数的角度看,解一元一次不等式就是寻求使一次函数y=ax+b(a≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=ax+b(a≠0)在x轴上(或下)方部分的点的横坐标满足的条件.3.一次函数与二元一次方程组一般地,二元一次方程mx+ny=p(m,n,p是常数,且m≠0,n≠0)都能写成y=ax+b(a,b为常数,且a≠0)的形式.因此,一个二元一次方程对应一个一次函数,又因为一个一次函数对应一条直线,所以一个二元一次方程也对应一条直线.进一步可知,一个二元一次方程对应两个一次函数,因而也对应两条直线.从数的角度看,解二元一次方程组相当于考虑自变量为何值时,两个函数的值相等,以及这两个函数值是何值;从形的角度看,解二元一次方程组相当于确定两条直线的交点坐标,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.考向一一次函数和正比例函数的定义1.正比例函数是特殊的一次函数.2.正比例函数解析式y=kx(k≠0)的结构特征:①k≠0;②x的次数是1.典例引领二、填空题变式拓展6.已知y 与1x +成正比,当1x =时,2y =.考向二一次函数的图象及性质1.通常画正比例函数y=kx(k≠0)的图象时只需取一点(1,k),然后过原点和这一点画直线.2.当k>0时,函数y=kx(k≠0)的图象从左向右,呈上升趋势;当k<0时,函数y=kx(k≠0)的图象从左向右,呈下降趋势.3.正比例函数y=kx中,|k|越大,直线y=kx越靠近y轴;|k|越小,直线y=kx越靠近x轴.4.一次函数图象的位置和函数值y的增减性完全由b和比例系数k的符号决定.典例引领【答案】A【分析】本题考查的是一次函数的性质.根据一次函数的性质以及图像上点的坐标特征对各选项进行逐一判断即可.【详解】解:A 、当0x =时,2y =,图象必经过点()0,2,故本选项符合题意;B 、∵10k =-<,20b =>,∴图象经过第一、二、四象限,故本选项不符合题意;C 、∵10k =-<,∴y 随x 的增大而减小,故本选项不符合题意;D 、∵y 随x 的增大而减小,当2x =-时,0y =,∴当2x >时,0y <,故本选项不符合题意;故选:A .4.若一次函数21y x =-+的图象经过点()13,y -,()24,y ,则1y 与2y 的大小关系()A .12y y <B .12y y >C .12y y ≤D .12y y ≥【答案】B【分析】本题主要考查了比较一次函数值的大小,根据函数解析式得到y 随x 增大而减小,据此可得答案.【详解】解:∵一次函数解析式为21y x =-+,20-<,∴y 随x 增大而减小,∵一次函数21y x =-+的图象经过点()13,y -,()24,y ,34-<,∴12y y >,故选:B .5.已知一次函数(2)=-+y k x k ,且y 随x 的增大而减小,则k 的取值范围是()A .2k >B .0k <C .2k <D .2k ≤【答案】C【分析】此题主要考查一次函数的性质,根据一次函数的增减性即在y kx b =+中,k >0时y 随x 的增大而增大;k <0时,y 随x 的增大而减小即可求解.【详解】依题意得20k -<,解得2k <故选C .变式拓展三、解答题9.已知一次函数(2)312y k x k =--+.(1)k 为何值时,函数图象经过点(0,9)?(2)若一次函数(2)312y k x k =--+的函数值y 随x 的增大而减小,求k 的取值范围.【答案】(1)1(2)2k <【分析】(1)将点(0,9)代入一次函数(2)312y k x k =--+,可得关于k 的一元一次方程,求解即可获得答案;(2)根据该函数的增减性,可得20k -<,求解即可获得答案.【详解】(1)解:将点(0,9)代入一次函数(2)312y k x k =--+,可得3129k -+=,解得1k =,∴当1k =时,函数图象经过点(0,9);(2)若一次函数(2)312y k x k =--+的函数值y 随x 的增大而减小,则有20k -<,解得2k <,∴k 的取值范围为2k <.【点睛】本题主要考查了求一次函数解析式、根据一次函数的增减性求参数、解一元一次方程和解一元一次不等式等知识,熟练掌握一次函数的图象与性质是解题关键.10.已知2y -与x 成正比,且当2x =-时,8y =.(1)求y 与x 的函数关系式;(2)当x 取什么范围时,4y >-.【答案】(1)32y x =-+(2)2x <【分析】本题考查待定系数法求解析式,一次函数图象及性质.(1)设y 与x 的函数关系式为2y kx -=,再待定系数法求解即可;(2)利用一次函数图象及性质,代入4y =-后即可得到本题答案.【详解】(1)解:设y 与x 的函数关系式为2y kx -=,将当2x =-时,8y =代入2y kx -=中得:822k -=-,即:3k =-,∴32y x =-+;(2)解:∵32y x =-+,∴30k =-<,y 随x 增大而减小,当4y =-时,432x -=-+,即:2x =,∴4y >-时,2x <,综上所述:当2x <时,4y >-.考向三用待定系数法确定一次函数的解析式运用待定系数法求一次函数解析式的步骤可简单记为:一设,二代,三解,四回代.典例引领1.《国务院关于印发全民健身计划(2021-2025年)的通知》文件提出,加大全民健身场地设施供给,建立健全场馆运营管理机制,提升场馆使用效益.某健身中心为答谢新老顾客,举行大型回馈活动,特推出两种“冬季唤醒计划”活动方案.方案1:顾客不购买会员卡,每次健身收费30元.方案2:顾客花200元购买会员卡,每张会员卡仅限本人使用一年,每次健身收费10元.设王彬一年内来此健身中心健身的次数为x (次),选择方案1的费用为1y (元),选择方案2的费用为2y (元).(1)分别写出1y ,2y 与x 之间的函数关系式;(2)在如图的平面直角坐标系中分别画出它们的函数图象;(3)预计王彬一年内能来此健身中心12次,选择哪种方案比较合算?并说明理由.【答案】(1)130y x =,210200y x =+(2)见解析(3)他选择方案二比较合算,理由见解析【分析】(1)本题主要考查了列函数关系式,根据两种方案分别列出函数关系式即可,理解题意是解题的关键;(2)本题主要考查了画函数图像,分别确定两个函数图像上的两个点,然后连接即可;理解函数图像上的点满足函数解析式是解题的关键;(2)本题主要考查了不等式的应用,解不等式3010200x x <+,即可确定来此健身中心12次费用较小的方案.正确求解不等式是解题的关键.【详解】(1)解:根据题意得:130y x =,210200y x =+;所以12y y ,与x 之间的函数表达式分别为130y x =,210200y x =+.(2)解:当0x =时,10y =,2200y =;当4x =时,1120y =,2240y =.据此描点、连线画出函数图像如下:(3)解:王斌择方案二比较合算,理由如下:解不等式3010200x x >+,解得:10x >,所以当10x >时,方案二优惠,因为1210>,王斌择方案二比较合算.2.已知4y +与3x -成正比例,且1x =时,0y =(1)求y 与x 的函数表达式;(2)点(1,2)M m m +在该函数图象上,求点M 的坐标.【答案】(1)22y x =-+(2)点M 的坐标为(1,0)【分析】(1)利用正比例函数的定义,设4y +=(3)k x -,然后把已知的对应值代入求出k 即可;(2)把(1,2)M m m +代入(1)中的解析式得到关于m 的方程,然后解方程即可.【详解】(1)设y 与x 的表达式为4(3)y k x +=-,把1x =时,0y =代入4(3)y k x +=-得24k -=,解得2k =-,由题意,得52024x x ≥⎧⎨-≥⎩,解这个不等式组,得58x ≤≤,因为x 为整数,所以x 的值为5,6,7,8.所以安排方案有4种:方案一:装运食品5辆、药品10辆,生活用品5辆;方案二:装运食品6辆、药品8辆,生活用品6辆;方案三:装运食品7辆、药品6辆,生活用品7辆;方案四:装运食品8辆、药品4辆,生活用品8辆.【点睛】本题考查了列出实际问题中的函数关系式和一元一次不等式组的应用,正确理解题意、列出函数关系式和不等式组是解题的关键.5.习主席在二十大报告中提到“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对甲、乙两个水稻品种进行种植对比实验研究.去年甲、乙两个品种各种植了100亩,收获后甲、乙两个品种的售价均为2.8元/千克,且甲的平均亩产量比乙的平均亩产量低100千克,甲、乙两个品种全部售出后总收入为644000元.(1)请求出甲、乙两个品种去年平均亩产量分别是多少;(2)今年,科技小组加大了水稻种植的科研力度,在甲、乙种植亩数不变的情况下,预计甲、乙两个品种平均亩产量将在去年的基础上分别增加20x 千克和10x 千克.由于甲品种深受市场的欢迎,预计售价将在去年的基础上每千克上涨0.05x 元,而乙品种的售价将在去年的基础上每千克下降0.1x 元.若甲、乙两个品种全部售出后总收入为y 元,请写出y 与x 的关系式;若今年甲、乙两个品种全部售出后总收入比去年增加9500元,水x 的值.【答案】(1)甲水稻品种去年平均亩产量是1100千克,乙水稻品种去年平均亩产量是1200千克(2)x 的值为5【分析】(1)设甲水稻品种去年平均亩产量是m 千克,乙水稻品种去年平均亩产量是n 千克,根据:甲的平均亩产量比乙的平均亩产量低100千克,甲、乙两个品种全部售出后总收入为644000元,即可求解;(2)根据总收入等于甲乙两个品种的收入之和即可列出y 与x 的关系式,进而得到关于x 的方程,解方程即得答案.【详解】(1)设甲水稻品种去年平均亩产量是m 千克,乙水稻品种去年平均亩产量是n 千克,根据题意得1002.8100 2.8100644000n m m n -=⎧⎨⨯+⨯=⎩,解得m 11001200n =⎧⎨=⎩.答:甲水稻品种去年平均亩产量是1100千克,乙水稻品种去年平均亩产量是1200千克.(2)根据题意得:()()()()2.80.0510******* 2.80.1100120010y x x x x =+⨯++-⨯+,整理得1900644000y x =+,∴y 与x 的关系式1900644000y x =+.∵今年甲、乙两个品种全部售出后总收入比去年增加9500元,可得6440095001900644000x +=+,解得5x =.答:x 的值为5.【点睛】本题考查了二元一次方程组的应用,列出实际问题中的函数关系式,正确理解题意、找准相等关系是解题的关键.变式拓展c<时,如图2.②当0综上所述,d的取值范围是t≥时:当x t=时,①当0之间的关系如图所示.(1)求出图中a 、b 、c 的值;(2)在乙出发多少秒后,甲、乙两人相距60米?【答案】(1)8a =,92b =,123c =;(2)乙出发68秒或者108秒后,甲、乙两人相距60米.【分析】(1)由函数图象可以分别求出甲的速度为4米/秒,乙的速度为5米/秒,就可以求出乙追上甲的时间a 的值,b 表示甲跑完全程时甲、乙之间的距离,c 表示乙出发后多少时间,甲走完全程就用甲走完全程的时间−2就可以得出结论;(2)分别求出8秒到100秒和100秒到123秒的解析式,再把60y =代入即可解出x 值.【详解】(1)解:由题意及函数图象可以得出:甲的速度为:824÷=(米/秒),乙的速度为:500÷100=5(米/秒),8548a ÷-=()=(秒);500410292b -⨯==(米),50042123c ÷-==(秒),所以8,92,123a b c ===.(2)设8~100秒和100~123秒的解析式分别为11y k x b =+和22y k x b =+,把()()8010092,、,代入11y k x b =+得11110892100k b k b =+⎧⎨=+⎩解得1118k b =⎧⎨=-⎩,把()()123010092,、,代入22y k x b =+得2222012392100k b k b =+⎧⎨=+⎩解得224492k b =-⎧⎨=⎩,8~100秒解析式:8y x =-,100~123秒的解析式4492y x =-+,当60y =时,则68108x =或者,所以在乙出发68秒或者108秒后,甲、乙两人相距60米∵0<x ≤1000,∴860≤x ≤1000.故答案为:y 1=0.5x ;y 2=0.3x +40;0<x ≤200;200≤x ≤860;860≤x ≤1000.(2)根据题意可得,推出优惠活动后,y 1=0.5a +0.25(x ﹣a )=0.25x +0.25a ,则有,0.257000.250.3700400.258600.250.386040a a ⎧⨯+≥⨯+⎨⨯+≤⨯+⎩解得300≤a ≤332.∴此时a 的取值范围为:300≤a ≤332.【点睛】本题主要考查了一元一次不等式组的应用,明确题意,列出不等式组是解题的关键.考向四一次函数与方程、不等式1.方程ax +b =k (a ≠0)的解⇔函数y =ax +b (a ≠0)中,y =k 时x 的值.2.方程ax +b =k (a ≠0)的解⇔函数y =ax +b (a ≠0)的图象与直线y =k 的交点的横坐标.3.一次函数y =ax +b (a ≠0)与一元一次不等式ax +b >0(或ax +b <0)的关系:ax +b >0的解集⇔y =ax +b 中,y >0时x 的取值范围,即直线y =ax +b 在x 轴上方部分图象对应的x 的取值范围;4.ax +b <0的解集⇔y =ax +b 中,y <0时x 的取值范围,即直线y =ax +b 在x 轴下方部分图象对应的x 的取值范围.5.二元一次方程kx -y +b =0(k ≠0)的解与一次函数y =kx +b (k ≠0)的图象上的点的坐标是一一对应的.6.两个一次函数图象的交点坐标,就是相应二元一次方程组的解,体现了数形结合的思想方法.典例引领1.直线1l :1y kx b =+过点()0,4A 和()1,3D ,直线2l :225y x =-和y 轴交于点B 和直线1l 交于C 点.(1)求两条直线交点C 的坐标及ABC 的面积;(2)x 取何值时,120y y >>.∵()0,4A ,()0,5B -,()3,1C ,∴9AB =,3CN =,∴112793222ABC S AB CN =⋅=⨯⨯= .(2)∵14y x =-+,225y x =-,∴当120y y >>时,4250x x -+>->,解得:532x <<.2.已知直线443y x =-+与x 轴,y 轴分别交于点且把AOB 分成两部分.(1)若AOB 被分成的两部分面积相等,求k 与b ;⎩3.如图,在平面直角坐标系中,直线轴于点C和点D,两条直线交于点(1)求点A的坐标;(2)在直线CD上求点M【答案】(1)点A的坐标为(2)点M的坐标为44⎛∵3ABC MAB S S = ,∴23MBC ABC S S =△△,∵12ABC A S BC y =⋅△,121∵3ABC MAB S S = ,∴43MBC ABC S S =△△,(1)求点C的坐标;(2)求AOB的面积;(3)点D在直线122y x =+求点D的坐标.变式拓展(1)求点A,B,C的坐标.(2)若点P在直线1l上,且(3)根据图象,直接写出当【答案】(1)48, A⎛-(1)直接写出点A的坐标为。
正比例函数,一次函数
【例4】 在抗击“非典”过程中,某医药研究所开发了 】 在抗击“非典”过程中, 一种预防“ 非典” 的药品.经试验这种药品的效果得知 经试验这种药品的效果得知, 一种预防 “ 非典 ” 的药品 经试验这种药品的效果得知 , 当成人按规定剂量服用该药后1小时时 小时时, 当成人按规定剂量服用该药后 小时时, 血液中含药量最 达到每毫升5微克 接着逐步衰减, 微克, 高 , 达到每毫升 微克 , 接着逐步衰减 , 至 8小时时血液 小时时血液 中含药量为每毫升1.5微克 每毫升血液中含药量y(微克 微克, 微克) 中含药量为每毫升 微克,每毫升血液中含药量 微克 随时间x(小时 的变化如图3-2-9所示 在成人按规定剂量服 小时)的变化如图 所示.在成人按规定剂量服 随时间 小时 的变化如图 所示 药后: 药后: (1)分别求出 分别求出x≤1,x≥1时,y与x之间的函数关系式 之间的函数关系式. 分别求出 , 时 与 之间的函数关系式 (2)如果每毫升血液中含药量为 微克或 微克以上,对预 如果每毫升血液中含药量为2微克或 微克以上, 如果每毫升血液中含药量为 微克或2微克以上 非典”是有效的,那么这个有效时间为多少小时? 防“非典”是有效的,那么这个有效时间为多少小时 1、x ≤ 1时, y = 5x
3 k =− 2 = −3k + b 4 ⇒ 则有: 则有:−1= k + b 1 b = − 4
3 1 故M′N∶y=- x- 令x=0得y=∶ 得 4 4
1 4
P点坐标为 ,-1/4) 点坐标为(0, 点坐标为
【 例 3】 某博物馆每周都吸引大量中外游客前来参观 如 】 某博物馆每周都吸引大量中外游客前来参观.如 果游客过多, 对馆中的珍贵文物会产生不利影响.但同时 果游客过多 , 对馆中的珍贵文物会产生不利影响 但同时 考虑到文物的修缮和保存费用问题, 考虑到文物的修缮和保存费用问题,还要保证一定的门票 收入.因此 因此, 收入 因此 , 博物馆采取了涨浮门票价格的方法来控制参 观人数.在该方法实施过程中发现 在该方法实施过程中发现: 观人数 在该方法实施过程中发现 : 每周参观人数与票价 之间存在着如图所示的一次函数关系.在这样的情况下 在这样的情况下, 之间存在着如图所示的一次函数关系 在这样的情况下 , 如果确保每周4万元的门票收入 万元的门票收入, 如果确保每周 万元的门票收入 ,那么每周应限定参观人 数是多少?门票价格应是多少元 门票价格应是多少元? 数是多少 门票价格应是多少元 每周应限定参观人数为2000人, 人 每周应限定参观人数为 门票价格为20元 门票价格为 元.
正比例函数、一次函数的图像与性质
正比例函数与一次函数的图象与性质1,正比例函数2,一次函数y=kx+b的性质(对比正比例函数的性质和图像的性质)3,函数是通过的观念研究已学过或未学过的知识。
4,变量的定义是:常量的定义是:5,函数的定义:则函数的本质是:6,在函数的定义中,自变量x在“在某一范围内”取值,这就是自变量的取值范围,它有两层含义,分别是:(1)(2)7,函数解析式是式子,写函数解析式必写8,函数的表示方法有种,它们分别是:;在运用时不是单独运用某一种,而综合运用它们。
9,由函数解析式画函数图像,一般步骤是10,一次函数的定义是正比例函数的定义是11,一次函数y=kx+b的平移:1)在y轴如何平移2)在x轴如何平移12,正比例函数是一次函数的特例,特殊在什么地方13,一次函数y=kx+b的趋势是由什么决定的如何决定的14,函数y1=k1x+b1与y2=k2x+b2: 1)平行的条件2)相交的条件3)重合的条件15,作图与作题正比例函数的图像是由决定的而一次函数的图像是由决定的16,一次函数是函数中最简单、最基本的一种函数。
函数与方程不同,方程是从静态的角度看待问题,是求方程所代表的未知数,如x+y=1,就方程而言一个二元一次方程没有意义,要想有意义就要是方程组,才能有一对实数解,这个解用平面直角坐标系来解释就是一个点;而函数是运用运动的观念来研究问题的,是从动态的角度看待问题的,也就是说自变量在某一变化过程中有一定的取值范围,从函数图像上看其就是点的集合,运用方程思想或方法只能求出一点,因此要想确定函数解析式或画出函数图像就要知道函数解析式中自变量的系数与常数即可,这就是待定系数法的由来。
17,待定系数法的定义是:待定系数法是解出函数解析式的方法,是运用方程思想解出函数解析式中未知的系数与常数,其步骤有:(1)根据图像或条件设定函数解析式;(2)运用方程思想方法解出未知的系数与常数。
那么一次函数系数的确定需要的条件是:正比例函数系数的确定需要的条件是:18,一次函数与二元一次方程组二元一次方程组有解是二元一次方程组无解是阅读——函数与方程的联系与区别:区别:(1)方程有若干个未知数,而函数则有若干个变量;(2)方程用等式表示若干个未知数的关系,而函数既可以用等式表示变量之间的关系,又可以用列表或图象来表示两个变量之间的关系。
北师大版八年级数学上册第四章 一次函数 一次函数与正比例函数
课堂检测
基础巩固题
4.已知y与x-3成正比例,当x=4时,y=3. (1)写出y与x之间的函数关系式,并指出它是什么函数; (2)求x=2.5时,y的值.
解 :(1)设y=k(x-3), 把 x=4,y=3 代入上式,得 3= k(4-3), 解得 k=3, 所以y=3(x-3), 所以y=3x-9, y是x的一次函数. (2)当x=2.5时,y=3×2.5 - 9= -1.5.
一次函数的简单应用
课后作业
作业 内容
教材作业 从课后习题中选取
自主安排 配套练习册练习
吗?如果是,请指出相应的k与b的值.
A
解: (1)因为BC边上的高AD也是BC边上的中线,
所以BD= 1.x 在Rt△ABD中,由勾股定理,得
2
B
h AD AB2 BD2 x2 1 x2 3 x,
4
2
即 h 3 x.
2
所以h是x的一次函数,且 k 3 ,b 0.
2
DC
课堂检测
拓广探索题
函数是一次函数
关系式为:y=kx+b (k,b为常数,k≠0)
特别地,当b=0时,称y是x的正比例函数.
函数是正比例函数
关系式为:y=kx (k为常数,k≠0)
探究新知
思考 一次函数的结构特征有哪些?
答:一次函数的结构特征: (1)k≠0 . (2)x 的次数是1. (3)常数项b可以为一切实数.
探究新知
方法点拨
1.判断一个函数是一次函数的条件: 自变量是一次整式,一次项系数不为零; 2.判断一个函数是正比例函数的条件: 自变量是一次整式,一次项系数不为零, 常数项为零.
巩固练习
变式训练
下列函数中哪些是一次函数,哪些又是正比例函数?
知识点16正比例函数与一次函数图象、性质及其应用
正比例函数的斜率决定了直线的倾斜程度,斜率越大,直线 越陡峭;斜率越小,直线越平缓。
正比例函数性质分析
比例系数决定函数增减性
正比例函数的增减性由比例系数决定。当比例系数大于0时,函数值随自变量增 大而增大;当比例系数小于0时,函数值随自变量增大而减小。
函数值与自变量成正比
在正比例函数中,函数值与自变量成正比关系,即当自变量成倍增加时,函数值 也成倍增加。
THANKS
感谢观看
实际问题中的一次关系
线性增长问题
某个量随时间的变化而线性增长 ,如年龄、身高等。
线性减少问题
某个量随时间的变化而线性减少, 如汽车行驶中的油耗等。
定价问题
在商品销售中,销售额与销售量之 间的一次函数关系,即销售额=单 价×销售量。
综合应用举例
速度、时间、路程的综合应用
在解决行程问题时,需要同时考虑速度、时间和路程三个因素,利用正比例函数和一次函 数进行求解。
04
正比例函数与一次函数应用
实际问题中的正比例关系
匀速运动问题
当物体做匀速直线运动时,其速度与 时间成正比例关系,即速度=路程/时 间。
工作量问题
在工作效率一定的情况下,工作总量 与工作时间成正比例关系,即工作总 量=工作效率×工作时间。
购物问题
在购买同一种商品时,总价与商品数 量成正比例关系,即总价=单价×数量 。
03
一次函数图象与性质
一次函数图象特点
01
02
03
直线性
一次函数的图象是一条直 线。
斜率
直线的斜率等于一次函数 的比例系数。
截距
直线在y轴上的截距等于 一次函数的常数项。
一次函数性质分析
一次函数
一次函数一、一次函数与正比例函数:1、一次函数的解析式为: ,过点 、 ;正比例函数的解析式为: ,过点 、 ;2、一次函数的图象与性质:函数图象性质经过象限变化规律y=kx+b (k、b为常数,且k≠0) k>0b>0 b=0 b<0 k<0b>0 b=0 b<0 3、一次函数y=kx+b(k≠0)中k、b的意义:k表示直线y=kx+b(k≠0) 的倾斜程度;b表示直线y=kx+b(k≠0)与y轴交点的 ,也表示直线在y轴上的 。
4、特殊直线方程:X轴 : 直线 Y轴 : 直线与X轴平行的直线 与Y轴平行的直线1、 三象限角平分线 二、四象限角平分线5、两直线y=k1x+b1(k1≠0)与 y=k2x+b2(k2≠0)的位置关系:当 时,两直线平行。
当 时,两直线重合。
当 时,两直线相交。
当时,两直线垂直。
当 时,两直线交于y轴上同一点。
6、一次函数y=kx+b(k≠0)与轴交于点 ,与轴交于点则其图像与坐标轴所围成的三角形面积为。
一 次 函 数 知 识 详 解知识点1 一次函数和正比例函数的概念若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.例如:y=2x+3,y=-x+2,y=x等都是一次函数,y=x,y=-x都是正比例函数.【说明】 (1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b(k,b为常数,b≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x的次数为1,一次项系数k必须是不为零的常数,b可为任意常数.(3)当b=0,k≠0时,y=b仍是一次函数.(4)当b=0,k=0时,它不是一次函数.探究交流有人说:“正比例函数是一次函数,一次函数也是正比例函数,它们没什么区别.”点拨 这种说法不完全正确.正比例函数是一次函数,但一次函数不一定是正比例函数,只有当b=0时,一次函数才能成为正比例函数.知识点2 确定一次函数的关系式根据实际问题中的条件正确地列出一次函数及正比例函数的表达式,实质是先列出一个方程,再用含x的代数式表示y.知识点3 函数的图象把一个函数的自变量x与所对应的y的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.知识点4 一次函数的图象由于一次函数y=kx+b(k,b为常数,k≠0)的图象是一条直线,所以一次函数y=kx+b的图象也称为直线y=kx+b.由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b),直线与x轴的交点(-,0).但也不必一定选取这两个特殊点.画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.知识点5 一次函数y=kx+b(k,b为常数,k≠0)的性质(1)k的正负决定直线的倾斜方向;①k>0时,y的值随x值的增大而增大;②k﹤O时,y的值随x值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x轴相交的锐角度数越大(直线陡),|k|越小,直线与x轴相交的锐角度数越小(直线缓);(3)b的正、负决定直线与y轴交点的位置;①当b>0时,直线与y轴交于正半轴上;②当b<0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①如图11-18(l)所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);②如图11-18(2)所示,当k>0,b﹥O时,直线经过第一、三、四象限(直线不经过第二象限);③如图11-18(3)所示,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);④如图11-18(4)所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x 向上平移一个单位得到的.知识点6 正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.知识点7 点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(x0,y0)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.知识点8 确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.知识点9 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.知识点10 用待定系数法确定一次函数表达式的一般步骤(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值,得到函数表达式.例如:已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式.解:设一次函数的关系式为y=kx+b(k≠0),由题意可知,解 ∴此函数的关系式为y=.【说明】 本题是用待定系数法求一次函数的关系式,具体步骤如下:第一步,设(根据题中要求的函数“设”关系式y=kx+b,其中k,b 是未知的常量,且k≠0);第二步,代(根据题目中的已知条件,列出方程(或方程组),解这个方程(或方程组),求出待定系数k,b);第三步,求(把求得的k,b的值代回到“设”的关系式y=kx+b中);第四步,写(写出函数关系式).知识点11 一次函数与一次方程(组)、不等式的关系解一次方程(组)与不等式问题一次函数问题从“数”的角度从“形”的角度解一元一次方程kx+b=0当一次函数y=kx+b的函数值(y值)等于0时求自变量x的值当直线y=kx+b上点的纵坐标为0时,求这个点的横坐标是什么?(即求直线与x轴的交点坐标)解一元一次方程kx+b=c 当一次函数y=kx+b的函数值(y值)等于c时求自变量x的值当直线y=kx+b上点的纵坐标为c时,求这个点的横坐标是什么?解一元一次不等式kx+b﹥0(或﹤0)当一次函数y=kx+b的函数值(y值)大于0(或小于0)时求自变量x的值当直线y=kx+b上的点的纵坐标大于0(或小于0)时,求这些点的横坐标在什么范围?(即求直线与x轴的交点坐标的上方(或下方)的部分直线的横坐标的范围)解一元一次不等式kx+b﹥m(或﹤m)当一次函数y=kx+b的函数值(y值)大于m(或小于m)时求自变量x的值当直线y=kx+b上的点的纵坐标大于m(或小于m)时,求这些点的横坐标在什么范围?解一元一次不等式kx+b﹥mx+n 当一次函数y=kx+b的值大于mx+n的值时,对应的自变量x的范围是多少?在相同横坐标的情况下,当直线y=kx+b上的点的纵坐标大于直线y=mx+n上的点的纵坐标时,求这些点的横坐标在什么范围?解二元一次方程组当一次函数y=kx+b与y=mx+n的值相等时,对应的自变量x的值是多少?这个函数值是多少?当直线y=kx+b与直线y=mx+n相交时求交点坐标思想方法小结 :(1)函数方法.函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.(2)数形结合法.数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.知识规律小结 (1)常数k,b对直线y=kx+b(k≠0)位置的影响.①当b>0时,直线与y轴的正半轴相交;当b=0时,直线经过原点;当b﹤0时,直线与y轴的负半轴相交.②当k,b异号时,即->0时,直线与x轴正半轴相交;当b=0时,即-=0时,直线经过原点;当k,b同号时,即-﹤0时,直线与x轴负半轴相交.③当b>O,b>O时,图象经过第一、二、三象限;当k>0,b=0时,图象经过第一、三象限;当b>O,b<O时,图象经过第一、三、四象限;当k﹤O,b>0时,图象经过第一、二、四象限;当k﹤O,b=0时,图象经过第二、四象限;当b<O,b<O时,图象经过第二、三、四象限.(2)直线y=kx+b(k≠0)与直线y=kx(k≠0)的位置关系.直线y=kx+b(k≠0)平行于直线y=kx(k≠0)当b>0时,把直线y=kx向上平移b个单位,可得直线y=kx+b;当b﹤O时,把直线y=kx向下平移|b|个单位,可得直线y=kx+b.(3)直线b1=k1x+b1与直线y2=k2x+b2(k1≠0 ,k2≠0)的位置关系.①k1≠k2y1与y2相交;②y1与y2相交于y轴上同一点(0,b1)或(0,b2);③y1与y2平行;④y1与y2重合典 型 例 题例1 已知y-3与x成正比例,且x=2时,y=7.(1)写出y与x之间的函数关系式; (2)当x=4时,求y的值;(3)当y=4时,求x的值.[分析] 由y-3与x成正比例,则可设y-3=kx,由x=2,y=7,可求出k,则可以写出关系式.解:(1)由于y-3与x成正比例,所以设y-3=kx.把x=2,y=7代入y-3=kx中,得7-3=2k, ∴k=2.∴y与x之间的函数关系式为y-3=2x,即y=2x+3.(2)当x=4时,y=2×4+3=11.(3)当y=4时,4=2x+3,∴x=.学生做一做 已知y与x+1成正比例,当x=5时,y=12,则y关于x的函数关系式是 .老师评一评 由y与x+1成正比例,可设y与x的函数关系式为x=k(x+1).再把x=5,y=12代入,求出k的值,即可得出y关于x的函数关系式.设y关于x的函数关系式为y=k(x+1).∵当x=5时,y=12, ∴12=(5+1)k,∴k=2.∴y关于x的函数关系式为y=2x+2.【注意】 y与x+1成正比例,表示y=k(x+1),不要误认为y=kx+1.例2 (2003·哈尔滨)若正比例函数y=(1-2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1﹤x2时,y1>y2,则m的取值范围是( )A.m﹤O B.m>0 C.m﹤ D.m >[分析] 本题考查正比例函数的图象和性质,因为当x1<x2时,y1>y2,说明y随x的增大而减小,所以1-2m﹤O,∴m>,故正确答案为D项.例3(2003·陕西)已知直线y=2x+1.(1)求已知直线与y轴交点M的坐标;(2)若直线y=kx+b与已知直线关于y轴对称,求k,b的值.老师评一评 (1)令x=0,则y=2×0+1=1,∴M(0,1).∴直线y=2x+1与y轴交点M的坐标为(0,1)(2)∵直线y=kx+b与y=2x+l关于y轴对称,∴两直线上的点关于y轴对称.又∵直线y=2x+1与x轴、y轴的交点分别为A(-,0),B(0,1),∴A(-,0),B(0,1)关于y轴的对称点为A′(-,0),B′(0,1).∴直线y=kx+b必经过点A′(-,0),B′(0,1).把 A′(-,0),B′(0,1)代入y=kx+b中得∴ ∴k=-2,b=1.小结 当两条直线关于x轴(或y轴)对称时,则它们图象上的点也必关于x轴(或y轴)对称.例如:对于两个一次函数,若它们关于x轴对称,求出已知一个一次函数和x轴、y轴的交点,再分别求出这两个点关于x轴的对称点,利用求出的两个对称点,就可以求出另一个函数的解析式.例4 已知y+2与x成正比例,且x=-2时,y=0.(1)求y与x之间的函数关系式;(2)画出函数的图象;(3)观察图象,当x取何值时,y≥0?(4)若点(m,6)在该函数的图象上,求m的值;(5)设点P在y轴负半轴上,(2)中的图象与x轴、y轴分别交于A,B两点,且S△ABP=4,求P点的坐标.[分析] 由已知y+2与x成正比例,可设y+2=kx,把x=-2,y=0代入,可求出k,这样即可得到y与x之间的函数关系式,再根据函数图象及其性质进行分析,点(m,6)在该函数的图象上,把x=m,y=6代入即可求出m的值.解:(1)∵y+2与x成正比例,∴设y+2=kx(k是常数,且k≠0)∵当x=-2时,y=0. ∴0+2=k·(-2),∴k=-1.∴函数关系式为x+2=-x, 即y=-x-2.(2)列表;x0-2y-20描点、连线,图象如图11-23所示.(3)由函数图象可知,当x≤-2时,y≥0.∴当x≤-2时,y≥0.(4)∵点(m,6)在该函数的图象上,∴6=-m-2,∴m=-8.(5)函数y=-x-2分别交x轴、y轴于A,B两点,∴A(-2,0),B(0,-2).∵S△ABP=·|AP|·|OA|=4,∴|BP|=. ∴点P与点B的距离为4.又∵B点坐标为(0,-2),且P在y轴负半轴上,∴P点坐标为(0,-6).例5 已知一次函数y=(3-k)x-2k2+18.(1)k为何值时,它的图象经过原点?(2)k为何值时,它的图象经过点(0,-2)?(3)k为何值时,它的图象与y轴的交点在x轴的上方?(4)k为何值时,它的图象平行于直线y=-x?(5)k为何值时,y 随x的增大而减小?[分析] 函数图象经过某点,说明该点坐标适合方程;图象与y轴的交点在y轴上方,说明常数项b>O;两函数图象平行,说明一次项系数相等;y随x的增大而减小,说明一次项系数小于0.解:(1)图象经过原点,则它是正比例函数.∴∴k=-2. ∴当k=-3时,它的图象经过原点.(2)该一次函数的图象经过点(0,-2).∴-2=-2k2+18,且3-k≠0, ∴k=±∴当k=±时,它的图象经过点(0,-2)(3)∵图象与y轴的交点在x轴上方,即b>0.∴-2k2+18>0, ∴-3<k<3,∴当-3﹤k﹤3时,它的图象与y轴的交点在x轴的上方.(4)函数图象平行于直线y=-x,∴3-k=-1, ∴k=4.∴当k=4时,它的图象平行于直线x=-x.(5)∵随x的增大而减小,∴3-k﹤O. ∴k>3. ∴当k>3时,y随x的增大而减小.例6 已知直线y=kx+b经过点(,0),且与坐标轴围成的三角形的面积为,求此直线的解析式.错解:∵直线经过点(,0),∴0=k+b,①设直线y=kx+b与x轴、y轴的交点坐标分别为A(-,0),B(0,b),又S△ABO=,∴S△ABO=|OA|·|OB|=·(-)·b=.即,②由①得b=-k,代入②中得k=-2,∴b=5.∴所求直线的解析式为y=-2x+5.[分析] 上述解法出现了漏解的情况,由于解题时忽略了|OA|=|-|,|OB|=|b|中的绝对值符号,因此,也就漏掉了一个解析式.正解:∵直线经过点(,0),∴0=k+b,①设直线y=kx+b与x轴、y轴的交点坐标分别为A(-,0),B(0,b),∴|OA|=|-|=||,|OB|=|b|.又∵S△AOB=,∴S△AOB =|OA|·|OB|=·||·|b|=,即,② 由①得b=-k,代入②中得|k|=2,∴k1=2,k2=-2,∴b1=-5,b2=5.∴所求直线的解析式为y=2x-5或y=-2x+5.例7 (2004·沈阳)某市的A县和B县春季育苗,急需化肥分别为90吨和60吨,该市的C县和D县分别储存化肥100吨和50吨,全部调配给A县和B县.已知C,D两县运化肥到A,B两县的运费(元/吨)如下表所示.(1)设C县运到A县的化肥为x吨,求总运费W(元)与x(吨)的函数关系式,并写出自变量x的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案.[分析] 利用表格来分析C,D两县运到A,B两县的化肥情况如下表.则总运费W(元)与x(吨)的函数关系式为:W=35x+40(90-x)+30(100-x)+45[60-(100-x)]=10x+4800.自变量x的取值范围是40≤x≤90.解:(1)由C县运往A县的化肥为x吨,则C县运往B县的化肥为(100-x)吨.D县运往A县的化肥为(90-x)吨,D县运往B县的化肥为(x-40)吨.由题意可知W=35x+40(90-x)+30(100-x)+45(x-40)=10x+4800.自变量x的取值范围为40≤x≤90.∴总运费W(元)与x(吨)之间的函数关系式为w=1Ox+480O(40≤x≤9O).(2)∵10>0, ∴W随x的增大而增大.∴当x=40时, W最小值=10×40+4800=5200(元).运费最低时,x=40,90-x=50(吨),x-40=0(吨).∴当总运费最低时,运送方案是:C县的100吨化肥40吨运往A县,60吨运往B县,D县的50吨化肥全部运往A县.例8 (2004·黑龙江)图11-30表示甲、乙两名选手在一次自行车越野赛中,路程y(千米)随时间x(分)变化的图象(全程),根据图象回答下列问题.(1)当比赛开始多少分时,两人第一次相遇?(2)这次比赛全程是多少千米?(3)当比赛开始多少分时,两人第二次相遇?[分析] 本题主要考查读图能力和运用函数图象解决实际问题的能力.解决本题的关键是写出甲、乙两人在行驶中,路程y(千米)随时间x(分)变化的函数关系式,其中:乙的函数图象为正比例函数,而甲的函数图象则是三段线段,第一段是正比例函数,第二段和第三段是一次函数,需分别求出.解:(1)当15≤x<33时,设y AB=k1x+b1,把(15,5)和(33,7)代入, 解得k1=,b1=, ∴y AB=x+.当y=6时,有6=x+, ∴x=24。
一次函数与正比例函数[精选文档]
(3)因为(5000-3500)×3%=45(元), 19.2<45
所以此人本月工资、薪金收入不超过5000元。 设此人本月工资、薪金收入是x元,则
19.2=0.03x-105; 解得x=4140
即此人本月工资、薪金收入是4140元。
1、一次函数与正比例函数的概念: 2、一次函数与正比例函数的关系; 3、依据实际问题的意义,会列出一次函 数与正比例函数的表达式; 4、数学来源于生活,又服务于生活。
作业布置 1、课本第82页习题4.2 第2题 2、学习之友第35~36页
(2) 你能写出y与x的关系吗? y=0.12x
(3) 你能写出油箱剩余油量z(L)与汽车行驶路程 x(km)之间的关系式吗?
z= - 0.12x+60
议一议
上面的三个关系式中,有什么共同之处?
(1) y=0.5x+3 (2) y=0.12x (3)z=-0.12x+60
定义:若两个变量 x、y之间的对应关系可以表示成y=kx+b(k,b 为常数,k≠0)的形式,则称y是x的一次函数.(x为自变量,y 为因变量.)
x/kg 0 1 2 3 4 5
y/cm 3 3.5 4 4.5 5 5.5
(2)你能写出x与y之间的关系吗?
y=0.5x+3
2、某辆汽车油箱中原有油60L,汽车每行驶50km耗油6L。
(1) 完成下表:
汽车行使路 程x/km
0
50 100 150 200 300
耗油量y/L 0 6 12 18 24 36
(1)当月收入超过3500元而又不超过5000元时,写出 应缴纳所得税y(元)与月收入x(元)之间的关系式
正比例函数、一次函数和反比例函数知识点归纳
正比例函数、一次函数和反比例函数知识点归纳正比例函数:解析式:y=kx(k为常数,k工0) ,k叫做函数的比例系数;(注意:x的指数为1)图像:过原点的直线;必过点:(0,0 )和(1,k);走向:k>o,图像过一三象限,k<0,图像过二四象限;y yK>0k<0/ \0OJx IV x倾斜度:|k|越大,倾斜度越大,也就是越靠近y轴,|k|越小,倾斜度越小,也就是越靠近x轴;如图:yy=2x//y=xO yx增减性:k>O,y随x的增大而增大;k<0,y随x的增大而减小;一次函数:解析式:y=kx+b(k,b为常数,k^ 0),k叫做函数的比例系数,(注意:x的指数为1,b为直线与y轴交点的纵坐标);正比例函数是一次函数的特殊情况,即b=0时的一种情况;图像:一条直线;必过点:(0,b)(-b/k,0);走向:k>o, b>0,图像过一二三象限,k>0,b<0,图像过一三四象限;y yk>0,b<0O O /x x倾斜度:|k|越大,倾斜度越大,也就是越靠近y轴,|k|越小,倾斜度越小,也就是越靠近x轴;如图:yy=2x /F y=xk>0,b>0k<o,b>0,图像过一二四象限k<o ,b>0,图像过二三四象限增减性:k>O,y 随x 的增大而增大;k<0, y 随x 的增大而减小;平移:y=kx+b,向上平移 m 个单位:y=kx+b+m;向下平移 n 个单位:y=kx+b-n;向左平移 m 个单位:y=k (x+m )+b;向右平移 n 个单位:y=k (x-n )+b;简称:上加下减,左加右减;(注:上加下减到代数式后面,左加右减到x 后面,直接与x进行加减,与系数和指数都没关系);反比例函数:解析式:y=k/x (k 为常数,k z 0) 图像:双曲线(图像无限靠近坐标轴, 所在象限:k>0图像经过一三象限;增减性:k>0,y 随x 的增大而减小;k<0,y 随x 的增大而增大;反比例函数知识点归纳1、基础知识(一)反比例函数的概念但永不相交。
正比例、一次函数笔记
正比例函数、一次函数、反比例函数(一)正比例函数:1、一般形式:y=kx (其中k是比例系数,k≠0)2、图像:是一条经过原点的直线。
3、简单作图:(0,0)、(1,k)4、性质:当k>0时,图像经过一、三象限;y随x的增大而增大;当k<0时,图像经过二、四象限;y随x的减小而减小。
5、特殊的直线:一、三象限的角平分线:y=x;二、四象限的角平分线:y=-x(二)一次函数:1、一般形式:y=kx +b(其中k、b是常数,k≠0)2、图像:当b≠0时,是一条不经过原点的直线,当b=0时,图像是经过原点的直线。
3、直线与坐标轴的交点:与x轴的交点(bk-,0);与y轴的交点(0,b)4、简单作图:(bk-,0)、(0,b)5、k、b的几何意义:k决定直线的倾斜程度:当k>0时,图像从左向右上升;当k<0时,图像从左向右下降。
b是直线与y轴交点的纵坐标:当b>0时,直线与y轴的交点在正半轴;当b<0时,直线与轴的交点在负半轴。
6、性质:(1)当k>0时,图像从左向右上升, y随x的增大而增大;当k<0时,图像从左向右下降, y随x的增大而减小。
(2)当b>0时,直线与y轴的交点在正半轴;当b<0时,直线与y轴的交点在负半轴。
(3)经过的象限:与k、b都有关。
一般根据k、b的几何意义,先确定b对应的大致位置,再确定k对应的倾斜程度,画出大概图像,从而决定经过的象限。
这也是画大致图像的方法。
(三)反比例函数:1、一般形式:y=kx(其中k是常数,k≠0),还有:y=kx-1、xy=k 、x=ky、等。
2、图像:是双曲线。
3、性质:当k>0时,图像位于一、三象限,在每个象限内,y随x的增大而减小;当k<0时,图像位于二、四象限,在每个象限内,y随x的增大而增大。
4、k的几何意义:︱k︱=S矩形或︱k︱=2S△(其中,S矩形指过双曲线上任意一点作x、y轴的垂线,这两条垂线和坐标轴围城的矩形的面积。
而S△是(四)待定系数法具体步骤:1、设。
正比例函数与一次函数
一次函数:1、一次函数与正比例函数:一般地,形如y kx b =+(k ,b 是常数,0k ≠)的函数,叫做一次函数,当0b =时,即y kx =,叫做正比例函数.⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数. ⑷正比例函数是一次函数的特例,一次函数包括正比例函数.2、一次函数图象:⑴一次函数y kx b =+(0k ≠,k ,b 为常数)的图象是一条直线.⑵由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.①如果这个函数是正比例函数,通常取()00,,()1k ,两点;②如果这个函数是一般的一次函数(0b ≠),通常取()0b ,,0bk⎛⎫- ⎪⎝⎭,,即直线与两坐标轴的交点.3、一次函数性质:一次 函数 ()0k kx b k =+≠k ,b符号0k >0k < 0b >0b <0b =0b >0b <0b = 图象Ox y yx OOx yyx OOx yyxO性质y 随x 的增大而增大y 随x 的增大而减小(1)一次函数图象的位置在一次函数y kx b =+中: ⑴当0k >时,其图象一定经过一、三象限;当0k <时,其图象一定经过二、四象限. ⑵当0b >时,图象与y 轴交点在x 轴上方,所以其图象一定经过一、二象限;当0b <时,图象与y 轴交点在x 轴下方,所以其图象一定经过三、四象限.反之,由一次函数y kx b =+的图象的位置也可以确定其系数k 、b 的符号. (2)一次函数图象的增减性 在一次函数y kx b =+中:⑴当0k >时,一次函数y kx b =+的图象从左到右上升,y 随x 的增大而增大; ⑵当0k <时,一次函数y kx b =+的图象从左到右下降,y 随x 的增大而减小.4、用待定系数法求一次函数解析式:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待字系数法.yxO 5、特殊一次函数:含有绝对值的一次函数对于含有绝对值的一次函数,其图象是由若干条线段和射线组成的折线,我们通常采用零点讨论法,即先找出绝对值的零解,然后将数轴划分为若干个区间,接下来就可以在各个区间中确定每个绝对值中式子的符号,进而去掉绝对值符号.例题:【例1】 下列函数中,哪些是一次函数?哪些是正比例函数?⑴15x y +=-⑵5xy =- ⑶21y x =-- ⑷35xy =--⑸()()212y x x x =--- ⑹21x y -=【例2】 已知28(3)1my m x -=-+,当m 为何值时,y 是x 的一次函数?【例3】 一次函数(0)y kx b k =+≠的图像是 ;当0k >,0b >时,直线y kx b =+过 象限; 当0k >,0b <时,直线y kx b =+过 象限; 当0k <,0b >时,直线y kx b =+过 象限; 当0k<,0b <时,直线y kx b =+过 象限.(0)y kx b k =+≠的图像与x 轴、y 轴的交点分别为 、 ;其中 、 分别叫做该一次函数在x 轴、y 轴上的截距.【例4】 已知一次函数(5)1y a x a =-+-的图象如图所示,则a 的取值范围是 .【例5】 下列图形中,表示一次函数y mx n =+与正比例函数y mnx =(m 、n 为常数且0mn ≠)的图像是下图中的( )xyOxyO x yOO yxA B C D【例6】 一次函数(2)3y k x k =-+-的图象能否不经过第三象限?为什么?O2121-1xy 【例7】 若一次函数22222mm y x m --=+-的图象经过第一、第二、三象限,求m 的值.【例8】 已知0abc =/,并且a b b c c ap c a b+++===,则直线y px p =+一定通过 象限.【例9】已知一次函数()22312y a x a =-+-.求:①a 为何值时,一次函数的图象经过原点.②a 为何值时,一次函数的图象与y 轴交于点()0,9.【例10】已知函数图象如图所示,则此函数的解析式为( )A .2y x =-B .2(10)y x x =--<<C .12y x =-D . 1(10)2y x x =--<<【例11】已知y 与1x -成正比例,且当3x =时5y =.求y 与x 之间的函数关系式.【例12】如果(0)y kx k =≠的自变量增加4,函数值相应地减少16,则k 的值为( ) A .4 B .- 4 C .14 D . 14-【例13】一次函数y mx n =+(0m ≠),当25x -≤≤时,对应的y 值为07y ≤≤,求一次函数的解析式.【例14】已知一次函数y kx b =+的图象与直线21y x =+平行并且过点P (-1,2),求这个一次函数的解析式.t/minS/km301694012O【例15】右图是某汽车行驶的路程()S km 与时间()min t 的函数关系图.观察图中所提供的信息,解答下列问题:⑴汽车在前9分钟内的平均速度是 ; ⑵汽车在中途停了多长时间? ; ⑶当3016t ≤≤时,求S 与t 的函数关系式.练习题:1、已知函数1(2)k y k x -=- (k 为常数)是正比例函数,则k = .2、已知y +m 与x +n (m,n 为常数)成比例,试判断y 与x 成什么函数关系?3、已知1(2)2m y m x m -=-++是一次函数,求它的解析式.4、如图所示,在同一直角坐标系中,一次函数1y k x =,2y k x =,3y k x =,4y k x =的图像分别是1l ,2l ,3l ,4l ;那么1k ,2k ,3k ,4k 的大小关系是 . O yxl 4l 3l 2l 1Oyxl 4l 3l 2l 15、如图,一次函数1y ax a =+的图象大致是( )AB C DyxO y x O y x O O x y6、函数y ax b =+①和y bx a =+②(0ab ≠)在同一坐标系中的图像可能是( )7、若一次函数2(1)12ky k =-+-的图象不经过第一象限,则k 的取值范围是 .8、已知一次函数(3)(2)y k x k =-+- (k 为常数)的图象经过一、二、三象限,求k 取值范围.☆9、若11,A x y (),22(,)B x y 为一次函数,31y x =-的图象上的两个不同点,且120x x ≠,设111y M x +=,221y N x +=,则( ) A . M N > B . M N < C . M N = D . 以上都不对10、已知关于x 的一次函数()372y a x a =-+-的图象与y 轴交点在x 轴的上方,且y 随x 的增大而减小,求a 的取值范围.11/已知一次函数的图象经过(3,2)和(1,-2)两点.求这个一次函数的解析式.12、求证:点A (2,2),B (1-,72),C (12,3-)在一条直线上.13、已知一次函数y kx b =+中自变量x 的取值范围为26x -<<,相应的函数值的范围是119y -<<,求此函数的解析式.A .B .C .D .②②②②①①①①O x y O x y O x y y x OF时间(小时)距离(千米)O ED C B4653212051015253014、如图,将直线OA 向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的解析式是 .yxO3214321A15、小明同学骑自行车去郊外春游,下图表示他离家的距离y (千米)与所用的时间x (时)之间关系的函数图象.⑴根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?⑵小明出发两个半小时离家多远?⑶小明出发多长时间距家12千米?16、某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8∶20~12∶00,下午14∶00~16∶00,每月25元; 信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件. 生产产品件数与所用时间之间的关系见下表: 生产甲产品件数(件) 生产乙产品件数(件) 所用总时间(份) 10 10 350 3020850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:⑴小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分? ⑵小王该月最多能得多少元?此时生产甲、乙两种产品分别多少件?。