硬盘结构

合集下载

简述机械硬盘的结构和数据读写过程

简述机械硬盘的结构和数据读写过程

一、机械硬盘的结构机械硬盘是一种储存设备,主要由机械部分和电子部分组成。

其机械部分由外壳、盘片、磁头和主轴马达等组成,盘片通常是由薄膜覆盖的铝合金材料制成,而每块盘片上都会有若干个可用来储存数据的盘面。

磁头则是用来读写数据的装置,它们会在盘片的表面移动,并且通过磁场来读取或写入数据。

主轴马达是用来旋转盘片的主要动力来源,它能够确保盘片的稳定旋转。

而电子部分则由主控制器、接口电路板和固态存储器等组成,主控制器负责控制硬盘的读写操作,并将数据传输到计算机中,而固态存储器则主要用来存储硬盘的缓存数据。

二、机械硬盘的数据读写过程1. 概述机械硬盘的数据读写过程主要分为磁头寻道、扇区定位、数据读取/写入等步骤,整个过程是由硬盘的控制器负责调度和执行的。

2. 磁头寻道在进行数据读写操作之前,磁头首先需要移动到正确的盘面上,这就需要进行磁头寻道操作。

磁头寻道是指磁头在盘片表面上寻找要读取或写入数据的盘面的过程。

硬盘通常会将盘面划分成许多的同心圆状的轨道,而每个轨道又被划分成许多的扇区。

当需要进行读写操作时,硬盘的磁头会通过移动臂进行寻道,将磁头移动到正确的轨道上。

3. 扇区定位定位扇区是指将磁头精确地移动到指定的扇区上,以进行数据的读取或写入。

硬盘在磁头寻道完成后,会通过电子部分控制磁头的精确位置,使其准确地停留在需要进行数据读写的扇区上。

4. 数据读取/写入当磁头准确定位到目标扇区后,硬盘的磁头会根据数据的磁编码信息,通过磁场的变化来读取或写入数据。

在数据读取过程中,磁头会感知盘片上的磁场变化,并将其转换成电信号,然后通过接口电路板传输给计算机。

而在数据写入过程中,磁头则会通过改变盘面上的磁场,将电信号转换成磁场,从而改变盘面上的数据。

5. 数据传输硬盘通过接口电路板将读取的数据传输到计算机中,或者将计算机传输过来的数据写入到盘面上,完成一次数据的读写过程。

机械硬盘的数据读写过程是一个复杂的技术过程,其涉及到磁头的寻道定位和数据读写等多个环节,而整个过程又是由硬盘的控制器来进行调度和管理的。

电脑硬盘的内部结构原理

电脑硬盘的内部结构原理

电脑硬盘的內部结构原理
电脑硬盘的内部结构原理是由多个组件组成的,包括盘片、磁头、磁臂、电机等。

1. 盘片(Platters):硬盘通常具有多个盘片,它们是圆形的金属或玻璃碟片,涂有磁性物质。

每个盘片都可以存储数据,数据通过将磁性物质置于不同的磁极方向来编码。

2. 磁头(Read/Write Head):磁头是一种小型设备,负责读取和写入数据。

每个盘片都有一对磁头(读头和写头),位于盘片上方和下方。

3. 磁臂(Actuator Arm):磁臂是一个可移动的机械臂,支持磁头的轨迹定位。

它通过一个电机控制,可以在盘片的不同位置移动磁头。

4. 电机(Spindle Motor):电机负责旋转硬盘的盘片。

盘片通常以高速旋转,以便快速读取和写入数据。

电机根据主板发送的信号来控制盘片的旋转速度。

5. 控制电路板(PCB):控制电路板是连接硬盘中所有组件的主要电路板。

它包含处理器、内存和控制芯片,负责管理数据的读取、写入和处理。

硬盘的工作原理是,当计算机需要读取或写入数据时,控制电路板将通过电缆信号发送给磁头,磁头会在盘片上的特定位置找到需要的数据并执行操作。

数据的读取和写入是通过改变磁片上的磁场来实现的。

总结起来,硬盘的内部结构包括盘片、磁头、磁臂、电机和控制电路板。

这些组件共同工作,实现数据的存储和读取。

硬盘物理结构

硬盘物理结构

硬盘物理结构先看下硬盘物理结构1 硬盘物理结构硬盘物理上主要是盘片、机械手臂、磁头、和主轴等组成. 在盘片逻辑划分上又分为磁道、扇区, 例如下图:2 盘片磁道、扇区磁道:当硬盘盘片旋转时, 磁头若保持在一个位置上, 则磁头会在盘片表面划出一个圆形轨迹, 这些圆形轨迹就叫做磁道. 以盘片中心为圆心, 由此可以划分出很多磁道来, 这些磁道用肉眼是根本看不到的, 因为它们仅是盘面上以特殊方式磁化了的一些磁化区, 硬盘上的信息便是沿着这样的轨道存放的, 盘片上的磁道由外向内依次从“0”开始进行编号.柱面:由于硬盘可以由很多盘片组成, 不同盘片的相同磁道就组成了柱面(cylinder), 如图1所示.磁头:假设有N个盘片组成的硬盘, 那么有2N个盘面(一个盘片有2面), 那么磁头也就有2N个, 即每个盘面有一个磁头.扇区:早期的硬盘盘片的盘面以圆心开始向外放射状将磁道分割成等分的弧段, 这些弧段便是硬盘的扇区(如图2). 每个扇区一般规定大小为512byte, 这里大家应该比较疑惑, 外圈周长很明显比内圈要长, 怎么可能每个扇区都是512byte?其实答案早期硬盘外圈存储比内圈存储密度低一些, 所以外圈很长但是仍然只能存储512byte, 因此如果我们知道了柱面数(磁道数) Cylinders、磁头数Heads、扇区数Sectors, 基本上硬盘的容量我们能够计算出来硬盘总容量= Cylinders * Heads * Sectors * 512byte. 但是由于早期硬盘外圈密度低, 导致盘片利用率不高, 现在的硬盘盘片则采用内外存储密度一致的方式, 每个磁道都划分成以512byte大小的弧段, 这样也造成了内外磁道上扇区数量会不一样, 外圈上的扇区数要多于内圈扇区数.硬盘寻址方式硬盘存取、读取数据, 首先要做的就是寻址, 即定位到数据所在的物理地址, 在硬盘上就要找到对应的柱面、磁头以及对应的扇区, 那么怎么寻址呢?有两种方式: CHS和LBACHS模式:CHS(Cylinder/Head/Sector)寻址模式也称为3D模式, 是硬盘最早采用的寻址模式, 它是在硬盘容量较小的前提下产生的.硬盘的C/H/S 3D参数既可以计算出硬盘的容量, 也可以确定数据所在的具体位置. 这是因为扇区的三维物理地址与硬盘上的物理扇区一一对应, 即三维物理地址可完全确定硬盘上的物理扇区. 三维物理地址通常以C/H/S的次序来书写, 如C/H/S为0/1/1, 则第一个数字0指0柱面, 第二个数字1指1磁头(盘面), 第三个数字1指1扇区, 表示该数据位于硬盘1盘面上的0磁道1扇区. 现在定位已完成, 硬盘内部的参数和主板BIOS之间进行协议, 正确发出寻址信号, 从而正确定位数据位置.早期硬盘一个磁道上分63个扇区, 物理磁头最多16个(8个盘片, 盘片多了硬盘那就真要加厚了). 采用8位寻址方式, 8位二进制位的最大值是256(0-255), 可以表示磁头数, 而扇区只有63个(1-63), 只需要其中6个二进制位即可表示, 剩下2位拿去表示柱面, 柱面数用10(8+2)位来表达, 达到1024个柱面(0-1023), 因此总扇区数(1024×16×63). 前面说一个扇区大小为512byte, 这也就是说, 如果以C/H/S寻址模式寻址, 则IDE硬盘的最大容量只能为1024×16×63×512B= 500MB左右.可以思考下, 在8位寻址模式下, 其实可以寻址的硬盘最大容量为1024×256×63×512B =8G,那为啥CHS模式硬盘只支持到500MB呢?原因很简单, 我们的硬盘盘片不可能让128片盘片重叠起来吧, 那会是多厚??如果采用28位寻址方式, 那么可以寻址137G, 盘片也不可能一直堆叠下去.LBA(Logical Block Addressing)经常去买硬盘的人都知道, 目前硬盘经常都说单碟、双碟, 其实意思就是说硬盘盘片只有1个或者2个, 而且都只是用一面, 单碟一个磁头而已, 但是硬盘容量确是几百G, 而且硬盘柱面往往都大于1024个柱面, CHS是无法寻址利用完这些硬盘容量的.另外由于老硬盘的扇区划分方式对硬盘利用率不高, 因此出现了现在的等密度盘, 外圈的扇区数要比内圈多, 原来的3D寻址方式也就不能适应这种方式, 因此也就出现了新的寻址方式LBA, 这是以扇区为单位进行的线性寻址方式, 即从最外圈柱面0开始, 依次将扇区号编为0、1….等等, 举个例子, 假设硬盘有1024个柱面, 由于是等密度硬盘, 柱面0(最外圈)假设有128个扇区, 依次编号为0-127, 柱面1有120个扇区, 则依次编号为127-246, …..依次最内圈柱面127只有扇区64个, 则编号到最后.因此要定位到硬盘某个位置, 只需要给出LBA 数即可, 这个就是逻辑数.在LBA 模式下, 为了保留原来CHS时的概念, 也可以设置柱面、磁头、扇区等参数, 但是他们并不是实际硬盘的物理参数, 只是为了计算方便而出的一个概念, 1023之前的柱面号都一一物理对应, 而1023以后的所有柱面号都记录成1023磁头最大数可以设置为255, 而扇区数一般是每磁道63个, 硬盘控制器会把由柱面、磁头、扇区等参数确定的地址转换为LBA 数. 这里我们再此明确两个概念:物理扇区号:一般我们称CHS模式下的扇区号为物理扇区号, 扇区编号开始位置是1逻辑扇区号:LBA下的编号, 扇区编号是从0开始.CHS模式转换到逻辑扇区号LBA计算公式LBA(逻辑扇区号)=磁头数×每磁道扇区数×当前所在柱面号+ 每磁道扇区数×当前所在磁头号+ 当前所在扇区号–1例如: CHS=0/0/1, 则根据公式LBA=255 ×63 ×0 + 63 ×0 + 1 –1= 0也就是说物理0柱面0磁头1扇区, 是逻辑0扇区.硬盘分区我们知道, 一般使用硬盘, 我们首先会对硬盘进行分区, 然后对分区使用某个文件系统格式(NTFS、FAT、ext2/ext3)进行分区格式化, 然后才能正常使用. 那么分区是怎么回事呢?我们常见的windows中说到的c、d、e盘是怎么划分出来的呢?其实, 在装windows系统过程中, 一般我们只需要填写每个分区的大小, 看不出来分区过程的实际工作情况, 我们可以从linux系统分区过程反而能反应底层实际分区情况.柱面是分区的最小单位, 即分区是以某个某个柱面号开始到某个柱面号结束的.如图, 柱面1~200我们可以分为一个区, 柱面201~500再划分为一个区, 501~1000再划分为一个区, 以此类推. 大家可以看到, 柱面0没有在任何分区里面, 为何?这里说说, 前面说到硬盘从外圈(柱面0)到内圈扇区是依次编号, 看似各个扇区没有什么区别, 但是这里硬盘的柱面0的第一个扇区(逻辑扇区0, CHS表示应该是0/0/1)却是最重要的, 因为硬盘的第一个扇区记录了整个硬盘的重要信息, 第一个扇区(512个字节)主要记录了两部分:①MBR(Master Boot Record): 主引导程序就放在这里, 主引导程序是引导操作系统的一个程序, 但是这部分只占446字节.②DPT(Disk Partition table): 硬盘分区表也在这里, 分区表就是用来记录硬盘的分区情况的, 例如c盘是1~200柱面, d盘是201~500柱面, 分区表总共只占64字节, 可以看出, 分区其实很简单, 就是在这个表里面修改一下记录就重新分区了, 但是由于只有64字节, 而一条记录就要占用16字节, 这个分区表最多只能记录4个分区信息, 为了继续分出更多分区来, 引入了扩展分区的概念, 也就是说, 在这4个分区中, 可以使用其中一条记录来记录扩展分区的信息, 然后在扩展分区中再继续划分逻辑分区, 而逻辑分区的分区记录则记录在扩展分区的第一个扇区中, 如此则可以像链表一样划分出很多分区来. 但是请注意, 一个分区表中可以有1~4条主分区, 但是最多只能有1个扩展分区.举例, 主分区可以是P1:1~200, 扩展分区P2: 2~1400, 扩展分区开始的第一个扇区可以用来记录扩展分区中划分出来的逻辑分区.分区表链分区表之间是如何关联的, 详细讲一下, 分区表是一个单向链表, 第一个分区表, 也就是位于硬盘第一个扇区中的DPT, 可以有一项记录扩展分区的起始位置柱面, 类似于指针的概念, 指向扩展分区(图3), 根据这项记录我们可以找到扩展分区的某柱面0磁头1扇区(CHS), 而这个扇区中又存放了第二个分区表, 第二个分区表第一项记录一般表述了当前所在的逻辑分区的起始/终止柱面, 第二项记录表述了下一个逻辑分区所在的0磁头1扇区(CHS),第三、第四项记录不存任何信息(图4).请看下图, 主引导记录/分区表所在的是硬盘第一个分区, 基本分区1、基本分2、基本分区3都是主分区、扩展分区内有2个逻辑分区, 每个逻辑分区的第一个扇区都是分区表, 至于引导扇区(DBR), 在系统启动一节中会提及.系统启动:之前提到MBR中安装的引导加载程序, 他的作用是什么?①提供开机菜单选项: 可以供用户选择启动哪个操作系统, 这是多重引导功能.②加载操作系统内核: 每个操作系统都有自己的内核, 需要引导程序来加载③转交给其他引导程序: 可以将工作移交给其他引导程序来进行上述操作.其实引导加载程序除了可以安装在MBR中, 还可以直接安装在每个分区的引导扇区(DBR)中, 注意下, 每个分区(主分区、逻辑分区)都有一个自己的启动扇区, 专门用来安装引导加载程序, 如上图标3结构图.系统启动过程:①首先,BIOS启动后, 读取硬盘第一个扇区MBR中的引导加载程序(可能是windows或者linux 的grub)②MBR中的引导程序提供开机菜单, 你可以选择1)直接加载windows 内核2)将工作转交给windows 分区内的引导扇区中的加载程序, 让他自己去加载内核3)转交给linux分区内引导扇区, 让他去加载linux.③根据用户选择的选项和引导加载程序中记录的分区, 到分区表找对应的分区柱面号等分区信息, 启动内核或者分区加载程序.Window安装时默认会自动将MBR和windows所在分区的引导扇区都装上引导程序, 而不会提供任何选项给用户选择, 因此如果之前装过其他操作系统, 然后再另外装一个windows时, 会把公用的MBR覆盖掉, 如此, 原来的操作系统就无法启动了. 如果先装windows, 然后装linux, linux会覆盖MBR, 然后让用户选择是否将windows等其他操作系统的启动项添加进来, 如果你选择了添加进来, 那么你在开机时就会有两个选项让用户进行选择了.后记l 这里讨论的全部是硬盘相关的东西, 光盘不在此列, 而且光盘的磁道并不是从外圈到内圈编号, 而是从内圈开始编号, 这点注意.l 硬盘第一个扇区是由MBR和分区表占据, 因此0柱面0磁头上剩下的62个扇区一般会空出来保留(这部分保留称为隐藏扇区, 因为操作系统读取不到这部分扇区, 这部分扇区是提供给BIOS读取的), 而系统分区则从0柱面1磁头1扇区开始, 折算成LBA=255 ×63 ×0 + 63 ×1 + 1 –1= 63, 即从LBA 63号扇区开始分区. 不过查阅有的资料提及到另外一种说法, 那就是有的硬盘可能0柱面全部空下来, 如果真是这样, 那浪费可就真的大了.l 对于扩展分区的分区表我们知道也是由扩展分区的第一个扇区开始写, 而且是写到每个逻辑驱动器的第一个扇区, 同样, 扩展分区内的第一个扇区所在的磁道剩余的扇区也会全部空余出来, 这些保留的扇区操作系统也是无法读取的, 注意在扩展分区的第一个扇区里面是没有引导加载记录的. 引导加载记录都是放在隐藏扇区后面的. 可以看图3, 图4。

介绍硬盘的逻辑结构

介绍硬盘的逻辑结构

介绍硬盘的逻辑结构硬盘是电脑中不可或缺的存储装置,它能够保存大量的数据。

而硬盘的逻辑结构可以让我们更好地了解它的工作原理与使用方法。

让我们一起来了解一下吧!首先,让我们从硬盘的最基本单位开始,那就是扇区。

扇区是硬盘中最小的存储单元,一般大小为512字节。

当我们将数据存储到硬盘上时,实际上是将数据写入到一个个的扇区中。

多个扇区会被组合成一个簇,簇是硬盘中一次读写的最小单位。

它的大小可以根据用户的需求设置,一般可选择4KB或者8KB,不同的簇大小会影响硬盘的性能。

而下一层级是磁道,磁道是硬盘上一个圆形的轨道,硬盘通常会有多个磁道,每个磁道又会被划分成多个扇区。

读取或写入数据时,硬盘会在指定的磁道上进行操作。

再往上一层是柱面,柱面是由相同磁头上的所有磁道构成的一个圆柱体。

一般来说,硬盘会有多个柱面,它们从内到外排列。

寻址时,磁头会在柱面之间来回跳跃,以读取或写入数据。

接下来是分区,分区是将硬盘划分成不同的逻辑部分。

每个分区在操作系统中都会被视为一个独立的硬盘,可以独立地进行格式化、安装操作系统和存储文件。

最后是文件系统,文件系统是操作系统用来管理硬盘空间和文件的一种机制。

常见的文件系统有FAT32、NTFS、HFS+等。

文件系统可以帮助我们更方便、快速地访问和管理文件。

了解了硬盘的逻辑结构,我们可以更好地理解硬盘的工作原理,并且在使用过程中有更好的指导意义。

不仅如此,合理地分区和选择合适的文件系统也能够充分发挥硬盘的性能,并确保数据的安全性和完整性。

总之,硬盘的逻辑结构由扇区、簇、磁道、柱面、分区和文件系统构成。

了解这些结构可以帮助我们更好地了解硬盘的工作原理和使用方法,提高硬盘的性能并保护数据的安全。

无论是日常使用还是进行技术操作,都会受益于对硬盘逻辑结构的了解。

硬盘的结构

硬盘的结构

硬盘的结构1、硬盘的外部物理结构硬盘主要由盘体、控制电路板和接口部件组成。

盘体是一个密封的腔体。

(后续将介绍硬盘的内部物理结构即是指盘体的内部结构)。

控制电路板上主要有硬盘BIOS、硬盘缓存(Cache)和主控制芯片等单元。

硬盘接口包括插座、数据接口和主、从跳线等。

2、硬盘的内部物理结构硬盘盘体是完全密封的,里面主要有磁头、盘片等部件。

硬盘的盘片材料硬度和耐磨性要求很高,所以一般采用合金材料,多数为铝合金。

(早期有塑料,陶瓷的,现在也出现了玻璃材料的)。

盘基上涂上磁性材料。

硬盘盘片厚一般在0.5mm左右,盘片的转速与盘片大小有关,考虑到惯性及盘片稳定性,盘片越大转速越低。

有些硬盘只装一张盘片,有此则有多张。

硬盘盘片安装在主轴电机的转轴上,在主轴电机的带动下作高速旋转。

每张盘片的容量称为单碟容量,而一块硬盘的总容量就是所有盘片容量的总和。

早期硬盘由于单碟容量低,所以盘片较多。

现代的硬盘盘片一般只有少数几片。

一块硬盘内的所有盘片都是完全一样的,否则控制部分就太复杂了。

盘片上的记录密度很大,而且盘片工作时会高速旋转,为保证其工作的稳定,数据保存的长久,所以硬片都是密封在硬盘内部的,内部并非真空。

不可自行拆卸硬盘,在普通环境下空气中的灰尘,都会对硬盘造成永久损害。

以上介绍的是盘片,一张单面的盘片需要一个磁头,双面的盘片则需要两个磁头。

硬盘采用高精度、轻型磁头驱动和定位系统。

这种系统能使磁头在盘面上快速移动,读写硬盘时,磁头依靠磁盘的高速旋转引起的空气动力效应悬浮在盘面上,与盘面的距离不到1微米(约为头发直径的百分之一),可以在极短的时间内精确定位到计算机指令指定的磁道上。

注意:由于磁盘是旋转的,则连续写入的数据是排列在一个圆周上的。

我们称这样的圆周为一个磁道(Track)。

由于定位系统限制,磁头臂只能在盘片的内外磁道之间移动。

因此,不管开机还是关机,磁头总在盘片上。

所不同的是,关机时磁头停留在盘片启停区,开机时磁头“飞行”在磁盘片上方。

硬盘结构和存储结构课件

硬盘结构和存储结构课件
件的工作。
硬盘的工作原理
01
02
03
数据存储
当需要存储数据时,控制 电路板将数据编码后通过 磁头写入盘片上的磁道。
数据读取
当需要读取数据时,控制 电路板通过磁头读取盘片 上的磁道数据,解码后传 输给计算机。
数据擦除
当需要删除数据时,控制 电路板控制磁头产生反向 磁场,将磁道数据擦除。
02
硬盘存储结构
备和笔记本电脑等需要高性能存储的设备。
SSHD混合硬盘
要点一
总结词
SSHD混合硬盘是一种结合了传统机械硬盘和SSD固态硬盘 的存储设备,具有高速缓存和低成本的特点。
要点二
详细描述
SSHD混合硬盘在传统机械硬盘的基础上增加了SSD固态硬 盘作为缓存,通过智能算法将频繁访问的数据存储在SSD 固态硬盘中,以提高读写速度。同时,由于使用了传统的 机械硬盘作为主要存储介质,SSHD混合硬盘的成本相对 较低。这种存储方式能够在保证性能的同时降低成本,适 合用于需要大量存储空间的台式机和服务器等设备。
数据恢复
在数据丢失后,及时采取 措施进行数据恢复,以最 大程度地减少损失。
05
新型硬盘技术介绍
SSD固态硬盘
总结词
SSD固态硬盘是一种基于闪存的存储设备,具有高速读写、低功耗、轻便小巧等特点。
详细描述
SSD固态硬盘通过电子方式进行数据存储,没有传统机械硬盘的机械运动部分,因此具 有更快的读写速度和更低的故障率。同时,由于没有机械运动部分,SSD固态硬盘的功 耗较低,且不会产生噪音。此外,SSD固态硬盘体积小巧,便于携带,适合用于移动设
硬盘的存储介质
机械硬盘(HDD)
采用旋转磁盘和读写头的方式进行数据存储,存储介质是磁盘上 的磁道和扇区。

硬盘的结构都有哪些组成

硬盘的结构都有哪些组成

硬盘的结构都有哪些组成硬盘基本上由控制电路板和盘体两大部分组成。

1. 控制电路板控制电路板是由接口、DSP处理器、ROM、缓存、磁头驱动电路和盘片电机驱动电路等组成的:接口包括电源接口和数据接口及硬盘内部的盘片电机接口、磁头接口——电源接口提供硬盘工作所需要的电流。

数据接口提供与计算机交换数据的通道。

盘片电机接口提供盘片电机转动所需的电流。

磁头接口用于提供电路板到磁头和音圈电机的信号连接。

DSP处理器用于控制信号和数据的转换、编码等操作。

ROM中存储了硬盘初始化操作的部分程序,有的ROM为独立的芯片(可能是EPROM、Flash等),有的集成到了DSP中。

缓存用于暂存盘体和接口交换的数据,以解决接口速度和硬盘内部读写速度的差别。

缓存的大小对硬盘的数据传输速率有一定的影响,随着硬盘的不断发展,缓存的容量也在不断增大。

磁头驱动电路负责驱动磁头准确定位和对磁头信号进行整形放大等。

电机驱动电路负责精确控制盘片的转速。

2. 盘体盘体由盘腔、上盖、盘片电机、盘片、磁头、音圈电机和其他的辅助组件组成。

为保证硬盘正常工作,盘体内的洁净度很高。

为防止灰尘进入,盘体处于相对密封的状态。

由于硬盘工作的过程中发热,为了保证盘腔的空气压力与外界平衡,在盘体上有呼吸孔,呼吸孔的内侧安装有一个小的空气过滤器,硬盘的设计不同,呼吸孔的位置和结构也有所差别。

同时由于盘体在装配完成后,要写入伺服信息,所以盘体上有伺服信息的写入口,在工厂无尘车间里将专用的写入设备从这个孔伸入盘体内写入伺服信息,写入完成后,会用铝箔将其封闭。

(1) 盘腔盘腔一般由铝合金铸造后机加工而成,盘体的其他组件都直接或间接安装在盘腔上面,盘腔上还有将硬盘安装到其他设备上的螺丝孔。

(2) 上盖上盖一般由铝合金或软磁金属材料加工而成,有的是单层的,有的是由多层材料粘合而成。

它的主要作用是与盘腔一起构成一个相对密封的整体,基本上都是用螺钉与盘腔连接,为了保证密封,上盖与盘腔的结合面一般都有密封垫圈。

《硬盘基本结构》课件

《硬盘基本结构》课件

05
常见问题与维护
常见故障及排除方法
故障1
硬盘无法启动
排除方法
检查电源线是否连接正常,确保硬 盘电源正常;检查硬盘接口是否松 动或损坏。
故障2
硬盘读写速度变慢
排除方法
检查硬盘是否有坏道或文件系统错误 ,进行修复;清理磁盘碎片,优化硬 盘性能。
故障3
硬盘发出异常声音
排除方法
检查硬盘内部是否有损坏的机械部 件,如有需要更换;运行硬盘检测 工具,检查硬盘健康状态。
1956年,IBM开发了世界上第一 台硬盘存储器,容量仅为5MB, 使用50个24英寸的碟片。
现代硬盘的发展
随着技术的不断进步,硬盘的容 量和性能得到了显著提升。如今 ,常见的硬盘容量已经达到数TB ,且读写速度越来越快。
硬盘的分类与特点
01
02
03
按接口分类
主要有SATA、SAS、SCSI 等接口类型,每种接口有 其特点和适用场景。
REPORT
《硬盘基本结构》 ppt课件
CATALOG
DATE
ANALYSIS
SUMMARY
目录
CONTENTS
• 硬盘简介 • 硬盘基本结构 • 硬盘工作原理 • 硬盘性能指标 • 常见问题与维护
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
01
硬盘简介
硬盘的发展历程
最早的硬盘
扇区与簇
硬盘中数据存储的基本单位,扇区通常包含一定数量的二进制位,簇则是一组连 续的扇区,用于文件存储和管理。
接口类型与传输速率
接口类型
硬盘与计算机之间的连接方式,常见的有SATA、IDE和SCSI 等接口类型,每种接口都有不同的传输速率和数据格式。

硬盘物理结构及工作原理

硬盘物理结构及工作原理

硬盘物理结构及工作原理硬盘是一种常见的计算机储存设备,它使用磁性材料将数据存储在一个或多个旋转的盘片上。

硬盘的物理结构和工作原理对于了解它的工作方式和性能影响非常重要。

硬盘的物理结构主要包括盘片、磁头和磁道。

盘片是一个圆形薄片,通常由铝或玻璃制成。

磁头是一种读写头,它位于盘片上方或下方,用于读取和写入数据。

磁道是盘片上的圆形轨道,由磁性物质构成,用于存储数据。

硬盘的工作原理可以分为读取和写入两个过程。

在读取数据时,磁头会定位到特定的磁道上,然后检测磁性材料的磁性状态。

根据磁性状态的变化,磁头可以读取出相应的数据。

在写入数据时,磁头会通过磁场改变磁性材料的状态,从而将数据写入到特定的磁道上。

为了提高硬盘的读取速度和存储容量,硬盘制造商采取了一些技术手段。

其中之一是增加盘片的数量。

通过增加盘片的数量,硬盘可以在同一时间内读取/写入更多的数据,从而提高读取/写入速度。

另一个技术是增加磁头的数量。

通过增加磁头的数量,硬盘可以同时访问多个磁道,从而提高读取/写入速度。

硬盘还使用了缓存技术来提高性能。

缓存是一种临时存储器,用于临时存储频繁访问的数据。

当需要读取一些数据时,硬盘首先检查缓存中是否有该数据。

如果有,则直接从缓存中读取,从而加快读取速度。

如果没有,则从磁盘上读取数据,并将其存储到缓存中,以便下次读取。

总的来说,硬盘的物理结构和工作原理主要涉及盘片、磁头和磁道。

硬盘通过控制磁头的位置和磁场来读取和写入数据。

硬盘的读取速度主要受到旋转速度、寻道时间和传输速率的影响。

硬盘制造商通过增加盘片、磁头的数量和使用缓存技术等手段来提高硬盘的读取速度和存储容量。

硬盘数据结构

硬盘数据结构

硬盘数据结构一、主引导扇区主引导扇区位于整个硬盘的0磁道0柱面1扇区,包括硬盘主引导记录MBR(Main Boot Record)和分区表DPT(Disk Partition Table)。

其中主引导记录的作用就是检查分区表是否正确以及确定哪个分区为引导分区,并在程序结束时把该分区的启动程序(也就是操作系统引导扇区)调入内存加以执行。

主引导记录占用446字节,分区表占用64字节,扇区结束标志55AA占用2字节,一共512字节。

硬盘的主引导扇区所在的硬盘磁道上的其它扇区一般均空出,主引导扇区所在的硬盘磁道是不属于分区范围内的。

表一:主引导扇区数据结构表二、分区引导扇区1、隐藏扇区(hidden sector)在分区之前的部分。

通常所说的MBR,它是隐藏扇区的第一个扇区,也是整个存储介质的第一个扇区。

使用C/H/S寻址方式为0 Cylinder / 0 Head / 1 Sector,换成LBA寻址方式,就是所谓的第0扇区。

需要注意的是,隐藏扇区不是必须的,它是系统启动有关,如果你仅仅是作为存储,那么隐藏扇区可以没有,比如128M CF Card。

还需要区分物理扇区和逻辑扇区。

物理扇区是从整个存储介质的角度出发,而逻辑扇区仅仅是从该分区的角度出发。

2、保留扇区(reserved sector)分区之内FAT表之前的所有扇区。

通常所说的BPB,就是保留扇区的第一个扇区。

如果隐藏扇区为0个,那么BPB所在的扇区就成为了实际的第0扇区。

上面是FAT16的组织形式。

默认上,LBA=0时,读取第一个扇区,得到的应该是MBR信息。

在偏移位置为0x1be处,如果为0x80,则表示该分区是活动的。

在偏移位置为0x1c6及其后的三个字节构成一个32位的长字(注意是按照小端存放方式),这是DBR的入口地址,也就是保留扇区的第一个扇区。

如果在0x1be处不是0x80,则表明这不是MBR,也就是隐藏扇区为0,从保留扇区开始。

硬盘的物理结构

硬盘的物理结构

硬盘的物理结构1,硬盘分区后,将会被划分为面、磁道和扇区。

2,先从面说起,硬盘一般是由一片或几片圆形薄膜叠加而成。

3,每个圆形薄膜都有两个"面"(Side),这两个面都是用来存储数据的。

按照面的多少,依次称为0面、1面、2面….4,由于每个面都专有一个读写磁头,也常用0头(head)、1头……称之。

按照硬盘容量和规格的不同,硬盘面数(或头数)也不一定相同,少的只有2面,多的可达数十面。

5,何为磁道呢?大家都知道,读写硬盘时,磁头依靠磁盘的高速旋转引起的空气动力效应悬浮在盘面上,与盘面的距离不到1微米(约为头发直径的百分之一)。

由于磁盘是旋转的,则连续写入的数据是排列在一个圆周上的。

我们称这样的圆周为一个磁道(Track)。

6,如果读写磁头沿着圆形薄膜的半径方向移动一段距离,以后写入的数据又排列在另外一个磁道上。

根据硬盘规格的不同,磁道数可以从几百到数千不等;一个磁道上可以容纳数KB的数据,而主机读写时往往并不需要一次读写那么多,于是,磁道又被划分成若干段,每段称为一个扇区(Sector)。

一个扇区一般存放512字节的数据。

扇区也需要编号,同一磁道中的扇区,分别称为1扇区,2扇区。

7,计算机对硬盘的读写,处于效率的考虑,是以扇区为基本单位的。

即使计算机只需要硬盘上存储的某个字节,也必须一次把这个字节所在的扇区中的512字节全部读入内存,再使用所需的那个字节。

8,不过,在上文中我们也提到,硬盘上面、磁道、扇区的划分表面上是看不到任何痕迹的,虽然磁头可以根据某个磁道的应有半径来对准这个磁道,但怎样才能在首尾相连的一圈扇区中找出所需要的某一扇区呢?原来,每个扇区并不仅仅是由512个字节组成的,在这些由计算机存取的数据的前、后两端,都另有一些特定的数据,这些数据构成了扇区的界限标志,标志中含有扇区的编号和其他信息。

计算机就凭借着这些标志来识别扇区。

9,各面上磁道号相同的磁道合起来,称为一个柱面(cylinder)。

硬盘的基本结构和工作原理

硬盘的基本结构和工作原理

硬盘的基本结构和工作原理硬盘是计算机中不可或缺的存储设备之一,它通过机械方式将数据存储在内部的盘片上。

本文将详细介绍硬盘的基本结构和工作原理。

一、硬盘的基本结构硬盘主要由以下几个基本组件构成:1. 盘片(Platters):硬盘内部通常有多个盘片,每个盘片都由高速旋转的金属或玻璃材料制成。

数据被存储在盘片的磁道上,磁头可以在盘片上读取或写入数据。

2. 磁头(Read/Write Heads):每个盘片上都有两个磁头,一个用于读取数据,另一个用于写入数据。

磁头会在盘片上移动,通过磁力来读取或修改磁道上的数据。

3. 磁道(Tracks):盘片表面被划分为多个同心圆,每个圆称为一个磁道。

一个磁道可以存储大量的数据,硬盘的容量取决于磁道的数量和密度。

4. 扇区(Sectors):每个磁道被分成多个扇区,每个扇区可以存储固定大小的数据块。

通常,一个扇区的大小为512字节或更多。

5. 主轴(Spindle):主轴是盘片旋转的中心轴,它通过电机的驱动下高速旋转,使得磁头能够准确地读取或写入数据。

6. 电机和控制电路(Motor and Controller):电机负责驱动盘片的旋转,而控制电路则负责控制磁头的移动和访问盘片上的数据。

二、硬盘的工作原理硬盘的工作原理主要分为读取和写入两个过程。

1. 读取数据:当计算机需要读取硬盘上的数据时,控制电路会发送指令使得正确的磁头移动到指定的磁道上。

一旦磁头到达目标磁道,主轴开始旋转,磁头就可以读取该磁道上的数据。

读取过程是通过磁头感应磁道上的磁场变化来实现的。

2. 写入数据:在写入数据时,同样需要将磁头移动到指定的磁道上。

主轴开始旋转后,磁头会根据指令将数据写入对应的扇区。

写入数据的过程是通过通电使得磁头改变磁道上的磁性来实现的。

硬盘通过以上的读取和写入过程来完成对数据的存储和访问,数据的读取速度和写入速度取决于盘片的转速、磁头的位置移动速度以及数据传输的接口速度。

三、硬盘容量和性能的影响因素硬盘的容量和性能受多个因素影响,主要包括以下几个方面:1. 盘片密度:盘片的密度决定了每个磁道上可存储的数据量,密度越大,硬盘的容量就越大。

硬盘的分区结构及其数据储存原理

硬盘的分区结构及其数据储存原理

硬盘的分区结构及其数据储存原理硬盘的分区结构及其数据储存原理想要学好电脑知识,硬件的知识这么能够忽略呢?下面是店铺为大家搜集整理出来的有关于硬盘的分区结构及其数据储存原理,希望可以帮助到大家!硬盘的分区结构1、主分区主分区,也称为主磁盘分区,和扩展分区、逻辑分区一样,是一种分区类型。

主分区中不能再划分其他类型的分区,因此每个主分区都相当于一个逻辑磁盘(在这一点上主分区和逻辑分区很相似,但主分区是直接在硬盘上划分的,逻辑分区则必须建立于扩展分区中)一个硬盘主分区至少有1个,最多4个。

激活的主分区是硬盘的启动分区,他是独立的,也是硬盘的第一个分区,正常分的话就是C驱。

2、扩展分区分出主分区后,其余的部分可以分成扩展分区但扩展分区是不能直接使用的,他是以逻辑分区的方式来使用的,所以说扩展分区可分成若干逻辑分区。

它们的关系是包含的关系,所有的逻辑分区都是扩展分区的一部分。

3、逻辑分区逻辑分区是硬盘上一块连续的.区域,不同之处在于,每个主分区只能分成一个驱动器,每个主分区都有各自独立的引导块,可以用fdisk设定为启动区。

一个硬盘上最多可以有4个主分区,而扩展分区上可以划分出多个逻辑驱动器。

这些逻辑驱动器没有独立的引导块,不能用fdisk设定为启动区。

主分区和扩展分区都是dos分区。

数据存储原理1、文件的读取操作系统从目录区中读取文件信息(包括文件名、后缀名、文件大小、修改日期和文件在数据区保存的第一个簇的簇号),我们这里假设第一个簇号是0023。

操作系统从0023簇读取相应的数据,然后再找到FAT的0023单元,如果内容是文件结束标志(FF),则表示文件结束,否则内容保存数据的下一个簇的簇号,这样重复下去直到遇到文件结束标志。

2、文件的写入当我们要保存文件时,操作系统首先在DIR区中找到空区写入文件名、大小和创建时间等相应信息,然后在Data区找到闲置空间将文件保存,并将Data区的第一个簇写入DIR区,其余的动作和上边的读取动作差不多。

硬盘的数据结构

硬盘的数据结构

第13、14、15、16字节40 22 13 00:本分区的总扇区数,1253952,也就是E盘的大小再加上一个EBR的数目。
单击“访问”下拉按钮——“分区三”——“分区表”,直接就到2870784扇区,即E
盘的分区表EBR。因为E盘后面没有分区了,所以没有第二个分区表项。这里我们就不再研究了,有兴趣的话可以自己多备一块硬盘作从盘,然后自己分分区研究研究。
首先要安装Winhex,安装完了就可以启动winhex了,启动画面如下:首先出现的是启动中心对话框。
这里我们要对磁盘进行操作,就选择“打开磁盘”,出现“编辑磁盘”对话框:
在这个对话框里,我们可以选择对单个分区打开,也可以对整个硬盘打开,HD0是我现在正用的西部数据40G系统盘,HD1是我们要分析的硬盘,迈拓2G。这里我们就选择打开HD1整个硬盘,再点确定.然后我们就看到了Winhex的整个工作界面。
分区表64个字节,一共可以描述4个分区表项,每一个分区表项可以描述一个主分区或一个扩展分区(比如上面的分区表,第一个分区表项描述主分区C盘,第二个分区表项描述扩展分区,第三第四个分区表项填零未用)
每一个分区表项各占16个字节,各字节含义如下:(H表示16进制)
字节位置 内容及含义
第1字节 引导标志。若值为80H表示活动分区;若值为00H表示非活动分区。
我们先了解一下数据结构:
下面是一个分了三个区的整个硬盘的数据结构
MBR C盘 EBR D盘 EBR E盘
MBR,即主引导纪录,位于整个硬盘的0柱面0磁道1扇区,共占用了63个扇区,但实际只使用了1个扇区(512字节)。在总共512字节的主引导记录中,MBR又可分为三部分:第一部分:引导代码,占用了446个字节;第二部分:分区表,占用了64字节;第三部分:55AA,结束标志,占用了两个字节。后面我们要说的用winhex软件来恢复误分区,主要就是恢复第二部分:分区表。

硬盘基本结构

硬盘基本结构

信息产业部数据恢复技术培训
第3讲 硬盘外部、内部结构
2.1.2 硬盘内部结构
图2-16 卸下磁头架
信息产业部数据恢复技术培训
第3讲 硬盘外部、内部结构
2.1.2 硬盘内部结构
图2-17 取下下边的盘片
信息产业部数据恢复技术培训
第3讲 硬盘外部、内部结构
2.1.2 硬盘内部结构
卸下固定 主电机的三颗 螺丝,电机就 拆下来了。最 后剩下的只是 一个铝合金的 盘 架 , 如 图 218所示。 图2-18 铝合金盘体
信息产业部数据恢复技术培训
第3讲 硬盘外部、内部结构
2.1.2 硬盘内部结构
图2-20 磁头组件
信息产业部数据恢复技术培训
第3讲 硬盘外部、内部结构
2.1.2 硬盘内部结构
② 磁头驱动机构。磁头驱动机构由电磁线圈电机、磁 头驱动小车、防震动装置构成,高精度的轻型磁头驱动机 构能够对磁头进行正确的驱动和定位,并能在很短的时间 内精确定位系统指令指定的磁道。 ③ 磁盘片。盘片是硬盘存储数据的载体,现在硬盘盘 片大多采用金属薄膜材料,这种金属薄膜与软盘的不连续 颗粒载体相比具有更高的存储密度、高剩磁及高矫顽力等 优点。
第3讲 硬盘外部、内部结构
2.1.1 硬盘外部结构
在硬盘的正面贴有产品标签, 主要有厂家的信息和产品信息, 如商标、型号、序列号、生产日 期、容量、参数、主从设置方法 等,这些信息是正确使用硬盘的 基本依据,如图2-2所示。 图2-2所示的是WD200BB的产 品标签。从型号上可以判断,它 是一款容量为 20GB的7200RPM高 速 硬 盘 , 产 品 序 列 号 为 WMA9L1203351,产地为马来西亚, 出厂息产业部数据恢复技术培训

硬盘的数据结构

硬盘的数据结构

硬盘的数据结构硬盘的数据结构:为更深⼊的了解硬盘,还必须对硬盘的数据结构有个简单的了解。

对于FAT16和FAT32⽂件系统(NTFS采⽤不同的⽂件管理技术,另做介绍),硬盘上的数据按照其不同的特点和作⽤⼤致可分为5部分:MBR区、DBR区、FAT区、DIR 区和DATA 区。

其中,MBR由分区软件创建,⽽DBR区、FAT区、DIR区和DATA 区由⾼级格式化程序创建。

⽂件系统写⼊数据时只是改写相应的FAT区、DIR 区和DATA区。

也正是这5个区域共同作⽤的结果,才使整个硬盘的管理有条不紊。

下⾯对这5个区域分别进⾏介绍。

(1)MBR区MBR,即主引导记录区,位于整个硬盘的0磁道0柱⾯1扇区。

在总共512字节的主引导扇区中,MBR的引导程序占⽤其中的前446个字节(偏移0~偏移1BDH),随后的64个字节(偏移1BEH~偏移1FDH)为DPT(Disk Partition Table,硬盘分区表),最后的两个字节“55 AA”(偏移1FEH~偏移1FFH)是分区有效结束标志。

由它们共同构成硬盘主引导记录,也称主引导扇区。

有时硬盘主引导记录专指MBR的引导程序,本书中对硬盘主引导记录和硬盘主引导扇区不作区分。

(2)DBR区DBR(DOS Boot Record),操作系统引导记录区。

通常位于硬盘0柱1⾯1扇区,是操作系统可以直接访问的第⼀个扇区。

它包括⼀个引导程序和⼀个被称为BPB(BIOS Parameter Block)的本分区参数记录表。

引导程序的主要任务是,当MBR将系统控制权交给它时,判断本分区根⽬录前两个⽂件是不是操作系统的引导⽂件。

以DOS为例,即是IO.SYS和MSDOS.SYS。

低版本的DOS要求这两个⽂件必须是前两个⽂件,即位于根⽬录的起始处,占⽤最初的两个⽬录项,⾼版本的已没有这个限制。

另外,Windows与DOS是⼀个家族,所以,Windows也沿⽤这种管理⽅式,只是⽂件名不⼀样。

硬盘内部结构

硬盘内部结构

硬盘内部结构太平洋信息网硬盘的内部结构硬盘内部结构由固定面板、控制电路板、盘头组件、接口及附件等几大部分组成,而盘头组件(Hard Disk Assembly,HDA)是构成硬盘的核心,封装在硬盘的净化腔体内,包括浮动磁头组件、磁头驱动机构、盘片及主轴驱动机构、前置读写控制电路等。

1、浮动磁头组件由读写磁头、传动手臂、传动轴三部分组成。

磁头是硬盘技术最重要和关键的一环,实际上是集成工艺制成的多个磁头的组合,它采用了非接触式头、盘结构,加电后在高速旋转的磁盘表面飞行,飞高间隙只有 0.1-0.3μm,可以获得极高的数据传输率。

现在转速达5400rpm的硬盘飞高都低于0.3μm,以利于读取较大的高信噪比信号,提供数据传输存储的可靠性。

由于早期硬盘采用的磁感应磁头在读写使用和设计上的局限性,新型大容量的硬盘产品都采用了新型MR(Magnetoresistive heads)磁阻磁头。

MR磁阻磁头采用了读写分离的磁头结构,写操作时使用传统的磁感应磁头,读操作则采用MR磁头。

分离设计可以针对磁头的不同特性分别进行优化,以得到最佳的读写性能。

由于MR磁头采用特殊材料制成,在磁场作用下可改变MR元件的电阻值和电流,当盘片飞过磁头表面时通过阻值变化去感应信号,因而信号变化相当敏感,数据读取的准确性也非常高。

同时MR磁头具有极窄的道密度,可以把盘片磁道做得很则相应整体密度将提高,从而使硬盘的单碟容量可以达到以GB为单位。

随着技术的发展,具备更窄的道密度,采用多层结构、磁阻效应更好的材制作的GMR(Giant Magnetoresistive heads)磁头也已在超大容量的硬盘中使用。

2、磁头驱动机构由音圈电机和磁头驱动小车组成,新型大容量硬盘还具有高效的防震动机构。

高精度的轻型磁头驱动机构能够对磁头进行正确的驱动和定位,并在很短的时间内精确定位到系统指令指定的磁道上,保证数据读写的可靠性。

磁头机构的电机有步进电机、力矩电机和音圈电机三种,前两种应用在低容量硬盘中,现已被淘汰,大容量硬盘多采用音圈电机驱动。

硬盘内部结构(PDF)

硬盘内部结构(PDF)

硬盘内部结构硬盘内部由头盘组件和前置读写控制电路组成,其中头盘组件属于机械装置部分,组件中每一个组成部分都是由高度精密的机械零件组装而成;前置读写控制电路由一组复杂电路组成,负责调制硬盘与中央处理器之间交换的信号类型并将其放大。

下面以实物图与示意图相结合的形式详细介绍这些结构组成。

1. 头盘组件头盘组件是硬盘的核心部分,包括盘体、主轴电机、读写磁头、寻道电机等主要部件,打开密封的外壳即可看到其内部构造,如下图所示。

因为这个体腔是非常干净的,而且里面都属于高度精密机械配件,所以万万不可开启外壳。

生产硬盘的车间对无尘度要求非常严格,平均每平方米不超过十粒尘埃。

虽然有相关文章谈到过开盖除尘,坏盘复用的实例,但这仍然是下下策,除非是一块烂盘或是扔货,否则……了解了硬盘内部头盘组件的总体结构以后,再来看看每个组成部分的详细结构。

z z盘体:硬盘的盘体由单个或多个盘片重叠在一起组成,是数据存储的载体,也就是保存文件的地方。

由多个盘片组成的盘体,可以形象的理解成一个圆柱,每个盘片与其他盘片之间都有垫圈隔开。

这些盘片是一些表面极为平整光滑的金属圆片,并涂有记录数据的磁性物质。

组成盘体的金属盘片多为铝制品,不过早期的盘片也有用陶瓷制成的,而现在则有用玻璃材料来充当盘片基质的,比如IBM的腾龙二代产品玻璃之星Deskstar 75GXP (DTLA-307030,30GB)硬盘。

下面以实物图与示意图相结合的方式来认识盘体的详细内容。

注意提示盘体从物理的角度分为磁面(Side )、磁道(Track )、柱面(Cylinder )与扇区(Sector )等4个结构。

磁面也就是组成盘体各盘片的上下两个盘面,第一个盘片的第一面为0磁面,下一个为1磁面;第二个盘片的第一面为2磁面,以此类推……。

由于每个磁面对应一个读写磁头,因此在对磁面进行读写操作时,也可称为磁头0、1、2……。

磁道也就是在格式化磁盘时盘片上被划分出来的许多同心圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

硬盘的种类主要是SCSI 、IDE 、以及现在流行的SATA等;任何一种硬盘的生产都要一定的标准;随着相应的标准的升级,硬盘生产技术也在升级;比如 SCSI标准已经经历了SCSI-1 、SCSI-2、SCSI-3;其中目前咱们经常在服务器网站看到的 Ultral-160就是基于SCSI-3标准的;IDE 遵循的是ATA标准,而目前流行的SATA,是ATA标准的升级版本;IDE 是并口设备,而SATA是串口,SATA的发展目的是替换IDE;我们知道信息存储在硬盘里,把它拆开也看不见里面有任何东西,只有些盘片。

假设,你用显微镜把盘片放大,会看见盘片表面凹凸不平,凸起的地方被磁化,凹的地方是没有被磁化;凸起的地方代表数字1(磁化为1),凹的地方代表数字0。

因此硬盘可以以二进制来存储表示文字、图片等信息。

硬盘大家一定不会陌生,我们可以把它比喻成是我们电脑储存数据和信息的大仓库。

一般说来,无论哪种硬盘,都是由盘片、磁头、盘片主轴、控制电机、磁头控制器、数据转换器、接口、缓存等几个部份组成。

平面图:立体图所有的盘片都固定在一个旋转轴上,这个轴即盘片主轴。

而所有盘片之间是绝对平行的,在每个盘片的存储面上都有一个磁头,磁头与盘片之间的距离比头发丝的直径还小。

所有的磁头连在一个磁头控制器上,由磁头控制器负责各个磁头的运动。

磁头可沿盘片的半径方向动作,(实际是斜切向运动),每个磁头同一时刻也必须是同轴的,即从正上方向下看,所有磁头任何时候都是重叠的(不过目前已经有多磁头独立技术,可不受此限制)。

而盘片以每分钟数千转到上万转的速度在高速旋转,这样磁头就能对盘片上的指定位置进行数据的读写操作。

由于硬盘是高精密设备,尘埃是其大敌,所以必须完全密封。

硬盘在逻辑上被划分为磁道、柱面以及扇区.硬盘的每个盘片的每个面都有一个读写磁头,磁盘盘面区域的划分如图所示。

磁头靠近主轴接触的表面,即线速度最小的地方,是一个特殊的区域,它不存放任何数据,称为启停区或着陆区(LandingZone),启停区外就是数据区。

在最外圈,离主轴最远的地方是“0”磁道,硬盘数据的存放就是从最外圈开始的。

那么,磁头是如何找到“0”磁道的位置的呢?在硬盘中还有一个叫“0”磁道检测器的构件,它是用来完成硬盘的初始定位。

“0”磁道是如此的重要,以致很多硬盘仅仅因为“0”磁道损坏就报废,这是非常可惜的。

早期的硬盘在每次关机之前需要运行一个被称为Parking的程序,其作用是让磁头回到启停区。

现代硬盘在设计上已摒弃了这个虽不复杂却很让人不愉快的小缺陷。

硬盘不工作时,磁头停留在启停区,当需要从硬盘读写数据时,磁盘开始旋转。

旋转速度达到额定的高速时,磁头就会因盘片旋转产生的气流而抬起,这时磁头才向盘片存放数据的区域移动。

盘片旋转产生的气流相当强,足以使磁头托起,并与盘面保持一个微小的距离。

这个距离越小,磁头读写数据的灵敏度就越高,当然对硬盘各部件的要求也越高。

早期设计的磁盘驱动器使磁头保持在盘面上方几微米处飞行。

稍后一些设计使磁头在盘面上的飞行高度降到约0.1μm~0.5μm,现在的水平已经达到0.005μm~0.01μm,这只是人类头发直径的千分之一。

气流既能使磁头脱离开盘面,又能使它保持在离盘面足够近的地方,非常紧密地跟随着磁盘表面呈起伏运动,使磁头飞行处于严格受控状态。

磁头必须飞行在盘面上方,而不是接触盘面,这种位置可避免擦伤磁性涂层,而更重要的是不让磁性涂层损伤磁头。

但是,磁头也不能离盘面太远,否则,就不能使盘面达到足够强的磁化,难以读出盘上的磁化翻转(磁极转换形式,是磁盘上实际记录数据的方式)。

硬盘驱动器磁头的飞行悬浮高度低、速度快,一旦有小的尘埃进入硬盘密封腔内,或者一旦磁头与盘体发生碰撞,就可能造成数据丢失,形成坏块,甚至造成磁头和盘体的损坏。

所以,硬盘系统的密封一定要可靠,在非专业条件下绝对不能开启硬盘密封腔,否则,灰尘进入后会加速硬盘的损坏。

另外,硬盘驱动器磁头的寻道伺服电机多采用音圈式旋转或直线运动步进电机,在伺服跟踪的调节下精确地跟踪盘片的磁道,所以,硬盘工作时不要有冲击碰撞,搬动时要小心轻放。

这种硬盘就是采用温彻斯特(Winchester)技术制造的硬盘,所以也被称为温盘,目前绝大多数硬盘都采用此技术。

3、盘面、磁道、柱面和扇区硬盘的读写是和扇区有着紧密关系的。

在说扇区和读写原理之前先说一下和扇区相关的”盘面”、“磁道”、和“柱面”。

1. 盘面硬盘的盘片一般用铝合金材料做基片,高速硬盘也可能用玻璃做基片。

硬盘的每一个盘片都有两个盘面(Side),即上、下盘面,一般每个盘面都会利用,都可以存储数据,成为有效盘片,也有极个别的硬盘盘面数为单数。

每一个这样的有效盘面都有一个盘面号,按顺序从上至下从“0”开始依次编号。

在硬盘系统中,盘面号又叫磁头号,因为每一个有效盘面都有一个对应的读写磁头。

硬盘的盘片组在2~14片不等,通常有2~3个盘片,故盘面号(磁头号)为0~3或0~5。

2. 磁道磁盘在格式化时被划分成许多同心圆,这些同心圆轨迹叫做磁道(Track)。

磁道从外向内从0开始顺序编号。

硬盘的每一个盘面有300~1 024个磁道,新式大容量硬盘每面的磁道数更多。

信息以脉冲串的形式记录在这些轨迹中,这些同心圆不是连续记录数据,而是被划分成一段段的圆弧,这些圆弧的角速度一样。

由于径向长度不一样,所以,线速度也不一样,外圈的线速度较内圈的线速度大,即同样的转速下,外圈在同样时间段里,划过的圆弧长度要比内圈划过的圆弧长度大。

每段圆弧叫做一个扇区,扇区从“1”开始编号,每个扇区中的数据作为一个单元同时读出或写入。

一个标准的3.5寸硬盘盘面通常有几百到几千条磁道。

磁道是“看”不见的,只是盘面上以特殊形式磁化了的一些磁化区,在磁盘格式化时就已规划完毕。

3. 柱面所有盘面上的同一磁道构成一个圆柱,通常称做柱面(Cylinder),每个圆柱上的磁头由上而下从“0”开始编号。

数据的读/写按柱面进行,即磁头读/写数据时首先在同一柱面内从“0”磁头开始进行操作,依次向下在同一柱面的不同盘面即磁头上进行操作,只在同一柱面所有的磁头全部读/写完毕后磁头才转移到下一柱面(同心圆的再往里的柱面),因为选取磁头只需通过电子切换即可,而选取柱面则必须通过机械切换。

电子切换相当快,比在机械上磁头向邻近磁道移动快得多,所以,数据的读/写按柱面进行,而不按盘面进行。

也就是说,一个磁道写满数据后,就在同一柱面的下一个盘面来写,一个柱面写满后,才移到下一个扇区开始写数据。

读数据也按照这种方式进行,这样就提高了硬盘的读/写效率。

一块硬盘驱动器的圆柱数(或每个盘面的磁道数)既取决于每条磁道的宽窄(同样,也与磁头的大小有关),也取决于定位机构所决定的磁道间步距的大小。

4.扇区操作系统以扇区(Sector)形式将信息存储在硬盘上,每个扇区包括512个字节的数据和一些其他信息。

一个扇区有两个主要部分:存储数据地点的标识符和存储数据的数据段。

扇区的第一个主要部分是标识符。

标识符,就是扇区头标,包括组成扇区三维地址的三个数字:盘面号:扇区所在的磁头(或盘面)柱面号:磁道,确定磁头的径向方向。

扇区号:在磁道上的位置。

也叫块号。

确定了数据在盘片圆圈上的位置。

头标中还包括一个字段,其中有显示扇区是否能可靠存储数据,或者是否已发现某个故障因而不宜使用的标记。

有些硬盘控制器在扇区头标中还记录有指示字,可在原扇区出错时指引磁盘转到替换扇区或磁道。

最后,扇区头标以循环冗余校验(CRC)值作为结束,以供控制器检验扇区头标的读出情况,确保准确无误。

扇区的第二个主要部分是存储数据的数据段,可分为数据和保护数据的纠错码(ECC)。

在初始准备期间,计算机用512个虚拟信息字节(实际数据的存放地)和与这些虚拟信息字节相应的ECC数字填入这个部分。

5. 访盘请求完成过程:确定磁盘地址(柱面号,磁头号,扇区号),内存地址(源/目):当需要从磁盘读取数据时,系统会将数据逻辑地址传给磁盘,磁盘的控制电路按照寻址逻辑将逻辑地址翻译成物理地址,即确定要读的数据在哪个磁道,哪个扇区。

为了读取这个扇区的数据,需要将磁头放到这个扇区上方,为了实现这一点:1)首先必须找到柱面,即磁头需要移动对准相应磁道,这个过程叫做寻道,所耗费时间叫做寻道时间,2)然后目标扇区旋转到磁头下,即磁盘旋转将目标扇区旋转到磁头下。

这个过程耗费的时间叫做旋转时间。

即一次访盘请求(读/写)完成过程由三个动作组成:1)寻道(时间):磁头移动定位到指定磁道2)旋转延迟(时间):等待指定扇区从磁头下旋转经过3)数据传输(时间):数据在磁盘与内存之间的实际传输因此在磁盘上读取扇区数据(一块数据)所需时间:T i/o=t seek +t la + n *t wm其中:t seek 为寻道时间t la为旋转时间t wm 为传输时间系统将文件存储到磁盘上时,按柱面、磁头、扇区的方式进行,即最先是第1磁道的第一磁头下(也就是第1盘面的第一磁道)的所有扇区,然后,是同一柱面的下一磁头,……,一个柱面存储满后就推进到下一个柱面,直到把文件内容全部写入磁盘。

(文件的记录在同一盘组上存放是,应先集中放在一个柱面上,然后再顺序存放在相邻的柱面上,对应同一柱面,则应该按盘面的次序顺序存放。

)(从上到下,然后从外到内。

数据的读/写按柱面进行,而不按盘面进行,先)系统也以相同的顺序读出数据。

读出数据时通过告诉磁盘控制器要读出扇区所在的柱面号、磁头号和扇区号(物理地址的三个组成部分)进行。

磁盘控制器则直接使磁头部件步进到相应的柱面,选通相应的磁头,等待要求的扇区移动到磁头下。

在扇区到来时,磁盘控制器读出每个扇区的头标,把这些头标中的地址信息与期待检出的磁头和柱面号做比较(即寻道),然后,寻找要求的扇区号。

待磁盘控制器找到该扇区头标时,根据其任务是写扇区还是读扇区,来决定是转换写电路,还是读出数据和尾部记录。

找到扇区后,磁盘控制器必须在继续寻找下一个扇区之前对该扇区的信息进行后处理。

如果是读数据,控制器计算此数据的ECC码,然后,把ECC码与已记录的ECC码相比较。

如果是写数据,控制器计算出此数据的ECC码,与数据一起存储。

在控制器对此扇区中的数据进行必要处理期间,磁盘继续旋转。

由于存储介质的特性,磁盘本身存取就比主存慢很多,再加上机械运动耗费,磁盘的存取速度往往是主存的几百分分之一,因此为了提高效率,要尽量减少磁盘I/O。

为了达到这个目的,磁盘往往不是严格按需读取,而是每次都会预读,即使只需要一个字节,磁盘也会从这个位置开始,顺序向后读取一定长度的数据放入内存。

这样做的理论依据是计算机科学中著名的局部性原理:当一个数据被用到时,其附近的数据也通常会马上被使用。

相关文档
最新文档