角的大小和角的和与差
角的比较和运算PPT课件(华师大版)
8.(例题变式)在15°、65°、75°、135°的角中,能用一副三角尺画出 来的有( )C
A.1个 B.2个 C.3个 D.4个 9.若一个60°的角绕顶点旋转15°后与原角有重叠部分,则重叠部分 的角的大小是( C) A.15° B.30° C.45° D.75°
5.(202X春·曹县校级月考)计算: 18°13′×5; 解:18°13′×5=90°65′=91°5′
27°26′+53°48′; 解:27°26+53°48′=80°74′=81°14′
90°-79°18′6″. 解:90°-79°18′6″=89°59′60″-79°18′6″=10°41′54″
小关系正确的是(
)D
A.∠C>∠A>∠B B.∠C>∠B>∠A
C.∠A>∠C>∠B D.∠A>∠B>∠C
知识点2:角的计算 3.(例题变式)如图,∠AOD-∠AOC=( D ) A.∠ADC B.∠BOC C.∠BOD D.∠COD
4.如图,已知∠AOC=∠BOD=75°,∠BOC=30°,则∠AOD= _1_2_0_°_____
知识点 3:角的平分线 6.如图,若有∠BAD=∠CAD,∠BCE=∠ACE,则下列结论中错 误的是( D ) A.AD 是∠BAC 的平分线 B.CE 是∠ACD 的平分线 C.∠BCE=12∠ACB D.CE 是∠ABC 的平分线
7.(练习3变式)如图,O是直线AB上一点,∠1=40°,OD平分∠BOC, 则∠2的度数是( ) D
解:(1)∵OM 平分∠AOC,∴∠COM=12∠AOC=21×(90°+60 °)=75°,∵ON 平分∠BOC,∴∠CON=21∠BOC=12×60°=30°, ∴∠MON=∠COM-∠CON=75°-30°=45° (2)由(1)知∠COM =12∠AOC=12(α+60°),∠CON=12∠BOC=30°,∴∠MON=∠ COM-∠CON=12α+30-30°=12α (3)由(1)(2)知∠MON=12(α+ β)-12β=21α
七年级上册数学角的和与差的知识点
七年级上册数学角的和与差的知识点
七年级上册关于数学角的和与差的知识点
1、角的组成:角是由一个顶点、两条边组成的。
2、角的大小与角的两条边的长短没有关系,跟角的开口大小有
关系:角的开口越大,角就越大;开口越小,角就越小。
3、角的分类,按照角的大小可以分成:锐角、直角、钝角(平角、周角本学期不需要掌握,孩子知道即可,课上讲过)
4、锐角:比直角小的.角叫锐角,也就是:锐角<90°(角的度数不要求掌握,了解即可)
直角:度数是90°的角叫直角,也就是:直角=90°。
钝角:比直角大比平角小的角叫钝角,也就是:90°<钝角<180°是否标出顶点和边要看题目具体要求。
6、做题时,如果具体到某个角上,一定要用∠1∠2∠3等表示,不能只填序号。
角的度量与计算
角的度量与计算角是几何学中常见的基本概念,用于描述两条线段之间的夹角或者两条射线之间的夹角。
想要精确地度量和计算角的大小,需要了解角的度量单位、角的类型以及角的计算公式等知识。
一、角的度量单位1. 弧度:弧度是用于度量角的标准单位,记作rad。
一个完整的圆周包含2π(约等于6.28)弧度,即360°等于2π弧度。
2. 度:度是另一种常见的角度量单位,记作°。
一个完整的圆周包含360度,即2π弧度等于360°。
二、角的类型1. 零角:零角是指两条相互重合的射线所形成的角,度数为0°,弧度数为0 rad。
2. 钝角:钝角是指大于90°但小于180°的角。
3. 直角:直角是指度数为90°,弧度数为π/2的角。
直角十分特殊,两条构成直角的射线互相垂直。
4. 锐角:锐角是指小于90°但大于0°的角。
5. 平角:平角是指度数为180°,弧度数为π的角。
平角表示两条射线平行。
三、角的计算公式1. 弧度与度的转换:弧度 = 度数× (π / 180)度数 = 弧度× (180 / π)2. 两个角的和/差:两个角的和等于它们的度数或弧度数之和,如 A + B。
两个角的差等于它们的度数或弧度数之差,如 A - B。
3. 角的倍数:一个角的 n 倍角等于它的度数或弧度数乘以 n,如 nA。
4. 角的补角/余角:一个角的补角是指与其相加等于 90°(或π/2弧度)的角,如 A 的补角为 90° - A。
一个角的余角是指与其相减等于 90°(或π/2弧度)的角,如 A 的余角为 A - 90°。
5. 角的相等/相似:两个角相等,意味着它们的度数或弧度数相等,如 A = B。
两个角相似,意味着它们的度数或弧度数成比例,如 A∽B。
四、角的计算实例1. 例题一:已知 A = 30°,求 A 的补角和余角。
苏教版七年级上册数学[角(基础)知识点整理及重点题型梳理]
苏教版七年级上册数学重难点突破知识点梳理及重点题型巩固练习角(基础)知识讲解【学习目标】1.掌握角的概念及角的表示方法,并能进行角度的换算及运算;2. 掌握借助三角尺或量角器画角的方法,并熟悉角大小的比较方法;3. 掌握角的和、差、倍、分关系,并会进行有关计算;5. 掌握余角、补角及对顶角的概念及性质,会用其性质进行有关计算;6.了解方位角、钟表上有关角,并能解决一些实际问题.【要点梳理】要点一、角的概念及表示1.角的定义:(1)定义一:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.如图1所示,角的顶点是点O,边是射线OA、OB.图1 图2(2)定义二:角也可以看成是一条射线绕着它的端点旋转到另一个位置所成的图形,射线旋转时经过的平面部分是角的内部.如图2所示,射线OA绕它的端点O旋转到OB的位置时,形成的图形叫做角,起始位置OA是角的始边,终止位置OB是角的终边.要点诠释:(1)两条射线有公共端点,即角的顶点;角的边是射线;角的大小与角的两边的长短无关.(2)平角与周角:如图1所示射线OA绕点O旋转,当终止位置OB和起始位置OA成一条直线时,所形成的角叫做平角,如图2所示继续旋转,OB和OA重合时,所形成的角叫做周角.2.角的表示法:角的几何符号用“∠”表示,角的表示法通常有以下四种:要点诠释:在表示角时,要在靠近角的顶点处加上弧线,再注上相应数字或字母.3.角的画法(1)用三角板可以画出30°、45°、60°、90°等特殊角.(2)用量角器可以画出任意给定度数的角.(3)利用尺规作图可以画一个角等于已知角.要点二、角的比较与运算1.角度制及其换算角的度量单位是度、分、秒,把一个周角平均分成360等份,每一份就是1°的角,1°的160为1分,记作“1′”,1′的160为1秒,记作“1″”.这种以度、分、秒为单位的角的度量制,叫做角度制.1周角=360°,1平角=180°,1°=60′,1′=60″.要点诠释:在进行有关度分秒的计算时,要按级进行,即分别按度、分、秒计算,不够减,不够除的要借位,从高一位借的单位要化为低位的单位后再进行运算,在相乘或相加时,当低位得数大于60时要向高一位进位.2.角的比较:角的大小比较与线段的大小比较相类似,方法有两种.方法1:度量比较法.先用量角器量出角的度数,然后比较它们的大小.方法2:叠合比较法.把其中的一个角移到另一个角上作比较.如比较∠AOB和∠A′O′B′的大小:如下图,由图(1)可得∠AOB<∠A′O′B′;由图(2)可得∠AOB=∠A′O′B′;由图(3)可得∠AOB>∠A′O′B′.3.角的和、差关系如图所示,∠AOB是∠1与∠2的和,记作:∠AOB=∠1+∠2;∠1是∠AOB与∠2的差,记作:∠1=∠AOB-∠2.要点诠释:(1)用量角器量角和画角的一般步骤:①对中(角的顶点与量角器的中心对齐);②重合(一边与刻度尺上的零度线重合);③读数(读出另一边所在线的度数).(2) 利用三角板除了可以做出30°、45°、60°、90°外,根据角的和、差关系,还可以画出15°,75°,105°,120°,135°,150°,165°的角.4.角平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.如图所示,OC是∠AOB的角平分线,∠AOB=2∠AOC=2∠BOC,∠AOC=∠BOC =12∠AOB.要点诠释:由角平分线的概念产生的合情推理其思维框架与线段中点的思维框架一样.要点三、余角、补角、对顶角1.余角与补角(1)定义:一般地,如果两个角的和是一个直角,那么这两个角互为余角,简称互余,其中一个角叫做另一个角的余角.类似地,如果两个角的和是一个平角,那么这两个角互为补角,简称互补,其中一个角叫做另一个角的补角.(2)性质:同角(等角)的余角相等.同角(等角)的补角相等.要点诠释:(1)互余互补指的是两个角的数量关系,互余、互补的两个角只与它们的和有关,而与它们的位置无关.(2)一个锐角的补角比它的余角大90°.2.对顶角(1)定义:由两条直线相交构成的四个角中,有公共顶点没有公共边(相对)的两个角,互为对顶角.要点诠释:(1)对顶角满足的条件:①相等的两个角;②有公共顶点且一角的两边是另一角两边的反向延长线.(2)只有两条直线相交时,才能产生对顶角.两条直线相交时,除了产生对顶角外,还会产生邻补角,邻补角满足的条件:①有公共顶点;②有一条公共边,另一边互为反向延长线. (2)性质:对顶角相等.要点四、方位角在航行和测绘等工作中,经常要用到表示方向的角.例如,图中射线OA的方向是北偏东60°;射线OB的方向是南偏西30°.这里的“北偏东60°”和“南偏西30°”表示方向的角,就叫做方位角.要点诠释:(1)正东,正西,正南,正北4个方向不需要用角度来表示;(2)方位角必须以正北和正南方向作为“基准”,“北偏东60°”一般不说成“东偏北30°”;(3)在同一问题中观察点可能不止一个,在不同的观测点都要画出表示方向的“十字线”,确定其观察点的正东、正西、正南、正北的方向;(4)图中的点O是观测点,所有方向线(射线)都必须以O为端点.要点五、钟表上有关角问题钟表中共有12个大格,把周角12等分、每个大格对应30°的角,分针1分钟转6°,时针每小时转30°,时针1分钟转0.5°,利用这些关系,可帮助我们解决钟表中角度的计算问题.【典型例题】类型一、角的概念及表示1.下列语句正确的是 ( )A.两条直线相交,组成的图形叫做角.B.两条具有公共端点的线段组成的图形叫做角.C.两条具有公共端点的射线组成的图形叫做角.D.过同一点的两条射线组成的图形叫做角.【答案】C【解析】根据角的定义判断【总结升华】角不能仅仅看作是有公共端点的两条射线,角的两种描述中都隐含了组成角的一个重要元素,即两条射线间的相对位置关系,这是角与“有公共端点的两条射线”的重要区别.举一反三:【变式】写出图中(1)能用一个字母表示的角;(2)以B为顶点的角; (3)图中共有几个角(小于180°).【答案】解:(1)能用一个字母表示的角∠A、∠C.(2)以B为顶点的角∠ABE、∠ABC、∠CBE.(3)图中共有7个角.类型二、角度制的换算2. 把25.72°用度、分、秒表示; (2)把45°12′30″化成度(精确到百分位).【思路点拨】第(1)题中25.72°中含有两部分25°和0.72°,只要把0.72°化成分、秒即可.第(2)题中,45°12′30″含有三部分45°,12′和30″,其中45°已经是度,只要把12′和30″化成度即可.【答案与解析】解:(1)0.72°=0.72×60′=43.2′,0.2′=0.2×60″=12″,所以25.72°=25°43′12″.(2)130300.560'⎛⎫'''=⨯=⎪⎝⎭,112.512.50.2160⎛⎫'=⨯ ⎪⎝⎭°≈°所以45°12′30″≈45.21°.【总结升华】无论由高级单位向低级化还是由低级单位向高级化,都必须逐级进行,“越级”化单位容易出错.举一反三:【变式】 (1)把26.29°转化为度、分、秒表示的形式;(2)把33°24′36″转化成度表示的形式.【答案】 (1)26.29°=26°+0.29°=26°+0.29×60′=26°+17.4′=26°+17′+0.4×60″=26°17′+24″=26°17′24″(2)33°24′36″=33°+24′+36×160'⎛⎫⎪⎝⎭=33°+24′+0.6′=33°+24.6′=33°+24.6×160⎛⎫⎪⎝⎭°=33.41°【总结升华】在角度的和、差运算中应先统一单位,都化成度或分、秒表示,然后再进行计算.类型三、角的比较与运算3.不用量角器,比较图1和图2中角的大小.(用“>”连接)【思路点拨】图1中两角∠α、∠β均为锐角,因此,在不能测量的情形下,我们可以将图中的∠α向∠β平移,让∠α与∠β始边重合,观察终边的位置来比较角的大小.图2中的三个角按角的分类,∠1为锐角,∠2为直角,∠3为钝角,因此按照各自的范围就可以将它们的大小比较出来.【答案与解析】解:(1)如图所示,将∠α平移使∠α的始边与∠β的始边重合,发现∠α落在∠β内部,因此∠β>∠α.(2)由图可知∠1是锐角,∠1<90°,∠2是直角,即∠2=90°,∠3是钝角,即90°<∠3<180°,因此∠3>∠2>∠1.【总结升华】本例给出的两题是在不用量角器测量角的情况下比较角的大小,一种方法是叠合比较法,另外一种方法则是根据角的分类,由图形观察角的不同分类,按照常见的锐角<直角<钝角<平角<周角来比较大小.举一反三:【变式】已知∠AOB(如图所示),画一个角等于这个角.【答案】作法:如图,(1)以点O为圆心,适当长为半径画弧,分别交OA、OB于点C、D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧l,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,交弧l于点D′;(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.4. 如图所示,已知OC平分∠BOD,且∠BOC=20°,OB是∠AOD的平分线,求∠AOD的度数.【答案与解析】解:因为OC平分∠BOD,且∠BOC=20°,所以∠BOD=2∠BOC=2×20°=40°.又因为OB是∠AOD的平分线,所以∠AOD=2∠BOD=2×40°=80°.【总结升华】应用角的平分线的定义时根据两点:若OB是∠AOC的平分线,则①∠AOB=∠BOC=12∠AOC;②∠AOC=2∠AOB=2∠BOC,在解题时要学会灵活应用.【角 397364 角的有关计算例3】举一反三:【变式】已知:如图,OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOC=80︒,求:∠MON.【答案】解:∵OM平分∠AOB,ON平分∠COB,∴∠MOB=12∠AOB,∠BON=12∠BOC.(角平分线的定义)∴∠MON=∠MOB+∠BON=12∠AOB+12∠BOC=12(∠AOB+∠BOC)=12∠AOC=12×80︒=40︒ .即∠MON=40︒.类型四、余角、补角、对顶角5.(2016春•曹县校级月考)一个角的补角比这个角的余角的2倍还多40°,求这个角的度数.【思路点拨】这类题目要先设出这个角的度数.设这个角为x°,分别写出它的余角和补角,根据题意写出等量关系,解之即可得到这个角的度数.【答案与解析】解:设这个角为x°,则其余角为(90﹣x)°,补角为(180﹣x)°,依题意有180﹣x=2(90﹣x)+40,解得x=40.答:这个角的度数是40°.【总结升华】本题考查了余角和补角,是基础题,列出方程是解题的关键.举一反三:【变式】(2015•崇左)下列各图中,∠1与∠2互为余角的是()A. B.C.D.【答案】C.解:四个选项中,只有选项C满足∠1+∠2=90°,即选项C中,∠1与∠2互为余角.类型五、方位角及钟表上有关角问题6.(2015•浦东新区三模)已知小岛A位于基地O的东南方向,货船B位于基地O的北偏东50°方向,那么∠AOB的度数等于.【答案】85°.【解析】解:如图:∵∠2=50°,∴∠3=40°,∵∠1=45°,∴∠AOB=∠1+∠3=45°+40°=85°,故答案为:85°.【总结升华】本题主要考查了方位角的概念,根据方位角的概念,画图正确表示出A,B的方位,注意东南方向是45度是解答此题的关键.7.计算: 4时15分时针与分针的夹角.【答案与解析】解法一:如下图,设4时15分时针与分针的夹角为∠α(注:夹角指小于180°的角),时针转过的角度为:30°×4+0.5°×15,分针转过的角度为:6°×15,所以∠α=30°×4+0.5°×15-6°×15=37.5°.解法二:如上图,∠AOC=30°×1=30°,∠BOC=0.5°×15=7.5°.所以∠AOB=37.5°.即4时15分时针与分针的夹角为37.5°.【总结升华】求钟表中时针与分针的夹角有两种方法:第一种方法利用时针与分针的每分钟转速求解,比如解法一;第二种方法直接根据图形求夹角,如解法二.。
角的比较与运算(新人教版)课件
将一个角按照一定的比例进行缩小或扩大,形成一个新的角,这个新的角就是原 来角的比例。
03
特殊角
直角
总结词
直角是角度的一种,度数为90度。
详细描述
在几何学中,直角是一种常见的角度,其度数为90度。直角是两条线段垂直相交形成的角,具有特殊的性质和运 算规则。
平角
总结词 详细描述
钝角
总结词
角度决定几何形状
角度在几何图形中起着至关重要的作用, 不同的角度可以形成不同的几何形状。 例如,两条射线组成的角可以形成平面 几何图形,如三角形、四边形等。
VS
角度与面积的关系
在某些几何图形中,角度的大小与面积的 大小有关。例如,在扇形中,角度越大, 面积越大。
角在日常生活中的应用测量角度 Nhomakorabea导航
角在数学解题中的应用
角的比较与运算(新人教 版)课件
contents
目录
• 角的比较 • 角的运算 • 特殊角 • 角的和差公式 • 角的应用
01
角的比 较
比较大小
直角
等于90度的角。
平角
等于180度的角。
锐角
小于90度的角。
钝角
大于90度但小于 180度的角。
周角
等于360度的角。
角的度量单位
度(°) 分和秒
角的大小比较方法
01
02
03
使用量角器测量
使用叠合法比较
使用三角函数比较
02
角的运算
角的加法
角的加法定 义
角的加法性 质
角的减法
角的减法定 义
角的减法性 质
两个角相减,其度数之差等于两个角 对应边相减后,再除以边的数量所得 的商。
2024新人编版七年级数学上册《第六章6.3.2角的比较与计算》教学课件
示的图形,已知∠CEF=50º,则∠AED的度数是
( C)
A.40°
B.50 °
C.65 ° D.76 °
课堂小结
1.角的比较:①度量法
②叠合法
2.角的和差
课堂小结
3.角的平分线:
射线OC是∠AOB的角平分线或OC
平分∠AOB,
1
记作:① ∠AOC=∠BOC= ∠AOB
2
②∠AOB=2∠AOC=2∠BOC.
③EF边落在∠ABC的外部,∠DEF大于∠ABC,记做∠DEF>∠ABC.
探究新知
思考: 我们已经学过哪几类角?
三角板上的各个角分别属于哪类角?
角的分类
锐角
0 α 90
直角
α 90
钝角
90 α 180
平角
α 180
周角
α 360
直角可以用Rt∠
表示,画图时常在
直角的顶点处加上
“ ”来表示这个角
是直角.
探究新知
例1 根据右图解下列问题:
A
B
(1)比较∠AOB, ∠AOC,
∠AOD, ∠AOE的大小;
∠AOB<∠AOC<∠AOD<∠AOE
O
C
D
E
探究新知
例1 根据右图解下列问题:
A
B
(2)找出图中的直角、锐角和钝角.
直角:∠AOC、∠BOD、∠COE;
锐角:∠AOB、∠BOC、∠COD、
类似地,∠AOC-∠AOB= ∠BOC .
探究新知
学生活动三 【一起探究】 探究三角板中的角
你知道下面这些角是怎样用三角板画出来的吗?
探究新知
15°
角的比较重难点题型
角的比较--重难点题型【知识点1 角的比较与运算】【题型1 角的大小比较】∠COD=50°;小丽用叠合法比较,将两个角的顶点重合,边OB与OD重合,边OA 和OC置于重合边的同侧,则边OA.(填序号:①“在∠COD的内部”;②“在∠COD的外部”;③“与边OC重合”)【变式1-1】(2021春•呼和浩特期末)如图,∠AOB=∠COD,则∠AOC与∠DOB的大小关系是()A.∠AOC>∠DOBB.∠AOC<∠DOBC.∠AOC=∠DOBD.∠AOC与∠DOB无法比较大小【变式1-2】(2021秋•开封期末)如图所示,其中最大的角是,∠DOC,∠DOB,∠DOA的大小关系是.【变式1-3】(2021秋•门头沟区期末)如图所示的网格是正方形网格,点A,B,C,D,O 是网格线交点,那么∠AOB∠COD.(填“>”,“<”或“=”)【题型2 角的和差】【例2】(2021秋•安庆期末)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数.【变式2-1】(2021秋•五常市期末)用一副三角板不能画出的角是()A.75°B.105°C.110°D.135°【变式2-2】2021秋•北碚区期末)将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕.若∠ABE=30°,则∠DBC为度.【变式2-3】(2021秋•荔湾区期末)把一副三角尺ABC与BDE按如图所示那样拼在一起,其中A、D、B三点在同一直线上,BM为∠ABC的平分线,BN为∠CBE的平分线,则∠MBN的度数是()A.30°B.45°C.55°D.60°【题型3 n等分线】【例3】(2021秋•罗湖区校级期末)如图,已知O为直线AB上一点,过点O向直线AB 上方引三条射线OC、OD、OE,且OC平分∠AOD,∠2=3∠1,∠COE=70°,求∠2的度数.【变式3-1】(2021秋•奉化区校级期末)OB是∠AOC内部一条射线,OM是∠AOB平分线,ON是∠AOC平分线,OP是∠NOA平分线,OQ是∠MOA平分线,则∠POQ:∠BOC=()A.1:2B.1:3C.2:5D.1:4【变式3-2】(2021秋•江汉区期末)如图,射线OB、OC在∠AOD内部,其中OB为∠AOC 的三等分线,OE、OF分别平分∠BOD和∠COD,若∠EOF=14°,请直接写出∠AOC 的大小.【变式3-3】(2021秋•越秀区校级月考)如图1,已知∠AOB=120°,∠COD=60°,OM在∠AOC内,ON在∠BOD内,∠AOM=13∠AOC,∠BON=13∠BOD.(本题中所有角均大于0°且小于等于180°)(1)∠COD从图1中的位置绕点O逆时针旋转到OC与OB重合时,如图2,则∠MON =°;(2)∠COD从图2中的位置绕点O逆时针旋转n°(0<n<120且n≠60),求∠MON 的度数;(3)∠COD从图2中的位置绕点O顺时针旋转n°(0<n<180且n≠60a,其中a为正整数),直接写出所有使∠MON=2∠BOC的n值.【题型4 角平分线】【例4】(2021秋•武都区期末)如图所示,点O是直线AB上一点,OE,OF分别平分∠AOC和∠BOC,若∠AOC=68°,则∠BOF和∠EOF是多少度?【变式4-1】(2021秋•南山区期末)已知三条不同的射线OA、OB、OC,有下列条件,其中能确定OC平分∠AOB的有()①∠AOC=∠BOC②∠AOB=2∠AOC③∠AOC+∠COB=∠AOB④∠BOC=12∠AOBA.1个B.2个C.3个D.4个【变式4-2】(2021秋•曲阳县期末)已知将一副三角板(直角三角板OAB和直角板OCD,∠AOB=90°,∠ABO=45°,∠CDO=90°,∠COD=30°)(1)如图1摆放,点O、A、C在一条直线上,∠BOD的度数是;(2)如图2,变化摆放位置将直角三角板COD绕点O逆时针方向转动,若要OB恰好平分∠COD,则∠AOC的度数是;(3)如图3,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC.射线ON 平分∠BOD,如果三角板OCD在∠AOB内绕点O任意转动,∠MON的度数是否发生变化?如果不变,求其值;如果变化,说明理由.【变式4-3】(2021秋•裕华区校级期中)如图1,∠AOB=40°,∠AOB的一边OB与射线OM重合,现将∠AOB绕着点O按顺时针方向旋转180°.在旋转过程中,当射线OA、OB或者直线MN是某一个角(小于180°)的平分线时,旋转角的度数为.【题型5 余角与补角的定义】【例5】(2021春•金山区期末)如果一个角的补角的2倍减去这个角的余角恰好等于这个角的4倍,求这个角的度数.【变式5-1】(2021•寻乌县模拟)已知∠A是锐角,∠A与∠B互补,∠A与∠C互余,则∠B﹣∠C的值等于()A.45°B.60°C.90°D.180°【变式5-2】(2020秋•麦积区期末)一个角的补角加上10°后,等于这个角的余角的3倍,求这个角以及它的余角和补角的度数.【变式5-3】(2021秋•沂水县期末)如图,已知∠AOB=130°,画∠AOB的平分线OC,画射线OD,使∠COD和∠AOC互余,并求∠BOD的度数.【题型6 利用余角或补角的性质得角相等】【例6】(2021秋•鹿邑县期末)如图,O为直线AB上一点,∠DOE=90°,OD是∠AOC 的角平分线,若∠AOC=70°.(1)求∠BOD的度数.(2)试判断OE是否平分∠BOC,并说明理由.【变式6-1】(2021秋•旌阳区期末)如图,两个直角∠AOC和∠BOD有公共顶点O,下列结论:①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠AOD+∠BOC=180°;④若OB平分∠AOC,则OC平分∠BOD;⑤∠AOD的平分线与∠BOC的平分线是同一条射线,其中正确的有.(填序号)【变式6-2】(2021秋•芮城县期末)综合与实践已知直线AB 经过点O ,∠COD =90°,OE 是∠BOC 的平分线.(1)如图1,若∠AOC =30°,求∠DOE ;(2)如图1,若∠AOC =α,求∠DOE ;(用含α的式子表示)(3)将图1中的∠COD 绕顶点O 顺时针旋转到图2的位置,其它条件不变,(2)中的结论是否还成立?试说明理由;(4)将图1中的∠COD 绕顶点O 逆时针旋转到图3的位置,其它条件不变,直接用含α的式子表示∠DOE .【变式6-3】(2019秋•东西湖区期末)如图1,平面内一定点A 在直线EF 的上方,点O 为直线EF 上一动点,作射线OA 、OP 、OA ',当点O 在直线EF 上运动时,始终保持∠EOP =90°、∠AOP =∠A 'OP ,将射线OA 绕点O 顺时针旋转60°得到射线OB .(1)如图1,当点O 运动到使点A 在射线OP 的左侧,若OA '平分∠POB ,求∠BOF 的度数;(2)当点O 运动到使点A 在射线OP 的左侧,且∠AOE =3∠A 'OB 时,求∠AOF ∠AOP 的值;(3)当点O 运动到某一时刻时,∠A 'OB =130°,请直接写出∠BOP = 度.【题型7 求几何图形中互余或互补角的个数】【例7】(2021•娄星区模拟)如图,C 是直线AB 上一点,CD 是∠ACB 的平分线. ② 图中互余的角有 ;②图中互补的角有 ;③图中相等的角有 .【变式7-1】(2021秋•南开区期末)如图所示,已知O 是直线AB 上一点,∠BOE =∠FOD =90°,OB 平分∠COD .(1)图中与∠DOE 相等的角有 ;(2)图中与∠DOE 互余的角有 ;(3)图中与∠DOE 互补的角有 .【变式7-2】(2021秋•成都期中)如图,O 是直线AB 上的一点,∠AOD =120°,∠AOC =90°,OE 平分∠BOD .写出图中所有互补的角和互余的角.【变式7-3】(2021春•吴中区月考)如果∠α和∠β互补,且∠α>∠β,则下列式子中:①90°﹣∠β;②∠α﹣90°;③12(∠α+∠β);④12(∠α﹣∠β).可以表示∠β的余角的有( )A .①②B .①②③C .①②④D .①②③④【题型8 数学思想方法与角】【例8】(2021秋•河东区期末)已知∠AOB=90°,OC为一射线,OM,ON分别平分∠BOC和∠AOC,则∠MON是()A.45°B.90°C.45°或135°D.90°或135°【变式8-1】(2021秋•成华区期中)(1)如图1,射线OC、OD在∠AOB的内部,射线OM、ON分别平分∠AOD、∠BOC、且∠BON=50°,∠AOM=40°,∠COD=30°,求∠AOB的度数;(2)如图2,射线OC、OD在∠AOB的内部,射线OM、ON分别平分∠AOD、∠BOC、且∠AOB=150°,∠COD=30°,求∠MON的度数【变式8-2】(2021秋•无锡期末)如图,∠AOB=150°,∠COD=40°,OE平分∠AOC,则2∠BOE﹣∠BOD=°.【变式8-3】(2021秋•镇海区期末)新定义问题如图①,已知∠AOB,在∠AOB内部画射线OC,得到三个角,分别为∠AOC、∠BOC、∠AOB.若这三个角中有一个角是另外一个角的2倍,则称射线OC为∠AOB的“幸运线”.(本题中所研究的角都是大于0°而小于180°的角.)【阅读理解】(1)角的平分线这个角的“幸运线”;(填“是”或“不是”)【初步应用】(2)如图①,∠AOB=45°,射线OC为∠AOB的“幸运线”,则∠AOC的度数为;【解决问题】(3)如图②,已知∠AOB=60°,射线OM从OA出发,以每秒20°的速度绕O点逆时针旋转,同时,射线ON从OB出发,以每秒15°的速度绕O点逆时针旋转,设运动的时间为t秒(0<t<9).若OM、ON、OA三条射线中,一条射线恰好是以另外两条射线为边的角的“幸运线”,求出所有可能的t值.。
4.3.2角的比较与运算 课件人教版七年级数学上册
典型例题 例2 把一个周角7等分,每一份是多少度的角(精确到分)?
解:360º÷7=51º+3º÷7 =51º+180′÷7 ≈ 51º26′.
答:每份约是51º26′.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
随堂练习
练习1 按图填空: (1)∠AOB+∠BOC=_∠__A__O_C____; (2)∠AOC+∠COD=_∠__A_O__D____; (3)∠BOD-∠COD=_∠__B_O__C____; (4)∠AOD-__∠__B_O_D____=∠AOB.
探究 怎么用符号语言表示角平分线呢?
C
O
B
A
∵OB平分∠AOC,
∴∠AOB =∠BOC = 1 ∠AOC
2
(或者∠AOC =2 ∠AOB = 2∠COB ).
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
探究 类似角平分线,如图射线OB、OC是∠AOD的三等分线.
D
α α α
O
C B
A
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
随堂练习
练习2 如图,OP是∠AOB的平分线,则下列说法错误的是( C )
A.∠AOB=2∠AOP
C.∠AOB= 1 ∠BOP 2
B.∠AOP= 1 ∠AOB 2
D.∠AOP=∠BOP
创设情境
探究新知
角
的
应用新知
比
较
巩固新知
与 运
算
课堂小结
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
典型例题 例1 如图,O是直线AB上一点,∠AOC=53º17′,求∠BOC的度数.
两角和与差及二倍角公式
计算cos(π/3 - α)的值。
例题2
计算sin2α的值。
解
利用两角和与差公式,cos(π/3 - α) = cosπ/3cosα + sinπ/3sinα = 1/2cosα + √3/2sinα。
解
利用二倍角公式,sin2α = 2sinαcosα。
THANKS
谢谢
二倍角公式的应用
计算三角函数值
利用二倍角公式,可以计算一些三角函数值,例如计算sin2α、 cos2α等。
证明三角恒等式
通过二倍角公式,可以证明一些三角恒等式,例如 sin2α=2sinαcosα等。
解决实际问题
在解决一些实际问题时,如角度的调整、测量等,可以利用二倍角 公式进行计算。
例题解析与解答
公式应用与例题解析
两角和与差公式的应用
计算角度的和与差
利用两角和与差公式,可以方便 地计算两个角的和或差,例如计 算两个角的和或差的角度。
简化三角函数式
通过两角和与差公式,可以将复 杂的三角函数式进行简化,从而 便于计算或化简。
解决实际问题
在解决一些实际问题时,如角度 的调整、测量等,可以利用两角 和与差公式进行计算。
04
角的乘法性质是三角函数中一个重要的性质,它可以用于推导其他的 三角函数公式和定理。
03
CHAPTER
公式推导与证明
两角和与差公式的推导
两角和公式推导
利用三角函数的加法公式,将两角视 为不同象限的角,通过三角函数的性 质推导出两角和的三角函数公式。
两角差公式推导
利用三角函数的减法公式,将两角视 为同象限的角,通过三角函数的性质 推导出两角差的三角函数公式。
两角和与差及二倍角公式
苏科版(2024)七年级数学上册第六章习题练课件:6.2.1 角的概念与度量
能力提升全练
11.(2022广西百色中考,15,★☆☆)按如图所示的方式摆放一 副三角板,直角顶点重合,直角边所在直线分别重合,那么∠ BAC的大小为 135 °.
解析 根据题意可得,∠BAC=180°-45°=135°.
12.(2024湖南郴州桂东期末,16,★★☆)将一副三角板按如图 所示的方式摆放,若∠BAE=135°20',则∠CAD的度数是44°40' .
1 ×60'=5'.
12
知识点3 角的和与差
8.已知∠AOB=60°,∠BOC=35°,则∠AOC等于(D )
A.95° B.25°
C.35° D.95°或25°
解析 如图1,∠BOC的边OC在∠AOB的内部时, ∠AOC=∠AOB-∠BOC=60°-35°=25°; 如图2,∠BOC的边OC在∠AOB的外部时, ∠AOC=∠AOB+∠BOC=60°+35°=95°. 综上所述,∠AOC等于95°或25°.故选D.
.
14.(2024江苏扬州高邮期末,24,★★★)三角尺中的数学问题.
(1)如图1,将一副三角尺的直角顶点C叠放在一起,∠ACB=∠DCH=90°.
①若∠BCH=36°,则∠ACD=
°.
②若∠ACD=130°,则∠BCH=
°.
③猜想∠ACD与∠BCH之间的数量关系,并说明理由.
(2)如图2,若是两个同样的三角尺,将它们60°角的顶点A叠放 在一起,∠ACB=∠AEF=90°,直接写出∠CAF与∠EAB之间的数量关系.
9.(2024江苏南京玄武期末)钟表8时30分时,时针与分针所成
角的度数为 ( B )
A.110°
B.75°
C.105°
《角的比较》 知识清单
《角的比较》知识清单一、角的定义角是由公共端点的两条射线所组成的图形。
这个公共端点叫做角的顶点,这两条射线叫做角的边。
角也可以看作是一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形。
二、角的表示方法1、用三个大写字母表示,例如∠AOB,其中 O 为顶点,A、B 为角的两条边上的点,且 A、B 分别在 O 的两侧。
2、用一个大写字母表示,此时这个顶点处只有一个角,例如∠O。
3、用一个数字表示,例如∠1。
4、用一个希腊字母表示,例如∠α。
三、角的度量1、角的度量单位:度、分、秒。
1 度= 60 分,1 分= 60 秒,1 周角= 360 度,1 平角= 180 度。
2、角度的换算:(1)将度化为分、秒:将度的小数部分乘以 60 得到分,再将分的小数部分乘以 60 得到秒。
(2)将分、秒化为度:先将秒除以 60 化为分,再将分除以 60 化为度。
四、角的比较方法1、度量法用量角器量出角的度数,然后比较它们的大小。
度数大的角大,度数小的角小。
2、叠合法(1)将两个角的顶点及一条边重合。
(2)另一条边在重合边的同侧,比较另一条边的位置。
(3)另一条边在里面的角小,另一条边在外面的角大。
五、角的平分线从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
例如,若 OC 是∠AOB 的平分线,则∠AOC =∠BOC =1/2∠AOB,∠AOB = 2∠AOC = 2∠BOC。
六、角的和差1、角的和:∠AOB +∠BOC =∠AOC2、角的差:∠AOC ∠AOB =∠BOC七、余角和补角1、余角:如果两个角的和等于 90 度(直角),就说这两个角互为余角,简称互余。
其中一个角是另一个角的余角。
例如,∠A +∠B = 90°,则∠A 是∠B 的余角,∠B 也是∠A 的余角。
2、补角:如果两个角的和等于 180 度(平角),就说这两个角互为补角,简称互补。
其中一个角是另一个角的补角。
角的比较
4 角的比较1.角的大小比较(1)度量法:先用量角器测量出各角的度数,再按照角的度数比较大小,从而确定两个角的大小关系.(2)叠合法:两个角比较大小时,把两个角的顶点和一条边分别重合,另一条边放在重合边的同侧,根据另一条边的位置确定角的大小.如比较∠ABC和∠DEF的大小,可把∠DEF移到∠ABC上,使它的顶点E和∠ABC的顶点B重合,一边ED和BA重合,另一边EF和BC落在BA的同一侧.①如果EF和BC重合(如图1),那么∠DEF等于∠ABC,记作∠DEF=∠ABC;②如果EF落在∠ABC的外部(如图2),那么∠DEF大于∠ABC,记作∠DEF>∠ABC;③如果EF落在∠ABC的内部(如图3),那么∠DEF小于∠ABC,记作∠DEF<∠ABC.【例1】如图,求解下列问题:(1)比较∠COD和∠COE的大小;(2)借助三角尺,比较∠EOD和∠COD的大小;(3)用量角器度量,比较∠BOC和∠COD的大小.分析:(1)可用叠合法比较.∠COD和∠COE有一条公共边OC,而OD在∠COE的内部,故∠COD小;(2)我们要选择三角尺的一个角来估算这两个角的度数,就可以达到比较的目的;(3)通过度量容易得出结论.解:(1)由图可以看出,∠COD<∠COE.(2)用三角尺中30°的角分别和这两个角比较,可以发现∠EOD<30°,∠COD>30°,所以∠EOD<∠COD.(3)通过度量可知:∠BOC=46°,∠COD=44°,所以,∠BOC>∠COD.2.角的平分线(1)定义:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.①角平分线是以角的顶点为端点的特殊射线,它在角的内部;②角平分线把角分成两个相等的角.(2)角平分线的表示:①OC是∠AOB的平分线;②∠AOC=∠COB=12∠AOB,∠AOB=2∠AOC=2∠COB.(3)作角平分线的方法:①利用量角器量出角的度数,取角的度数的一半并画出射线;②折叠:把已知角的两边重合后再折叠,可得已知角的平分线.【例2】如图,已知∠AOC=80°,∠BOC=50°,OD平分∠BOC,求∠AOD.分析:由图可知∠AOD=∠AOC+∠DOC,所以只要求出∠DOC 即可.解:因为OD平分∠BOC,所以∠DOC=12∠BOC. 又因为∠BOC=50°,所以∠DOC=12×50°=25°.所以∠AOD=∠AOC+∠DOC=80°+25°=105°.3.角平分线及角的和、差计算(1)角的和、差的意义如图,①和:∠AOB=∠1+∠2;②差:∠1=∠AOB-∠2,∠2=∠AOB-∠1.(2)角平分线及角的和、差计算与角有关的计算,是本节的重点,也是易错点.解决这类问题,关键是根据角平分线得到相等的角,或求出一个较大的角,借助于某一个中间的角,把未知量转化为已知量.(3)三角板中角的和与差一副三角板有两块,一块含30°角,60°角,90°角;一块含45°角,45°角,90°角.借助于三角板,即可以画出上面的角. 利用三角板和角的和、差,还可以得到以下度数的角:15°,75°,105°,120°,135°,150°,165°.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________【例3-1】 已知∠AOB =30°,∠BOC =20°,则∠AOC 的角度是__________.错解:50°错解分析:误以为∠AOC 只是∠AOB 与∠BOC 的和,即∠AOC =∠AOB +∠BOC =30°+20°=50°.正解:10°或50°正解思路:如图,①∠AOC =∠AOB +∠BOC =30°+20°=50°;②∠AOC =∠AOB -∠BOC =30°-20°=10°.【例3-2】 如图,AOC 为一直线,OD 是∠AOB 的平分线,∠BOE =12∠EOC ,∠DOE =72°,求∠EOC 的度数.分析:本题中角之间的关系较复杂,直接求解有困难,可以通过设未知数、列方程的方法求解.设∠AOB =x °,因为OD 是∠AOB 的平分线,所以∠BOD =⎝ ⎛⎭⎪⎫x 2°;观察图形知,∠AOB 和∠BOC 互为补角,所以∠BOC =(180-x )°;又因为∠BOE =12∠EOC ,所以∠BOE =13∠BOC =⎝ ⎛⎭⎪⎫180-x 3°;然后根据∠DOE =∠BOD +∠BOE =72°可列出方程x 2+180-x 3=72,解方程求出x 的值后,再根据∠EOC =23(180-x )°求出∠EOC 的度数.解:设∠AOB =x °,则∠BOD =⎝ ⎛⎭⎪⎫x 2°,∠BOC =(180-x )°,∠BOE =⎝ ⎛⎭⎪⎫180-x 3°, 由∠DOE =72°可得x 2+180-x 3=72.解这个方程,得x =72.∴∠EOC =23(180-x )°=72°.4.角的分类(1)角的分类:根据角的度数,常常把大于0°而小于180°的角分为锐角、直角、钝角三类.(2)各种角的规定:锐角:大于0°且小于90°的角.直角:等于90°的角.钝角:大于90°且小于180°的角.平角:等于180°的角.周角:等于360°的角.(3)角之间的关系:锐角<直角<钝角<平角<周角.1平角=2直角=180°;1周角=2平角=4直角=360°.若没有特别说明,我们平常所说的角是指小于平角的角.【例4】如图,解答下列问题:(1)比较图中∠AOB,∠AOC,∠AOD的大小;(2)找出图中的直角、锐角和钝角.分析:(1)角的大小可以观察得出;(2)根据各类角的特征观察得出.解:(1)∠AOD>∠AOC>∠AOB;(2)直角有∠AOC,锐角有∠AOB,∠BOC,∠COD,钝角有∠AOD,∠BOD.。
角的比较大小 角的比较
角的比较大小角的比较教学建议一、知识结构二、重点、难点分析本节教学的重点是角的大小比较,角平分线的意义,两个角的和、差、倍、分的意义.难点是空间观念,几何识图能力的培养.角的比较的相关知识是进一步学习角的度量和画法,以及进一步研究平面几何图形的基础.1﹒角的大小的比较有两种方法:(1)重合法:即把要比较的两个角的顶点和一条边重合,再比较另一条边的位置;(2)度量法;即比较两个角的度数.两种方法的比较结果是一致的.2.利用比较角大小的上述两种方法,就可以画出角的和、差、倍、分,并进而比较角的和、差、倍、分的大小.3.对于角平分线的概念,要注意以下两点:(1)它是角的内部的一条射线,并且是一条特殊的射线,它把角分成了相等的两部分.(2)要掌握角平分线的数学表达式:若OC 是的平分线,则或4.在比较角的大小时,应注意角的大小只与开口的大小有关,而与角的边画出部分的长短无关.这是因为角的边是射线而非线段.若用射线旋转成角的定义,也可以说转得较多的角较大.三、教法建议1.本节教材,完全可以对照线段的比较,线段的和差倍分,以及中点的意义来进行.两者是十分相似的.2.比较两个角的大小时,把角叠合起来,一定要使两个角的顶点及一边重合,另一边落在第一条边的同旁,否则不能进行比较.这可以通过叠合两块三角尺比较角的大小的实例来说明.这和线段大小比较十分相似.3.由于前面学过线段的大小比较和线段的和、差、倍、分.本课教学的指导思想就是运用类比联想的思维方法,引导学生利用旧知识,解决新问题.4.在本课的练习中,在可能的情况下,将以后经常遇到的图形,提前让学生见到,为以后的学习奠定了基础.5.在角的和、差、倍、分的计算中,由于度、分、秒的四则运算还没有讲到,因此只进行度的加、减.教学设计示例一、素质教育目标(一)知识教学点1.理解两个角的和、差、倍、分的意义.2.掌握角平分线的概念3.会比较角的大小,会用量角器画一个角等于已知角.(二)能力训练点1.通过让学生亲自动手演示比较角的大小,画一个角等于已知角等,培养训练学生的动手操作能力.2.通过角的和、差、倍、分的意义,角平分线的意义,进一步训练学生几何语言的表达能力及几何识图能力,培养其空间观念.(三)德育渗透点通过具体实物演示,对角的大小进行比较这一由感性认识上升到理性认识的过程,培养学生严谨的科学态度,对学生进行辩证唯物主义思想教育.(四)美育渗透点通过对角的大小比较,提高学生的鉴赏力,通过学生自己作角及角平分线,使学生进一步体会几何图形的形象直观美.二、学法引导1.教师教法:直观演示、尝试、指导相结合.2.学生学法:主动参与、积极思维、动手实践相结合.三、重点·难点·疑点及解决办法(一)重点角的大小比较,角平分线的意义,两个角的和、差、倍、分的意义.(二)难点空间观念,几何识图能力的培养.(三)疑点角的和、差、倍、分的意义.(四)解决办法通过学生主动参与,在自觉与不自觉中掌握知识点,再经过练习,解决难点和疑点.四、课时安排1课时五、教具学具准备投影仪或电脑、一副三角板、自制胶片(软盘)、量角器.六、师生互动活动设计七、教学步骤(一)明确目标通过教学,使学生在角的比较中掌握方法,理解相应概念,并掌握角平分线的概念.(二)整体感知通过现代化教学手段与学生的画图相结合,完成本节教学任务.(三)教学过程创设情境,引出课题师:请同学们拿出你的一副三角板,你能说出这几个角的大小吗?学生基本知道一副三角板各角的度数,他们可能利用度数比较,也可能通过观察,也会有同学用叠合法.这里可以让学生讨论,说出采用的比较方法,但叙述可能不规范.教师既不给予肯定也不否定,只是再提出新问题.投影显示:两个度数相差1度以内的角,不标明度数,只凭眼观察不能确定两个角的大小.师:对于这两个角你能说出它们哪一个大?哪一个小吗?(学生困惑时教师点出课题.)这节课我们就学习角的比较.同学们提出的比较一副三角板各角的方法有些很好,但不规范.希望同学们认真学习本节内容,掌握角的比较等知识,为以后的学习打好基础.(板书课题)[板书] 1.5 角的比较【教法说明】由学生熟知的三角板各角的比较入手,把学生带入比较角的大小的意境.但问题一转,出现了不标度数,观察又不能确定大小的角,当学生束手无策时,教师提出这就是我们要学习的新内容,调动学生的积极性,吸引其注意力.探究新知1.角的比较(1)叠合法教师通过活动投影演示:两个角设计成不同颜色,三种情况:,,,如图1所示.图1演示:移动,使其顶点与的顶点重合,一边和重合,出现以下三种情况,如图2所示.图2师:请同学们观察的另一边的位置情况,你能确定出两个角的大小关系吗?学生活动:观察教师演示后,同桌也可以利用两副三角板演示以上过程,帮助理解比较两角的大小,回答教师提出的问题.教师根据学生回答整理板书.[板书]① 与重合,等于,记作.② 落在的内部,小于,记作.③ 落在的外部,大于,记作.【教法说明】通过直观的实物演示和投影(电脑)显示,既加强了角的比较的直观性,又可提高学生的兴趣.注意再次强调角的大小只与开口大小有关,与边的长短无关,以及角的符号与小于号、大于号书写时的区别.(2)测量法师:小学我们学过用量角器测量一个角,角的大小也可以按其度数比较.度数大的角则大,度数小的则小.反之,角大度数大,角小度数小.学生活动:请同桌分别画两个角,然后交换用量角器测量其度数,比较它们的大小.【教法说明】测量前教师可提问使用量角器应注意的问题.即三点:对中;重合;读数.让学生动手操作,培养他们动手能力.反馈练习:课本第32页习题1.3A组第3题,用量角器测量、、的大小,同桌交换结果看是否准确.2.角的和、差、倍、分投影显示:如图1,、.图1提出问题:如图1,,把移到上,使它们的顶点重合,一边重合,会有几种情况?请同学们在练习本上画出.你如何把移到上,才能保证的大小不变呢?学生活动:讨论如何移到上,移动后有几种情况,在练习本上画出图形.(有小学测量的基础,学生不会感到困难,可放手让学生自己动手操作.)教师根据学生回答小结:量角器可起移角的作用,先测量的度数,然后以的顶点为顶点,其中一边为作作一个角等于,出现两种情况.如图2及图3所示:(1)在内部时,如图2,是与的差,记作:.(2)在外部时,如图3,是与的和,记作:.【教法说明】在以上教学过程中,一定要注意训练学生的看图能力和几何语句表达能力,如与的和差所得到的两个图形中,还可让学生观察得到图2中是与的差,记作:,或与的和等于,记作:,图3中是与的差,记作:等进行看图能力的训练.图2 图3反馈练习:学生在练习本上完成画图.已知如图4,,画,使.师:两个的和是,那么是的2倍,记作,或是的,记作:.同样,有角的3倍和等等.角的和、差、倍、分的度数等于它们的度数的和、差、倍、分.图43.角平分线学生观察以上反馈练习中的图形,,也就是把分成了两个相等的角,这条射线叫的平分线.[板书]定义:一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线.几何语言表示:是的平分线,(或).说明:若,则是的平分线,同样有两条三等分线,三条四等分线,等等.变式训练,培养能力投影显示:1.如图1填空:图1①②2.是的平分线,那么,①②图23.如图2:是的平分线,是的平分线①若,则② ,,则度【教法说明】练习中的第1、2题可口答,第3题在教师引导下写出过程,初步渗透推理过程,培养学生的逻辑推理能力,推理过程由已知入手,联想得出结论.(四)总结、扩展找学生回答:今天学习了哪些内容?教师归纳得出以下知识结构:八、布置作业课本第33页B组第1、2题.作业答案1.解:,若,那么,2.解:∵ 是的平分线,∴ .又∵ 是的平分线,∴ .又∵ ,∴ .说明:学生作业或回答问题,尽量要求用“∵ ∴”的形式,为以后解证明题打好基础.九、板书设计同七、(四)的格式.。
角的大小课件
角的半数
一个角是另一个角的半数,其度数等于一个角的度数除以2。例如,如果一个角是60度,半的角是30 度。
角的补角和余角
补角
两个角的和为90度,这两个角互为补 角。例如,如果一个角是30度,另一 个角是60度,它们互为补角。
在日常生活中,角度的应用还涉及到安全问题,如车辆的 转向角度、电梯的倾斜角度等,都需要控制在安全范围内 ,以保障人们的生命安全。
角度在科学中的应用
角度在科学中有着广泛的应用,如物理学中的力矩、化学中的键角、生物学中的 关节角度等。这些角度的大小和方向对科学现象的解释和预测具有重要意义。
在科学实验中,角度的测量和控制也是非常重要的,如光谱分析中的入射角和折 射角、望远镜的指向角等,都需要精确测量和控制,以保证实验结果的准确性和 可靠性。
角度在机械设计中的应用
01
02பைடு நூலகம்
03
机械零件的配合
在机械设计中,许多零件 需要精确的角度配合,如 齿轮、轴承等,以确保机 器的正常运转。
机械运动的控制
通过调整机械运动中的角 度,可以精确控制机器的 运动轨迹和方向。
机械强度与刚度
合理的角度设计可以提高 机械零件的强度和刚度, 从而提高机器的整体性能 和使用寿命。
角度在运动学中的应用
运动轨迹的控制
在运动学中,角度是一个重要的 参数,通过调整角度可以精确控
制物体的运动轨迹和方向。
运动员技术的提高
在体育比赛中,许多技术动作需 要精确的角度控制,如投掷、跳 高等,通过训练可以提高运动员
的角度控制能力。
运动伤害的预防
和角公式差角公式
和角公式差角公式和角公式和差角公式是初中数学中的重要公式之一,它们在解决三角函数的计算问题时起到了重要的作用。
下面我将详细介绍和角公式和差角公式的概念、推导以及应用。
一、和角公式:和角公式是指两个角的和的三角函数与这两个角的三角函数之间的关系。
对于任意两个角A和B,和角公式可以表示为:sin(A+B) = sinA·cosB + cosA·sinBcos(A+B) = cosA·cosB - sinA·sinBtan(A+B) = (tanA + tanB) / (1 - tanA·tanB)其中,A和B表示两个角的大小,sin、cos、tan分别表示正弦、余弦和正切函数。
和角公式的推导可以通过使用三角函数的定义和三角恒等式进行推理。
具体推导过程如下:1. 对于sin(A+B),根据三角函数的定义可知,sin(A+B) = y / r,其中y表示点(A+B)在单位圆上的纵坐标,r表示点(A+B)到原点的距离。
根据三角函数的定义,可以得到y = sin(A+B)·r。
2. 根据三角函数的定义,sinA = y1 / r,sinB = y2 / r,其中y1表示点A在单位圆上的纵坐标,y2表示点B在单位圆上的纵坐标。
将y1和y2代入y = sin(A+B)·r的公式中,得到y = (sinA·cosB + cosA·sinB)·r。
3. 根据三角函数的定义,sin(A+B) = y / r,将y代入到y = (sinA·cosB + cosA·sinB)·r的公式中,得到sin(A+B) = sinA·cosB + cosA·sinB。
类似的推导过程,可以得到cos(A+B) = cosA·cosB - sinA·sinB 和tan(A+B) = (tanA + tanB) / (1 - tanA·tanB)。
角的和差(48张PPT)数学
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
解
(2)若OD平分∠BOC,OE平分∠AOC,直接写出∠DOE的度数为________.
解 ∵OD平分∠BOC,OE平分∠AOC,
1
23Leabharlann 4567
8
9
14.如图,点O是直线AB上一点,过点O作射线OC,使∠AOC=110°.(1)∠BOC=_____°.
70
解析 ∠BOC=180°-∠AOC=70°,故答案为70.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
答案
解析
(2)现将射线OA绕点O以每秒10°角的速度顺时针旋转至与射线OB重合为止.设运动时间为t秒.当射线OA,射线OB,射线OC分别构成两个相等的角(重合除外)时,此时t的值为____________.
A
答案
解析 ∠1=180°-∠COB=180°-27°29′=179°60′-27°29′=152°31′.故选A.
解析
从一个角的 引出的一条射线,把这个角分成两个 的角,这条射线叫做这个角的平分线.
顶点
知识点2 角的平分线
答案
相等
自我检测
3.如图所示,OB是∠AOC的平分线,∠COD= ∠BOD,∠COD=17°,则∠AOD的度数是( )A.70° B.83° C.68° D.85°
角的和差课件(浙教版)
课后练习
1.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则 ∠AOC+∠DOB=( )
A.90°
B.120° C.160° D.180°
如∠β是∠γ与∠α的差,记做∠β=∠γ-∠α.
做一做
同一端点的三条射线如图,请完成下面的填空:
∠AOB+∠BOC=∠__A_O__C___=___1_1_0___度;
∠ AOC-∠BOC= ∠ __A_O_B____=___3_0____度; ∠BOC= ∠ AOC-∠ __A_O__B___=___8_0____度.
课后练习
6.如图,O 是直线 AB 上一点,∠AOC=53°17′,求∠BOC 的度数.
C
解:∵∠AOB 是平角,
∠AOB= ∠AOC+∠BOC.
A
O
B
∴∠BOC=∠AOB-∠AOC
=180°-53°17′ =179°60′-53°17′
如可何以计向算1?80º 借 1º,化为60′.
=126°43′.
第6章 图形的初步知识 6.7 角的和差
知识回顾
1、比较角的大小的方法: 方法一:度量法,即用量角器量出角的度数,通过比较角的度数来比较角的大小.度数大 的角大,度数小的角小. 方法二:叠合法.把一个角放到另一个角上,使它们的顶点重合,其中的一边也重合,并 使两个角的另一边都在这一条边的同侧. 2、角的分类: 锐角、直角、钝角、平角、周角.
课后练习 5.如图,用一副三角板画角,不可能画出的角的度数是( )
角的大小和角的和与差
⾓的⼤⼩和⾓的和与差第⼆章⼏何图形的初步认识第九课时⾓的⼤⼩、⾓的和与差【知识要点】1、如果从⼀个⾓的顶点引出的⼀条射线把这个⾓分成的两个⾓相等,那么这条射线叫做这个⾓的__________2、如果 90=∠+∠βα,那么我们就称α∠与β∠__________,简称_________.其中,α∠(β∠)叫做β∠(α∠)的___________.3、如果 180=∠+∠βα,那么我们就称α∠与β∠__________,简称_________.其中,α∠(β∠)叫做β∠(α∠)的___________.4、同⾓(或等⾓)的余⾓____________,同⾓(或等⾓)的补⾓_________.5、/_____1=///_____1=基础训练A 组⼀、选择题1、下列说法错误的是( )A.⾓的⼤⼩与⾓的两边画出的长短没有关系B.⾓的⼤⼩与它们的度数⼤⼩是⼀致的C.⾓的和差倍分的度数等于它们的度数的和差倍分D.若∠A+∠B>∠C,那么∠A ⼀定⼤于∠C 2、⽤⼀副三⾓板不能画出( )A.75°⾓B.135°⾓C.160°⾓D.105°⾓ 3、在∠AOB 的内部任取⼀点C ,作射线OC 那么有:( ) A .∠AOC=∠BOC B .∠AOC >∠BOC C .∠BOC >∠AOB D .∠AOB >∠AOC4、如图:OC 是∠AOB 的平分线,OD 是∠BOC 的平分线,那么下列各式中正确的是:( )A B C D ....∠=∠∠=∠∠=∠∠=∠COD AOC AOD AOBBOD AOBBOC AOB122313325、如图,O 是直线AB 上⼀点,∠BOD=90?,∠COE=90?,那么下列各式中错误的是:( ) A .∠AOC=∠DOE B .∠COD=∠BOE C .∠AOD=∠BOD D .∠BOE=∠AOC6、如图,若∠AOC=∠BOD,那么∠AOD 与∠BOC 的关系是( )A.∠AOD>∠BOCB.∠AOD<∠BOC;C.∠AOD=∠BOCD.⽆法确定OD C (3)A B 7、下列各式中,正确的是:( )A .8358350.?=?'B . 3712363748?'''=?.C . 2424242444?'''=?.D . 41254115.?=?'8、⾓α的余⾓的补⾓是:( ) A .180?-α B .90?+α C .90?-α D .180?+α9、两个锐⾓的和:( ) A .⼀定是锐⾓ B .⼀定是直⾓C .⼀定是钝⾓D .可能是锐⾓、直⾓、钝⾓ 10、下列说法中正确的是:( ) A .锐⾓⼤于它的余⾓ B .锐⾓⼩于它的补⾓C .锐⾓不⼩于它的补⾓D .锐⾓的补⾓⼩于锐⾓的余⾓⼆、填空题1、如图∠AOC= + ∠BOC=∠BOD -∠ =∠AOC -∠2、OC 是∠AOB 内部的⼀条射线,若∠AOC=12________,则OC 平分∠AOB;若OC 是∠AOB 的⾓平分线,则_________=2∠AOC.3、57.32?= 度分秒,17?14'24''=度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 几何图形的初步认识
第九课时 角的大小、角的和与差
【知识要点】
1、如果从一个角的顶点引出的一条射线把这个角分成的两个角相等,那么这条射线叫做这个角的__________
2、如果 90=∠+∠βα,那么我们就称α∠与β∠__________,简称_________.其中,
α∠(β∠)叫做β∠(α∠)的___________.
3、如果 180=∠+∠βα,那么我们就称α∠与β∠__________,简称_________.其中,
α∠(β∠)叫做β∠(α∠)的___________.
4、同角(或等角)的余角____________,同角(或等角)的补角_________.
5、/
_____1=
//
/
_____1=
基础训练A 组
一、选择题
1、下列说法错误的是( )
A.角的大小与角的两边画出的长短没有关系
B.角的大小与它们的度数大小是一致的
C.角的和差倍分的度数等于它们的度数的和差倍分
D.若∠A+∠B>∠C,那么∠A 一定大于∠C 2、用一副三角板不能画出( )
A.75°角
B.135°角
C.160°角
D.105°角 3、在∠AOB 的内部任取一点C ,作射线OC 那么有:( ) A .∠AOC=∠BOC B .∠AOC >∠BOC C .∠BOC >∠AOB D .∠AOB >∠AOC
4、如图:OC 是∠AOB 的平分线,OD 是∠BOC 的平分线,那么下列各式中正确的是:( )
A B C D ....∠=
∠∠=∠∠=∠∠=∠COD AOC AOD AOB
BOD AOB
BOC AOB
1
22
3
1
33
2
5、如图,O 是直线AB 上一点,∠BOD=90︒,∠COE=90︒,那么下列各式中错误的是:( ) A .∠AOC=∠DOE B .∠COD=∠BOE C .∠AOD=∠BOD D .∠BOE=∠AOC
6、如图,若∠AOC=∠BOD,那么∠AOD 与∠BOC 的关系是( )
A.∠AOD>∠BOC
B.∠AOD<∠BOC;
C.∠AOD=∠BOC
D.无法确定
O
D C (3)
A B 7、下列各式中,正确的是:( )
A .8358350.︒=︒'
B . 3712363748︒'''=︒.
C . 2424242444︒'''=︒.
D . 41254115.︒=︒'
8、角α的余角的补角是:( ) A .180︒-α B .90︒+α C .90︒-α D .180︒+α
9、两个锐角的和:( ) A .一定是锐角 B .一定是直角
C .一定是钝角
D .可能是锐角、直角、钝角 10、下列说法中正确的是:( ) A .锐角大于它的余角 B .锐角小于它的补角
C .锐角不小于它的补角
D .锐角的补角小于锐角的余角
二、填空题
1、如图∠AOC= + ∠BOC=∠BOD -∠ =∠AOC -∠
2、OC 是∠AOB 内部的一条射线,若∠AOC=
1
2
________,则OC 平分∠AOB;若OC 是∠AOB 的角平分线,则_________=2∠AOC.
3、57.32︒= 度 分 秒,17︒14'24''=
度。
4、一个角的余角为721842︒''',则这个角的补角为
_
O _
D
_
C _
B _
A 5、已知如图:直线A
B 和CD 相交于点O ,若 ∠AOD=5∠AO
C ,则∠BOC= 。
三、计算题
1、.如图,已知∠α、∠β ,画一个角∠γ,使∠γ=3∠β-
1
2
∠α. β
α
2、OC 是从∠AOB 的顶点O 引出的一条射线,若∠AOB=90°,∠AOB= 2∠BOC, 求∠AOC 的度数.
3、如图已知∠AOB=90°,∠BOC=60°, OD 是∠AOC 的平分线,求 ∠BOD 的度数。
_
E
_
D _
C _
B
_
A _1
_
D _
C
_
B
_
A _
O 4、如图,BD 平分∠ABC,BE 分∠ABC 分2:5两部分,∠DBE=21°, 求∠ABC 的度数.
培优训练B 组
一、选择题
1、小明看钟表上时间为3:30,则时针、分针成的角是( ) A 70度 B 75度 C.85度 D. 90度
2、下列说法:
①两条直线相交,有公共点而没有公共边的两个角是对顶角;
②如果两条线段没有交点,那么这两条线段所在直线也没有交点; ③邻补角的两条角平分线构成一个直角;
④直线外一点与直线上各点连接的所有线段中,垂线段最短. 其中正确的是( ) A.1个 B.2个 C.3个 D.4个
3、一个角的补角等于这个角的余角的3倍,则这个角等于( ) A.54° B.45° C.60°D.36°
4、如图:∠AOB =∠COD =90°,∠AOC=∠1 则∠BOD 的度数是( ) A. 90°+∠1
B. 90°+2∠1
C. 180°-∠1
D. 180°-2∠1
5、甲从A 出发向北偏东45度走到点B ,乙从点A 出发向北偏西30度
走到点C ,则∠BAC 等于( ) A 15度 B 75度 C 105度 D 135度 二、填空题
1、 如果∠AOB+∠BOC=180o
, 则∠AOB 与∠BOC 的平分线相交成____________. 2、 _________个平角=45°, 77°53′26"+33.3°=______________. 3、如图,已知AOB 是一条直线,∠1=∠2,∠3=∠4,OF ⊥AB .则
(1)∠AOC 的补角是 ; (2) 是∠AOC 的余角;
_2
_1
_
F
_
E _
D _
C _
B _
A
(3)∠DOC 的余角是 ; (4)∠COF 的补角是 .
三、计算题
1、如图,∠AOB 是平角,OD 、OC 、OE 是三条射线,OD 是∠AOC 的平分线, 请你补充一个条件,使∠DOE=90°,并说明你的理由.
O
D C
A
E B
2、拿一张长方形纸片,按图中的方法折叠一角,留下折痕EF ,如果 ∠1=40°,试求∠2的度数。
提高训练C 组
1、一个锐角和它的余角之比是5∶4,那么这个锐角的补角的度数是:( ) A .100︒ B .120︒ C .130︒ D .140︒
2、已知锐角α,那么α的补角与α的余角的差是:( ) A .60︒+α B .90︒ C .120︒ D .180︒-α
3、设一个锐角与这个角的补角的差的绝对值为α,则( )
A 、
900<<α B 、
900≤<α C 、
18090900<<≤<αα或 D 、
1800<<α
4、已知4∠和1∠互补,1∠和2∠互余,2∠和3∠互补,
1533=∠,求4∠的度数
5、如图14,将一副三角尺的直角顶点重合在一起. (1)若∠DOB 与∠DOA 的比是2∶11,求∠BOC 的度数.
(2)若叠合所成的∠BOC =n°(0<n<90),则∠AOD 的补角的度数与∠BOC 的度数之比是多少?
答案
【知识要点】
1、平分线
2、互为余角 互余 余角
3、互为补角 互补 补角
4、相等 相等
5、60 60
基础训练A 组 一、选择题
1、D
2、C
3、D
4、A
5、D
6、C
7、D
8、B
9、 D 10、B 二、填空题
1、AOB ∠ B O C ∠ C O D ∠ A O B ∠
2、AOB ∠ AOB ∠
3、57 19 12 2417⋅
4、///4218162
5、
150 三、计算题
1、略
2、
45 3、
75 4、
98
培优训练B 组 一、选择题
1、B
2、C
3、B
4、C
5、B 二、填空题 1、
90 2、4
1 //
/2611111 3、(1)BOC ∠ (2)FOC ∠ (3)FOD ∠(4)AOE ∠ 三、计算题
1、OE 平分BOC ∠
2、
100 拔高训练C 组
1、D
2、B
3、 C
4、
117 5、(1)
70 (2)1:1。