初中数学教师解题比赛试题

合集下载

初中数学青年教师解题大赛题库

初中数学青年教师解题大赛题库

初中数学青年教师解题大赛题库一、填空题1.函数中,自变量取值范围是______。

2.圆锥的母线长为5cm,高为3cm,在它的侧面展开图中,扇形的圆心角是______度。

3.△ABC中,D、E分别是AB、AC上的点,DE//BC,BE与CD相交于点O,在这个图中,面积相等的三角形有______对。

4.已知某不等式的正整数解共有______个。

5.在△ABC中,AB=10,AC=5,D是BC上一点,且BD:DC=2:3,则AD的取值范围是______。

二、简答题1.作图题o已知点A和点B,求作一个圆⊙O和一个三角形BCD,使⊙O经过点A,且使所作的图形是对称轴与直线AB相交的轴对称图形。

要求写出作法,不要求证明。

2.数列与数学逻辑o梯子的最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽成等差数列,计算与最低一级最接近的一级的宽。

3.几何与代数结合o已知一条曲线在x轴的上方,它上面的每一点到点A(0,2)的距离减去它到x轴的距离的差都是2,求这条曲线的方程。

4.概率与统计o探讨某种概率模型(如古典概型)的特征及应用。

三、证明题1.若关于未知数x的方程(p、q是实数)没有实数根,求证某个结论。

2.证明与抛物线轴平行的直线和抛物线只有一种交点。

四、应用题1.在锐角△ABC中,点P在边上运动,试确定点P的位置,使PA+PB+PC最小,并证明结论。

2.在重心为G的钝角△ABC中,若边BC=1,∠A=30°,且D点平分BC。

当A点变动,B、C不动时,求DG长度的取值范围。

五、综合题这类题目通常涉及多个知识点的综合运用,如几何、代数、概率统计等,需要考生具备扎实的基础知识和灵活的解题能力。

杭州市初中数学青年教师教学基本功评比解题能力竞赛题

杭州市初中数学青年教师教学基本功评比解题能力竞赛题

杭州市初中数学青年教师教学基本功评比解题能力竞赛题1.(满分15分)(1)请你用几种不同的分割方法,将正三角形分别分割成四个等腰三角形(要求,徒手画出正三角形、画出分割线,并标出必要的角的度数).(2)如图,是某学生按题(1)要求画出的一种分割图,请简述你将如何讲解?第1题2. (满分15分)已知ABCD 是矩形,以C 为圆心,CA 为半径画一个圆弧分别交AB , AD 延长线于点E ,点F ,连接EB ,FD ,若把直角∠BCD 绕点C 旋转角度θ(0 < θ < 90°),使得该角的两边分别交线段AE ,AF 于点P ,点Q ,则CQ 2+CP 2等于( )A .2QF ⋅PEB .QF 2 + PE 2C .(QF + PE )2D .QF 2 + PE 2 +QF ⋅PE(1)请用你认为最简单的方法求解(注意:是选择题);(2)请用几何方法证明你的选择是正确的;(3)建立一个直角坐标系,用代数方法证明你的选择是正确的.3. (满分15分)如图,已知圆柱底面半径为r , SA 是它的一条母线,长为l . 设从点A 出发绕圆柱n 圈到点S 的最短距离为m (n 为正整数) .(1) 用r 与l 表示m 可得m= (注意:是填空题). (2) 写出你得出题(1)结论的详细过程.(第2题)(第3题)4. (满分15分)如图,七个边长均为1的等边三角形分别用①至⑦表示.给出命题:如果移出其中1个三角形,再把某些三角形整体作一次位置变换,那么一定可以与位置未变的三角形拼成一个正六边形.(1) 设位置变换为平移变换,试通过具体操作说明命题是正确的(分别写出:移出哪个三角形?哪些三角形组成的图形作平移,及平移的方向和平移的距离);(2) 设位置变换为旋转变换,请列举出能使命题成立的所有情况(分别写出:移出哪个三角形?哪些三角形组成的图形作旋转,旋转的方向、角度,并在图中标上字母表示旋转中心;(3) 将移出的三角形作相似变换,使之放置在某个位置时,能盖住正六边形,问:相似比能否等于3.14? 请说明理由.(第4题)5. (满分20分)图形既关于点O中心对称,又关于AC,BD轴对称. 已知AC = 10,BD = 6,点E,M是线段AB上的动点. 称互相对称的一对三角形组成的图形为“蝶形”,称以点O 为圆心,且过蝶形其它顶点的圆为蝶形的外接圆.设点O到EF和MN的距离分别为h1和h2,且h1+ h2 = k(0< k <10).记△OEF与△OGH组成的蝶形O–EFGH的面积为SⅠ,△OMN与△OPQ组成的蝶形O–MNPQ的面积为SⅡ.(1) 不妨设h1 < h2, 试比较SⅠ与SⅡ的大小;(2) 当蝶形O–EFGH和蝶形O–MNPQ的外接圆相同,且图形不重合时,这对蝶形构成“最美蝶形”,试证明最美蝶形的面积S= SⅠ+ SⅡ不存在最值.(第5题)6. (满分15分)如图所示的八个点处各写一个数字,已知每个点处所写的数字等于和这个点有线段相连的三个点处的数字的平均数,求证:这八个数相等.7.(满分20分)在等腰Rt△ABC中,∠C =90︒,AC = 1,过点C作直线l∥AB .(1)以点A为圆心,AB长为半径作圆,圆与直线l相交于点F1,F2,分别作F1M,F2N 垂直于直线BC,点M,N是为垂足,连结,F1M,F2N, 并作AH垂直于l于H.①求线段F1M和F2N的长度;②图中哪三个三角形的面积相等?试写出,并给予证明;(2) F是l上的一个动点(不与C重合),点F到直线BC的距离为t.设AF=x(2x≥),试求出t关于x的函数关系式,并求出当2x=时的t的值.第6题(第7题)8.(满分5分)。

初中数学教师解题比赛试题

初中数学教师解题比赛试题

初中数学青年教师解题比赛试题说明:1.本试卷满分100分,考试时间120分钟;2.请将答案或解答过程直接在答题纸上.一、填空题:(本大题共6小题,每小题3分,共18分)1.已知x=2是不等式)23)(5(aax x≤0的解,x=1不是这个不等式的解,则实数a 的范围是▲.2.二次函数4)4(2xa y (a ≠0)的图像在2<x <3这一段位于x 轴下方,在6<x <7这一段位于x 轴的上方,则a 的值为▲.3.设二次函数))((211x xx xa y (a ≠0,1x ≠2x )的图像与一次函数e dxy 2(d ≠0)的图像交于点(1x ,0),若函数21y y y的图像与x 轴仅有一个交点,则下列结论:①a(1x -2x )=d ;②a(2x -1x )=d ;③a(2x -1x )2=d ;④a(2x +1x )2=d .其中正确的序号有▲.4.实数a 、n 、m 、b 满足a <n <m <b ,这四个数在数轴上对应的点分别为A 、N 、M 、B (如图).若AM 2=BM ·AB ,BN 2=AN ·AB ,则称m 为a 、b 的“大黄金数”,n 为a 、b的“小黄金数”.当b -a =2时,a 、b 的大黄金数与小黄金数之差m -n =__▲____.5.如图,直线l ⊥x 轴于点P ,且与反比例函数xk y 11(x>0)及xk y 22(x>0)的图像分别交于点A 、B ,连接OA 、OB ,已知△OAB 的面积为2,则21k k =▲.6.如图是一张长方形纸片ABCD ,已知AB=8,AD =7,E 为AB 上一点,AE =5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一边上,则等腰三角形AEP 的底边长为▲.二、解答题(本大题共7题,计82分)AB a n mbM N yOAl x1y 2y P BDABCE(第4题)(第5题)(第6题)7.(本题满分10分)质量分别为a 、b (a ≠b )的甲、乙两块金银合金的含金率不同.从甲、乙两块合金上各切下一块,分别和对方剩下的部分合金熔合,得到的两块新合金含金率相同.设切下的合金质量相同,求切下的每块合金的质量.8.(本题满分10分)四边形ABCD 中,AB ∥CD ,M 、N 为AD 、BC 的中点,AC 、BD 相交于点O ,过点O 作EF ∥AB 交AD 、BC 于点E 、F .试比较EF 与MN 的大小,并说明理由.9.(本题满分12分)如图,AB 为⊙O 的直径,P 是BA 延长线上一点,PC 切⊙O 于点C ,CG 是⊙O 的弦,AB CG,垂足为D .(1)求证:ABC PCA;(2)过点A 作PC AE //交⊙O 于点E ,交CD 于点F ,连接BE .若53sin P,5CF,求BE 的长.10.(本题满分12分)ABC PEFDOG(第9题)已知点P 是线段AB 上与点A 不重合的一点,且AP <PB .AP 绕点A 逆时针旋转角α(0o <α≤90o )得到AP 1,BP 绕点B 顺时针也旋转角得到BP 2,连接PP 1、PP 2.(1)如图1,当α=90o 时,求∠21PP P 的度数;(2)如图2,当点P 2在AP 1的延长线上时,求证:△P P P 12∽△PA P 2;(3)如图3,过BP 的中点E 作l 1⊥BP ,过BP 2的中点F 作l 2⊥BP 2,l 1与l 2交于点Q ,连接PQ ,求证:P 1P ⊥PQ .11.(本题满分12分)已知:a 、b 、c 均为非零实数,且a>b>c ,关于x 的一元二次方程02cbx ax(a ≠0)其中一个实数根为2.(1)请直接写出方程02c bxax的另一个实数根(用含a 、c 的代数式表示);(2)若实数m 使代数式c bmam 2的值小于0,问:当x=m+5时,代数式c bx ax 2的值是否为正数?写出你的结论,并说明理由.图2图1图3(第10题)12.(本题满分12分)一个身在他乡的小伙子,得知父亲病危的消息后,要日夜兼程以最短的时间赶回家.如图1,A 为出发地,B 为小伙子家的位置,MN 是一条驿道,在和B 位于驿道MN 同侧的地段全是砂土.设BC ⊥MN 于C ,AC=m ,BC=n .小伙子在驿道MN 和砂土地上的速度分别为1v 、2v (1v >2v >0).(1)若1v ∶2v =5∶3,在图2中作出小伙子从A 赶到家B 的路线(用尺规作图);(2)求小伙子赶回家所用的最短时间(用含m 、n 、1v 、2v 的代数式表示).13.(本题满分14分)对某一个函数给出如下定义:若存在实数M >0,对于任意的函数值y ,都满足-M ≤y ≤M ,则称这个函数是有界函数,在所有满足条件的M 中,其最小值称为这个函数的边界值.例如,图中的函数是有界函数,其边界值是1.(1)分别判断函数xy1(x>0)和y=x+1(-4<x ≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=-x+1(a ≤x ≤b ,b>a)的边界值是2,且这个函数的最大值也是2,求b 的取值范围;(3)将函数2x y(-1≤x ≤m ,m ≥0)的图像向下平移m 个单位,得到的函数的边界值是t ,当m 在什么范围时,满足43≤t ≤1?(第13题)图1MNBAA图2MN BCmn(第12题)。

教师解题大赛试卷初中数学

教师解题大赛试卷初中数学

一、选择题(每题5分,共20分)1. 下列函数中,y是x的一次函数的是()A. y = x^2 + 3x + 2B. y = 2x - 5C. y = √xD. y = 5/x2. 已知等腰三角形ABC中,AB=AC,BC=8cm,底边BC上的高AD将BC平分,则AD 的长度为()A. 4cmB. 6cmC. 8cmD. 10cm3. 在直角坐标系中,点P(2,-3)关于x轴的对称点P'的坐标是()A.(2,3)B.(-2,-3)C.(-2,3)D.(2,-3)4. 若方程x^2 - 4x + 3 = 0的两个根分别为a和b,则a+b的值为()A. 4B. -4C. 3D. -35. 下列不等式中,正确的是()A. 2x + 3 > 5B. 2x - 3 < 5C. 2x + 3 < 5D. 2x - 3 > 5二、填空题(每题5分,共20分)6. 若方程2x - 5 = 0的解为x,则x的值为______。

7. 在等腰三角形ABC中,若AB=AC,且∠BAC=40°,则∠ABC的度数为______。

8. 已知函数y = 3x - 2,当x=4时,y的值为______。

9. 在直角坐标系中,点A(-2,3),点B(4,-1),则线段AB的长度为______。

10. 若方程x^2 - 6x + 9 = 0有两个相等的实数根,则该方程的判别式为______。

三、解答题(共40分)11. (10分)已知等腰三角形ABC中,AB=AC,BC=8cm,底边BC上的高AD将BC平分,求AD的长度。

12. (10分)解下列方程:2x^2 - 5x - 3 = 0。

13. (10分)在直角坐标系中,点P(2,-3),点Q(-1,4),求线段PQ的中点坐标。

14. (10分)已知函数y = kx + b,当x=1时,y=3;当x=2时,y=5,求函数的解析式。

15. (10分)在△ABC中,∠A=40°,∠B=60°,∠C=80°,求△ABC的外接圆半径R。

初中数学教师解题比赛试题

初中数学教师解题比赛试题

初中数学教师解题比赛试题初中数学教师解题比赛试题一、比赛试题种类及要求本次解题比赛试题为初中数学教师专业能力测试,旨在考察参赛教师的数学解题能力、教学技能以及专业知识掌握程度。

试题将包括选择题、填空题、解答题等类型,全面考察教师的数学素养。

试题难度将按初中数学教学的实际需求和难度水平设置。

二、比赛试题内容1、选择题(1)在△ABC中,已知∠A=60°,∠B=45°,AB=2,则BC的长度为( )A. √3B. √6C. 2D. 2√3 答案:B(2)在实数范围内,方程x²+3x+2=0的解为( ) A. x=1 B. x=-1 C. x=2D. x=-2 答案:D2、填空题(1)已知一个圆的半径为5,那么它的内接正六边形的边长为____。

答案:5√3(2)若二次函数y=x²-4x+c的图像与x轴有交点,则c的取值范围是____。

答案:c≤43、解答题(1)求证:等腰三角形两底角的平分线相等。

证明:设△ABC为等腰三角形,底角∠B和∠C的平分线分别为BD和CE。

∵AB=AC,∴∠ABC=∠ACB。

又∵BD平分∠ABC,CE平分∠ACB,∴∠DBC=∠ECB。

在△DBC和△ECB中,∵DBC=ECB,BC=BC,∴△DBC ≌△ECB。

∴BD=CE,即等腰三角形两底角的平分线相等。

(2)已知一个二次函数y=ax²+bx+c的图像过点(1,2),且与x轴的两个交点的横坐标分别为x₁和x₂,其中x₁²+x₂²=9,求这个二次函数的解析式。

解:∵二次函数y=ax²+bx+c的图像过点(1,2),∴a+b+c=2 ①。

又∵该函数与x轴的两个交点的横坐标分别为x₁和x₂,其中x₁²+x₂²=9,∴x₁+x₂=-b/a,x₁x₂=c/a。

∴(x₁+x₂)²=(b/a)²,∴(b/a)²=(x₁²+x₂²)+2x ₁x₂=(9+2c/a)。

初中数学教师竞赛试卷

初中数学教师竞赛试卷

一、选择题(每题5分,共20分)1. 下列选项中,不属于实数的是()A. 3.14B. -2C. √9D. π2. 若x²=4,则x的值为()A. ±2B. ±4C. ±1D. ±33. 在直角坐标系中,点P(2,-3)关于x轴的对称点为()A.(2,3)B.(-2,-3)C.(2,-3)D.(-2,3)4. 下列方程中,有唯一解的是()A. 2x+3=0B. 3x²+2x+1=0C. x²+x+1=0D. x²+x=05. 若a、b、c是等差数列,且a+b+c=12,a+c=8,则b的值为()A. 4B. 6C. 8D. 10二、填空题(每题5分,共20分)6. 若√x+√y=5,且x+y=25,则x=________,y=________。

7. 已知一元二次方程x²-4x+3=0,则它的两个根为________。

8. 在△ABC中,若∠A=30°,∠B=45°,则∠C=________。

9. 已知平行四边形ABCD,对角线AC和BD相交于点O,若OA=4,OB=6,则AB=________。

10. 在等腰三角形ABC中,若AB=AC,∠B=50°,则∠C=________。

三、解答题(每题10分,共30分)11. (10分)已知一元二次方程x²-4x+3=0,求它的两个根,并说明这两个根在坐标系中的位置。

12. (10分)已知平行四边形ABCD,对角线AC和BD相交于点O,若OA=4,OB=6,求AB和CD的长度。

13. (10分)在△ABC中,若∠A=30°,∠B=45°,求∠C的正弦值。

四、教学设计题(15分)14. (15分)设计一节关于“一元二次方程”的数学课,包括教学目标、教学重难点、教学过程等。

教学目标:1. 让学生理解一元二次方程的概念,掌握解一元二次方程的方法。

初中数学教师解题比赛试题及答案

初中数学教师解题比赛试题及答案

青年教师基本功大赛试题一、选择题(10×2=20分,单选或多选)1.现实中传递着大量的数学信息,如反映人民生活水平的“恩格尔系数”、预测天气情况的“降雨概率”、表示空气污染程度的“空气指数”、表示儿童智能状况的“智商”等,这表明数学术语日趋()(A)人本化(B)生活化(C)科学化(D)社会化2. 导入新课应遵循()(A)导入新课的方法应能激发学生的学习兴趣、学习动机,造成悬念,达到激发情感,提出疑问的作用(B)要以生动的语言、有趣的问题或已学过的知识,引入新知识、新概念(C)导入时间应掌握得当,安排紧凑(D)要尽快呈现新的教学内容3.下列关于课堂教学的改进,理念正确的是()(A)把学生看作教育的主体,学习内容和学习方法由学生作主(B)促进学生的自主学习,激发学生的学习动机(C)教学方法的选用改为完全由教学目标来决定(D)尽可能多的提供学生有效参与的机会,让学生自己去发现规律,进而认识规律4.为了了解某地区初一年级7000名学生的体重情况,从中抽取了500名学生的体重,就这个问题来说,下面说法中正确的是()(A )7000名学生是总体(B)每个学生是个体(C )500名学生是所抽取的一个样本(D)样本容量是5005. 一个几何体的三视图如图2所示,则这个几何体是()主视图左视图俯视图图2 (A)(B)(C)(D)6.如图1,点A(m,n)是一次函数y=2x 的图象上的任意一点,AB 垂直于x 轴,垂足为B ,那么三角形ABO 的面积S关于m 的函数关系的图象大致为( )7.有三条绳子穿过一片木板,姊妹两人分别站在木板的左、右两边,各选该边的一条绳子。

若每边每条绳子被选中的机会相等,则两人选到同一条绳子的概率为( ) (A)21 (B) 31 (C) 61 (D) 918.一次数学课上,老师让大家在一张长12cm 、宽5cm 的矩形纸片内,折出一个菱形。

甲同学按照取两组对边中点的方法折出菱形EFGH (见方案一),乙同学沿矩形的对角线AC 折出∠CAE =∠DAC ,∠ACF =∠ACB 的方法得到菱形AECF (见方案二),请你通过计算,比较这两种折法中,菱形面积较大的是( )(A )甲 (B )乙 (C )甲乙相等 (D ) 无法判断9.迄今为止,人类已借助“网格计算”技术找到了630万位的最大质数。

初中数学青年教师解题比赛及答案

初中数学青年教师解题比赛及答案

秒初中数学青年教师解题比赛决 赛 试 卷本试卷共8页, 23小题,满分150分,考试时间120分钟.一、选择题(本大题共10小题,每小题4分,满分40分,请将唯一正确的答案代号填在第3页的答题卷上.) 1.已知集合{}{12}A x x a B x x =<=<<,,且()UA B =R ,则实数a 的取值范围是(A )1a ≤(B )a ≥1(C )a ≤2(D )2a ≥2.数列{}n a 的前n 项和为n S ,若1(1)n a n n =+,则5S 等于(A )1(B )56(C )16(D )1303.某班50名学生在一次百米测试中,成绩全部介于13秒 与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于 14秒且小于15秒;……;第六组,成绩大于等于18秒且 小于等于19秒.右图是按上述分组方法得到的频率分布 直方图.设成绩小于17秒的学生人数占全班总人数的百分比为x ,成绩大于等于15秒且小于17秒的学生人数 为y ,则从频率分布直方图中可分析出x 和y 分别为 (A )0.9,35 (B )0.9,45 (C )0.1,35(D )0.1,454.已知曲线23ln 4x y x =-的一条切线的斜率为12,则切点的横坐标为 (A )3(B )2-(C )3或2-(D )3-或25. 如图,P A 、PB 切O 于A 、B ,50P ∠=,点C 是O 上异于A 、B 的任意一点,则ACB ∠的度数为(A )65 (B )115 (C )65或115 (D )无法确定 6.已知函数()x f 为R 上的减函数,则满足()11f x f <⎪⎪⎭⎫⎝⎛的实数x 的取值范围是 (A) ()1,1- (B)()1,0 (C)()()1,00,1 - (D) ()()+∞-∞-,11, 7.设m 是不小于1-的实数,使得关于x 的方程222(2)330x m x m m +-+-+=有两个不相等的实数根1x 、2x .若22126x x +=,则m 的值是(A(B(C(D )1-第14题图 NM DC B A第14题8. 如图是三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:cm ).将它们拼成如图的新几何体,则该新几何体的体积为 ( ) cm 3.(A )48π (B )50π (C )58π (D )60π9.给定点M (-1, 2),N (1,4),点P 在x 轴上移动,当∠MPN 取最大值时,点P 的横坐标是(A)21 (B) 43(C) 1 (D) 2 10.已知a 、b 、c 为正整数,且19222=---++ac bc ab c b a ,那么c b a ++的最小值等于(A) 11 (B) 10 (C) 8 (D) 6二、填空题(本大题共6小题,每小题5分,共30分,将答案直接填在答题卷上.)11.函数0)2()3lg(1-+-=x x y 中,自变量x 的取值范围是______.12. 设变量x y ,满足约束条件30023x y x y x -+⎧⎪+⎨⎪-⎩≥,≥,≤≤,则目标函数2x y +的最小值为 .13.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球.则取出的4个球均为黑球的概率是__________.14.如图,平行四边形ABCD 中,AM ⊥BC 于M , AN ⊥CD 于N ,已知AB =10,BM =6, MC =3,则MN 的长为_________.15.若()f x 表示3x +和2283x x -+中较大者,则函数()f x 的最小值是 .16.将杨辉三角中的奇数换成1,偶数换成0,得到如图所示的0-1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n 次全行的数都为1的是第 行;第61行中1的个数是 .第1行 1 1 第2行 1 0 1 第3行 1 1 1 1 第4行 1 0 0 0 1 第5行 1 1 0 0 1 1…… ………………………………………。

姜堰市初中数学教师解题能力大赛试题

姜堰市初中数学教师解题能力大赛试题
12.如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,
FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF。
(1)证明:AF平分∠BAC;
(2)证明:BF=FD;
(3)若EF=4,DE=3,求AD的长。
13.问题背景:在 中, 、 、 三边的长分别为 、 、 ,求这个三角形的面积。
(1)求抛物线的解析式;
(2)若点E是抛物线上的一个动点且在x轴下方和抛物线对称轴l的左侧,过E作EF∥x轴交抛物线于另一点F,作ED⊥x轴于点D,FG⊥x轴于点G,求四边形DEFG周长m的最大值;
(3)设抛物线顶点为P,当四边形DEFG周长m取得最大值时,以EF为这的平行四边形面积是△AEP面积的2倍,另两顶点中有一顶点Q在抛物线上,求Q点的坐标。
小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点 (即 三个顶点都在小正方形的顶点处),如图 所示。这样不需求 的高,而借用网格就能计算出它的面积。
(1)请你将 的面积直接填写在横线上__________________
思维拓展:(2)我们把上述求 面积的方法叫做构图法。若 三边的长分别为 、 、 ( ),请利用图 的正方形网格(每个小正方形的边长为 )画出相应的 ,它的面积大小是:。
探索创新:(3)若 三边的长分别为 、 、 ( ,且 ),试运用构图法求出这三角形的面积。
14.三个城市A、B、C分别位于一个等腰三角形ABC的三个顶点处,已知AB=AC=100千米,BC=120千米,要在这三个城市之间铺设通讯电缆,现设计了三种方案:
①连接AB、BC;②连接BC,连接A与BC的中点D;③找出到△ABC三个顶点距离相等的点O,连接OA、OB、OC。

泸县初中数学教师解题能力大赛考试题含答案

泸县初中数学教师解题能力大赛考试题含答案

泸县初中数学教师解题能力竞赛题〔总分值120分,时间120分钟〕一、选择题〔此题共36分,每题3分〕1.一个数的相反数的倒数的绝对值是2,这个数是( D )A. 2B. 2±C.21D.21±2.以半径为1的圆的接正三角形、正方形、正六边形的边心距为三边作三角形,那么该三角形的面积是〔 D 〕 A .83B .43C .42D .82 3. 函数311--÷+=x x x y 的自变量的取值围是( D ) A.3,1≠>x x 但 B.3,1≠≥x x 但 C.3,1≠->x x 但 D.1,3,1≠≠-≥x x x 且4.方程0232=--x x 的两根为a,b,那么代数式ab a b ++32的值为( C ) A. -3 B. 3 C. 9 D. 135.如图,将两个大小、形状完全一样的ABC ∆和A B C '''∆拼在一起,其中点A '与点A 重合,点C '落在边AB 上,连接B C '.假设90ACB AC B ''∠=∠=,3AC BC ==,那么B C '的长为〔 B 〕A .33B .6C .23D .216.如图,直线1:24l y x =-+与直线2:(0)l y kx b k =+≠在第一象限交于点M .假设直线2l 与x 轴的交点为(2,0)A -,那么k 的取值围是〔 D 〕A .22k -<<B .20k -<<C .04k <<D .02k << 7.抛物线224(0)y x mx m =-->的顶点M 关于坐标原点O 的对称A点为M '.假设点M '在这条抛物线上,那么点M 的坐标为〔 C 〕 A .(1,5)- B .(3,13)- C .(2,8)- D .(4,20)- 8.对于一组统计数据3,3,6,5,3.以下说法错误的选项是〔 D 〕A .众数是3B .平均数是4C .方差是1.6D .中位数是69.填在下面各正方形中四个数之间都有一样的规律,根据这种规律m 的值为〔C 〕A .180B .182C .184D .18610. 如图,抛物线1)1(2121++=x y 与y 2=a 〔x ﹣4〕2﹣3交于点A 〔1,3〕,过点A 作x 轴的平行线,分别交两条抛物线于B 、C 两点,且D 、E 分别为顶点.那么以下结论:①a=;②AC=AE ;③△ABD 是等腰直角三角形;④当x >1时,y 1>y 2,其中正确结论的个数是〔 C 〕 A .1个 B .2个 C .3个 D .4个11. 端午节前夕,某超市用1680元购进A 、B 两种商品共60件,其中A 型商品每件24元,B 型商品每件36元.设购置A 型商品x 件、B 型商品y 件,依题意列方程组正确的选项是〔B 〕A . B .C .D .12. 如图,过点A 0〔2,0〕作直线l :y=x 的垂线,垂足为点A 1,过点A 1作A 1A 2⊥x 轴,垂足为点A 2,过点A 2作A 2A 3⊥l ,垂足为点A 3,…,这样依次下去,得到一组线段:A 0A 1,A 1A 2,A 2A 3,…,那么线段A 2021A 2107的长为〔 B 〕 A .〔〕2021 B .〔〕2021C .〔〕2021D .〔〕2021二、填空〔每题4分,共12分〕13.一个人走2m 后,向左转︒30,又走2m 后,又向左转︒30,….按这个方式继续走下去,当他回到起点时,共走了___24___m 。

初中数学教师解题竞赛试题及答案

初中数学教师解题竞赛试题及答案

初中数学教师解题竞赛试题一、选择题(每题6分)1、如果一个三角形的一条边是另一条边的2倍,并且有一个角是30°,那么这个三角形的形状是 ( )A 、直角三角形 B 、钝角三角形 C 、锐角三角形 D 、不能唯一确定2、如图,正比例函数)0(>k kx y =与反比例函数xy 1=的图象相交于A 、C 两点,过A 作x 轴的垂线交x 轴于B ,连结BC ,若△ABC 的面积为S ,则 ( )A 、S =1 B 、S =2C 、S =3 D 、S 的值不确定3、某工厂第二季度比第一季度的产值增长了x %,第三季度的产值又比第二季度的产值增长了x %。

则第三季度的产值比第一季度的产值增长了 ( )A 、2x %B 、1+2 x %C 、(1+x %)x %D 、(2+x %)x %4、设P =121220022001++,Q =121220032002++,则P 与Q 的大小关系是 ( )A 、P >QB 、P =QC 、P <QD 、不能确定5、边长为整数,周长等于21的等腰三角形共有( )A 、4个 B 、5个 C 、6个 D 、7个6、如果1x 、2x 是两个不相等的实数,且满足12003121=-x x ,12003222=-x x ,那么21x x 等于 ( )A 、2003 B 、-2003 C 、1 D 、-17、若实数x ,y 满足条件06222=+-y x x ,则x y x 222++的最大值是 ( )A 、14B 、15C 、16D 、不能确定8、如图1,图中平行四边形共有的个数是( )A 、40 B 、38 C 、36 D 、30AB CDPABCD(图1) (图2) (图3)9、如图2,矩形ABCD 被分割成六个正方形,其中最小正方形的面积等于1,则矩形ABCD 的面积等于 ( )A 、152 B 、143 C 、132 D 、10810、如图3,若PA =PB ,∠APB =2∠ACB ,AC 与PB 交于点D ,且PB =4,PD =3,则AD ·DC 等于 ( )A 、6 B 、7 C 、12 D 、16二、填空题(每题6分)11、△ABC 中,AB =32,AC =2,BC 边上的高为3,则BC 边的长为____。

初中数学教师大赛试卷

初中数学教师大赛试卷

一、选择题(每题3分,共30分)1. 下列各数中,不是有理数的是()A. 2/3B. -5C. √2D. 0.101010...2. 若a=2,b=-3,则a^2 + b^2的值为()A. 7B. 5C. 13D. 93. 在直角坐标系中,点P(3,-4)关于y轴的对称点的坐标是()A. (-3,4)B. (3,4)C. (-3,-4)D. (3,-4)4. 下列方程中,解集为全体实数的是()A. x^2 + 1 = 0B. x^2 - 4 = 0C. x^2 - x + 1 = 0D. x^2 + x + 1 = 05. 一个等腰三角形的底边长为10cm,腰长为8cm,则该三角形的周长为()A. 26cmB. 24cmC. 22cmD. 20cm6. 若一个数的平方等于4,则这个数是()A. ±2B. ±1C. ±4D. ±87. 在等差数列{an}中,若a1=3,公差d=2,则第10项an的值为()A. 19B. 21C. 23D. 258. 下列函数中,是反比例函数的是()A. y = x^2B. y = 2x + 1C. y = 1/xD. y = x^39. 在直角坐标系中,点A(2,3)和点B(-1,2)之间的距离为()A. √10B. √13C. √5D. √1710. 若a、b、c为等差数列中的连续三项,且a + b + c = 12,则a^2 + b^2 + c^2的值为()A. 36B. 42C. 48D. 54二、填空题(每题5分,共25分)11. 已知数列{an}的通项公式为an = 2n - 1,则第10项an的值为______。

12. 若a、b、c为等比数列中的连续三项,且abc = 27,则b的值为______。

13. 在直角坐标系中,点P(-2,3)关于原点的对称点坐标为______。

14. 若函数y = kx + b的图像过点(2,3),则k和b的值分别为______。

初中数学解题能力比赛试题(含答案)

初中数学解题能力比赛试题(含答案)

HGDCABEFOD CBA初中数学教师解题能力比赛试题卷一、选择题(本题共7个小题,每小题4分,共28分)请将正确答案填在下表中。

题号 123456 7答案D A C B C AD1.方程x 2﹣2x+﹣4=0的实数解的个数是( )A .0B .1C .2D .32.如图,已知ΔABC 中,AB=5,AC=3,BC 上的中线AD=2,则BC 的长为.A .132B .4C .13D .23. 已知:四边形ABCD 中,AB =3,CD =4,M 、N 分别是AD ,BC 的中点, 则线段MN 的取值范围是( ) A .1<MN <7 B .1<MN ≤7 C .21<MN ≤27 D .21<MN <274.二次函数()3-m -x 2-y 2=,x ≥-l 时,y 随x 的增大而减小, 则m 的取值范围是( )A .m = -lB .m ≤-lC .m >-lD .m ≥-l5.如图,已知:点E 、F 分别是正方形ABCD 的边BC AB 、的中点,DF BD 、分别交CE 于点H G 、,若正方形ABCD 的面积是240,则四边形BFHG 的面积等于( )A . 24B .26C .28D .306. 以半圆的一条弦BC (非直径)为对称轴将弧BC 折叠后 与直径AB 交于点D ,若32=DB AD ,且AB=5,则CB =( ) A .52 B .32 C . 22 D .27. 2012年11月11日,支付宝24小时交易创历史新高,达191亿元。

某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y (千米)与货车行驶时间x (小时)之间的函数图象如图所示,现有以下4个结论: ①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为300千米;③图中点B 的坐标为(334,75);④快递车从乙地返回时的速度为90千米/时. 以上4个结论中正确的是( )A .①②③B .①②④C .②③④D .①②③④ABC二、填空题(本题7个小题,每小题4分,共28分)请将正确答案填在下表中。

初中数学教师解题大赛试题

初中数学教师解题大赛试题

初中数学优质课解题竞赛试卷 第1页 共4页区(县):__________ 学校:____________ 姓名:___________ …………………………………………………………密…………………封…………………线…………………………………………………………OQl初中数学教师解题能力测试卷说明:本卷满分100分,考试时间120分钟。

一、选择题(8小题,每小题4分,共32分)1.正方形纸片折一次,沿折痕剪开,能剪得的图形是( )A. 锐角三角形B. 钝角三角形C. 梯形D. 菱形2.若代数式23y y +-的值是0, 则代数式3242011y y ++的值为( ) A .2019 B .2020 C .2021 D .20223.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是( ) A . 点(5,1) B . 点(2,3) C . 点(0,3) D . 点(6,1) 4.若2-=+b a ,且a ≥2b ,则( )A. a b 有最小值21B. a b有最大值1 C. ba有最大值2 D.b a 有最小值98- 5.不论a 为任何实数,二次函数22y x ax a =-+-的图象( )A. 在x 轴上方B. 在x 轴下方C. 与x 轴有一个交点D. 与x 轴有两个交点6.如果不等式组02100x a x -⎧⎨-⎩≥<只有一个整数解,那么a 的范围是( )A .3a <≤4B .3a ≤<4C .a 4≤<5D .a 4<≤5 7.如图,⊙O 的半径为2,点O 到直线l 的距离为3,点P 是直线l上的一个动点,PQ 切⊙O 于点Q ,则PQ 的最小值为( )A .13B .5C .3D .28.如图,一张边长为4的等边三角形纸片ABC ,点E 是边AB 上的一个动点(不与A 、B重合),EF ∥BC 交AC 于点F .以EF 为折痕对折纸片,当△AEF 与四边形EBCF 重叠EF 的长度是( )A .2B .23或83(第3题)(第8题)初中数学优质课解题竞赛试卷 第2页 共4页C .23D .2 或103二、填空题(8小题,每小题4分,共32分)9.一个样本的方差是0,若中位数是a ,那么它的平均数是 .10.如果点P (x ,y )的坐标满足x +y =xy ,那么称点P 为和谐点.请写出三个和谐点的坐标: .11.已知14a a +=,则分式42221a a a-+的值是 . 12.如图,在△ABC 中,AB =AC ,D 、E 是△ABC 内两点,AD 平分∠BAC ,∠EBC =∠E =60º,若BE =6 cm ,DE =2cm ,则BC =_________.13.一个密码箱的密码, 每个数位上的数都是从0到9的自然数, 若要使 不知道密码的人一次就拨对密码的概率小于20101, 则密码的位数至少需要 位. 14.若一次函数y=kx +1的图象与反比例函数y =x1的图象没有公共点,则实数k 的取值范围是 .15.已知正方形ABCD ,以CD 为边作等边△CDE ,则∠AED 的度数是 . 16.如图,一次函数y =-2x 的图象与二次函数y =-x 2+3x 图象的对称轴交于点B .(1)写出点B 的坐标 ;(2)已知点P 是二次函数y =-x 2+3x 图象在y 轴右侧..部分上的一 个动点,将直线y =-2x 沿y 轴向上平移,分别交x 轴、y 轴于 C 、D 两点. 若以CD 为直角边的△PCD 与△OCD 相似,则点 P 的坐标为 .三、解答题(每小题12分,共36分)17.将长为10厘米的一条线段用任意方式分成5小段,以这5小段为边可以围成一个五边形.问其中最长的一段的取值范围.OBC D18.公交车由始发站A站开出向B站行进,与此同时,小强和小明分别从A,B两站同时出发,小强由A向B步行,小明骑自行车由B向A行驶,小明的速度是小强的3倍,公交车每隔相同时间发一辆车,小强发现每隔20分钟有一辆公交车追上他,而小明也发现每隔10分钟就遇到一辆公交车.(1) 求两辆公交车发车的间隔时间;(2) 若AB两站相距12km,公交车的速度为30km/h,问在行进途中(不包括起点和终点),小强被几辆公交车追上,小明又遇到了几辆公交车?初中数学优质课解题竞赛试卷第3页共4页19.如图,在Rt△ABC中,ABC∠=90°,以AB为直径作⊙O交AC于点D,E是BC的中点,连结DE. (1)求证:直线DE是⊙O的切线;(2)连结OC交DE于点F,若OF CF=,证明四边形OECD是平行四边形;(3)若CFnOF=,求tan ACO∠的值.A BODF EC初中数学优质课解题竞赛试卷第4页共4页初中数学优质课解题竞赛试卷第5页共4页。

解题比赛初中数学试卷

解题比赛初中数学试卷

一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -3B. 0C. 1D. -22. 若a=2,b=-3,则a²-b²的值为()A. -5B. 5C. -10D. 103. 下列方程中,解为x=3的是()A. 2x+1=7B. 3x-2=7C. 4x-3=7D. 5x-4=74. 一个长方形的长是5cm,宽是3cm,则它的周长是()A. 16cmB. 18cmC. 20cmD. 22cm5. 若a、b是方程2x²+3x-1=0的两根,则a+b的值为()A. -3/2B. 3/2C. -1/2D. 1/26. 下列各数中,有理数是()A. √3B. πC. 2/3D. -√27. 下列各式中,同类项是()A. 3x²B. 2x³C. 4x²D. 5x8. 若a、b是方程x²-4x+4=0的两根,则a×b的值为()A. 0B. 4C. -4D. 89. 下列各式中,分式是()A. 2/3B. 3/2C. 4/5D. 5/610. 若a、b是方程x²-6x+9=0的两根,则a²+b²的值为()A. 0B. 6C. 12D. 18二、填空题(每题5分,共25分)11. 若a、b是方程x²-5x+6=0的两根,则a+b=____,a×b=____。

12. 一个等腰三角形的底边长是8cm,腰长是10cm,则它的周长是____cm。

13. 若a、b是方程2x²+5x-3=0的两根,则a²+b²=____。

14. 下列各数中,无理数是____。

15. 下列各式中,同类项是____。

三、解答题(每题10分,共40分)16. 解方程:2x²-3x+1=0。

17. 已知一个长方形的长是xcm,宽是2xcm,求它的面积。

18. 已知等腰三角形的底边长是6cm,腰长是8cm,求它的周长。

初中数学教师大赛考试试卷

初中数学教师大赛考试试卷

一、选择题(每题2分,共20分)1. 下列哪个选项不是初中数学教材中的基本概念?A. 实数B. 函数C. 方程D. 立方根2. 下列哪个函数不是一次函数?A. y = 2x - 3B. y = -5x + 4C. y = 3x^2 - 2D. y = x3. 在直角坐标系中,点P(2,-3)关于x轴的对称点坐标是:A. (2,3)B. (-2,3)C. (2,-3)D. (-2,-3)4. 下列哪个图形不是平行四边形?A. 正方形B. 矩形C. 菱形D. 三角形5. 下列哪个数是偶数?A. 3.14B. -7C. 0D. 1.6186. 一个等腰三角形的底边长为8cm,腰长为6cm,那么这个三角形的面积是:A. 24cm²B. 30cm²C. 36cm²D. 40cm²7. 下列哪个图形的面积计算公式是错误的?A. 圆的面积:S = πr²B. 正方形的面积:S = a²C. 长方形的面积:S = abD. 三角形的面积:S = 1/2ah8. 下列哪个方程的解是x = 2?A. 2x - 3 = 1B. 2x + 3 = 1C. 2x - 3 = 5D. 2x + 3 = 59. 在直角坐标系中,点A(1,3)和点B(4,1)之间的距离是:A. 2B. 3C. 4D. 510. 下列哪个选项是正确的函数图像?A.B.C.D.二、填空题(每题3分,共15分)11. 一个数的相反数是它的(),它们的和是()。

12. 下列数中,有()个整数。

13. 一个等腰三角形的底边长为10cm,腰长为8cm,那么这个三角形的周长是()cm。

14. 在直角坐标系中,点P(-2,4)关于y轴的对称点坐标是()。

15. 下列图形中,面积最大的是()。

三、解答题(每题10分,共30分)16. 已知:a + b = 7,ab = 10,求a² + b²的值。

教师解题基本功竞赛(初中数学)及答案

教师解题基本功竞赛(初中数学)及答案

B(第11题图) 21OEF D BA 6.一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现2个男婴、1个女婴的概率是7.如图,方格纸中4个小正方形的边长均为1,则图中阴影部分三个小扇形的面积和为 (结果保留π). 物线232--=x ax y 与x 轴正半轴交于点A (3,0).以8.如图,抛OA 为边在x 轴上方作正方形OABC ,延长CB 交抛物线于点D ,再以BD 为边向上作正方形BDEF. 则点F 的坐标9.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为 cm.10.如图,由1个正方形和1个等腰直角三角形拼在一起所组成的图形,把它分成4个全等的图形(在图上分)。

第10题11.如图,四边形OABD 为菱形,点B 、D 在以点O 为圆心的弧EF 上, 若OA = 3, ∠1 =∠2,则扇形OEF 的面积为_________.12.已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;④210a b -+>.其中正确的结论是 (填序号).二、解答题:(本大题共90分.解答时应写出必要的计算过程、推演步骤或文字说明.) 13.(本题10分)如图,在平面直角坐标系中,直线334y x =-与x 轴、y 轴分别交于A B ,两点.现有半径为1的动圆位于原点处,以每秒1个单位的速度向右作平移运动,则经过多少秒,动圆与直线AB 相切.(第7题)第9题图AAAA14.(本题12分)甲、乙二人同时从A 地出发,沿同一条道路去B 地,途中都使用两种不同的速度1v 与2v (12v v ),甲一半的路程..使用速度1v 、另一半的路程..使用速度2v ;乙一半的时间..使用速度1v 、另一半的时间..使用速度2v . (1)甲、乙二人从A 地到达B 地的平均速度各是多少(用1v 和2v 表示)?(2)甲、乙二人谁先到达B 地?为什么?(3) 如图是甲从A 地到达B 地的路程s 与时间t 的函数图像,请你在图中画出相应的乙从A 地到达B 地的路程s 与时间t 的函数图像.15. (本题12分)如图12,Rt △ABC 中,∠C =90°,按题目所给条件及要求将相应的直角三角形,分割成若干个全等的并且分别与原三角形相似的三角形.........................画出图形并简要说明理由.第(1)图AC=BC 将ΔABC 分割成2个三角形;第(2)图AB=2AC 将ΔABC 分割成3个三角形;第(3)图将ΔABC 分割成4个三角形;第(4)图BC=2AC将ΔABC 分割成5个三角形;x16.(本题10分)某公司准备投资开发A 、B 两种新产品,通过市场调研发现:如果单独投资A 种产品,则所获利润(万元)与投资金额x (万元)之间满足正比 例函数关系:A y kx =;如果单独投资B 种产品,则所获利润(万元)与投资金额x (万元)之间满足二次函数关系:2B y ax bx =+.根据公司信息部的报告,A y ,B y (万元)与投资金额x (万元)的部分对应 值如右表所示:⑴填空:A y = ;B y = ;⑵如果公司准备投资20万元同时开发A 、B 两种新产品,设公司所获得的总利润为w (万元),试写出w 与某种产品的投资金额x 之间的函数关系式.⑶请你设计一个在⑵中能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少万元? 17.(本题10分)如图,某工厂D 与A ,B 两地有公路、铁路相连,且A C DB E D →→→→与路程相等,2BE CD =,CDE →→的路程为120千米,A C D C D E →→→→比的路程远10千米。

初中数学教师基本功竞赛试卷(附答案)

初中数学教师基本功竞赛试卷(附答案)

初中数学教师基本功竞赛试卷(附答案)第一题 - 四则运算计算下列各式的结果:1. $12 + 5 =$2. $20 - 8 =$3. $4 \times 7 =$4. $36 \div 9 =$答案:1. $12 + 5 = 17$2. $20 - 8 = 12$3. $4 \times 7 = 28$4. $36 \div 9 = 4$第二题 - 分数计算对下列各题进行分数计算:1. $\frac{3}{4} + \frac{1}{2} =$2. $\frac{5}{8} - \frac{1}{4} =$3. $\frac{2}{3} \times \frac{3}{5} =$4. $\frac{2}{9} \div \frac{1}{3} =$答案:1. $\frac{3}{4} + \frac{1}{2} = \frac{5}{4}$2. $\frac{5}{8} - \frac{1}{4} = \frac{3}{8}$3. $\frac{2}{3} \times \frac{3}{5} = \frac{6}{15}$4. $\frac{2}{9} \div \frac{1}{3} = \frac{6}{9}$第三题 - 方程求解解下列方程:1. $2x + 3 = 9$2. $\frac{3}{4}x - \frac{1}{2} = 1$3. $5 - 2x = 8$4. $\frac{1}{3}x + 5 = 7$答案:1. $x = 3$2. $x = \frac{9}{5}$3. $x = -1.5$4. $x = 6$第四题 - 几何图形选择正确的答案:1. 三角形的内角和为多少?- A. 90度- B. 180度- C. 360度- D. 45度答案:B. 180度2. 一个正方形有几条对角线?- A. 1条- B. 2条- C. 4条- D. 0条答案:C. 4条3. 直线与平行线相交,对应角为:- A. 互补角- B. 对顶角- C. 相等角- D. 余角答案:B. 对顶角4. 直角三角形的斜边是:- A. 最长边- B. 最短边- C. 邻边- D. 对边答案:A. 最长边第五题 - 数学推理根据给定的条件选择正确的答案:1. 如果$a = 3$,$b = 5$,则$a + b =$ _____?- A. 7- B. 8- C. 9- D. 15答案:A. 82. 如果$a = 2$,$b = 4$,则$a \times b =$ _____?- A. 2- B. 4- C. 6- D. 8答案:D. 83. 如果$a = 6$,$b = 2$,则$a - b =$ _____?- A. 2- B. 3- C. 4- D. 5答案:C. 44. 如果$a = 10$,$b = 2$,则$a \div b =$ _____?- A. 1- B. 2- C. 5- D. 10答案:B. 5以上是初中数学教师基本功竞赛试卷及答案。

广州市初中青年数学教师解题比赛决赛试题与答案

广州市初中青年数学教师解题比赛决赛试题与答案

20XX 年广州市初中数学青年教师解题决赛试题参考答案及评分标准9.选C [解析]:设直线MN (MN l :3+=x y )交x 轴于点A,则点P ,必须满足AN AM AP ⋅=2,易计算得,3-=A x ,4=AP .10.选B [解析]:不妨设c b a ≥≥,m b a =-,n c b =-,m 、n 为非负整数,n m c a +=-, 01922=-++n mn m ,由Δ≥0,可得,6<n ,当0=n ,1,4,5时,m 无解,2=n 时,m 3=;3=n 时,2=m ,① 当2=n ,m 3=时,b a +=3,2-=b c 1≥,3≥b ,6≥a ,1013≥+=++b c b a ,此时,取6=a ,3=b ,1=c 时,10=++c b a 最小; ②当3=n ,2=m 时,同理可求,得,11=++c b a 6=a ,4=b ,1=c , 综上,最小值10=++c b a .二、填空题答案(每小题5分,共6小题,共30分)11.3,4)(4,)+∞U (. 12. 23-. 13.51. 14. 5734.作MH ⊥AN 于H ,AH =524,HN =512,MH =532.15. 3. 16.21n -,32 .三、解答题答案(共7小题,满分80分.解答应写出必要文字说明、演算步骤和证明过程) 17. 解:(1)由已知得当0x <时,2()23f x x x =+-.∴2223,0,()23,0.x x x f x x x x ⎧--≥⎪=⎨+-<⎪⎩……………………………………………………………………………………3分(2)单调递减区间是]1,0[],1,(--∞,单调递增区间是),1[],0,1[+∞-.…………………………………………6分最小值是4-,没有最大值.…………………………………………………………………………………8分18. 解:(1)2()sin )2cos 2sin cos f x x x x a x x x a =-⋅+=-+-2sin 22cos(2)6x x a x a π=-+=++.……………………………………………4分(2)7[0,],2,1cos(2)26666x x x πππππ∈∴≤+≤∴-≤+≤Q2()a f x a ∴-≤≤.……………………………………………………………………………………6分min ()2f x a ∴=-,由题意得22a -=-0a ∴=.……………………………………………………………8分19.解:(1)证明:由AD ⊥平面ABE 及//AD BC ,∴BC ⊥平面ABE ,∴AE BC ⊥. 而BF ⊥平面ACE ,∴BF AE ⊥,又BC BF B =I ,∴AE ⊥平面BCE ,又BE ⊂平面BCE ,∴AE BE ⊥.………………………………………………3分(2)连接EM ,∵M 为AB 中点,AE =EB =2,∴AB EM ⊥.又⊥DA 平面⊂EM ABE ,ABE 平面,∴EM DA ⊥,所以⊥EM 平面ACD .……………………………………………………………………………………5分由已知及(1)得22,221===∆ADC S AB EM .故1422233D AECE ADCV V --==⨯=.……………………………………………………………………7分 (3)取BE 中点G ,连接FM GF MG ,,.∵BF ⊥平面ACE ,∴CE BF ⊥,又BC EB =,所以F 为CE 中点,∴GF //BC . 又∵BC //AD ,∴GF //AD .所以GF //平面ADE .………………………………9分 同理//MG 平面ADE ,所以平面GMF //平面ADE .又⊂MF 平面MGF ,则//MF 平面ADE .………………………………………………………………12分20. 证明: (1) ∵DE ⊥CP 且CE=EF ,∴ DC=DF , ∠FDE =21∠FDC , ∠HDE =∠FDE -∠FDH =21∠FDC -21∠FDA =21∠ADC = 45°.………………………………………………4分∴∠EHD =∠HDE =45°.……………………………………………………………………………………………5分∴ DE=EH .(2)延长DH 交AF 于点O , 将ΔDEC 绕点C 逆时针旋转90°到ΔBMC 的位置,连结ME . ∴ΔDEC ≌ΔBMC . ∴ DE=BM , ∠DCE =∠BCM ,∵∠DCE +∠ECB =90°, ∴∠BCM +∠ECB =90°.∴ BM ∥CH . …………………………………………………8分在ΔEMC 中,∠ECM =90°,MC=CE ,∴∠CEM =45°.由(1)知, DE=EH=BM , ∴BMEH 为平行四边形 ∴ BH ∥EM .又由(1)知DC=DF ,则DA=DF ,DO 为∠ADF 的角平分线,∴ DO ⊥AF .又对顶角∠EHD =∠FHO , ∴ ∠AFH =∠HDE =45°. ∴ ∠AFH =∠MEC =45°. ∴ AF ∥ME .∴ AF ∥BH . ………………………………………………………………………………………………………12分A D 第20题21. 解:(1)连接BC ,由勾股定理求得:2AB AC ==,213602n R S π==π. ……………………………3分 (2)连接AO 并延长,与弧BC 和O e 交于E F ,,22EF AF AE =-=-,弧BC 的长:21802n R l π==π. 设圆锥的底面半径为r .22r π=πQ , ∴圆锥的底面直径为:22r =.……………………………………………………………………………6分 2222-<Q , ∴不能在余料③中剪出一个圆作为底面与此扇形围成圆锥.…………………………………………………8分(3)由勾股定理求得:2AB AC R ==,弧BC 的长:2180n R l R π==π,22r R π=πQ , ∴圆锥的底面直径为:22r R =,22(22)EF AF AE R R R =-=-=-. 2222-<Q 且0R >, 2(22)2R R ∴-<,即无论半径R 为何值,2EF r <. ∴不能在余料③中剪出一个圆作为底面与此扇形围成圆锥.………………………………………………12分第21题∠ABE=∠EBC=∠DHC,∠AEB=∠ADH=∠CDH,∴∠BCD=∠BAD. …………………………………………………………………………………………………14分xyABCO P F MEH NQP 'N 'M '1 23423. (1)证明:连结AF .AE BF Q ∥,1342∴∠=∠∠=∠,. 又AB AF =Q ,34∴∠=∠.12∴∠=∠. 又AO AF AE AE ==Q ,,AOE AFE ∴△≌△.90AFE AOE ∴∠=∠=o . FC ∴是O e 的切线.…………………3分(2)方法1:由(1)知22EF OE ==. AE BF Q ∥,AC CEAB EF∴=. 1122OC CE+∴=,2222CE CO ∴=+. ① 又222OE OC CE +=Q ,22222CE CO ⎛⎫∴=+ ⎪ ⎪⎝⎭. ② 由①②解得0OC =(舍去)或2OC =,……………………………………………………………………………5分 Q 直线FC 经过202E ⎛⎫- ⎪ ⎪⎝⎭,,(20)C ,两点. 设FC 的解析式:y kx b =+. 2022k b b +=⎧⎪∴⎨=-⎪⎩解得2422k b ⎧=⎪⎪⎨⎪=-⎪⎩. ∴直线FC 的解析式为2242y x =-.……………………………………………………………………………7分 方法2:CF Q 切A e 于点F ,90AFC EOC ∴∠=∠=o . 又ACF OCE ∠=∠,COE CFA ∴△∽△,OE COAF CF∴=.22122CO CE ∴=+.即222CE CO =-. ① 又222OE OC CE +=,22222CE CO ⎛⎫∴=+ ⎪ ⎪⎝⎭. ② 由①②解得0CO =(舍去)或2CO =. (20)C ∴, .………………………………………………………5分 (求FC 的解析式同上). 方法3:Q AE BF ∥,AC CEAB EF ∴=.1122OC CE +∴=. 2222CE CO ∴=+. ① FC Q 切A e 于点F ,90AFC COE ∴∠=∠=o .ACE OCE ∴∠=∠,COE CFA ∴△∽△.。

初中数学教师解题比赛试卷及答案和解析

初中数学教师解题比赛试卷及答案和解析

象山县第三?届初中数学?教师解题比?赛试卷本试卷共8?页,共三大题2? 2小题,满分120?分,考试时间1? 20分钟。

、选择题(本大题共8?小题,每小题3分?,满分24分?。

请将唯一正?确的答案代?号填在题后?括号内)B a>—a 〉b>-b1、如图,在菱形 ABCD 中,/ ADB 与的大小关ABD 玄旦 A. ADB ABD E. N ADB vNABD C. ADB= /ABDD.无法确定2、如果 a v 0, :::0,那么下列关 系式中正确?白是b a _b _aD. - a>b>-b>a3、已知 a b ,且 a = 0, b 0, b0,则函数与在^y ^ax b ya b同一坐标系中的图x象不?可能是4、如图,逆时针旋转到正方形30 ABCD ,则图中阴影部分的面积? 为 (D )135、若为二次函 A-~,y1)、B (-1, y2)、C (;,y3)数的图象上 LX 2-4x 5的三点,则的大小关?『2、y 3系是A . y 3<y i <y 2D. y 2<y i<y 3边长为1的正方形绕点ABCD A6、已知实数?、b 、c 满足a ::: 0 , a - b c 0,则一定有不可能是?8、下列图形中?阴影部分的面积相等的?有11、不等式组的?x+2a >4解集是0vxc2,那么的值等、2x —b c513、一青蛙在如 图的正方形 护8 (每个小正方 形的边长为?1网格的格点?(小正方形的 顶点)上跳跃, 青蛙每2 2A . b - 4ac > 0B . b - 4ac . 0C . b - 4ac < 0D . b - 4ac :: 07、把一张形状 是多边形的纸片剪去其中一个角,剩下的部分是一个四边形,那么这张纸片原来的形A.六边形 E.五边形C.四边形D.三角形y = 3xA.①② E.②③ C.③④ 二、填空题 ?)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年解题比赛试题
第 1 页共 4 页
初中数学青年教师解题比赛试题
说明:1.本试卷满分100分,考试时间120分钟;
2.请将答案或解答过程直接在答题纸上.
一、填空题:(本大题共6小题,每小题3分,共18分)
1.已知x=2是不等式)23)(5(a
ax x
≤0的解,x=1不是这个不等式的解,则实数
a 的范
围是


2.二次函数4)
4(2
x
a y (a ≠0)的图像在2<x <3这一段位于x 轴下方,在6<x <7这一
段位于x 轴的上方,则a 的值为▲.
3.设二次函数
))((211
x x
x x
a y (a ≠0,1x ≠2x )的图像与一次函数
e dx
y 2
(d ≠0)的图像交
于点(1x ,0),若函数21
y y y
的图像与x 轴仅有一个交点,则下列结论:①a(1x -2x )=d ;
②a(2x -1x )=d ;③a(2x -1x )2
=d ;④a(2x +1x )2
=d .其中正确的序号有▲.
4.实数a 、n 、m 、b 满足a <n <m <b ,这四个数在数轴上对应的点分别为
A 、N 、M 、
B (如
图).若AM 2
=BM ·AB ,BN 2
=AN ·AB ,则称m 为a 、b 的“大黄金数”,n 为a 、b
的“小黄金数”.当
b -a =2时,a 、b 的大黄金数与小黄金数之差
m -n =__▲____.5.如图,直线l ⊥x 轴于点P ,且与反比例函数
x
k y 11
(x>0)及x
k y 22
(x>0)的图像分别交于点A 、B ,连接OA 、OB ,已知△OAB 的面积为2,则21
k k =


6.如图是一张长方形纸片
ABCD ,已知AB=8,AD =7,E 为AB 上一点,AE =5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一边上,则等腰三角形
AEP 的底边长为


二、解答题(本大题共7题,计82分)
A
B a n m
b
M N y
O
A
l x
1
y 2
y P B
D
A
B
C
E
(第4题)
(第5题)
(第6题)。

相关文档
最新文档