单阀及顺序阀控制

合集下载

600MW机组单阀切顺序阀注意事项

600MW机组单阀切顺序阀注意事项

单阀切顺序阀注意事项
一、单阀切顺序阀操作步骤:
1.机组负荷420MW,运行稳定;
2.退出AGC/一次调频,退协调至机跟随方式稳定运行10分钟;
3.退汽机遥控,汽机操作员自动方式,投入功率回路。

4.由热工缓慢关闭#4高调门(DEH上),密切注意主汽压/机组负荷/汽机振动/汽机瓦温变
化,如超过下列值则应要求试验终止。

5.#4高调门关闭后主汽压/机组负荷/汽机振动/汽机瓦温变化未超标,由热控逐渐恢复#4
高调门开度。

6.由热控缓慢关闭#3高调门(DEH上),密切注意主汽压/机组负荷/汽机振动/汽机瓦温变
化,如超过下列值则应要求试验终止。

7.#4高调门关闭后主汽压/机组负荷/汽机振动/汽机瓦温变化未超标,由热控逐渐恢复#4
高调门开度。

8.汽机切换至顺序阀,切换时间100s,如时间到后未切换完,或切换过程出现问题,或主
汽压/机组负荷/汽机振动/汽机瓦温变化幅度超标,则应要求试验终止,恢复单阀方式运行。

9.汽机切顺序阀后,稳定运行运行10分钟无异常,投入汽机遥控,投入机组协调,投入
AGC/一次调频。

二、阀切换过程参数波动限幅。

汽轮机单、顺阀切换操作说明。

汽轮机单、顺阀切换操作说明。

汽轮机单、顺阀操作说明
一、汽轮机在下列情况下采取单阀控制方式:
1、汽轮机在最初运行半年以内;
2、汽轮机在冷态、温态启动时,保持单阀运行一天;
3、汽轮机在停机之前,切至单阀方式;
4、汽轮机在进行阀门活动试验之前,切至单阀方式。

二、单阀切换至顺阀操作说明:
1、整个切换过程,必须在汽机“自动”控制方式下运行。

2、切换过程,可以投入“汽机主控”即在“遥控”方式下运行。

3、单阀切换至顺阀时,点击DEH控制画面“阀门方式”,点击“顺序阀”,然
后点击“转换”。

“SEQ”平光开始闪烁,切换开始。

4、切换过程中,#1、#2高调门同时逐步开大,#4高调门逐步关小。

整个过程
调门开度跟踪综合阀位的变化而调整。

5、切换结束时,#1、#2高调门开至100%、#3、#4依照阀位指令顺序开启。

“SEQ”显示平光,停止闪烁。

6、切换过程中,注意轴承温度和振动变化。

三、顺阀切换至单阀操作说明:
1、整个切换过程,必须在汽机“自动”控制方式下运行。

2、切换过程,可以投入“汽机主控”即在“遥控”方式下运行。

3、顺阀切换至单阀时,点击DEH控制画面“阀门方式”,点击“单阀”,然后点击“转换”。

“SIG”平光开始闪烁,切换开始。

4、切换过程中,#1、#2高调门同时逐步关小,#3、#4高调门逐步开启。

整个过程调门开度跟踪综合阀位的变化而调整。

5、切换结束时,四个调门开度基本一致。

“SIG”显示平光,停止闪烁。

6、切换过程中,注意轴承温度和振动变化。

单向顺序阀的工作原理

单向顺序阀的工作原理

单向顺序阀的工作原理
单向顺序阀是一种常用的流体控制元件,其工作原理基于流体的压力和流量特性。

下面是单向顺序阀的工作原理:
1. 单向阀:单向顺序阀中通常包含一个单向阀,它只允许流体在一个方向上流动。

这意味着,当流体从一个方向施加压力时,单向阀打开并允许流体通过;而当流体来自另一个方向时,单向阀关闭,阻止流体的通过。

2. 阀芯:单向顺序阀中的阀芯是一个可移动的元件,它可以根据流体的来向来控制单向阀的状态。

当流体来自预定的方向时,阀芯会受到压力的作用,使得单向阀打开,从而允许流体通过顺序阀。

3. 弹簧:单向顺序阀中的弹簧通常与阀芯相连,用于提供反向作用力。

当流体来自反方向时,弹簧会推动阀芯关闭单向阀,从而阻止流体通过。

4. 控制口:单向顺序阀中通常还包含一个控制口,用于接收外部信号或连接其他控制元件。

通过控制口对阀芯施加压力或释放压力,可以改变单向顺序阀的工作状态。

综上所述,单向顺序阀通过单向阀、阀芯、弹簧和控制口的相互作用,实现了根据流体的来向控制流体的流动方向的功能。

单阀顺序阀运行方式的切换

单阀顺序阀运行方式的切换

单阀、顺序阀运行方式的切换蒙映峰,罗 鹏,邓 涛(虹源发电有限公司,广西桂林 541003)[摘 要] 对桂林虹源发电有限公司135MW机组汽轮机的单阀、顺序阀切换过程进行了介绍,并对控制过程进行了分析。

结合现场数据,提出了进行切换的具体操作方法。

[关键词] 汽轮机;单阀运行;顺序阀运行;阀切换[中图分类号]T K263.7+2 [文献标识码]B [文章编号]10023364(2003)04003402 虹源发电有限公司装有2台上海汽轮机厂(上汽厂)生产的135MW凝汽式汽轮机,DCS系统是上海新华控制工程公司的XDPS400系统,DEH为上海FOXBOLO公司的IA’S系统,于2000年底投入试运行。

本文主要对自控系统进行单阀与顺序阀相互切换运行的操作方法予以介绍。

(1)单阀运行是指4个高压调门(亦称GV、高调门、调门)的开度基本保持一致,当负荷变化时,4个高压调门同时进行调节,至负荷稳定为止。

(2)顺序阀运行,分2种情况;1)在适当的负荷情况下,指有2个高压调门全开,1个高压调门全关,另1个则根据负荷的情况进行调节;2)当负荷量大,如承担调节任务的调门已全开,仍未满足负荷的需求时,全关的调门将开启,参与调节,至负荷稳定为止。

(3)采用单阀运行时,4个高压调门同步进行调节。

在这种方式下,将有4个调门产生节流损失。

而顺序阀运行时,由于2个高压调门全开,1个调门全关,另1个进行调节,则只有1个调门产生节流损失。

相比较而言,单阀运行的节流损失较大。

(4)根据厂家要求,汽轮机在刚投入运行时应采用单阀运行的方式;经过6个月左右的磨合期后,应采用顺序阀运行方式,以提高机组的经济性。

1 阀切换过程如图1所示,汽轮机的4个高调门为圆周布置,1号与2号对角,3号与4号对角。

单阀与顺序阀的切换过程如下。

图1 高调门布置示意(1)单阀切换至顺序阀。

操作员在DEH控制台上单击“阀门控制方式”、“顺序阀方式”再单击“投入”,则计算机开大GV1、GV2,同时,关GV4。

汽轮机低负荷单阀-顺序阀无扰切换运行的优化控制方法

汽轮机低负荷单阀-顺序阀无扰切换运行的优化控制方法

第39卷,总第226期2021年3月,第2期《节能技术》ENERGY CONSERVATION TECHNOLOGY Vol.39,Sum.No.226Mar.2021,No.2汽轮机低负荷单阀-顺序阀无扰切换运行的优化控制方法赵大朋1,范双双2,孙天中3,吴 哲1,张 民1,刘春晓1(1.吉林电力股份有限公司白城发电公司,吉林 白城 137000;2.东北电力大学,吉林 吉林 132012;3.中油电能热电一公司,黑龙江 大庆 163314)摘 要:目前,不少进行灵活调峰的大功率汽轮机在低负荷工况下会将其控制方式由单阀切换至顺序阀;并且,阀控方式切换过程中出现了影响机组安全稳定运行的负荷及主汽压力大幅波动问题。

然而,单纯依靠传统单阀和顺序阀实际流量特性控制曲线优化的方法,还无法完全消除切换过程中的参数波动问题。

通过理论分析给出了负荷及主汽压力波动的根源:具有非线性控制特性的阀门,在切换过程中采用线性等比例开关控制方式会引起蒸汽流量的波动。

在此基础上,提出了一种汽轮机单阀-顺序阀的非线性自动无扰切换方法,可以从根本上解决切换过程中的参数波动问题。

这对进一步改善大功率汽轮机灵活调峰的安全稳定性具有重要意义和价值。

关键词:汽轮机;灵活调峰;阀控方式;非线性;无扰切换中图分类号:TK262 文献标识码:A 文章编号:1002-6339(2021)02-0165-04收稿日期 2020-12-28 修订稿日期 2021-01-19基金项目:国家重点研发计划项目(2017YFB0902101)作者简介:赵大朋(1976~),男,本科,高级工程师,主要研究方向为汽轮发电机组节能优化等。

An Optimized Control Method for Steam Turbine ’s Undisturbed Switching Operation between Single Valve and Sequence Valve under Low Load ConditionZHAO Da -peng 1,FAN Shuang -shuang 2,SUN Tian -zhong 3,WU Zhe 1,ZHANG Min 1,LIU Chun -xiao 1(1.Jilin Electric Power Co.,Ltd.Baicheng Power Generation Company,Baicheng 137000,China;2.Northeast Electric Power University,Jilin 132012,China;3.Thermoelectric First Company of ChinaNational Petroleum Group Electric Power Co.,Ltd.,Daqing 163314,China)Abstract :At present,many high -power turbines with flexible peak regulation will switch their control mode from single valve to sequence valve under low load condition.Moreover,the load and main steampressure fluctuated greatly during the switching of valve control mode,which affected the safe and stable operation of the unit.However,the parameter fluctuation problem in the switching process cannot be completely eliminated by simply relying on the traditional control curve optimization method of single valve and sequence valve actual flow characteristics.Through theoretical analysis,the source of the fluc⁃tuation of load and main steam pressure is given:for valves with nonlinear control characteristics,the fluctuation of steam flow will be caused by the control mode of linear equal proportion switch during the switching process.On this basis,a nonlinear automatic undisturbed switching method of single valve and·561·sequence valve for steam turbine is proposed,which can fundamentally solve the problem of parameter fluctuation during the switching process.It is of great significance and value to further improve the safety and stability of flexible peak regulation of high-power steam turbine.Key words:steam turbine;flexible peak regulation;valve control mode;nonlinear;the undisturbed switching0 引言目前,为了提高新能源电力系统对具有不确定性风电、光伏发电的消纳比例,越来越多的大功率汽轮发电机组都参与灵活调峰运行[1];甚至,还开展高效灵活二次再热机组的研制与应用工作[2]。

如何对汽轮机的进行单阀和顺序阀进行切换

如何对汽轮机的进行单阀和顺序阀进行切换

•如何对汽轮机的进行单阀和顺序阀进行切换在实际的工作中,为了进一步提高汽轮机的使用效率,经常会需要对汽轮机进行单阀和顺序阀的切换,但是在操作的过程中,经常会发生各种各样的问题,因此本文就简单介绍如何对汽轮机进行单阀和顺序阀的切换。

单阀方式下,蒸汽通过高压调节阀和喷嘴室,在360°全周进入调节级动叶,调节级叶片加热均匀,有效地改善了调节级叶片的应力分配,使机组可以较快改变负荷;但由于所有调节阀均部分开启,节流损失较大。

假设阀门切换过程中汽机运行工况稳定,即真空和主蒸汽参数不变,不考虑抽汽的影响,汽机的负荷仅由蒸汽流量决定,而各个调节阀所控制的流量也只和阀门开度有关,那么可以认为汽机负荷进仅是阀门开度的单函数。

单阀系数乘以单阀开度指令与顺序阀系数乘以顺序阀开度指令相加后得到的就是各个阀门实际的开度指令。

单阀指令和顺序阀指令是当前负荷指令分别经过单阀曲线和顺序阀曲线转换后得出的。

在实际的阀门切换过程中,上述分析中的假设条件是难以成立的,所以不可避免地会有负荷扰动;但如果投入闭环控制,负荷扰动在一定程度上可以得到改善,即如果投入功率闭环回路,当实际功率与负荷设定值相差大于4%时,切换自动中止;当负荷调节精度达到3%以内时,切换又自动恢复。

投入调节级压力控制回路与此类似。

对于定压运行带基本负荷的工况,调节阀接近全开状态,这时节流调节和喷嘴调节的差别很小,单阀/顺序阀切换的意义不大。

对于滑压运行调峰的变负荷工况,部分负荷对应于部分压力,调节阀也近似于全开状态,这时阀门切换的意义也不大。

对于定压运行变负荷工况,在变负荷过程中希望用节流调节改善均热过程,而当均热完成后,又希望用喷嘴调节来改善机组效率,因此这种工况下要求运行方式采用单阀/顺序阀切换来实现两种调节方式的无扰切换。

电力工作者在实际的工作中,需要不断总结经验,掌握汽轮机单阀和顺序阀间切换的规律,保障汽轮机即高效又安全的运行。

浅谈汽轮机阀门控制

浅谈汽轮机阀门控制

浅谈汽轮机阀门控制叶茂顾晓华(安徽铜陵发电有限公司热工机控班244012)摘要:DEH系统的主要功能就是阀门的管理,本文通过对我厂所使用的300MW哈汽机组、新华DEH控制系统的分析,简单描述阀门控制信号的形成原理及其过程。

同时对单阀多阀的切换及其切换的时间、单阀多阀切换时阀门的参数设置作个简单的介绍。

关键词:DEH,阀门管理,单阀,多阀一、前言现代发电厂组中汽轮机均采用数字电液控制系统即DEH进行控制,各进汽阀门是由电信号控制、高压油动机驱动。

其中进汽阀门的管理显然是DEH系统的重要功能,汽轮机从开始的启动冲转到同期再到并网带负荷,都是通过控制汽轮机的阀门开度来实现,为了使管理程序更为准确更为科学,我们就迫切需要很好地了解阀门控制过程当中指令的形成变换过程,掌握阀门控制当中各个参数的整定调试方法;在此基础上去调整各参数使阀门的控制更稳定,下面我就我厂新华DEH的基本情况作个简单的介绍。

二、DEH阀门控制方式2.1阀门控制方式DEH阀门控制方式可以分为两种:单阀控制和顺序阀控制,单阀控制即我们平常所说的节流调节方式;顺序阀即我们平常说的喷嘴调节方式。

在单阀控制方式下,所有阀门被当成一个阀门来调节,所以各个阀门的开度是一致的,都处于调节状态。

这样就不可避免的存在很大的节流损失。

新建机组在试运期间一般采取全周进汽的单阀运行方式,这种方式下汽缸、转子加热很均匀,使得转子和定子的温差较小,有利于机组初期的磨合。

另外在机组启动过程中,也同样需要采用单阀控制,以便更好地给转子、定子加热,减少加热不均给机组造成的损害。

机组在正常运行中都采用顺序阀控制方式,在顺序阀门控制方式下,只有一个高压调节阀进行流量调节,其余的阀门处于全开或全关位置,这样减少了节流损失,有利于提高机组热效率。

图1是单阀跟顺序阀方式下的热效率曲线,可见两者的效率在低负荷时差距好大。

2.2单阀多阀的切换平时机组每个星期都必须做一次汽门的活动实验,此时就需要在这两种控制方式之间进行切换(因为平常都是顺序阀控制方式,新华DEH要求做实验时必须切到单阀);它们之间的切换是通过单阀多阀切换系数STRAN来实现的。

单阀与顺序阀切换的实实现

单阀与顺序阀切换的实实现

---------------------------------------------------------------最新资料推荐------------------------------------------------------单阀与顺序阀切换的实实现单阀和顺序阀的对比 1、单阀控制方式即所有进入汽轮机的蒸汽都经过几个同时启闭的调节阀后进入第一级喷嘴,也称节流配汽方式。

节流配汽的汽轮机在工况变动时第一级的进汽度是不变的,因此可以把包括第一级在内的全部级作为级组,也就是说除了工作原理不同外,调节级与其余各级并无其他区别。

采用节流配汽的汽轮机在设计工况下调节阀全开,机组的理想焓降到最大值;低负荷时调节阀关小,减少汽轮机的进汽量,主蒸汽受到节流作用使第一级级前压力下降,其值与蒸汽流量成正比。

此时,汽轮机的理想焓降减小但并不是很多,可见节流配汽主要是通过减少蒸汽流量来降低负荷。

当然,理想焓降的减少虽然不是很多,但仍然使机组的相对内效率降低,且负荷越低,节流损失越大,机组效率也就越低。

因此,节流配汽方式的应用范围不太广泛,一般用于小功率机组和带基本负荷的机组。

高参数、大容量机组在启动初期为使进汽部分的温度分布均匀,在负荷突变时不致引起过大的热应力和热变形,也经常使用节流配汽方式。

2、顺序阀控制方式即蒸汽经过几个依次启闭的调节阀后再通向第一级喷嘴,也称喷嘴配汽方式。

1/ 20这种配汽方式在运行当中只有一个调节阀处于部分开启状态,而其余的调节阀均处于全开(或全关) 状态,蒸汽只在部分开启的调节阀中受到节流作用,因此,在部分负荷时喷嘴配汽方式比节流配汽方式效率高,所以被广泛应用。

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 采用喷嘴配汽方式时,第一级喷嘴的通流面积随着调节阀的开启数目不同而变化。

顺序阀的名词解释

顺序阀的名词解释

顺序阀的名词解释
一、定义
顺序阀是一种流体控制阀门,用于控制流体在管道中的流动方向和压力。

顺序阀通常由阀体、阀座、阀瓣和弹簧等部件组成,可以实现流体的单向流动和压力控制。

二、工作原理
顺序阀的工作原理是基于阀瓣的升降运动来控制流体的流动。

当流体从进口进入顺序阀时,由于阀瓣的重力和弹簧的弹力作用,使得阀瓣关闭,流体无法通过。

当流体压力逐渐增加时,弹簧被压缩,阀瓣逐渐升起,流体开始通过顺序阀。

当流体达到一定压力时,阀瓣完全升起,流体就可以顺畅地流出。

反之,当流体从出口流出时,阀瓣逐渐下降,最终关闭,从而实现了单向流动和压力控制的目的。

三、应用领域
顺序阀广泛应用于各种流体控制系统中,如气动、液压和润滑系统等。

其主要应用领域包括:
1. 机械工业:机床、机器人、自动化设备等。

2. 航空航天:飞机、火箭、航空器等。

3. 汽车工业:汽车制动系统、转向系统、发动机等。

4. 医疗设备:医疗器械、手术室设备、监护设备等。

5. 电子工业:电子生产线、半导体设备、光学设备等。

四、重要性
顺序阀在流体控制系统中起着至关重要的作用。

它可以精确控制
流体的流动方向和压力,保证系统的正常工作和安全性。

单阀、顺序阀控制方式的优劣对比

单阀、顺序阀控制方式的优劣对比

单阀和顺序阀的对比默认分类2008-08-31 16:42:06 阅读7 评论0 字号:大中小1、单阀控制方式即所有进入汽轮机的蒸汽都经过几个同时启闭的调节阀后进入第一级喷嘴,也称节流配汽方式。

节流配汽的汽轮机在工况变动时第一级的进汽度是不变的,因此可以把包括第一级在内的全部级作为级组,也就是说除了工作原理不同外,调节级与其余各级并无其他区别。

采用节流配汽的汽轮机在设计工况下调节阀全开,机组的理想焓降到最大值;低负荷时调节阀关小,减少汽轮机的进汽量,主蒸汽受到节流作用使第一级级前压力下降,其值与蒸汽流量成正比。

此时,汽轮机的理想焓降减小但并不是很多,可见节流配汽主要是通过减少蒸汽流量来降低负荷。

当然,理想焓降的减少虽然不是很多,但仍然使机组的相对内效率降低,且负荷越低,节流损失越大,机组效率也就越低。

因此,节流配汽方式的应用范围不太广泛,一般用于小功率机组和带基本负荷的机组。

高参数、大容量机组在启动初期为使进汽部分的温度分布均匀,在负荷突变时不致引起过大的热应力和热变形,也经常使用节流配汽方式。

2、顺序阀控制方式即蒸汽经过几个依次启闭的调节阀后再通向第一级喷嘴,也称喷嘴配汽方式。

这种配汽方式在运行当中只有一个调节阀处于部分开启状态,而其余的调节阀均处于全开(或全关)状态,蒸汽只在部分开启的调节阀中受到节流作用,因此,在部分负荷时喷嘴配汽方式比节流配汽方式效率高,所以被广泛应用。

采用喷嘴配汽方式时,第一级喷嘴的通流面积随着调节阀的开启数目不同而变化。

调节级的变工况特性也和其余各级有很大区别。

当调节级通流面积改变时,蒸汽流量将发生变化,达到调节机组负荷的目的。

同时,在部分开启的调节阀中蒸汽流量受到节流作用,改变了理想焓降,但因流经该阀的蒸汽流量只占总流量的一部分,因此蒸汽焓降的改变对机组功率的影响较小。

采用喷嘴配汽方式时,在第一只调节阀刚刚全开时调节级的压力比为最小,调节级的理想焓降为最大,此时,通过第一组喷嘴的蒸汽流量也达到最大值,故第一组喷嘴蒸汽流量和焓降的乘积也达到最大值,工作在其后的动叶片所承受的应力也达到最大值。

汽轮机单阀-顺序阀切换造成电力系统振荡分析

汽轮机单阀-顺序阀切换造成电力系统振荡分析

汽轮机单阀-顺序阀切换造成电力系统振荡分析摘要:本文详细介绍了电力系统振荡,同时通过实例介绍了汽轮机单阀-顺序阀切换容易诱发电力系统振荡问题,进而寻找产生振荡的原因,同时给出切实可行的解决措施。

希望能够为业界人士提供有价值的参考,进而有效解决汽轮机运行过程中单阀-顺序阀切换引起的电力系统振荡问题。

关键词:单阀-顺序阀切换;电力系统;振荡前言:现阶段,中国一直主张和提倡使用电能,因为电能属于清洁型能源,适合大范围推广和使用,并为中国的经济发展做出突出贡献。

具体实施过程中,需要保证所供电能的质量能够达到客户的实际需求。

虽然目前有许多发电方式,但仍以火电和水电为主。

目前,火力发电主要依靠燃烧煤燃烧发电。

1.电力系统振荡概述所谓的电力系统振荡是指电力系统中一个或多个电磁参数随时间的推移而发生变化。

传输线的传输功率超过最大允许功率值,这又破坏了电路系统的静态稳定性,这就是电力系统出现振荡的根本原因。

一旦电网发生短路,就不可避免地要拆除大容量发电,输电和变电站设备。

一旦发生负荷瞬间变大的情况,难免会破坏电力系统的暂态稳定性。

电源之间的异步合闸没有进入同步状态势必会造成很多影响,轻则造成机械设备无法在额定条件下进行正常工作或系统保护故障,严重的会造成系统崩溃。

2.单阀-顺序阀切换顺序阀:机组稳定运行时,宜用喷嘴调节方式,即高压调节阀顺序开启,尽量减少处于节流状态下的高压调节阀,从而提高热效率;单阀:在启动过程中,为保证机组全周进汽,减小热应力,宜采用节流调节方式,即所有高压调节阀同步开关。

混合方式:综合单阀和顺序阀的优劣势,从而诞生出一种混合阀运行方式,即在机组整个启动过程中,高压调节阀同时动作,保证了全周进汽,但在逐步的汽轮机提转速和升负荷阶段,四个高压调节阀动作幅度不一样,#1高调门开度最小,#4高调门开度最大,以减少节流损失。

在单阀方式下,单阀系数为1。

当操作员发出转到顺序阀方式的指令后,单阀系数用10分钟时间,由1变到0,最后保持为0,即为顺序阀方式。

600MW汽轮机调节阀单阀切换顺序阀运行的安全性及经济性

600MW汽轮机调节阀单阀切换顺序阀运行的安全性及经济性
表 1 3 种配汽方式下汽流对轴系产生的作用力 计算结果
配汽 方式 1 2 3 调节阀开启顺序 单阀开启 , 全周进汽 按阀 3、 4 1 2 的顺序开启 按阀 1、 4 2 3 的顺序开启 切向力 / kN 0. 0 156. 9 0. 0 径向力 / kN 0. 0 0. 0 0. 0 力矩 /N m 0. 0 6 692. 07 6 692. 07
制%的配汽方式和优化阀门重叠度的组合方案不会引 起轴振、 瓦温、 上下缸温差等参数的异常, 但要重 点考 虑设备安全问题 , 特别是改变阀序后对汽轮机强 度的 影响 , 必须在许可范围内。具体配汽方式为 1、 4 号调 节阀同时开启 , 负荷升至约 350 MW 时再开 2 号调节 阀, 近 600 MW 时开 3 号调节阀, 根据阀门切换顺序运 行后的实际工况对各调节阀的重叠度进行优化调整。
s
4
改进试验
2005 年 5 月 25 日进行了 2 号机组带负荷调节阀
切换工况试验 , 负荷由 576 M W 时单阀切换到顺序阀 运行 , 再逐步降至 370 MW, 然后再按顺序阀运行升负 荷至 575 M W, 期间分别在 450 M W 、 427 M W 时进行 单阀切换顺序阀试验。整个试验过程中 2 号轴振最大 波动 15 m , 其它数据未见明显异常。
52
热力发电
2007( 5)
技术交流
的漏汽量不均匀 , 对转子产生了切向分力 , 以及转子端 部轴封因径向间隙不均匀而产生的压力涡动, 使转子 产生自激振动。 为此, 对不同的配汽方式下进汽力对转子轴系静、 动态振动性能的影响进行了核算。调节阀配汽分 3 种 方式 : ( 1) 不考虑部分进汽影响的单阀运行方式 ( 全周 进汽 ) ; ( 2) 按阀 3、 4 1 2 的顺序开启 ; ( 3) 按阀 1、 42 3 的顺序开启。分别对 3 种配汽方式下进汽流对轴系产 生的作用力进行计算 , 结果见表 1。

顺序阀和单阀控制原理、区别及操作注意事项

顺序阀和单阀控制原理、区别及操作注意事项

汽轮机的配汽方式改变汽轮机功率,可通过改变蒸汽在叶栅通流部分的焓降和改变进汽量。

这种改变进汽量和焓降的方式称为汽轮机的配汽。

汽轮机的配汽有节流配汽、喷嘴配汽和旁通配汽多种方式。

现在的汽轮机普遍采用数字电液调节系统,具备阀门管理功能,即同一台汽轮机既可以采用阀门同时启闭的节流配汽(称为单阀控制),也可以采用阀门顺序启闭的喷嘴配汽(称为顺序阀控制),目前汽轮机都有调节级。

三种配汽方式一、节流配汽采用节流配汽的汽轮机,其全部蒸汽通过一个或几个同时启闭阀门,进入汽轮机的第一级,调节汽门后的压力即为汽轮机的进口压力。

在部分负荷运行时,阀后压力决定于流量比,进汽温度基本保持不变[12]。

特点如下:1.负荷小于额定值时,所有进汽受到节流作用。

节流配汽在部分负荷下相对内效率下降的主要原因是调节汽门的节流损失,低负荷时调节汽门的进汽机构节流损失大,并且随负荷下降而损失增大。

2.同样负荷下,背压越高,节流效率越低,所以,背压式汽轮机一般不用节流配汽。

与喷嘴配汽相比,由于没有调节级,结构简单,制造成本较低,定压运行流量变化时,各级温度变化较小,热应力小,对负荷变化适应性较好。

二、喷嘴配汽将汽轮机高压缸的第一级设为调节级,将该级的喷嘴分成4组或更多组。

每一喷嘴组由1个独立的调节汽门供汽,通常认为调节级后的压力相等[13]。

为减小喷嘴配汽调节级的漏汽量,调节级采用低反动度(约0.05)的冲动式。

特点如下:1.部分进汽度e<1,存在部分进汽损失,余速不能被利用,100%负荷效率低于纯节流配汽机组。

2.部分负荷,根据负荷大小,调门顺序开启,只有通过部分开启的调门有节流损失,而通过全开调门的汽流没有节流损失,因此效率高于节流。

既可以承担基本负荷,又可调峰。

3.变工况时,调节级汽室及高压缸各级温度变化较大,引起的热应力较大。

三、旁通配汽旁通配汽主要用于船舶和工业汽轮机,通过设置内部或外部旁通阀增大汽轮机的流量,增大汽轮机的功率输出或增大汽轮机的抽汽供热量。

各种液压控制阀图型符号和功用

各种液压控制阀图型符号和功用

各种液压控制阀图型符号和功⽤各种液压控制阀图型符号和功⽤⼀、⽅向控制阀:名称功⽤职能符号说明单向阀允许液流单向通过,反向被截⽌。

液控单向阀既有单向⽌回作⽤⼜能使阀在控制油的控制下实现阀的反向开启。

双向液压锁当两条进⼝油路⽆油压,两条出⼝油路被锁闭。

当⼀条进⼝油路有油压,另⼀条油路双向导通。

换向阀⽤于将两个或两个以上的油⼝接通或切断改变液流⽅向。

⼈⼒控制按扭式拉钮式按—拉式⼿柄式踏板式双向踏板式⼀般符号机械控制顶杆式可变⾏程式弹簧式滚轮式电⽓控制单作⽤电磁式双作⽤电磁式⽐例电磁式⽐例双电磁式例:三位四通Y型弹簧复位双作⽤电磁阀压⼒控制加压或卸压控制差动控制例⼦:三位四通O型弹簧复位液动阀先导控制加压控制液动式(外控)⼆级(内控内泄)电液式(外控)例⼦:三位四通O型外控电液阀卸压控制液动式(内泄控制)(外泄控制)电液式(外控外泄)反馈控制⼀般符号梭阀有两个进⼝和⼀个公共出⼝,在进⼝压⼒的作⽤下,出⼝⾃动地与其中⼀个进⼝接通的阀。

或门型与门型⼆、压⼒控制阀:名称功⽤职能符号说明溢流阀控制阀的进⼝压⼒的压⼒阀。

直动型溢流阀先导型溢流阀先导型电磁溢流阀卸荷溢流阀⼀般符号减压阀使流经阀的油液节流降压,以便从系统中分出油压较低的⽀路。

直动型减压阀先导型减压阀定⽐减压阀定差减压阀⼀般符号顺序阀⽤油压信号控制油路接通或隔断的阀,常⽤来⾃动控制油缸或油马达的动作顺序。

直动型直控顺序阀直动型外控顺序阀先导型顺序阀单向顺序阀(平衡阀)⼀般符号卸荷阀使油泵或油路卸荷(卸压),减⼩功率消耗。

顺序阀和先导型溢流阀都可以作为卸荷阀使⽤。

名称功⽤职能符号说明节流阀靠改变阀的开度来改变通流⾯积,从⽽控制流量,借以控制执⾏机构的运动速度。

不可调节流阀可调节流阀单向节流阀油压差、油温、油的状况、节流⼝堵塞影响流量的稳定性。

调速阀(普通型调速阀)提供稳定的流量使执⾏元件运动速度稳定。

普通型调速阀温度补偿型调速阀轻载时功率损耗⽐溢流节流阀⼤,油液发热程度较⼤。

330MW机组单阀、顺序阀切换及运行方式逻辑优化

330MW机组单阀、顺序阀切换及运行方式逻辑优化

当总 阀位 指 令 在 6 .%左 右 时 ,高压 调 节 阀 C 、 98 V1
C 2开始 波 动 , 成 主汽压 力较 大 幅度 波动 。自 12 V 造 、
号 机组 投 入 顺 序 阀方 式运 行 , 高压 调 节 阀均 在 这 个 区 间发 生 了多 次大 的波 动 , 只是 1 机组 高 压 调 节 号
进行 ) ,这 就 导致 跟 踪 回路始 终 在 跟踪 未 切 换前 的 阀位 系数 。 虽然 单 阀 阀位 系数 已经 由 0切换 为 1 但 , 是 由于 跟踪 回路 的原 因 , 使逻 辑 回路 输 出的单 阀 阀
位 系数 没 有改 变 , 仍然 为 0 回路 还保 持 在顺 序 阀方 ,
序 阀方 式 。在 阀门切 换 的过 程 中 , 阀系 数 与顺 序 单
阀系数均 大 于 0 小 于 1 , 。
维 持功 率应 手动 控制 阀 门开度 或投入 功 率 回路 。
当在 单 阀模 式且 负荷 不低 于 3 %、 阀 与顺 序 0 单
1 . 阀切换 过 程 中的保持 5
在 功率控 制方式 下 , 切换 过程 中 , 当实 际功率 与
图 2为单 阀及 顺 序 阀 流 量 指 令 与 阀 门开 度 的 函数 曲线 。如 果 主蒸 汽 参数 和 机组 背 压保 持 不 变 .
不 考虑 各段 抽 汽 的影 响 , 组 负荷 仅 由蒸 汽 流量 决 机 定 , 各个 调 节 阀所 控制 的蒸汽 流 量也 只和 阀 门开 而
在 6 .8 %~ 1 9 %之 间跳 跃 ,指 令 与 阀位 反 66 14 8 . 25 7
阀切 换 完成 、 汽轮 机 已停 机 3个 信 号任 意 1 出现 个
时 。 强 迫单 阀复位 。 将

顺序阀工作原理

顺序阀工作原理

顺序阀工作原理
顺序阀是一种常用的控制阀,其工作原理如下:
1. 压力感应:顺序阀将输入压力作为驱动力,当输入压力升高到一定程度时,顺序阀开始工作。

2. 流体通道:顺序阀内部有多个流体通道,每个通道都有一个控制阀门。

一般来说,顺序阀有一个主通道和多个辅助通道。

主通道通常用于主要流体控制,而辅助通道用于次要流体控制。

3. 固定阀门:在顺序阀的辅助通道中,有一些固定阀门用于控制流体的流向和流量。

这些固定阀门根据设计需求进行预先设置,并不能根据实际情况进行调整。

4. 顺序控制:当输入压力升高到一定程度时,顺序阀的主通道打开,流体被引导到主通道中。

同时,辅助通道中的固定阀门也会打开或关闭,以控制流体的流向和流量。

5. 顺序阀动作:一旦主通道打开,流体就会通过主通道流出,从而实现流体的控制。

同时,辅助通道中的固定阀门也会根据设计需求调整,以达到所需的流体控制效果。

6. 压力调节:顺序阀通常还带有压力调节功能。

当流体压力达到设定值时,顺序阀会通过相应的控制阀门调节流体的流量,以保持系统压力稳定。

总结起来,顺序阀通过压力感应和固定阀门的控制,实现对流
体的顺序控制和流量调节,从而满足系统中不同部位对压力和流量的要求。

DEH顺序阀控制参数整定

DEH顺序阀控制参数整定

DEH顺序阀控制参数整定新建大、中型机组中汽轮机,均采用数字电液控制系统(DEH)进行控制。

通常,新建机组在试运行阶段,汽轮机处于单阀控制及汽轮机各高压调门同时参与调节,各调门开度相同。

低负荷时,高压调门开度较小,因而高压调门的截流损失较大,不利于机组长期经济运行。

因此,新建机组试生产结束后,为了提高机组运行的经济性,将汽轮机从单阀运行切换至顺序阀运行是一个非常重要的措施。

尽管顺序阀控制是DEH中的一个基本功能,但由于现场安装等因素的影响,高压调门实际的流量特性与DEH中预置的流量特性曲线(DEH出厂时的预置值)会有差异。

这一问题将导致在进行单阀—顺序阀切换时机组负荷扰动大,汽轮机主要运行参数出现异常变化,影响机组的安全。

因此,在顺序阀功能投用前,应通过特性试验校验高压调门的实际流量特性,设置各高压调门之间的重叠度,使单阀—顺序阀的切换能平稳地进行,减小切换过程中对汽轮机重要参数的影响(如振动、瓦温等),保证机组安全稳定地运行。

1 DEH顺序阀控制原理顺序阀控制是DEH中机组功率控制的一种控制功能,按照汽轮机高压调门的开关顺序,对汽轮机流量指令进行分配,从而确定各高压调门的流量,最终确定各高压调门的开度。

这些控制策略一般包含在DEH 的阀门管理控制功能中。

扬州第二发电厂(以下简称扬二厂)选用西屋公司WDPF MODⅢ型数字电液控制系统,在顺序阀运行时,汽轮机的流量指令FDEM需经过背压修正、比例偏置修正、GV流量修正、GV流量开度函数修正后,产生各个GV的开度指令。

控制原理见图1。

FDEM可在机组负荷控制时手动给定或由功率调节器运算产生。

流量背压修正函数F(X1)是机组流量需求与流量指令的修正函数。

汽轮机在不同的流量作功时,汽轮机排汽压力随之变化,蒸汽焓降变化,相应的作功能力不同,因此需对不同的蒸汽流量指令进行修正。

例如,随着负荷升高,汽轮机蒸汽流量增加,汽轮机排汽压力升高,流量需求必须通过修正产生实际的流量指令。

认识控制阀

认识控制阀

一、单向阀
1、作用:只允许油液正向流动,不许反流 2、分类:直通单向阀、直角单向阀 3、结构:阀体、阀芯、弹簧等 4、图形符号:
一、单向阀
普通单向阀性能参数
开启压力:Pk=0.035—0.05MPa 做背压阀:Pk=0.2—0.6 MPa 普通单向阀的应用 1)分隔油路,防相互干扰;
2)防冲击(泵的出口处);
3、三位四通换向阀的中位机能
当液压缸或液压马达需在任何位置均可停止时,须使用3 位阀,(即除前进端与后退端外,还有第三位置),此阀 双边皆装弹簧,如无外来的推力,阀芯将停在中间位置, 称此位置为中间位置,简称为中位,换向阀中间位置各接 口的连通方式称为中位机能。 三位四通阀常见中位机能形式有: O、H、Y、P、K、J、M型。
节流阀的应用
节流阀的应用2 起负载阻尼。 顺序阀起平衡作用,防止液压缸 活塞的加速下落。 节流阀起阻尼作用,控制顺序阀 的启闭,使顺序阀关闭滞后。
节流阀的应用
节流阀的应用3 阻尼缓冲 节流阀置于压力表前。 阻尼作用强,可以缓冲系统的 压力冲击。 保护压力表。
二、调速阀
定差减压阀和节流阀串联而成。 节流阀调节输出流量;定差减压阀保持节流阀进出口压差不 变;实现输出流量基本恒定 。 用于负载变化较大、有速度稳定性要求的的场合 。
滑阀命名举例
2、换向阀的图形符号
常态位:三位阀的中间一格及二位阀侧面画有弹簧的那一方 格为常态位,在常态位上应标出油口的代号。 阀的进油口通常标为P,回油口则标T,出油口以A、B来表示。
A
AB
PT
PT
2、换向阀的图形符号
控制与操纵:控制方式和复位弹簧的符号应画在方格的两端。 是图形符号的重要部分 常用的滑阀式换向阀操纵方式符号:

温控阀门切换过程控制技巧

温控阀门切换过程控制技巧

SFT
0.0 X1 Y X2 Z 33:330
SFT
X1 Y 0.0 X2 Z 38:380
SFT
X1 Y -1.0 X2 36:360
Mul
X1 Y X2 Z 39:390
SFT
+ Y + 40:400
Add
X Y 100 H 0.0 L 41:410
HLLmt
阀门试验流 量控制信号 TESTRAMP
x 0.0 GV
单阀→顺序阀:阀门切换系数由1逐渐变化到0 顺序阀→单阀:阀门切换系数由0逐渐变化到1
7.5 高压调节阀门(GV)阀位设定单元
高压调节阀门(GV)阀位设定功能单元的功能为根据高压调 节阀门(GV)流量控制信号 GV1FL2~GV4FL2输出各高压调节 阀门( GV)的阀位指令,对高压调节阀门(GV)的开度和阀门 试验过程进行控制,其工作原理如下图所示:
Mul
GV1FL
+ D + 41:410 + D + 42:420 + D + 43:430 + D + 44:440
Add
GV1FL1
Mul
Add
GV2FL
GV2FL1
Mul
Add
GV3FL
GV3FL1
Mul
Add
GБайду номын сангаас4FL
45 49
GV4FL1
Mul
单阀GV流量
GV
x 1.0 GV1~ 4FL
TV 关 TV开启 开 GV GV关闭 关 GV开启 时间 TV关闭 复位
阀门试验中TV和GV阀位变化曲线
7.6 阀门试验

浅谈汽轮机顺序阀门控制

浅谈汽轮机顺序阀门控制

浅谈汽轮机顺序阀门控制摘要:介绍电厂汽轮机顺序阀门控制原理,列举工程中的实际应用经验,揭示了汽轮机阀门管理设计的科学性以及在调试和应用中需要掌握的知识点。

一、前言现代大、中型发电厂组中汽轮机均采用数字电液控制系统即DEH进行控制,各进汽阀门是由电信号控制、高压油动机驱动。

其中进汽阀门的管理显然是DEH系统的重要功能,特别是顺序阀控制其管理程序更为科学和复杂。

在调试和实际应用中顺序阀控制的参数整定同样非常严谨。

如果参数整定不当则单阀与顺序阀的切换扰动过大,汽轮机主要运行参数出现异常,影响机组的安全。

由此可知顺序阀门控制的参数整定是DEH调试的一项重要内容。

二、DEH阀门管理功能新建机组在试运期间一般采取全周进汽的单阀运行方式,使得转子和定子的温差较小,在变负荷运行时温差影响较小,有利于机组初期的磨合。

另外在机组启动过程或调峰方式运行时,也同样需要采用单阀控制。

但单阀运行,高压调节阀都参与开度调节,且一般高压调门开度不大,蒸汽通过调节阀门时有较大的节流损失。

机组运行要求尽量减少调节阀门的节流损失,提高汽轮机的效率。

通常阀门的节流损失在阀门接近全关或接近最大流量时达到最小。

顺序阀门控制方式下,只有一个高压调节阀进行开度调节,其余的阀门保持全开或全关,这样减少了节流损失,提高机组热效率。

图1为顺序阀门控制和单阀控制的热效率比较曲线,从中能明显的看出两者之间的差异。

如此,机组运行过程中,为了机组热效率或满足其它工况,需要在单阀控制方式和顺序阀控制方式之间相互切换。

这样就要求有一套复杂的阀门管理程序来完成。

通过阀门特性,准确的计算出不同工况、不同阀门的控制方式,和不同蒸汽流量下对应的各个阀门开度,实现阀门开度调节;同时实现在不对机组运行产生扰动的情况下,进行单阀和顺序阀控制的平衡切换。

三、阀门控制原理阀门管理程序接受的控制信号是蒸汽流量,通过程序计算将蒸汽流量信号转换成相应的阀门开度,在单阀方式时,高调门的开度都是一样的,计算较为简单,在顺序阀方式时,需要确定阀门的开启顺序,单独计算各个阀门的开度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单阀及顺序阀控制汽轮机控制原理
随着发电机组容量的日益扩大,对机组自动化程度要求越来越高,DEH (Digital Ele ctro- Hydraulic ControlSystem,简称DEH)系统作为控制汽轮发电机组功率的一种有效方法其技术日益成熟与完善,顺序阀控制和单阀控制作为DEH 系统控制调节汽门的基本方法,比较而言顺序阀控制方式节能效果明显
汽轮机控制原理,针对单阀及顺序阀控制的特点,重点阐述了DEH 系统两个重要参数优化对机组安全与经济运行的影响,为解决同类型问题提供了参考。

随着发电机组容量的日益扩大,对机组自动化程度要求越来越高,DEH (Digital Electro-Hydraulic ControlSystem,简称DEH)系统作为控制汽轮发电机组功率的一种有效方法其技术日益成熟与完善,顺序阀控制和单阀控制作为DEH 系统控制调节汽门的基本方法,比较而言顺序阀控制方式节能效果明显,能为电厂带来更大的经济效益,所以顺序阀控制方式越来越来被电厂所采纳与使用。

顺序阀控制按照设定的高压调节汽门(GovernorValve,简称GV)开启顺序,对汽轮机流量指令进行计算与分配,通过按顺序调节汽轮机阀门开度进而调节汽轮机进汽流量,最终达到精确控制机组功率的目的。

1 凸轮曲线原理
从1 看出,不管是在单阀还是顺序阀控制方式,都要对阀门开度进行凸轮曲线修正,这是因为调节汽门在开启过程中,流量与阀门开度不是完全的线性对应关系,当阀门小开度、阀前/ 阀后大压差时,调节汽门内蒸汽为临界流动,此时通过调节汽门的流量线性地正比于调节汽门的开度。

随着调节汽门继续开大,虽然汽门的通流面积在增大,但汽门前后的压差减小,蒸汽流量随阀门开度增大的趋势变缓。

所以,即使汽门升程继续加大,由于受汽门喉部尺寸限制,蒸汽流量增加已很小。

通常认为:汽门前后的压力比p(门前)/p(门后)为0.95~0.98 时,即认为汽门已全开。

因此,理想情况下,应当在调节汽门接近全开时,通过阀位传动机构非线性变换,增大调节汽门升程相对于油动机行程的变化率,以校正调节汽门接近全开时流量的非线性特性。

但现在厂家已基本不用凸轮或楔形斜面传动机构进行流量校正,阀门反馈装置几乎全采用直行程的LVDT(线性差动传感器)。

为解决位与流量的非线性带给调节系统的影响,通常在DEH 系统内部设置电凸轮曲线进行修正,达到改变流量指令与阀门开度关系的目的。

在调汽门的升程达到电凸轮拐点后,通过改变阀位指令将阀门快开至全开位置,以补充调节汽门开启不足产生的流量不足。

2 凸轮曲线修改对协调控制的影响
国华太电2×600 MW 超临界汽轮机由上海汽轮机有限公司(STC)与西门子西屋(SWPC)联合设计制造,为超临界、一次中间再热、单轴、三缸、四排汽凝汽式汽轮机,设计共有四个高压调节汽门(分别定义为GV1、GV2、GV3、GV4),在机组投产初期DEH 系统采用单阀控制,协调控制系统(CCS,coordination control system)采用滑压运行方式,在运行过程中(尤其在变负荷阶段)发现高压调门很容易进入设定的电凸轮曲线拐点区,调门一旦进入拐点区后变化速率非常快,加之电凸轮曲线没有经过试验验证,实际流量与初始设计值差别较大,高压调门来回大范围波动造成调
节级压力波动很大。

国华太电协调控制策略为锅炉主控制器调节主蒸汽压力,汽机主控制器调节机组负荷,以锅炉跟随(BF)为主的协调控制模式,调节级压力作为负荷参考信号(前馈信号)送到锅炉主控调节器参与主蒸汽压力调节,所以调节级压力是否稳定直接影响机组协调控制的稳定。

为解决协调调节不稳定问题,公司组织成立技术攻关小组,通过实验逐步完善阀门电凸轮曲线参数,使之与实际流量基本吻合,最终解决了阀门摆动及协调调节不稳定问题。

3 比例偏置修正原理在DEH
系统中另一个重要的函数为比例偏置修正函数,该函数在机组顺序阀控制时根据流量指令确定阀门的开启顺序及阀门重叠度。

在喷嘴调节配汽中(即顺序阀控制时),阀门是按设计顺序依次开启的,国华太电DEH 系统逻辑组态由上海汽轮机有限公司自控中心提供,在做顺序阀切换试验时我们发现,阀门在交替过程中无重叠度,即前一调节汽门完全开启后,后续调节汽门才动作,这样就会形成2(b)实线所示的波折形阀门行程—流量曲线,反映在调节系统静态特性线上,速度变动率同样是波折形曲线,这种情况对压力调节极为不利。

所以,在前一调节汽门尚未完全开启,后续调节汽门必须提前开启,以补偿前一调节汽门的非线性特性,即得到2(b)虚线所示的理想流量曲线。

4 比例偏置修正函数对协调的影响
前面已经说过,为适应调节起门静态特性曲线两端速度变动率大、中间平滑过渡的要求,通过配汽机构的非线性传动特性可以校正行程—流量特性曲线。

但现在基本采用电凸轮曲线进行流量修正(在DEH 内部通过逻辑实现),怎样才能实现多个阀门依此开启时行程与流量特性接近为直线呢,确定合适的重叠度变得非常重要,如果重迭度偏小,将使局部区域的阀门速度变化很大,这种情况对节能有利,但是会造成调节的不稳定,同时对瓦温及轴承振动影响也很大。

反过来,如果重叠度过大,局部速度变动率过小,这样除了不利于节能外,同样也不利于调节。

这是因为重迭度增大显然增加了调节汽门的节流损失,同时流量特性也变得非线性。

阀门开启顺序依次为先开#3、#4高调门(此两阀门同时动作),然后是开#1 高调,最后是#2 高压调门(关闭时按相反顺序进行),阀门相互之间没有重叠度。

通过试验发现,机组由单阀模式切换到顺序阀运行后,#2 轴瓦温度增高(最高达100℃左右,对机组安全运行已构成威胁),同时机前压力摆动大。

后来我们
对阀门重叠度及阀门开启顺序进行了修改,将阀门开启顺序修改为1、2-3-4 (即先开#1、#2高调,然后是#3 高调,最后再开#4 高压调门),这样一来既解决了主蒸汽压力波动过大问题,同时#2 轴承瓦温也下降了许多(最高达85℃)。

由于从安全角度出发,同时受实验条件限制,我们的重叠度设置还没有达到理想状态,对机组的经济性运行有一定的负面影响。

5 结论
通过修改流量特性曲线及比例偏置函数,解决了轴承温度偏高及阀门摆动等实际问题,为机组稳定及经济运行提供了保障,更为解决同类型问题提供了有益的方法和探索。

但同时也应看到,由于受实验条件限制,我们的参数还有优化空间,使机组安全性与经济性达到和谐统一。

相关文档
最新文档