1.2.2基本初等函数的导数公式及导数的运算法则教案
学案12:1.2.2 基本初等函数的导数公式及导数的运算法则
1.2.2 基本初等函数的导数公式及导数的运算法则课标要求1.能利用导数的四则运算法则求解导函数.2.能运用复合函数的求导法则进行复合函数的求导.核心扫描1.对导数四则运算法则的考查.(重点)2.复合函数的考查常在解答题中出现.(重点)课前探究学习自学导引1.导数运算法则的定义域、值域满足什么关系?提示在复合函数中,内层函数u=g(x)的值域必须是外层函数y=f(u)的定义域的子集.名师点睛1.运用导数运算法则的注意事项(1)对于教材中给出的导数的运算法则,不要求根据导数定义进行推导,只要能熟练运用运算法则求简单函数的导数即可.(2)①对于和差的导数运算法则,可推广到任意有限可导函数的和或差, 即[f 1(x )±f 2(x )±…±f n (x )]′=f 1′(x )±f 2′(x )±…±f ′n (x ).②[ af (x )±bg (x )]′=af ′(x )±bg ′(x ); ③当f (x )=1时,有⎣⎡⎦⎤1g (x )′=-g ′(x )g 2(x ).(3)对于积与商的导数运算法则,首先要注意在两个函数积与商的导数运算中,不能出现[f (x )·g (x )]′=f ′(x )·g ′(x )以及⎣⎡⎦⎤f (x )g (x )′=f ′(x )g ′(x )这样想当然的错误;其次还要特别注意两个函数积与商的求导公式中符号的异同,积的导数法则中是“+”,商的导数法则中分子上是“-”. 2.复合函数求导对于复合函数的求导法则,需注意以下几点:(1)分清复合函数的复合关系是由哪些基本函数复合而成,适当选定中间变量. (2)分步计算中的每一步都要明确是对哪个变量求导,而其中要特别注意的是中间变量的系数.如(sin 2x )′=2cos 2x ,而(sin 2x )′≠cos 2x .(3)根据基本初等函数的求导公式及导数的运算法则,求出各函数的导数,并把中间变量换成自变量的函数.如求y =sin ⎝⎛⎭⎫2x +π3的导数,设y =sin u ,u =2x +π3,则y x ′=y u ′·u x ′=cos u ·2=2cos u =2cos ⎝⎛⎭⎫2x +π3. (4)复合函数的求导运用熟练后,中间步骤可省略不写. 课堂讲练互动题型一 利用导数的运算法则求函数的导数例1:求下列函数的导数:(1)y =x ·tan x ; (2)y =(x +1)(x +2)(x +3); (3)y =x +3x 2+3;(4)y =x sin x -2cos x; (5)y =x 5+x 7+x 9x ;(6)y =x -sin x 2cos x2.规律方法:解决函数的求导问题,应先分析所给函数的结构特点,选择正确的公式和法则,对较为复杂的求导运算,一般综合了和、差、积、商几种运算,在求导之前一般应先将函数化简,然后求导,以减少运算量. 变式1:求下列函数的导数:(1)y =5-4x 3; (2)y =3x 2+x cos x ; (3)y =e x ·ln x ; (4)y =lg x -1x2.题型二 求复合函数的导数例2:求下列函数的导数:(1)y =11-2x 2; (2)y =e 2x +1; (3)y =(x -2)2; (4)y =5log 2(2x +1).规律方法:应用复合函数的求导法则求导,应注意以下几个方面: (1)中间变量的选取应是基本函数结构.(2)正确分析函数的复合层次,并要弄清每一步是哪个变量对哪个变量的求导. (3)一般是从最外层开始,由外及里,一层层地求导. (4)善于把一部分表达式作为一个整体.(5)最后要把中间变量换成自变量的函数.熟练后,就不必再写中间步骤. 变式2:求下列函数的导数:(1)y =ln(x +2); (2)y =sin 4x 4+cos 4x4;(3)y =1+x 1-x +1-x1+x.题型三 求导法则的应用例3:求过点(1,-1)与曲线f (x )=x 3-2x 相切的直线方程.题后反思:点(1,-1)虽然在曲线上,但是经过该点的切线不一定只有一条,即该点有可能是切点,也可能是切线与曲线的交点,解题时注意不要失解.变式3:若将本例改为求曲线y =x 3-2x 在点A (1,-1)处的切线方程,结果会怎样?方法技巧 数形结合思想在导数中的应用数形结合的原则:(1)等价性原则:在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞.有时,由于图形的局限性,不能完整的表现数的一般性,这时图形的性质只能是一种直观而浅显的说明.(2)双向性原则:在数形结合时,既要进行几何直观的分析,又要进行代数抽象的探索,两方面相辅相成,仅对代数问题进行几何分析或仅对几何问题进行代数分析,在许多时候是很难完成的.(3)简单性原则:找到解题思路之后,至于用几何方法还是采用代数方法,则取决于哪种方法更为简单有效,“数”与“形”的结合往往能起到事半功倍的效果.示例:讨论关于x 的方程ln x =kx 解的个数.方法点评:函数y =f (x )在点x 0处的导数的几何意义 ,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率.导数的这一几何意义为导数与解析几何的沟通搭建了一个平台.因此从某 种意义上说,导数也就是数形结合的桥梁.参考答案题型一 利用导数的运算法则求函数的导数例1:解:(1)y ′=(x ·tan x )′=⎝⎛⎭⎫x sin x cos x ′(1)y ′=(x ·tan x )′=⎝⎛⎭⎫x sin x cos x ′=(x sin x )′cos x -x sin x (cos x )′cos 2x=(sin x +x cos x )cos x +x sin 2x cos 2x=sin x cos x +x cos 2x.(2)法一 ∵(x +1)(x +2)(x +3)=(x 2+3x +2)(x +3)=x 3+6x 2+11x +6, ∴y ′=[(x +1)(x +2)(x +3)]′=(x 3+6x 2+11x +6)′=3x 2+12x +11. 法二 y ′=[(x +1)(x +2)(x +3)]′=[(x +1)(x +2)]′(x +3)+(x +1)(x +2)(x +3)′ =[(x +1)′(x +2)+(x +1)(x +2)′](x +3)+(x +1)(x +2) =(x +2+x +1)(x +3)+(x +1)(x +2) =(2x +3)(x +3)+x 2+3x +2 =3x 2+12x +11.(3)y ′=(x +3)′(x 2+3)-(x +3)(x 2+3)′(x 2+3)2=-x 2-6x +3(x 2+3)2.(4)y ′=(x sin x )′-⎝⎛⎭⎫2cos x ′=sin x +x cos x -2sin xcos 2x . (5)∵y =x 5+x 7+x 9x =x 2+x 3+x 4,∴y ′=(x 2+x 3+x 4)′=2x +3x 2+4x 3. (6)先使用三角公式进行化简,得 y =x -sin x 2cos x 2=x -12sin x ,∴y ′=⎝⎛⎭⎫x -12sin x ′=x ′-12(sin x )′=1-12cos x . 变式1:解:(1)y ′=-12x 2;(2)y ′=(3x 2+x cos x )′=6x +cos x -x sin x ; (3)y ′=e x x +e x·ln x ;(4)y ′=1x ln 10+2x3. 题型二 求复合函数的导数例2:解:(1)设y =u -12,u =1-2x 2,则y ′=⎝⎛⎭⎫u -12′(1-2x 2)′=⎝⎛⎭⎫-12u -32·(-4x ) =-12(1-2x 2)-32(-4x )=2x (1-2x 2)-32.(2)y =e u ,u =2x +1,∴y ′x =y ′u ·u ′x =(e u )′·(2x +1)′=2e u =2e 2x +1. (3)法一 ∵y =(x -2)2=x -4x +4, ∴y ′=x ′-(4x )′+4′ =1-4×12x -12=1-2x.法二 令u =x -2,则y ′x =y ′u ·u ′x =2(x -2)·(x -2)′ =2(x -2)⎝⎛⎭⎫12·1x -0=1-2x . (4)设y =5log 2u ,u =2x +1, 则y ′=5(log 2u )′(2x +1)′=10u ln 2=10(2x +1)ln 2. 变式2:解:(1)y =ln u ,u =x +2∴y ′x =y ′u ·u ′x =(ln u )′·(x +2)′=1u ·1=1x +2.(2)∵y =sin 4x 4+cos 4x4=⎝⎛⎭⎫sin 2x 4+cos 2x 42-2sin 2x 4cos 2x 4=1-12sin 2x 2=1-12·1-cos x 2=34+14cos x ,∴y ′=-14sin x .(3)∵y =1+x 1-x +1-x 1+x =(1+x )21-x +(1-x )21-x=2+2x 1-x =41-x-2,∴y ′=⎝⎛⎭⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2.题型三 求导法则的应用例3:解:设P (x 0,y 0)为切点,则切线斜率为k =0x x y ='=3x 20-2,故切线方程为y -y 0=(3x 20-2)(x -x 0) ① ∵(x 0,y 0)在曲线上,∴y 0=x 30-2x 0 ② 又∵(1,-1)在切线上,∴将②式和(1,-1)代入①式得-1-(x 30-2x 0)=(3x 20-2)(1-x 0). 解得x 0=1或x 0=-12.故所求的切线方程为y +1=x -1或y +1=-54(x -1).即x -y -2=0或5x +4y -1=0.变式3:解:∵点A (1,-1)在曲线上,点A 是切点,∴在A 处的切线方程为x -y -2=0.方法技巧 数形结合思想在导数中的应用示例:解:如图,方程ln x =kx 的解的个数就是直线y =kx 与曲线y =ln x 交点的个数. 设直线y =kx 与y =ln x 切于P (x 0,ln x 0) ,则kx 0=ln x 0. ∵(ln x )′=1x,∴k =1x 0,kx 0=1=ln x 0.∴x 0=e ,k =1e.结合图象知:当k ≤0或k =1e 时,方程ln x =kx 有一解.当0<k <1e 时,方程ln x =kx 有两解.当k >1e 时,方程ln x =kx 无解.。
数学:1.2.2《基本初等函数的导数公式及导数的运算法则》课件(新人教A版选修2—2)
'
2x 3
'
3
'
3x 2.
所以,函数 y x 2x 3的导数是 y 3x 2.
' 2
2
例3
日常生活中的饮用水 经过 净化的 . 随着水 , 所需净化费 .已知将 1吨水净 x % 时所需费
通常是
纯净度的提高 用不断增加 化到纯净度为 用 单位 : 元 为 cx 5284 100 x
可以看作函数
和u
0 . 05 x 1 的复合函数
y y u
' x
.由复合函数求导法则有
'
e
0 . 05 x 1
u '
0 .0 5 x 1
0 . 05 e
u
0 . 05 e
.
3 函数
y sin π x φ 可以看作函数 .
'
f x f 3. g x
'
'
x g x f x g x g x 2 g x
0 .
例2
根据基本初等函 的导数公式 数
3
和导数运算法则求函数 y x 2x , 3 的导数.
解 x
因为y x 2x 3
一般地 , 对于两个函数 变量 u , y 可以表示成
y f u 和 u g x , 如果通过 x 的函数 , 那么称这个函数为函 fun
数 y f u 和 u g x 的 复合函数 ( composite ction ), 记作 y f g x .
1.2.2 基本初等函数的导数公式及导数的运算法则
第一章 导数及其应用
[解] ∵p0=1,∴p(t)=(1+5%)t=1.05t.
根据基本初等函数的导数公式表,有p′(t)=(1.05t)′=
1.05t·ln1.05. ∴p′(10)=1.0510·ln1.05≈0.08(元/年). 因此,在第10个年头,这种商品的价格约以0.08元/ 年的速度上涨.
[点拨] 在第10个年头,商品的价格上涨的速度,即
(2)若f(x)=xn,则f′(x)=②________. (3)若f(x)=sin x,则f′(x)=③________. (4)若f(x)=cos x,则f′(x)=④________. (5)若f(x)=ax,则f′(x)=⑤________.
(6)若f(x)=ex,则f′(x)=⑥________.
第一章 导数及其应用
[分析] 求函数的导数主要有直接求导和先变形然后 再求导两种方法,要注意正确区分.
[解]
(1)y′=(tanx)′=(
sinx cosx
)′=
(sinx)′cosx-sinx(cosx)′ cos2x+sin2x 1 = (cosx)2 =cos2x. (cosx)2 (2)y′=(3x2+x· cosx)′=(3x2)′+(x· cosx)′=6x+ x′· cosx+x· (cosx)′=6x+cosx-xsinx. x x 1 2 (3)y′=[( x-2) -sin 2 · 2 ]′=[( x-2) ]′-( 2 cos
人教A版选修2《基本初等函数的导数公式及导数的运算法则》教案及教学反思
人教A版选修2《基本初等函数的导数公式及导数的运算法则》教案及教学反思一、教学目标通过本节课的学习,让学生: 1. 熟练掌握基本初等函数的导数公式; 2. 掌握导数的常数因子、和差、积、商的运算法则; 3. 能够应用所学知识求出初等函数的导数; 4. 培养学生的逻辑思维能力和应用能力。
二、教学内容2.1 基本初等函数的导数公式(1)常数函数的导数公式:[C]′=0(2)幂函数的导数公式:[x n]′=nx n−1(3)指数函数的导数公式:[e x]′=e x(4)对数函数的导数公式:$[\\ln{x}]'=\\dfrac{1}{x}(x>0)$ (5)三角函数的导数公式:$$\\begin{aligned} [\\sin{x}]'&=\\cos{x}\\\\[\\cos{x}]'&=-\\sin{x}\\\\ [\\tan{x}]'&=\\sec^2{x} (x\ eq n\\pi+\\frac{\\pi}{2})\\\\ [\\cot{x}]'&=-\\csc^2{x} (x\ eq n\\pi) \\end{aligned}$$2.2 导数的运算法则(1)常数因子法则:设C为常数,则[Cf(x)]′=Cf′(x)(2)和差法则:$[f(x)\\pm g(x)]'=f'(x)\\pm g'(x)$ (3)积法则:[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x)(4)商法则:$[\\dfrac{f(x)}{g(x)}]'=\\dfrac{f'(x)g(x)-f(x)g'(x)}{g^2(x)} (g(x)\ eq0)$三、教学过程3.1 导入教师通过数字游戏,引导学生探讨“导数”的概念,并由此引出本节课的教学内容。
3.2 讲授教师对基本初等函数的导数公式以及导数的运算法则进行一一讲解,强调注意事项和易错点。
高中数学 专题1.2.2 基本初等函数的导数公式及导数的
基本初等函数的导数公式及导数的运算法则(2)【教学目标】1.理解函数的和、差、积、商的求导法则.2.理解求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数.3.了解复合函数的概念,掌握复合函数的求导法则.4.能够利用复合函数的求导法则,并结合已经学过的公式、法则进行一些复合函数的求导(仅限于形如f(ax +b)的导数).【教法指导】本节学习重点:函数的和、差、积、商的求导法则.本节学习难点:复合函数的求导法则.【教学过程】☆复习引入☆前面我们已经学习了几个常用函数的导数和基本初等函数的导数公式,这样做起题来比用导数的定义显得格外轻松.对于由四则运算符号连接的两个或两个以上基本初等函数的导数如何求?正是本节要研究的问题.解析:请同学思考并回顾以前所学知识并积极回答之.☆探索新知☆探究点一导数的运算法则思考1 我们已经会求f(x)=5和g(x)=1.05x等基本初等函数的导数,那么怎样求f(x)与g(x)的和、差、积、商的导数呢?答利用导数的运算法则.思考2 应用导数的运算法则求导数有哪些注意点?“+”,而商的导数公式中分子上是“-”;(5)要注意区分参数与变量,例如[a·g(x)]′=a·g′(x),运用公式时要注意a′=0.例1 求下列函数的导数:(1)y=x3-2x+3;(2)y=(x2+1)(x-1);(3)y=3x-lg x.解 (1)y ′=(x 3)′-(2x )′+3′=3x 2-2. (2)∵y =(x 2+1)(x -1)=x 3-x 2+x -1∴y ′=(x 3)′-(x 2)′+x ′-1′=3x 2-2x +1.(3)函数y =3x-lg x 是函数f (x )=3x与函数g (x )=lg x 的差.由导数公式表分别得出f ′(x )=3x ln 3,g ′(x )=1x ln 10, 利用函数差的求导法则可得(3x-lg x )′=f ′(x )-g ′(x )=3xln 3-1x ln 10. 反思与感悟 本题是基本函数和(差)的求导问题,求导过程要紧扣求导法则,联系基本函数求导法则,对于不具备求导法则结构形式的可先进行适当的恒等变形转化为较易求导的结构形式再求导数. 跟踪训练1 求下列函数的导数:(1)y =x 5+x 7+x 9x;(2)f (x )=2-2sin 2x2.例2 求下列函数的导数: (1)f (x )=x ·tan x ; (2)f (x )=x -1x +1. 解 (1)f ′(x )=(x ·tan x )′=(x sin xcos x)′ =x sin x ′cos x -x sin x cos x ′cos 2x=sin x +x cos x cos x +x sin 2x cos 2x =sin x cos x +xcos 2x. (2)∵f (x )=x -1x +1=x +1-2x +1=1-2x +1, ∴f ′(x )=(1-2x +1)′=(-2x +1)′=-2′x +1-2x +1′x +12=2x +12.跟踪训练2 求f (x )=sin x1+sin x 的导数.解 ∵f (x )=sin x1+sin x,∴f ′(x )=cos x 1+sin x -sin x ·cos x 1+sin x 2=cos x1+sin x 2.探究点二 导数的应用例2 (1)曲线y =x e x+2x +1在点(0,1)处的切线方程为________________. 答案 3x -y +1=0解析 y ′=e x +x e x +2,则曲线在点(0,1)处的切线的斜率为k =e 0+0+2=3,所以所求切线方程为y -1=3x ,即3x -y +1=0.(2)在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +3上,且在第二象限内,已知曲线C 在点P 处的切线斜率为2,则点P 的坐标为________. 答案 (-2,15)(3)已知某运动着的物体的运动方程为s (t )=t -1t2+2t 2(位移单位:m ,时间单位:s),求t =3 s 时物体的瞬时速度. 解 ∵s (t )=t -1t 2+2t 2=t t 2-1t 2+2t 2=1t -1t 2+2t 2, ∴s ′(t )=-1t2+2·1t3+4t , ∴s ′(3)=-19+227+12=32327,即物体在t =3 s 时的瞬时速度为32327m/s.反思与感悟 本题应用导数的运算法则进一步强化导数的物理意义及几何意义:函数y =f (x )在点x 0处的导数就是曲线y =f (x )在点P (x 0,y 0)处的切线的斜率,即k =y ′|x =x 0=f ′(x 0);瞬时速度是位移函数s (t )对时间t 的导数,即v =s ′|t =t 0.跟踪训练2 (1)曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( )A .-12B.12C .-22D.22答案 B解析 y ′=cos x sin x +cos x -sin x cos x -sin x sin x +cos x 2=1sin x +cos x 2,故y ′|x =π4=12,∴曲线在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为12. (2)设函数f (x )=13x 3-a 2x 2+bx +c ,其中a >0,曲线y =f (x )在点P (0,f (0))处的切线方程为y =1,确定b 、c 的值.解 由题意得,f ′(x )=x 2-ax +b , ∴f ′(0)=b =0.由切点P (0,f (0))既在曲线f (x )=13x 3-a 2x 2+bx +c 上又在切线y =1上知⎩⎪⎨⎪⎧f 0=c ,y |x =0=1,即c =1.综上所述,b =0,c =1. 探究点三 复合函数的定义思考1 观察函数y =2x cos x 及y =ln(x +2)的结构特点,说明它们分别是由哪些基本函数组成的? 答 y =2x cos x 是由u =2x 及v =cos x 相乘得到的;而y =ln(x +2)是由u =x +2与y =ln u (x >-2)经过“复合”得到的,即y 可以通过中间变量u 表示为自变量x 的函数.所以它们称为复合函数. 思考2 对一个复合函数,怎样判断函数的复合关系?思考3 在复合函数中,内层函数的值域A 与外层函数的定义域B 有何关系? 答 A ⊆B .小结 要特别注意两个函数的积与复合函数的区别,对于复合函数,要掌握引入中间变量,将其分拆成几个基本初等函数的方法.例3 指出下列函数是怎样复合而成的: (1)y =(3+5x )2;(2)y =log 3(x 2-2x +5); (3)y =cos 3x .解 (1)y =(3+5x )2是由函数y =u 2,u =3+5x 复合而成的;(2)y =log 3(x 2-2x +5)是由函数y =log 3u ,u =x 2-2x +5复合而成的;(3)y =cos 3x 是由函数y =cos u ,u =3x 复合而成的.小结 分析函数的复合过程主要是设出中间变量u ,分别找出y 和u 的函数关系,u 和x 的函数关系. 跟踪训练3 指出下列函数由哪些函数复合而成: (1)y =ln x ;(2)y =esin x;(3)y =c os (3x +1).解 (1)y =ln u ,u =x ; (2)y =e u,u =sin x ; (3)y =cos u ,u =3x +1. 探究点四 复合函数的导数 思考 如何求复合函数的导数?例4 求下列函数的导数: (1)y =(2x -1)4;(2)y =11-2x; (3)y =sin(-2x +π3);(4)y =102x +3.解 (1)原函数可看作y =u 4,u =2x -1的复合函数,则y x ′=y u ′·u x ′=(u 4)′·(2x -1)′=4u 3·2=8(2x -1)3. (2)y =11-2x=(1-2x )-12可看作y =u -12,u =1-2x 的复合函数,则y x ′=y u ′·u x ′=(-12)u -32·(-2)=(1-2x )-32=11-2x1-2x;(3)原函数可看作y =sin u ,u =-2x +π3的复合函数,则y x ′=y u ′·u x ′=cos u ·(-2)=-2cos(-2x +π3)=-2cos(2x -π3).(4)原函数可看作y =10u,u =2x +3的复合函数, 则y x ′=y u ′·u x ′=102x +3·ln 10·2=(ln 100)102x +3.反思与感悟 分析复合函数的结构,找准中间变量是求导的关键,要善于把一部分量、式子暂时看作一个整体,并且它们必须是一些常见的基本函数.复合函数的求导熟练后,中间步骤可以省略,不必再写出函数的复合过程,直接运用公式,从外层开始由外及内逐层求导.跟踪训练4 求下列函数的导数. (1)y =(2x +3)3;(2)y =e-0.05x +1;(3)y =sin(πx +φ).解 (1)函数y =(2x +3)2可以看成函数y =u 2,u =2x +3的复合函数. ∴y x ′=y u ′·u x ′=(u 2)′·(2x +3)′=2u ·2=4(2x +3)=8x +12. (2)函数y =e-0.05x +1可以看成函数y =e u和函数u =-0.05x +1的复合函数.∴y x ′=y u ′·u x ′=(e u)′·(-0.05x +1)′=-0.05e u=-0.05 e -0.05x +1.(3)函数y =sin(πx +φ)可以看成函数y =sin u ,u =πx +φ的复合函数. ∴y x ′=y u ′·u x ′=(sin u )′·(πx +φ)′=cos u ·π=π cos(πx +φ). 探究点五 导数的应用 例5 求曲线y =e2x +1在点(-12,1)处的切线方程.反思与感悟 求曲线切线的关键是正确求复合函数的导数,要注意“在某点处的切线”与“过某点的切线”两种不同的说法. 跟踪训练5 曲线y =esin x在(0,1)处的切线与直线l 平行,且与l 的距离为2,求直线l 的方程.解 设u =sin x ,则y ′=(e sin x)′=(e u )′(sin x )′.=cos x esin x.y ′|x =0=1.则切线方程为y -1=x -0, 即x -y +1=0.若直线l 与切线平行可设直线l 的方程为x -y +c =0. 两平行线间的距离d =|c -1|2=2⇒c =3或c =-1.故直线l 的方程为x -y +3=0或x -y -1=0. ☆课堂提高☆1.函数y =cos x1-x 的导数是( ).A.-sin x +x sin x1-x 2B.x sin x -sin x -cos x1-x2C.cos x -sin x +x sin x1-x2D.cos x -sin x +x sin x1-x【答案】 C【解析】 y ′=⎝⎛⎭⎪⎫cos x 1-x ′=-sin x1-x -cos x ·-11-x 2=cos x -sin x +x sin x1-x2. 2.已知直线y =x +b 是曲线y =f (x )=ln x 的切线,则b 的值等于( ) A .-1 B .0 C .1 D .e 【答案】 A3.设函数f (x )=x m+ax 的导数为f ′(x )=2x +1,则数列{1f (n )}(n ∈N *)的前n 项和是( ) A.n n +1B.n +2n +1 C.nn -1D.n +1n【答案】 A【解析】 ∵f (x )=x m +ax 的导数为f ′(x )=2x +1,∴m =2,a =1,∴f (x )=x 2+x , 即f (n )=n 2+n =n (n +1),∴数列{1f (n )}(n ∈N *)的前n 项和为: S n =11×2+12×3+13×4+…+1n (n +1)=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1, 故选A.4.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)=( ) A .-1 B .-2 C .2D .0【答案】 B【解析】 本题考查函数知识,求导运算及整体代换的思想,f ′(x )=4ax 3+2bx ,f ′(-1)=-4a -2b =-(4a +2b ),f ′(1)=4a +2b ,∴f ′(-1)=-f ′(1)=-2 要善于观察,故选B.5.已知抛物线y =ax 2+bx +c 过点(1,1),且在点(2,-1)处与直线y =x -3相切,求a 、b 、c 的值. 【解析】 因为y =ax 2+bx +c 过点(1,1),所以a +b +c =1. 因为y ′=2ax +b ,所以曲线在点(2,-1)处的切线的斜率为4a +b =1. 又曲线过点(2,-1),所以4a +2b +c =-1.由⎩⎪⎨⎪⎧a +b +c =1,4a +b =1,4a +2b +c =-1,解得⎩⎪⎨⎪⎧a =3,b =-11,c =9.所以a 、b 、c 的值分别为3、-11、9.6.曲线y =e 2x·cos 3x 在(0,1)处的切线与直线l 的距离为5,求直线l 的方程.根据题意,得5=|b -1|5,∴b =6或-4.∴适合题意的直线方程为y =2x +6或y =2x -4.。
1.2.2基本初等函数的导数公式及导数的运算法则
3.2.2基本初等函数的导数 公式及导数的运算法则
知源中学高二数学备课组
湖南省长沙市一中卫星远程学校
1.f(x)在x=x0处导数f'(x0)的几何意义是曲线在 x=x0处切线的斜率. 其切线方程为y-f(x0) =f'(x0)(x-x0).
2.几个常用函数的导数
(1) c 0 ; ( 3) ( x ) 2 x ;
x
x
指数函数
例用导数公式求下列函数的导数 . . (1) f ( x) x
5
1 (2) f ( x) x (4) f ( x) x
5 3
(3) f ( x) x (5) f ( x) 1 x
2
x
(6) f ( x) 3
x
(7) f ( x) 3
x
(9) f ( x) log 3 x
2.三个运算法则:
课时作业本3.2.2
1 (8) f ( x) x 2 (10) f ( x) lg x
湖南省长沙市一中卫星远程学校
1 1 2.求函数y 的图象上点(2, )处的切线方程. x 2
3.曲线y x2的一条切线方程为6 x y 9 0, 求切点的坐标.
湖南省长沙市一中卫星远程学校
问题2:函数y=x· sinx的导x) g ( x) f ( x) g ( x) 1、和(差)的导数:
2、积的导数: f ( x) g ( x) f ( x) g ( x) f ( x) g ( x) 推论: c f ( x) c f ( x) (C为常数)
2
( 2) x 1 ; 1 1 (4) ( ) 2 . x x
1.2.2基本初等函数的导数公式及导数的运算法则(共3课时)
运用基本初等函数的导数公式和求导的运算法则 时,要认真分析函数式的结构特点,较复杂的要先化简, 再求导,尽量避免使用积或商的求导法则.
思考 如何求函数 y ln x 2的导数呢?
若设u x 2x 2, 则y ln u.从而y lnx 2可以 看成是由y ln u 和u x 2x 2经过"复合" 得到
的,即y可以通过中间变量 u表示为自变量 x的函数.
如果把 y 与u 的关系记作y f u , u 和 x的关系记作 u g x , 那么这个"复合" 过程可表示为 y f u f g x lnx 2.
从而切线方程为 y 1 3( x 1),即3 x y 4 0.
设直线m的方程为3x+y+b=0,由平行线间的距离公 式得:
| b (4) | 32 1 10 | b 4 | 10, b 6或b 14;
故所求的直线m的方程为3x+y+6=0或3x+y-14=0.
x x
(2) (e ) e .
x x
公式1
1 公式7 (1oga ) x ln a 1 ' 公式8 (1nx ) x
x '
公式2 公式3 公式4 公式5 公式6
x x (为常数) ' (sin x) cos x. 记 ' (cos x ) sin x. x ' x 一 (a ) a ln a x ' x (e ) e
122 基本初等函数的导数公式及导数的运算法则(二)PPT课件
第一章 导数及其应用
做一做
1.已知f(x)=xln x,则f′(x)=________.
解析:f′(x)=x′ln x+x(ln x)′=ln x+1.
答案:ln x+1
2.设y=-2exsin x,则y′=( )
A.-2excos x
B.-2ex(sin x+cos x)
C.2exsin x
典题例证技法归纳
题型探究
题型一 利用导数的运算法则求导数
例1 求下列函数的导数: (1)y=3x2+xcos x; (2)y=lg x-x12; (3)y=(x2+3)(ex+ln x); (4)y=x2+tan x;
(5)y=s in4x+ cos 4x.
4
4
栏目 导引
第一章 导数及其应用
【解】 (1)y′=6x+cos x+x(cos x)′
D.-2exsin x
解析:选B.y′=-2[(ex)′sin x+ex(sin x)′]
=-2(exsin x+excos x)
=-2ex(sin x+cos x).
栏目 导引
第一章 导数及其应用
2.复合函数的求导法则 一般地,对于两个函数 y=f(u)和 u=g(x),如果通过 变量 u,y 可以表示成 x 的函数,那么称这个函数为 函数 y=f(u)和 u=g(x)的___复__合__函__数____,记作 y= f(g(x)). 复合函数 y=f(g(x))的导数和函数 y=f(u),u=g(x)的 导数间的关系为 yx′=yu′·ux′,即 y 对 x 的导数等 于__y_对__u_的__导__数____与__u_对__x_的__∴
y′=
(x2)′+
s (
in
高中数学《基本初等函数的导数公式及导数的运算法则》省级名师优质课教案比赛获奖教案示范课教案公开课教案
高中数学人教A版选修2-2第一章《1.2.2基本初等函数的导数公式及导数的运算法则》省级名师优质课教案比赛获奖
教案示范课教案公开课教案
【省级名师教案】
1教学目标
(1)知识与技能目标:①理解导数的概念.②掌握用定义求导数的方法.
(2)过程与方法目标:通过导数概念的形成过程,让学生掌握从具体到抽象,特殊到一般的思维方法;领悟极限思想和函数思想;提高类比归纳、抽象概括、联系与转化的思维能力.
(3)情感、态度与价值观目标:
①通过合作与交流,让学生感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,激发学生对数学知识的热爱,养成实事求是的科学态度.
②培养学生正确认识量变与质变、运动与静止等辩证唯物主义观点,形成正确的数学观. 2学情分析
1. 有利因素:学生已经学过导数的概念及几何意义,本节课是复习课,学生对函数极限掌握较好;另外,学生思维较活跃,对数学新内容的学习,有相当的兴趣和积极性,这为本课的学习奠定了基础.
2. 不利因素:导数概念建立在极限基础之上,超乎学生的直观经验,抽象度高;再者,本课内容思维量大,对类比归纳,抽象概括,联系与转化的思维能力有较高的要求,学生学习起来有一定难度.
3重点难点
重点:导数的定义和用定义求导数的方法,求曲线的切线方程.
难点:对导数概念的理解、求过点的切线方程.
【难点突破】本课设计上从瞬时速度、切线的斜率两个具体模型出发,由特殊到一般、从具体到抽象利用类比归纳的思想学习导数概念.
4教学过程。
基本初等函数的导数公式及导数的运算法则说课稿 教案 教学设计
基本初等函数的导数公式及导数的运算法则一、学习目标 掌握用函数的导数定义,推出函数的和,差,积,商的导数的方法.二、重点难点本节的重点是:熟练掌握和、差、积、商的导数运算法则,即 (u ±v )′=u ′±v ′ (uv )′=uv ′+u ′v (vu )′=2v v u v u '-'. 本节的难点是:积的导数和商的导数的正确求法. 三、典型例题例1求下列导数(1)y =xx --+1111; (2)y =x · sin x · ln x ;(3)y =x x 4; (4)y =x x ln 1ln 1+-. 【点评】如遇求多个积的导数,可以逐层分组进行;求导数前的变形,目的在于简化运算;求导数后应对结果进行整理化简.例2求函数的导数① y =(2 x 2-5 x +1)e x② y =xx x x x x sin cos cos sin +- 【点评】① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心. 例3已知曲线C :y =3 x 4-2 x 3-9 x 2+4(1)求曲线C 上横坐标为1的点的切线方程;(2)第(1)小题中切线与曲线C 是否还有其他公共点?【解】(1)把x =1代入C 的方程,求得y =-4.∴ 切点为(1,-4).y ′=12 x 3-6 x 2-18 x ,∴ 切线斜率为k =12-6-18=-12.∴ 切线方程为y +4=-12(x -1),即y =-12 x +8.由⎩⎨⎧+-=+--=8124923234x y x x x y 得 3 x 4-2 x 3 -9 x 2+12 x -4=0(x -1) 2 (x +2) (3 x -2)=0x =1,-2,32. 代入y =3 x 4-2 x 3 -9 x 2 +4,求得y =-4,32,0,即公共点为(1,-4)(切点),(-2,32),(32,0). 除切点外,还有两个交点(-2,32)、(32,0). 【点评】直线和圆,直线和椭圆相切,可以用只有一个公共点来判定.一般曲线却要用割线的极限位置来定义切线.因此,曲线的切线可以和曲线有非切点的公共点.例4曲线S :y =x 3-6 x 2-x +6哪一点切线的斜率最小?设此点为P (x 0,y 0).证明:曲线S 关于P 中心对称.【解】y ′=3 x 2-12 x -1当x =3212 =2时,y ′有最小值,故x 0=2, 由P ∈S 知:y 0=23-6 · 22-2+6=-12即在P (2,-12)处切线斜率最小.设Q (x ,y )∈S ,即y =x 3-6 x 2-x +6则与Q 关与P 对称的点为R (4-x ,-24-y ),只需证R 的坐标满足S 的方程即可. (4-x )3-6(4-x )2-(4-x )+6=64-48 x +12 x 2 -x 3-6(16-8 x +x 2)+x +2=-x 3 +6 x 2 +x -30=-x 3 +6 x 2 +x -6-24=-y -24故R ∈S ,由Q 点的任意性,S 关于点P 中心对称.。
第一章1.2.2 基本初等函数的导数公式及导数的运算法则(二)
1.2.2 基本初等函数的导数公式及导数的运算法则(二)[学习目标] 1.理解函数的和、差、积、商的求导法则.2.掌握求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数.3.能运用复合函数的求导法则进行复合函数的求导.知识点一 导数运算法则思考 (1)函数g (x )=c ·f (x )(c 为常数)的导数是什么?(2)若两个函数可导,则它们的和、差、积、商(商的情况下分母不为0)可导吗?反之如何?(3)导数的和(差)运算法则对三个或三个以上的函数求导成立吗?答案 (1)g ′(x )=cf ′(x ).(2)若两个函数可导,则它们的和、差、积、商(商的情况下分母不为0)必可导.若两个函数均不可导,则它们的和、差、积、商不一定不可导.例如,设f (x )=sin x +1x ,g (x )=cos x -1x,则f (x ),g (x )在x =0处均不可导,但它们的和f (x)+g (x )=sin x +cos x 在x =0处可导.(3)导数的和(差)运算法则对三个或三个以上的函数求导仍然成立.两个函数和(差)的导数运算法则可以推广到有限个函数的情况,即[f 1(x )±f 2(x )±f 3(x )±…±f n (x )]′=f ′1(x )±f ′2(x )±f ′3(x )±…±f ′n (x ).知识点二 复合函数的导数思考 设函数y =f (u ),u =g (v ),v =φ(x ),如何求函数y =f (g (φ(x )))的导数? 答案 y ′x =y ′u ·u ′v ·v ′x .题型一 导数运算法则的应用例1 求下列函数的导数:(1)y =15x 5+23x 3;(2)y =lg x -e x ;(3)y =1x·cos x ;(4)y =x -sin x 2·cos x 2. 解 (1)y ′=⎝⎛⎭⎫15x 5+23x 3′=⎝⎛⎭⎫15x 5′+⎝⎛⎭⎫23x 3′ =x 4+2x 2.(2)y ′=(lg x -e x )′=(lg x )′-(e x )′=1x ln 10-e x . (3)方法一 y ′=⎝⎛⎭⎫1x ·cos x ′=⎝⎛⎭⎫1x ′cos x +1x (cos x )′ =12()x -'cos x -1x sin x =-1232x -cos x -1xsin x =-cos x 2x 3-1x sin x =-cos x 2x x -1xsin x =-cos x +2x sin x 2x x. 方法二 y ′=⎝⎛⎭⎫1x ·cos x ′=⎝⎛⎭⎫cos x x ′=(cos x )′x -cos x (x )′(x )2=121sin cos 2x x x x--⋅=-x sin x +cos x2x x =-cos x +2x sin x 2x x . (4)∵y =x -sin x 2·cos x 2=x -12sin x , ∴y ′=⎝⎛⎭⎫x -12sin x ′=1-12cos x . 反思与感悟 在对较复杂函数求导时,应利用代数或三角恒等变形对已知函数解析式进行化简变形,如:把乘积的形式展开,分式形式变为和或差的形式,根式化为分数指数幂等,化简后再求导,这样可以减少计算量.跟踪训练1 求下列函数的导数:(1)y =x 4-3x 2-5x +6;(2)y =x ·tan x ;(3)y =(x +1)(x +2)(x +3);(4)y =x -1x +1. 解 (1)y ′=(x 4-3x 2-5x +6)′=(x 4)′-(3x 2)′-(5x )′+6′=4x 3-6x -5.(2)y ′=(x ·tan x )′=⎝⎛⎭⎫x sin xcos x ′=(x sin x )′cos x -x sin x (cos x )′cos 2 x=(sin x +x cos x )cos x +x sin 2 xcos 2 x=sin x cos x +xcos 2 x .(3)方法一 y ′=[(x +1)(x +2)(x +3)]′=[(x +1)(x +2)]′(x +3)+(x +1)(x +2)(x +3)′=[(x +1)′(x +2)+(x +1)(x +2)′](x +3)+(x +1)(x +2)=(x +2+x +1)(x +3)+(x +1)(x +2)=(2x +3)(x +3)+x 2+3x +2=3x 2+12x +11.方法二 ∵(x +1)(x +2)(x +3)=(x 2+3x +2)(x +3)=x 3+6x 2+11x +6,∴y ′=[(x +1)(x +2)(x +3)]′=(x 3+6x 2+11x +6)′=3x 2+12x +11.(4)方法一 y ′=⎝ ⎛⎭⎪⎫x -1x +1′ =(x -1)′(x +1)-(x -1)(x +1)′(x +1)2=x +1-(x -1)(x +1)2=2(x +1)2. 方法二 ∵y =x -1x +1=x +1-2x +1=1-2x +1, ∴y ′=⎝ ⎛⎭⎪⎫1-2x +1′=⎝ ⎛⎭⎪⎫-2x +1′ =-2′(x +1)-2(x +1)′(x +1)2=2(x +1)2. 题型二 复合函数求导法则的应用例2 求下列函数的导数:(1)y =(1+cos 2x )3;(2)y =sin 2 1x; (3)y =11-2x2;(4)y =(2x 2-3)1+x 2. 解 (1)y =(1+cos 2x )3=(2cos 2x )3=8cos 6xy ′=48cos 5x ·(cos x )′=48cos 5x ·(-sin x ),=-48sin x cos 5x .(2)令y =u 2,u =sin 1x ,再令u =sin v ,v =1x, ∴y ′x =y ′u ·u ′v ·v ′x =(u 2)′·(sin v )′·⎝⎛⎭⎫1x ′ =2u ·cos v ·0-1x 2=2sin 1x ·cos 1x ·-1x 2=-1x 2·sin 2x. (3)设y =12u -,u =1-2x 2,则y ′=12()u -' (1-2x 2)′=321()2u --·(-4x )=3221(12)2x --- (-4x ) =3222(12)x x --.(4)令y =u v ,u =2x 2-3,v =1+x 2, 令v =w ,w =1+x 2.v ′x =v ′w ·w ′x =(w )′(1+x 2)′=12122x -⋅w=2x21+x 2=x 1+x 2,∴y ′=(u v )′=u ′v +u v ′=(2x 2-3)′·1+x 2+(2x 2-3)·x 1+x 2 =4x 1+x 2+2x 3-3x1+x 2=6x 3+x 1+x 2.反思与感悟 求复合函数的导数的步骤跟踪训练2 求下列函数的导数:(1)y =(2x +1)5;(2)y =1(1-3x )4; (3)y =31-3x ;(4)y =x ·2x -1;(5)y =lg(2x 2+3x +1);(6)y =sin 2⎝⎛⎭⎫2x +π3. 解 (1)设u =2x +1,则y =u 5,∴y ′x =y ′u ·u ′x =(u 5)′·(2x +1)′=5u 4·2=10u 4=10(2x +1)4.(2)设u =1-3x ,则y =u -4,∴y ′x =y ′u ·u ′x =(u -4)′·(1-3x )′=-4u -5·(-3)=12u -5=12(1-3x )-5=12(1-3x )5. (3)设u =1-3x ,则y =13u ,∴y ′x =y ′u ·u ′x =13·23u -·(1-3x )′=13·13(1-3x )2·(-3)=-13(1-3x )2. (4)y ′=x ′·2x -1+x ·(2x -1)′.设t =2x -1,u =2x -1,则t =12u ,t ′x =t ′u ·u ′x =12·12u -·(2x -1)′ =12×12x -1×2=12x -1. ∴y ′=2x -1+x 2x -1=3x -12x -1.(5)设u =2x 2+3x +1,则y =lg u ,∴y ′x =y ′u ·u ′x =1u ln 10×(2x 2+3x +1)′ =4x +3(2x 2+3x +1)ln 10. (6)设u =sin ⎝⎛⎭⎫2x +π3,v =2x +π3, 则y =u 2,u =sin v ,∴y ′x =y ′u ·u ′v ·v ′x =2u ·cos v ·⎝⎛⎭⎫2x +π3′ =2sin ⎝⎛⎭⎫2x +π3·cos ⎝⎛⎭⎫2x +π3·2 =4sin ⎝⎛⎭⎫2x +π3cos ⎝⎛⎭⎫2x +π3=2sin ⎝⎛⎭⎫4x +2π3. 题型三 导数几何意义的应用例3 (1)曲线y =x (3ln x +1)在点(1,1)处的切线方程是 .(2)已知函数f (x )=k +ln x e x(k 为常数,e =2.718 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,则k 的值为 .答案 (1)4x -y -3=0 (2)1解析 (1)利用求导法则与求导公式可得y ′=(3ln x +1)+x ×3x=3ln x +4. ∴k 切=y ′|x =1=4,∴切线方程为y -1=4(x -1),即4x -y -3=0.(2)由f (x )=ln x +k e x, 得f ′(x )=1-kx -x ln x x e x,x ∈(0,+∞). 由于曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,所以f ′(1)=0,因此k =1.反思与感悟 涉及导数几何意义的问题,可根据导数公式和运算法则,快速求得函数的导数,代入曲线切点处横坐标即可求得曲线在该点处的切线斜率,这样比利用导数定义要快捷得多. 跟踪训练3 (1)若曲线y =x 3+ax 在(0,0)处的切线方程为2x -y =0,则实数a 的值为 .(2)若函数f (x )=e x x在x =a 处的导数值与函数值互为相反数,则a 的值为 . 答案 (1)2 (2)12解析 (1)曲线y =x 3+ax 的切线斜率k =y ′=3x 2+a ,又曲线在坐标原点处的切线方程为2x -y =0,∴3×02+a =2,故a =2.(2)∵f (x )=e x x ,∴f (a )=e a a. 又∵f ′(x )=⎝⎛⎭⎫e x x ′=e x ·x -e x x 2,∴f ′(a )=e a ·a -e a a 2.由题意知f (a )+f ′(a )=0,∴e a a +e a ·a -e a a 2=0,∴2a -1=0,∴a =12.因对复合函数的层次划分不清导致求导时出现错误例4 求函数y =sin n x cos nx 的导数.错解 y ′=(sin n x )′cos nx +sin n x (cos nx )′=n sin n -1x ·cos nx +sin n x ·(-sin nx )=n sin n -1x ·cos nx -sin n x sin nx .错因分析 在第二步中,忽略了对中间变量sin x 和nx 进行求导.正解 y ′=(sin n x )′cos nx +sin n x (cos nx )′=n sin n -1x ·(sin x )′·cos nx +sin n x ·(-sin nx )·(nx )′=n sin n -1x ·cos x ·cos nx -sin n x ·(sin nx )·n=n sin n -1x (cos x cos nx -sin x sin nx )=n sin n -1 x cos [(n +1)x ].防范措施 在求解复合函数的导数时,不能机械地套用公式,应理清层次,逐层正确使用求导法则求解.1.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值为( )A.193B.103C.133D.163答案 B解析 因f ′(x )=3ax 2+6x ,且f ′(-1)=3a -6=4,解得a =103,故选B. 2.函数y =12(e x +e -x )的导数是( ) A.12(e x -e -x ) B.12(e x +e -x ) C.e x -e -x D.e x +e -x 答案 A解析 y ′=⎣⎡⎦⎤12(e x +e -x )′=12(e x -e -x ),故选A. 3.f ⎝⎛⎭⎫1x =x 1+x ,则f ′(x )等于( )A.11+xB.-11+xC.1(1+x )2D.-1(1+x )2答案 D解析 由f ⎝⎛⎭⎫1x =x 1+x =11x+1,得f (x )=1x +1, 从而f ′(x )=-1(1+x )2,故选D. 4.已知函数f (x )=a sin x +bx 3+4(a ∈R ,b ∈R ),f ′(x )为f (x )的导函数,则f (2 014)+f (-2 014)+f ′(2 015)-f ′(-2 015)的值为 .答案 8解析 f ′(x )=a cos x +3bx 2,∴f ′(-x )=a cos (-x )+3b (-x )2=f ′(x ).∴f ′(x )为偶函数.∴f ′(2 015)-f ′(-2 015)=0.f (2 014)+f (-2 014)=a sin 2 014+b ·2 0143+4+a sin(-2 014)+b ·(-2 014)3+4=8. ∴f (2 014)+f (-2 014)+f ′(2 015)-f ′(-2 015)=8.5.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a = . 答案 8解析 因y =x +ln x ,故y ′=1+1x,y ′|x =1=2. ∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1.∵直线y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时,曲线变为直线y =2x +1,与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y 得ax 2+ax +2=0. 由Δ=a 2-8a =0,解得a =8.求函数的导数要准确把函数分割为基本函数的和、差、积、商,再利用运算法则求导数.在求导过程中,要仔细分析出函数解析式的结构特征,根据导数运算法则,联系基本函数的导数公式,对于不具备导数运算法则结构形式的要进行适当恒等变形,转化为较易求导的结构形式,再求导数,进而解决一些切线斜率、瞬时速度等问题.一、选择题1.曲线y =x e x-1在点(1,1)处切线的斜率等于( ) A.2e B.eC.2D.1答案 C 解析 y ′=e x -1+x e x -1=(x +1)e x -1,故曲线在点(1,1)处的切线斜率为y ′|x =1=2.2.当函数y =x 2+a 2x(a >0)在x =x 0处的导数为0时,那么x 0等于( ) A.aB.±aC.-aD.a 2答案 B解析 y ′=⎝ ⎛⎭⎪⎫x 2+a 2x ′=2x ·x -(x 2+a 2)x 2=x 2-a 2x 2, 由x 20-a 2=0得x 0=±a . 3.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a 等于( ) A.2B.12C.-12D.-2 答案 D解析 ∵y =x +1x -1=1+2x -1, ∴y ′=-2(x -1)2.∴y ′|x =3=-12. ∴-a =2,即a =-2.4.已知函数f (x )的导函数f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( )A.2B.-2C.94D.-94答案 D解析 ∵f (x )=x 2+3xf ′(2)+ln x ,∴f ′(x )=2x +3f ′(2)+1x. 令x =2,得f ′(2)=4+3f ′(2)+12,即2f ′(2)=-92,∴f ′(2)=-94,故选D. 5.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A.[0,π4) B.[π4,π2) C.(π2,3π4] D.[3π4,π) 答案 D解析 y ′=-4e x (e x +1)2=-4e x e 2x +2e x +1,设t =e x ∈(0,+∞),则y ′=-4t t 2+2t +1=-4t +1t+2,∵t +1t ≥2,∴y ′∈[-1,0),α∈[3π4,π). 6.设f (x )=ln(x +1)+x +1+ax +b (a ,b ∈R 且为常数),曲线y =f (x )与直线y =32x 在点(0,0)相切,则a +b 的值为( )A.-1B.1C.0D.2答案 A解析 由y =f (x )过点(0,0)得b =-1,∴f (x )=ln(x +1)+x +1+ax -1, ∴f ′(x )=1x +1+12x +1+a , 又∵曲线y =f (x )与直线y =32x 在点(0,0)相切,即曲线y =f (x )在点(0,0)处切线的斜率为32, ∴f ′(0)=32,即1+12+a =32, ∴a =0,故a +b =-1,选A.二、填空题7.下列各函数的导数:①(x )′=12x -12;②(a x )′=a x ln x ;③(sin 2x )′=cos 2x ;④(x x +1)′=1(x +1)2.其中正确的有 . 答案 ①④解析 (x )′=12()x '=1212x -,①正确;(a x )′=a x ln a ,②错误;(sin 2x )′=cos 2x ·(2x )′=2cos 2x ,③错误;(xx +1)′=x ′·(x +1)-x ·(x +1)′(x +1)2=x +1-x (x +1)2=1(x +1)2,④正确. 8.若曲线y =e -x 上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是 . 答案 (-ln 2,2)解析 设P (x 0,y 0),∵y =e -x ,∴y ′=-e -x ,∴点P 处的切线斜率为k =-e -x 0=-2,∴-x 0=ln 2,∴x 0=-ln 2,∴y 0=e ln 2=2,∴点P 的坐标为(-ln 2,2).9.曲线y =e -5x +2在点(0,3)处的切线方程为 .答案 5x +y -3=0解析 因为y ′=e -5x (-5x )′=-5e -5x ,所以y ′|x =0=-5,故切线方程为y -3=-5(x -0),即5x +y -3=0.10.已知f (x )=13x 3+3xf ′(0),则f ′(1)= . 答案 1解析 由于f ′(0)是一常数,所以f ′(x )=x 2+3f ′(0),令x =0,则f ′(0)=0,∴f ′(1)=12+3f ′(0)=1.三、解答题11.求下列函数的导数:(1)y =(2x -1)4;(2)y =11-2x; (3)y =sin(-2x +π3);(4)y =102x +3. 解 (1)原函数可看作y =u 4,u =2x -1的复合函数,则y x ′=y u ′·u x ′=(u 4)′·(2x -1)′=4u 3·2=8(2x -1)3.(2)y =11-2x =12(12)x --可看作y =12u-,u =1-2x 的复合函数, 则y x ′=y u ′·u x ′=(-12)32u -·(-2)=32(12)x --=1(1-2x )1-2x. (3)原函数可看作y =sin u ,u =-2x +π3的复合函数, 则y x ′=y u ′·u x ′=cos u ·(-2)=-2cos(-2x +π3) =-2cos(2x -π3). (4)原函数可看作y =10u ,u =2x +3的复合函数,则y x ′=y u ′·u x ′=102x +3·ln 10·2=(ln 100)102x +3.12.已知曲线f (x )=x 3-3x ,过点A (0,16)作曲线f (x )的切线,求曲线的切线方程.解 设切点为(x 0,y 0),则由导数定义得切线的斜率k =f ′(x 0)=3x 20-3,∴切线方程为y =(3x 20-3)x +16,又切点(x 0,y 0)在切线上,∴y 0=3(x 20-1)x 0+16,即x 30-3x 0=3(x 20-1)x 0+16,解得x 0=-2,∴切线方程为9x -y +16=0.13.设函数f (x )=ax -b x,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0. (1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.(1)解 由7x -4y -12=0得y =74x -3. 当x =2时,y =12,∴f (2)=12,① 又f ′(x )=a +b x2,∴f ′(2)=74,② 由①②得⎩⎨⎧ 2a -b 2=12,a +b 4=74.解得⎩⎪⎨⎪⎧a =1,b =3. 故f (x )=x -3x . (2)证明 设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知 曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0), 即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0). 令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 令y =x 得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12⎪⎪⎪⎪-6x 0||2x 0=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6.。
新人教A版高中数学(选修22)1.2《导数的计算》word教案4篇
§1.2.2基本初等函数的导数公式及导数的运算法则教学目标:1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则;3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。
教学重点:基本初等函数的导数公式、导数的四则运算法则教学难点: 基本初等函数的导数公式和导数的四则运算法则的应用 教学过程: 一.创设情景四种常见函数y c =、y x =、2y x =、1y x=的导数公式及应用二.新课讲授(一)基本初等函数的导数公式表)(2)推论:[]''()()cf x cf x =(常数与函数的积的导数,等于常数乘函数的导数)三.典例分析例1.假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?解:根据基本初等函数导数公式表,有'() 1.05ln1.05t p t =所以'10(10) 1.05ln1.050.08p =≈(元/年)因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨. 例2.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)323y x x =-+ (2)y =xx --+1111; (3)y =x · sin x · ln x ;(4)y =xx 4; (5)y =xxln 1ln 1+-.(6)y =(2 x 2-5 x +1)e x(7) y =xx x xx x sin cos cos sin +-【点评】① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心. 例3日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为5284()(80100)100c x x x=<<-求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90% (2)98% 解:净化费用的瞬时变化率就是净化费用函数的导数.''''252845284(100)5284(100)()()100(100)x x c x x x ⨯--⨯-==-- 20(100)5284(1)(100)x x ⨯--⨯-=-25284(100)x =-(1)因为'25284(90)52.84(10090)c ==-,所以,纯净度为90%时,费用的瞬时变化率是52.84元/吨.(2)因为'25284(98)1321(10090)c ==-,所以,纯净度为98%时,费用的瞬时变化率是1321元/吨.函数()f x 在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,''(98)25(90)c c =.它表示纯净度为98%左右时净化费用的瞬时变化率,大约是纯净度为90%左右时净化费用的瞬时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加的速度也越快.四.课堂练习 1.课本P 92练习2.已知曲线C :y =3 x 4-2 x 3-9 x 2+4,求曲线C 上横坐标为1的点的切线方程;(y =-12 x +8)五.回顾总结(1)基本初等函数的导数公式表 (2)导数的运算法则六.布置作业§1.1.2 导数的概念学习目标1.掌握用极限给瞬时速度下的精确的定义;2.会运用瞬时速度的定义,求物体在某一时刻的瞬时速度. 一、预习与反馈(预习教材P 4~ P 6,找出疑惑之处)探究任务一:瞬时速度问题1:在高台跳水运动中,运动员有不同时刻的速度是 新知:1. 瞬时速度定义:物体在某一时刻(某一位置)的速度,叫做瞬时速度.探究任务二:导数问题2: 瞬时速度是平均速度ts∆∆当t ∆趋近于0时的 导数的定义:函数()y f x =在0x x =处的瞬时变化率是0000()()limlimx x f x x f x fx x∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或 即000()()()limx f x x f x f x x∆→+∆-'=∆注意:(1)。
1.2.2基本初等函数的导数公式及导数的运算法则二
3.
f g
x x
′
f′ x
g
x f x g x2
g′ x
g
x
0
.
如何求函数y=㏑(3x+2)的导数呢?
若设u=我3x们+无2,法则用y=现ln有u的.即方y=法㏑求(函3x数+2) 可以y=看㏑成(是x由+2y)=l的n 导u和数u.=下3x面+,2经我过们“先复合” 得到分的析,这即个y函可数以的通结过构中特间点变.量u表示为自 变量x的函数.
练习 1:指出下列函数的复合关系:
(1)y=(a+bxn)m; (2)y=ln3 ex+2;
(3)y=3log2(x2-2x+3);(4)y=sin3(x+1x).
解:函数的复合关系分别是:
(1)y=um,u=a+bxn;
(2)y=lnu,u=3 v,v=ex+2; (3)y=3 u,u=log2v,v=x2-2x+3;
7.
若 fx loga x,则 f ' x
1 ;
x lna
8.
若 fx lnx,则f ' x
1 .
x
三角函数 指数函数 对数函数
2.导数的运算法则 1. [f(x) ±g(x)] ′=f′(x) ±g(x) ′; 2. [f(x) .g(x)] ′=f′(x) g(x)+ f(x) g(x) ′;
类似的结论是:若奇函数f(x)是可导函数, 则f′(x)是偶函数.
练习 3:
若函数 f(x)是可导函数,求函数 y =f(1x)的导数.
[答案] y′=-x12 f′(1x)
随堂练习
1.函数y=(3x-4)2的导数是( )
A.4(3x-2)
1.2 导数的计算 导学案(教师版)
§1.2导数的计算1.2.1几个常用函数的导数1.2.2基本初等函数的导数公式及导数的运算法则(一)内容要求 1.能根据定义,求函数y=c,y=x,y=x2,y=1x的导数.2.能利用给出的基本初等函数的导数公式求简单函数的导数. 3.会使用导数公式表.知识点1几个常用函数的导数原函数导函数f(x)=c f′(x)=0f(x)=x f′(x)=1f(x)=x2f′(x)=2xf(x)=1x f′(x)=-1x2f(x)=x f′(x)=1 2x【预习评价】思考根据上述五个公式,你能总结出函数y=xα的导数是什么吗?提示y=xα的导数是y′=αxα-1.知识点2基本初等函数的导数公式原函数导函数f(x)=c f′(x)=0f(x)=xα(α∈Q*)f′(x)=αxα-1f(x)=sin x f′(x)=cos__xf(x)=cos x f′(x)=-sin__xf(x)=a x f′(x)=a x ln__a(a>0)f(x)=e x f′(x)=e xf(x)=log a x f′(x)=1x ln a(a>0,且a≠1)f (x )=ln xf′(x )=1x求下列函数的导数:(1)f (x )=4x 5;(2)g (x )=cos π4;(3)h (x )=3x . 解 (1)f (x )=x 54,∴f ′(x )=54x 14; (2)g (x )=cos π4=22,∴g ′(x )=0; (3)h ′(x )=3x ln 3.题型一 利用导数定义求函数的导数【例1】 利用导数的定义求函数f (x )=2 019x 2的导数. 解 f ′(x )=0limx ∆→2 019(x +Δx )2-2 019x 2x +Δx -x=0lim x ∆→2 019[x 2+2x ·Δx +(Δx )2]-2 019x 2Δx=0lim x ∆→4 038x ·Δx +2 019(Δx )2Δx =0lim x ∆→(4 038x +2 019Δx )=4 038x .规律方法 解答此类问题,应注意以下几条: (1)严格遵循“一差、二比、三取极限”的步骤.(2)当Δx 趋于0时,k ·Δx (k ∈R ),(Δx )n (n ∈N *)等也趋于0.(3)注意通分、分母(或分子)有理化、因式分解、配方等技巧的应用. 【训练1】 利用导数的定义求函数y =x 2+ax +b (a ,b 为常数)的导数. 解 y ′=0lim x ∆→(x +Δx )2+a (x +Δx )+b -(x 2+ax +b )Δx=0lim x ∆→x 2+2x ·Δx +(Δx )2+ax +a ·Δx +b -x 2-ax -bΔx=0lim x ∆→2x ·Δx +a ·Δx +(Δx )2Δx=0lim x ∆→ (2x +a +Δx )=2x +a .题型二 利用导数公式求函数的导数 【例2】 求下列函数的导数:(1)y =sin π3;(2)y =5x ;(3)y =1x 3;(4)y =4x 3; (5)y =log 3x . 解 (1)y ′=0; (2)y ′=(5x )′=5x ln 5; (3)y ′=(x -3)′=-3x -4; (4)y ′=(4x3)′=(x 34)′=34x -14=344x; (5)y ′=(log 3x )′=1x ln 3.规律方法 求简单函数的导函数的基本方法: (1)用导数的定义求导,但运算比较烦琐;(2)用导数公式求导,可以简化运算过程、降低运算难度.解题时根据所给问题的特征,将题中函数的结构进行调整,再选择合适的求导公式. 【训练2】 求下列函数的导数: (1)y =x 13; (2)y =4x ; (3)y =sin x ; (4)y =15x 2.解 (1)y ′=(x 13)′=13x 13-1=13x 12; (2)y ′=(4x )′=(x 14)′=14x 14-1=14x -34;(3)y ′=(sin x )′=cos x ; (4)y ′=(15x 2)′=(x -25)′=-25x -25-1=-25x -75.方向1 利用导数求曲线的切线方程【例3-1】 求过曲线y =sin x 上点P ⎝ ⎛⎭⎪⎫π6,12且与在这点处的切线垂直的直线方程.解 ∵y =sin x ,∴y ′=cos x , 曲线在点P ⎝ ⎛⎭⎪⎫π6,12处的切线斜率是:y ′|x =π6=cos π6=32.∴过点P 且与切线垂直的直线的斜率为-23, 故所求的直线方程为y -12=-23(x -π6),即2x +3y -32-π3=0. 方向2 切线方程的综合应用【例3-2】 设P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离. 解 如图,设l 是与直线y =x 平行,且与曲线y =e x 相切的直线,则切点到直线y =x 的距离最小.设与直线y =x 平行的直线l 与曲线y =e x 相切于点P (x 0,y 0). 因为y ′=e x ,所以e x 0=1,所以x 0=0. 代入y =e x ,得y 0=1,所以P (0,1). 所以点P 到直线y =x 的最小距离为|0-1|2=22. 规律方法 导数的几何意义是曲线在某点处的切线的斜率;相互垂直的直线斜率乘积等于-1是解题的关键.【训练3】 (1)求曲线y =cos x 在点A ⎝ ⎛⎭⎪⎫π6,32处的切线方程;(2)求曲线y =sin ⎝ ⎛⎭⎪⎫π2-x 在点A ⎝ ⎛⎭⎪⎫-π3,12处的切线方程.解 (1)∵y =cos x ,∴y ′=-sin x ,y ′|x =π6=-sin π6=-12.∴曲线在点A 处的切线方程为y -32=-12⎝ ⎛⎭⎪⎫x -π6,即6x +12y -63-π=0. (2)∵sin ⎝ ⎛⎭⎪⎫π2-x =cos x ,∴y ′=(cos x )′=-sin x .∴曲线在点A ⎝ ⎛⎭⎪⎫-π3,12处的切线的斜率为k =-sin ⎝ ⎛⎭⎪⎫-π3=32.∴切线方程为y -12=32⎝ ⎛⎭⎪⎫x +π3,即33x -6y +3π+3=0.课堂达标1.已知f (x )=x 2,则f ′(3)等于( ) A.0B.2xC.6D.9解析 ∵f (x )=x 2,∴f ′(x )=2x ,∴f ′(3)=6. 答案 C2.函数f (x )=x ,则f ′(3)等于( ) A.36B.0C.12xD.32解析 ∵f ′(x )=(x )′=12x ,∴f ′(3)=123=36.答案 A3.设正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角α的范围是( ) A.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π B.[0,π)C.⎣⎢⎡⎦⎥⎤π4,3π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎦⎥⎤π2,3π4 解析 ∵(sin x )′=cos x ,∴k l =cos x ,∴-1≤tan α≤1,又∵α∈[0,π), ∴α∈⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.答案 A4.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为________. 解析 ∵y ′=(e x )′=e x ,∴k =e 2,∴曲线在点(2,e 2)处的切线方程为y -e 2=e 2(x -2), 即y =e 2x -e 2.当x =0时,y =-e 2,当y =0时,x =1. ∴S △=12×1×|-e 2|=12e 2. 答案 12e 25.已知f(x)=52x2,g(x)=x3,若f′(x)-g′(x)=-2,则x=________.解析因为f′(x)=5x,g′(x)=3x2,所以5x-3x2=-2,解得x1=-13,x2=2.答案-13或2课堂小结1.利用常见函数的导数公式可以比较简捷地求出函数的导数,其关键是牢记和运用好导数公式.解题时,能认真观察函数的结构特征,积极地进行联想化归.2.有些函数可先化简再应用公式求导.如求y=1-2sin2x2的导数.因为y=1-2sin 2x2=cos x,所以y′=(cos x)′=-sin x.3.对于正弦、余弦函数的导数,一是注意函数的变化,二是注意符号的变化.基础过关1.函数y=3x在x=2处的导数为()A.9B.6C.9ln 3D.6ln 3解析y′=(3x)′=3x ln 3,故所求导数为9ln 3.答案 C2.下列结论中,不正确的是()A.若y=1x3,则y′=-3x4B.若y=3x,则y′=3x3C.若y=1x2,则y′=-2x-3D.若f(x)=3x,则f′(1)=3 解析由(x n)′=nx n-1知,选项A,y=1x3=x-3,则y′=-3x-4=-3x4;选项B ,y =3x =x 13,则y ′=13x -23≠3x3;选项C ,y =1x 2=x -2,则y ′=-2x -3; 选项D ,由f (x )=3x 知f ′(x )=3, ∴f ′(1)=3.∴选项A ,C ,D 正确.故选B. 答案 B3.已知f (x )=cos x ,f ′(x )=-1,则x 等于( ) A.π2B.-π2C.π2+2k π,k ∈ZD.-π2+2k π,k ∈Z解析 ∵f ′(x )=-sin x ,则sin x =1, ∴x =π2+2k π,k ∈Z . 答案 C4. 曲线y =x 2+1x 在点(1,2)处的切线方程为________. 解析 设y =f (x ),则f ′(x )=2x -1x 2, 所以f ′(1)=2-1=1,所以在(1,2)处的切线方程为y -2=1×(x -1), 即y =x +1. 答案 y =x +15.若曲线y =x -12在点(a ,a -12)处的切线与两个坐标轴围成的三角形的面积为18,则a =________. 解析∵y =x -12,∴y ′=-12x -32,∴曲线在点(a ,a -12)处的切线斜率k =-12a -32,∴切线方程为y -a -12=-12a -32(x -a ).令x =0得y =32a -12;令y =0得x =3a . ∵该切线与两坐标轴围成的三角形的面积为 S =12·3a ·32a -12=94a 12=18,∴a =64. 答案 646.已知f (x )=cos x ,g (x )=x ,求适合f ′(x )+g ′(x )≤0的x 的值. 解 ∵f (x )=cos x ,g (x )=x ,∴f ′(x )=(cos x )′=-sin x ,g ′(x )=x ′=1. 由f ′(x )+g ′(x )≤0, 得-sin x +1≤0, 即sin x ≥1, 但sin x ∈[-1,1],∴sin x =1,∴x =2k π+π2,k ∈Z .7.求下列函数的导数:(1)y =5x 3;(2)y =1x 4;(3)y =-2sin x 2(1-2cos 2x 4);(4)y =log 2x 2-log 2x .解 (1)y ′=(5x 3)′=(x 35)′=35x 35-1=35x -25=355x2. (2)y ′=⎝⎛⎭⎫1x 4′=(x -4)=-4x -4-1=-4x -5=-4x 5. (3)∵y =-2sin x2⎝⎛⎭⎫1-2cos 2x 4 =2sin x 2⎝⎛⎭⎫2cos 2x 4-1=2sin x 2cos x2=sin x , ∴y ′=(sin x )′=cos x .(4)∵y =log 2x 2-log 2x =log 2x ,∴y ′=(log 2x )′=1x ·ln 2. 能力提升8.函数f (x )=x 3的斜率等于1的切线有( ) A.1条 B.2条 C.3条D.不确定解析 ∵f ′(x )=3x 2,设切点为(x 0,y 0),则3x 20=1,得x 0=±33,即在点⎝ ⎛⎭⎪⎫33,39和点⎝ ⎛⎭⎪⎫-33,-39处分别有斜率为1的切线.答案 B9.已知直线y =kx 是曲线y =e x 的切线,则实数k 的值为( ) A.1e B.-1e C.-eD.e解析y ′=e x,设切点为(x 0,y 0),则⎩⎪⎨⎪⎧y 0=kx 0,y 0=e x0,k =e x 0,∴e x 0=e x 0·x 0,∴x 0=1,∴k =e. 答案 D10.曲线y =ln x 在x =a 处的切线倾斜角为π4,则a =________. 解析 ∵y ′=1x ,∴y ′|x =a =1a =1. ∴a =1. 答案 111.若y =10x ,则y ′|x =1=________. 解析 y ′=10x ln 10,∴y ′|x =1=10ln 10. 答案 10ln 1012.已知抛物线y =x 2,直线x -y -2=0,求抛物线上的点到直线的最短距离.解 根据题意可知与直线x -y -2=0平行的抛物线y =x 2的切线,对应的切点到直线x -y -2=0的距离最短,设切点坐标为(x 0,x 20),则y ′|x =x 0=2x 0=1,所以x 0=12,所以切点坐标为⎝ ⎛⎭⎪⎫12,14, 切点到直线x -y -2=0的距离d =⎪⎪⎪⎪⎪⎪12-14-22=728, 所以抛物线上的点到直线x -y -2=0的最短距离为728.创新突破13.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,试求f 2 019(x ). 解 ∵f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x ,f 5(x )=(sin x )′=f 1(x ),f 6(x )=f 2(x ),…,∴f n +4(x )=f n (x ),可知f (x )的周期为4,∴f 2 019(x )=f 3(x )=-cos x .。
导数公式和运算法则教案
§1.2.2基本初等函数的导数公式
及导数的运算法则
【教学目标】
1.知识与技能:
熟练掌握基本初等函数的导数公式;掌握导数的四则运算法则;能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.
2.过程与方法:
通过对每个公式的针对性简单练习,使学生掌握基本初等函数的导数公式,通过8个基本初等函数的整合练习,加深理解导数的运算法则,以及解题的简洁性和变式的灵活性.
3.情感态度与价值观:
通过对新知的理解与巩固,培养学生创新能力,应变能力,运算能力,思维敏捷度,使学生体会到成功的喜悦,培养学生的学习兴趣.
【教学重点与难点】
1.重点:基本初等函数的导数公式、导数的四则运算法则.
2.难点:基本初等函数的导数公式和导数的四则运算法则的应用.
【教学手段】
多媒体幻灯片
【学习目标】
1.掌握基本函数的导数公式,灵活运用公式求某些函数的导数.
2.理解函数的和、差、积、商的求导法则,能够用法则求一些函数的导数.
【教学过程】。
第五节1.2.2基本初等函数的导数公式及导数的运算法则
学案5 1.2.2基本初等函数的导数公式及导数的运算法则
学生课堂活动活页
一、基本初等函数的导数公式.
例1.假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?
思考:若上式中某商品的05p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?
二、导数的运算法则.
例2.根据基本初等函数的导数公式和导数运算法则,
求函数323y x x =-+的导数.
例3.日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为 5284()(80100)100c x x x
=<<- 求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90% (2)98%
四.课堂练习
求下列函数的导数:
(1)()lg x
f x x π=+;(2)()sin cos f x x x =;(3)2
()x x f x e =.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.2.2基本初等函数的导数公式及导数的运算法则
教学目标:
1.熟练掌握基本初等函数的导数公式;
2.掌握导数的四则运算法则;
3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。
教学重点:基本初等函数的导数公式、导数的四则运算法则
教学难点: 基本初等函数的导数公式和导数的四则运算法则的应用
教学过程:
一.创设情景
四种常见函数y c =、y x =、2y x =、1y x =
的导数公式及应用
二.新课讲授
(一)基本初等函数的导数公式表
函数 导数
y c = '0y = y x = '1y = 2y x = '2y x = 1y x = '21y x =- *()()n y f x x n Q ==∈ '1n y nx -= 函数 导数
y c =
'0y = *()()n y f x x n Q ==∈ '1n y nx -=
sin y x = 'cos y x =
cos y x = 'sin y x =-
()x y f x a ==
'ln (0)x y a a a =⋅> ()x y f x e == 'x y e =
导数运算法则
1.[]'
''()()()()f x g x f x g x ±=± 2.[]'
''()()()()()()f x g x f x g x f x g x ⋅=± 3.[]
'
''2()()()()()(()0)()()f x f x g x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎣⎦
(2)推论:[]''()()cf x cf x = (常数与函数的积的导数,等于常数乘函数的导数)
三.典例分析
例1.假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单位:
年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,
那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?
解:根据基本初等函数导数公式表,有'() 1.05ln1.05t
p t = ()log a f x x = '1()log ()(01)ln a f x xf x a a x a ==>≠且 ()ln f x x = '1()f x x =
所以'10(10) 1.05ln1.050.08p =≈(元/年)
因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨.
例2.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数.
(1)323y x x =-+
(2)y =x
x --+1111; (3)y =x · sin x · ln x ;
(4)y =
x x 4
; (5)y =x x ln 1ln 1+-. (6)y =(2 x 2-5 x +1)e x
(7) y =x
x x x x x sin cos cos sin +- 【点评】
① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心. 例3日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为
5284()(80100)100c x x x
=<<- 求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90% (2)98%
解:净化费用的瞬时变化率就是净化费用函数的导数.
''
'
'252845284(100)5284(100)()()100(100)x x c x x x ⨯--⨯-==-- 20(100)5284(1)(100)x x ⨯--⨯-=-2
5284(100)x =- (1) 因为'
25284(90)52.84(10090)c ==-,所以,纯净度为90%时,费用的瞬时变化率是52.84元/吨.
(2) 因为'2
5284(98)1321(10090)c ==-,所以,纯净度为98%时,费用的瞬时变化率是1321元/吨.
函数()f x 在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,''(98)25(90)c c =.它表示纯净度为98%左右时净化费用的瞬时变化率,大约是纯净度为90%左右时净化费用的瞬时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越
多,而且净化费用增加的速度也越快.
四.课堂练习
1.课本P92练习
2.已知曲线C:y=3 x4-2 x3-9 x2+4,求曲线C上横坐标为1的点的切线方程;
(y=-12 x+8)
五.回顾总结
(1)基本初等函数的导数公式表
(2)导数的运算法则
六.布置作业。