定积分和积分
函数的积分和定积分的计算
函数的积分和定积分的计算函数的积分是微积分中的重要概念,它在计算面积、求解物理问题等方面发挥着重要作用。
而定积分是函数积分的一种特殊形式,通常用于求解函数在某个区间上的总和或平均值。
在本文中,我们将探讨函数的积分及定积分的计算方法。
1. 函数的积分函数的积分是计算函数曲线与坐标轴之间所夹的面积。
一般情况下,函数的积分可以通过不定积分来表示。
不定积分是反函数求导的逆过程,通过求解函数的原函数来计算积分。
以函数f(x)为例,其积分表示为∫f(x)dx。
在计算不定积分时,需要先找出f(x)的原函数F(x),然后再加上常数C,即:∫f(x)dx = F(x) + C例如,对于函数f(x) = x^2 + 2x + 1,我们需要找出它的原函数。
根据幂函数的求导公式,可以得到F(x) = (1/3)x^3 + x^2 + x + C。
因此,函数f(x)的积分为∫(x^2 + 2x + 1)dx = (1/3)x^3 + x^2 + x + C。
2. 定积分的计算定积分是函数在某个区间上的总和或平均值。
它的计算方法是将区间分割成若干小的子区间,然后在每个子区间上计算函数值,并求和。
随着子区间数量的增加,定积分的计算结果越来越接近真实值。
定积分的表示方法为∫f(x)dx,在计算过程中,需要指定积分的上下限。
若将积分区间表示为[a, b],则定积分的计算公式为:∫[a, b]f(x)dx = lim(n->∞) Σ[n, i=1] f(xi)Δx其中,xi表示子区间的任意一点,Δx表示子区间的长度(即Δx = (b-a)/n),Σ表示求和,n表示子区间的数量。
举例来说,我们需要计算函数f(x) = 2x在区间[0, 2]上的定积分。
首先,将区间[0, 2]分割成n个子区间,计算每个子区间上的函数值并求和。
由于函数f(x) = 2x是线性函数,因此在每个子区间上的函数值都相等。
所以,定积分的计算公式可以简化为:∫[0, 2]2xdx = lim(n->∞) Σ[n, i=1] 2xiΔx将区间[0, 2]等分为n个子区间,则Δx = 2/n。
定积分运算法则
• 通过定积分求解经济学中的边际产量、边际消费等边际问题
求解经济学中的总量问题
• 通过定积分求解经济学中的总产量、总消费等总量问题
求解经济学中的平均问题
• 通过定积分求解经济学中的平均产量、平均消费等平均问题
谢谢观看.
Thank you for watching.
Docs
⌛️
06
定积分的数值计算方法
数值积分的基本原理与方法
数值积分的定义
数值积分的方法
• 通过数值方法近似求解定积分的值
• 辛普森法
• 龙贝格法
• 高斯积分法
数值积分的误差分析与控制
误差分析
误差控制
• 分析数值积分方法的误差来源
• 选择合适的数值积分方法
• 估计数值积分方法的误差范围
• 控制积分区间的长度
求解物体的速度
• 通过定积分求解物体在变力作用下的速度
求解物体的加速度
• 通过定积分求解物体在变力作用下的加速度
定积分在工程学中的应用
求解工程问题的面积
求解工程问题的体积
求解工程问题的质心位置
• 通过定积分求解曲线围成的面积
• 通过定积分求解曲面围成的体积
• 通过定积分求解物体的质心位置
定积分在经济学中的应用
积分问题
换元积分法的原理
• 利用换元公式将原积分变量变换为新变量,从而简化积分过程
换元积分法的常见类型与方法
01
幂函数换元法
• 将复杂的幂函数积分问题转化为简单的指数函数积分问
题
02
三角函数换元法
• 将复杂的三角函数积分问题转化为简单的指数函数积分
问题
03
积分的定积分与不定积分
积分的定积分与不定积分积分是微积分中的重要概念之一,用于求解曲线下面积、函数的平均值、变化率等问题。
在积分中,我们常常会遇到定积分和不定积分两种形式。
本文将从定义、性质、计算方法等方面介绍定积分和不定积分的基本知识。
一、定积分的定义与性质定积分是对函数在给定区间上的积分,它的定义如下:设函数f(x)在区间[a, b]上有界,将[a, b]分成n个小区间,其中第i 个小区间为[x_(i-1), x_i],对于任意一个小区间,取其左端点上的函数值f(x_(i-1))作为近似值,求所有小区间上的近似求和,然后令n趋向于无穷大,即可得到定积分的值。
定积分的性质如下:1. 定积分的值和积分的区间有关,即[a, b]上的积分与[b, a]上的积分相差一个负号,表示积分的方向。
2. 一个区间上的定积分可以分割成多个子区间的积分之和,即[a, b]上的积分等于[a, c]上的积分加上[c, b]上的积分。
3. 函数的常数倍不影响定积分的值,即k∫f(x)dx = ∫(k*f(x))dx。
4. 定积分有加法原理,即∫(f(x)+g(x))dx = ∫f(x)dx + ∫g(x)dx。
二、不定积分的定义与性质不定积分是求解函数的原函数的过程,它的定义如下:设函数f(x)在区间I上有原函数F(x),则F(x)+C称为f(x)在I上的不定积分,其中C为任意常数。
不定积分的性质如下:1. 函数的不定积分是原函数的集合,因为对于任意一个原函数F(x),都有F(x)+C是f(x)的不定积分,其中C为任意常数。
2. 不定积分具有线性性质,即∫(af(x)+bg(x))dx = a∫f(x)dx + b∫g(x)dx,其中a、b为常数。
3. 不定积分有积分微分的逆运算性质,即函数f(x)在[a, b]上可积的充分必要条件是它在[a, b]上有连续的原函数。
三、定积分与不定积分的关系在计算上,定积分和不定积分是相互联系的。
下面是一些常见的关系:1. 定积分可以通过不定积分来求解,即∫(a, b)f(x)dx = F(x)∣_(a, b) = F(b) - F(a),其中F(x)为f(x)的一个原函数。
定积分微积分基本公式
T2
一般地,若 F ( x ) f ( x )
b
a
? F (b) F (a ) f ( x )dx
在解决这个问题之前,先讨论原函数存在问题.
设函数f ( x )在[a, b]上连续,当x取[a , b]上任一定值时,
a
x
f ( t )dt 有唯一确定值与 x对应 , 因此a f ( t )dt 在
n 1 dx 1 1 1 1 xi lim lim n n 1 0 1 x n2 2n n i 0 1 i
小结
1 . 变上限定积分 F ( x ) a f ( t )dt 2. 变上限定积分的导数 F ' ( x ) f ( x ) 3. 牛顿—莱布尼兹公式
又
a
(x)
a
x
f ( t ) dt 也 是 f ( x ) 的 一 个 原 函 数 ,
F ( x ) ( x ) C , x [a , b ] 令
x a F ( a ) ( a ) C ,
(a ) a f ( t )dt 0 C F (a ) . F ( x ) ( x ) F (a ) .
即任何一个连续函数必存在原函数。
如
x
a
sin t sin x dt 是 的一个原函数 t x
例1.计算( x )
0
x
sin t 2dt在x 0处的导数
d x d x 2 2 f (t )dt f ( x ) sin x 解 ( x ) sin t dt a dx dx 0
2
1 2
0 (1 cos x ) dx
定积分知识点总结
定积分知识点总结什么是定积分?定积分是微积分中的重要概念之一,用于求解曲线下面的面积或曲线与坐标轴所围成的图形的面积。
定积分的基本思想是将区间划分成无限小的小区间,然后对每个小区间内的函数值进行求和,最终得到曲线下的面积或图形的面积。
定积分的符号表示定积分的符号表示为∫f(x)dx,其中∫ 表示积分符号,f(x)表示被积函数,dx表示积分变量。
∫ f(x)dx的结果是一个数值,表示积分区间上的面积。
定积分的计算步骤计算定积分的一般步骤如下:1.确定积分区间:确定被积函数的积分区间,一般用[a, b] 表示。
其中,a 表示下限,b 表示上限。
2.对被积函数进行积分:根据被积函数的形式,进行积分运算。
如果被积函数是简单函数,可以直接对其进行积分。
如果被积函数比较复杂,可以利用积分的基本公式或积分的性质来进行换元、分部积分等操作。
3.计算积分结果:对积分结果进行计算,得到最终的数值结果。
定积分的性质定积分具有以下几个重要的性质:1.线性性质:定积分具有线性性质,即对于任意的常数 a 和 b,有∫(af(x) + bf(y))dx = a∫f(x)dx+ b∫f(y)dy。
2.区间可加性:如果有一个函数在区间 [a, b] 上可积分,而在 [b, c] 上也可积分,则在整个区间 [a, c] 上也可积分,并且有∫[a,c]f(x)dx = ∫[a,b]f(x)dx + ∫[b,c]f(x)dx。
3.积分与求导的关系:定积分与原函数之间存在着积分与求导的关系。
如果函数 F(x) 在区间 [a, b] 上可导,并且导函数 f(x) 连续,则有∫[a,b]f(x)dx = F(b) - F(a)。
定积分的应用定积分在科学和工程领域有着广泛的应用,下面介绍一些常见的应用场景:1.几何应用:定积分可以用于计算平面图形的面积和曲线的弧长。
例如,可以通过计算曲线所围成的面积来求解不规则图形的面积。
2.物理学应用:定积分在物理学中的应用非常广泛。
积分与定积分的运算法则
积分与定积分的运算法则在微积分中,积分是一个重要的概念,它有着广泛的应用。
而定积分是积分的一种特殊形式,它在求解曲线下面的面积以及计算物体的体积等方面起着重要作用。
本文将介绍积分与定积分的运算法则,帮助读者更好地理解和应用这些概念。
一、不定积分的运算法则不定积分是指对函数进行积分,得到的结果是一个不含具体数值的表达式,常用的表示方法是∫f(x)dx。
在求不定积分时,我们需要遵循以下几个运算法则:1. 基本积分法则:根据常函数、幂函数、指数函数、三角函数和对数函数的积分表达式,可以对这些函数按照相应的规则进行求积分。
2. 乘法法则:如果被积函数是两个函数的乘积,即f(x) = u(x) * v(x),则可以利用乘法法则将原函数分解成两个简单函数相乘的形式进行积分。
3. 代换法则:通过对被积函数进行代换,将原函数进行转换成一个新的函数,进而求解积分。
这种方法常用于处理复杂函数的积分问题。
4. 分部积分法则:将一个积分问题转化为两个函数的乘积进行积分,通过分部积分公式求解。
以上这些法则在不定积分的运算过程中起着关键作用,通过合理运用这些法则,我们可以更快地求解积分问题。
二、定积分的运算法则定积分是对一个函数在某一区间上的积分,常用的表示方法是∫[a,b]f(x)dx,表示对f(x)在从a到b的区间上进行积分。
定积分的运算法则主要包括以下几点:1. 区间可加性:若函数f(x)在[a,b]和[b,c]上可积,则有∫[a,c]f(x)dx = ∫[a,b]f(x)dx + ∫[b,c]f(x)dx。
2. 线性性质:若函数f(x)和g(x)在[a,b]上可积,常数k,则有∫[a,b](f(x) ± g(x))dx = ∫[a,b]f(x)dx ± ∫[a,b]g(x)dx,以及∫[a,b]kf(x)dx =k∫[a,b]f(x)dx。
3. 积分区间的可交换性:若函数f(x)在区间[a,b]上可积,则有∫[a,b]f(x)dx = -∫[b,a]f(x)dx,即交换积分区间不影响积分结果的值。
积分的定义求积分
积分的定义求积分积分是微积分中的一个重要概念,它表示对函数在某个区间上的累积效果。
在数学中,积分可以通过不同的方法进行求解,常见的方法有定积分、不定积分和线积分等。
下面分别介绍这些方法的定义和求积分的方式:1. 定积分:定积分是对函数在一个区间上的积分,它可以用来计算函数曲线下的面积。
定积分的定义如下:设函数f(x)在闭区间[a, b]上连续,将[a, b]划分为n个小区间,每个小区间的长度为Δx,且Δx趋近于0。
在每个小区间上任取一点ξi,代入函数f(x)得到函数值f(ξi),将这些函数值相乘并求和,得到的极限就是函数f(x)在区间[a, b]上的定积分,记作∫[a, b]f(x)dx。
定积分的求解可以利用不同的数值方法,如矩形法、梯形法、辛普森法等。
2. 不定积分:不定积分是对函数的反导数运算,它可以用来求函数的原函数。
不定积分的定义如下:设函数f(x)在区间I上连续,且F(x)是它的一个原函数,即F'(x) = f(x),则称F(x)为f(x)的一个不定积分,记作∫f(x)dx。
不定积分的求解可以利用一些基本积分公式和积分的性质,如线性性质、换元法、分部积分法等。
3. 线积分:线积分是对向量场沿着曲线的积分,它可以用来计算向量场在曲线上的累积效果。
线积分的定义如下:设曲线C为参数方程r(t),t∈[a, b],向量场F(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z)),其中P、Q、R是C上的连续函数,曲线C的切向量为r'(t)。
则线积分的定义为∫C F(r) · dr = ∫[a, b] F(r(t)) · r'(t) dt。
线积分的求解可以利用参数方程对曲线进行参数化,并按照定义计算积分。
根据不同的积分类型和具体函数形式,可以选择适合的积分方法进行求解。
在实际应用中,还可以利用数值积分方法,如数值逼近和数值积分公式等,来求解无法通过解析求解的积分。
高中数学积分与定积分
高中数学积分与定积分1. 引言数学中的积分与定积分是高中数学的重要内容,它们被广泛应用于微积分、物理学等许多领域。
本文将重点介绍高中数学中的积分与定积分的定义、性质和应用。
2. 积分的定义积分是微积分的重要概念,它是对函数在某个区间上的累积变化的度量。
在高中数学中,我们主要学习了定积分的概念和性质。
定积分是把曲线下的面积分成无穷小的矩形,然后对这些矩形的面积进行求和得到的极限。
3. 定积分的基本性质定积分具有一些基本的性质。
首先,定积分与原函数具有关系,定积分可以看作是函数的反导函数在区间上的表现。
其次,定积分的值与区间的选取有关,选取不同的区间可能得到不同的定积分值。
此外,定积分具有线性性质,即对于任意常数a和b,有∫(af(x)+bg(x))dx=a∫f(x)dx+b∫g(x)dx。
4. 定积分的计算方法在高中数学中,我们主要学习了用换元法和分部积分法进行定积分的计算。
换元法是通过变量代换,将原函数的变量转化为另一个新的变量,从而简化定积分的计算。
分部积分法是积分算法中的一种方法,它将一个复杂函数的积分转化为两个简单函数的积分,通过计算这两个简单函数的积分再进行求和得到最终的结果。
5. 定积分的应用定积分在实际问题中具有广泛的应用。
例如,在物理学中,定积分可以用来计算物体的质量、体积和物体受力作用下的功率等。
在经济学中,定积分可以用来计算市场供需曲线之间的面积,从而得到市场的总消费和总生产等。
6. 积分的进一步学习高中数学中所学习的积分与定积分只是微积分的基础部分,随着学习的深入,我们可以进一步学习不定积分、曲线积分等更高级的积分概念和技巧。
掌握这些更高级的积分知识将为我们在大学或进一步的研究中打下坚实的数学基础。
7. 结论通过本文对高中数学中的积分与定积分的介绍,我们可以看到它们在数学和科学领域中的重要性和应用价值。
定积分作为积分的一种重要形式,其定义、性质和计算方法都需要我们进行深入的学习与理解。
函数的积分和定积分的性质
函数的积分和定积分的性质函数的积分和定积分是微积分中重要的概念,它们有一些独特的性质和特点。
本文将就函数的积分和定积分的性质进行探讨,以帮助读者更好地理解和应用这些概念。
一、函数的积分性质1.1 线性性质函数的积分具有线性性质,即对于任意实数a、b和函数f(x),有以下等式成立:∫[a,b] (af(x) + bf(x))dx = a∫[a,b] f(x)dx + b∫[a,b] f(x)dx这个性质可以方便地用来计算复杂函数的积分,可以将其分解成若干简单函数的积分求和。
1.2 反向性质函数的积分具有反向性质,即对于任意函数f(x),如果其导数存在,则有以下等式成立:∫ f'(x)dx = f(x) + C其中C为常数。
这个性质可以用来求函数的原函数,进而求得函数的积分值。
1.3 区间可加性函数的积分具有区间可加性,即对于任意函数f(x)和区间[a, c],如果在[a, c]上存在中点d,则有以下等式成立:∫[a,c] f(x)dx = ∫[a,d] f(x)dx + ∫[d,c] f(x)dx这个性质可以将一个区间的积分分解成两个子区间的积分求和,进而简化计算过程。
二、定积分的性质2.1 代数和性质定积分具有代数和性质,即对于任意实数a、b和函数f(x),有以下等式成立:∫[a,b] f(x)dx = -∫[b,a] f(x)dx这个性质表明定积分在区间内部的取值与区间两端的顺序无关,只与函数f(x)的积分值有关。
2.2 区间可加性定积分具有区间可加性,即对于任意函数f(x)和区间[a, c],如果在[a, c]上存在中点d,则有以下等式成立:∫[a,c] f(x)dx = ∫[a,d] f(x)dx + ∫[d,c] f(x)dx这个性质和函数的积分性质中的区间可加性相同,使得定积分的计算变得更加简便。
2.3 介值性质定积分具有介值性质,即对于函数f(x)在区间[a, b]上的定积分值I,对于任意介于f(a)和f(b)之间的常数K,一定存在c∈[a, b],使得f(c)=K。
不定积分、定积分与反常积分及定积分的应用
不定积分、定积分与反常积分及定积分的应⽤不定积分、定积分与反常积分不定积分⼀、不定积分概念1.定义\begin{align} &原函数:设对于区间I上的任意⼀点x均有F'(x)=f(x),则称F(x)为f(x)在区间I上的⼀个原函数\\ &不定积分:设函数f(x)于区间I上有原函数,则其余原函数的全体称为f(x)于区间I上的不定积分,记为\int{f(x)dx}\\ &线性:\int[\alpha f(x)+\beta g(x)]dx=\alpha\int f(x)dx+\beta\int g(x)dx\\ \end{align}2.计算\begin{align} &计算⽅法\begin{cases}&1.基本公式\\&2.线性\\&3.积分法\begin{cases}&1.换元法\\&2.分部积分法\\\end{cases}\\\end{cases}\\ \end{align}(1)第⼀换元法(凑微分)\begin{align} &设F'(u)=f(u),则\int{f(\Phi(x))\Phi'(x)}dx=\int{f(\Phi(x))d(\Phi(x))}=F(\Phi(x))+C\\ &注解:找到合适的凑微分\Phi'(x)dx=d(\Phi(x)) \end{align}常见凑微分:\begin{align} &1.\int{f(ax+b)dx=\frac{1}{a}\int{f(ax+b)d(ax+b)}}(a\neq0)\\ &eg1.\int{\sin (2x+3)}dx=\frac{1}{2}\int\sin (2x+3)d(2x+3)=\frac{1}{2}\cos{(2x+3)}+C\\\ &2.\int{f(ax^n+b)x^{n-1}dx}=\frac{1}{na}\int{f(ax^n+b)d(ax^n+b)}\\ &eg2.\int{\cos(2x^4+3)x^3dx}=\frac{1}{4*2}\int{\cos(2x^4+3)d(2x^4+3)}=\frac{1}{8}\cos{(2x^4+3)}+C\\ &3.\int{f(a^x+c)a^xdx}=\frac{1}{\ln{a}}\int{f(a^x+c)}d(a^x+c)\\ &eg3.\int{\sin(2^x+3)2^xdx}=\frac{1}{\ln2}\int{\sin{(2^x+3)}d(2^x+3)}=\frac{1}{\ln 2}\cos{(2^x+3)}\\ &4.\int{f(\frac{1}{x})\frac{1}{x^2}}dx=-\int{f(\frac{1} {x})}d(\frac{1}{x})\\ &eg4.\int{\ln(\frac{1}{x})}\frac{1}{x^2}dx=-\int\ln (\frac{1}{x})d({\frac{1}{x}})+C\\ &5.\int{f(\ln |x|})\frac{1}{x}d(x)=\int{f(\ln{|x|)}}{d(\ln|x|)}\\ &eg5.\int{\sin ({\ln{|x|}}})\frac{1} {x}dx=\int{\sin(\ln(|x|)d(\ln{|x|})}=\cos(\ln x)+C\\ &6.\int{f(\sqrt x)\frac{1}{\sqrt x}}dx=2\int{f(\sqrt x)}d(\sqrt x)\\ &7.\int f(\sin x)\cos xdx=-\int{(\sin x)}d(\sin x)\\ &8.\int{f(\cos x)\sin dx}=\int{f(\cos x)d(\cos x)}\\ &9.\int{f(\tan x)\sec^2 xdx}=\int{f(\tan x)d(\tan x)}\\ &10.\int{f(\cot x)\csc^2xdx}=-\int{f(\cot x)d{(\cot x)}}\\ &11.\int{f{(\arcsin x)\frac{1}{\sqrt{1-x^2}}}}dx=\int{f(\arcsin x)d({\arcsin x})}\\ &12.\int{f(\arccos x)(-\frac{1}{\sqrt{1-x^2}}})dx=\int{f(\arccos x)d(\arccos x)}\\ &13.\int{f(\arctan x)\frac{1}{1+x^2}dx}=\int{f(\arctan x)d(\arctan x)}\\ &14.\int{f(\sqrt{x^2+a})}\frac{x} {\sqrt{x^2+a}}dx=\int{f(\sqrt{x^2+a})}d(\sqrt{x^2+a})\\ &注解:(\sqrt{x^2\pm a})'=\frac{x}{\sqrt{x^2+a}},(\sqrt{a^2-x^2})'=\frac{-x}{\sqrt{a^2-x^2}}\\ \end{align}(2)第⼆换元法\begin{align} &设F'(u)=f(\Phi(u))\Phi'(u),则\\ &\int{f(x)dx}\overset{x=\Phi(u)}{=}\int{f(\Phi(u))\Phi'(u)du}=F(u)+C=F(\Phi^{-1}(x))+C\\ &注解:找到合适的x=\Phi(u)\\ \end{align}1)三⾓换元\begin{align} &x=a\sin u,x=a\tan u,x=a \sec u\\ &\sqrt{a^2-x^2}\overset{x=a\sin u}{=}a\cos u,u\in[-\frac{\pi}{2},\frac{\pi}{2}],x\in[-a,a]\\ &\sqrt{a^2+x^2}\overset{x=a\tan u}{=}a\sec u,u\in{(-\frac{\pi}{2},\frac{\pi}{2})},x\in{(-\infty,\infty)}\\ &\sqrt{x^2-a^2}\overset{x=a\sec u}{=}a\tan u,u\in(\frac{\pi}{2},\pi]\cup(0,\frac{\pi}{2}]\\ \end{align}2)倒变换\begin{align} &x=\frac{1}{u}常⽤于含\frac{1}{x}的函数\\ \end{align}3)指数(或对数)变换\begin{align} &a^x=u或x=\frac{\ln u}{\ln a}常⽤于含a^x的函数\\ \end{align}4)⽤于有理化的变换\begin{align} &\frac{1}{\sqrt{x}+\sqrt[3]{x}}⽤x=u^6\\ &\sqrt[n]{\frac{ax+b}{cx+d}}⽤u=\sqrt[n]{\frac{ax+b}{cx+d}}或x=-\frac{du^n-b}{cu^n-a}\\ \end{align}(3)分部积分法\begin{align} &\int{u(x)v'(x)dx}=\int{u(x)d(v(x))}=u(x)v(x)-\int{v(x)u'(x)dx}\\ &注解:找到合适的u(x),v(x)\\ \end{align}1)降幂法\begin{align} &\int{x^ne^{ax}dx},\int{x^n\sin axdx},\int{x^n\cos ax dx}\\ &取u(x)=x^n\\ \end{align}2)升幂法\begin{align} &\int{x^a\ln xdx},\int{x^a\arcsin xdx},\int{x^a\arccos x dx},\int{x^a\arctan x dx}\\ &取u(x)=\ln x\\ \end{align}3)循环法\begin{align} &\int{e^{ax}\sin ax dx},\int{e^{ax}\cos {ax} dx}\\ &取u(x)=e^{ax}或\sin{ax} \end{align}4)递推公式法\begin{align} &与n有关的结果I_n,建⽴递推关系I_n=f(I_{n-1})或f(I_{n-2})\\ \end{align}定积分⼀、定积分概念1.定义\begin{align} &定义:设函数f(x)在区间[a,b]上有定义且有界\\ &(1)分割:将[a,b]分成n个[x_{i-1},x_{i}]⼩区间\\ &(2)求和:[x_{i-1},x_{i}]上取⼀点\xi_{i},\sum_{i=1}^{n}{f(\xi_{i})\Deltax_i},\lambda=\max{\Delta x_{1},\Delta x_{2},...,\Delta x_{n}}\\ &(3)取极限:若\lim_{\lambda \rightarrow 0}{\sum_{i=1}^{n}f(\xi_{i})\Delta x}\exist,且极值不依赖区间[a,b]分发以及点\xi_{i}的取法,则称f(x)在区间[a,b]上可积,\\ &\int^{b}_{a}{f(x)dx}=\lim_{\lambda \rightarrow 0}{f(\xi)\Delta x_{i}} &\\ &注解:\\ &(1)\lambda \rightarrow0 \rightarrow \nleftarrow n\rightarrow \infty\\ & (2)定积分表⽰⼀个值,与积分区间[a,b]有关,与积分变化量x⽆关\\ &\int_{a}^{b}{f(x)dx}=\int_{a}^{b}{f(t)dt}\\ &(3)如果积分\int_{0}^{1}{f(x)dx}\exist,将[0,1]n等分,此时\Delta{x_{i}}=\frac{1}{n},取\xi_{i}=\frac{i}{n},\\ &\int_{0}^{1}f(x)dx=\lim_{\lambda \rightarrow 0}{\sum_{i=1}{n}{f(\xi_{i})\Delta x_{i}}}=\lim_{n\rightarrow \infty}\sum_{i=1}^{n}f(\frac{i}{n})\\ \end{align}\begin{align} &\int^{b}_{a}{f(x)dx}=\lim_{\lambda \rightarrow 0}\sum^{n}_{i=1}f(\xi_i)\Delta_i=\begin{cases}&\lim_{n\rightarrow \infty}{\sum_{i=1}^{n}{f(a+(i-1)\frac{b-a}{n})\frac{b-a}{n}}},左侧\\&\lim_{n\rightarrow \infty}{\sum_{i=1}^{n}{f(a+i\frac{b-a}{n})\frac{b-a}{n}}},右侧\\\end{cases}\\ &中点:\Phi_i=a+(i-1)\frac{b-a}{n}+\frac{b-a}{2n}\\ \end{align}Processing math: 0%定理:(线性)\begin{align} &\int[\alpha f(x)+\beta g(x)]dx=\alpha\int f(x)dx+\beta\int g(x)dx\\ \end{align}注解:积分⽆⼩事\begin{align} &\int{e^{\pm x^2}dx,\int{\frac{\sin x}{x}}}积不出来\\ &F'(x)=f(x),x\in I,连续函数⼀定存在原函数,⽆穷多个\\ &[F(x)+C]'=f(x) \end{align}2.定积分存在的充分条件\begin{align} &若f(x)在[a,b]上连续,则\int^{b}_{a}{f(x)dx}必定存在\\ &若f(x)在[a,b]上有上界,且只有有限个间断点,则\int^{b}_{a}{f(x)dx}必定存在\\ &若f(x)在[a,b]上只有有限个第⼀类间断点,则\int^{b}_{a}{f(x)dx}必定存在\\ \end{align}3.定积分的⼏何意义\begin{align} &(1)f(x)\geqslant{0},\int_{a}^{b}{f(x)dx}=S\\ \end{align}\begin{align} &(2)f(x)\leqslant{0},\int_{a}^{b}{f(x)dx}=-S\\ \end{align}\begin{align} &(3)f(x)\geqslant{0}\cup f(x)\leqslant{0},\int_{a}^{b}{f(x)dx}=S_1+S_3-S_2\\ \end{align}注解:\begin{align} &(1)当f(x)\geq0时,定积分的⼏何意义是,以区间[a,b]为底,y=f(x)为曲边的曲边梯形⾯积\\ &(2)定积分是⼀个常数,只与f和区间[a,b]有关,与积分变量⽤什么字母⽆关\\ &\int_a^b{f(x)}dx=\int_a^b{f(t)dt}\\ &(3)\int_a^bdx=b-a\\ &(4)\int_{a}^{a}f(x)=0,\int_a^bf(x)dx=-\int_b^a{f(t)}dt \end{align}⼆、定积分的性质1.不等式性质\begin{align} &(1)保序性:若在区间[a,b]上f(x)\leqslant{g(x)},则\int_a^{b}{f(x)dx}\leqslant{\int_a^{b}{g(x)dx}}\\ &推论:\\ &(1)f(x)\geq0,\forall x\in[a,b],则\int_a^b{f(x)dx}\geq0\\ & (2)f(x)\geq0,\forall x\in[a,b],且[c,d]\subset[a,b],则\int_a^b{f(x)dx}\geq\int_c^d{f(x)dx}\\ &(3)|\int_a^bf(x)dx|\leq\int_a^b{|f(x)|dx}\\ &-|f|\leq f\leq |f|\Rightarrow \int_a^b-|f|\leq \int_a^bf\leq \int_a^b|f|\Rightarrow |\int_a^bf|\leq\int_a^b|f|\\ &如:x^2\leq x^3,x\in[0,1],则\int_0^1{x^3dx}\leq\int_0^1{x^2dx}\\ \end{align}\begin{align} &(4)(估值不等式)若M及m分别是f(x)在[a,b]上的最⼤值和最⼩值,\\ &则m(b-a)\leqslant{\int_a^{b}{f(x)dx}\leqslant{M(b-a)}}\\ \end{align}\begin{align} &证明:M(b-a)=S_{AFDC}=S_1+S_2+S_3\\ &m(b-a)=S_{EBDC}=S_3\\ &\int_a^{b}{f(x)dx}=S_{ADBC}=S_2+S_3\\ &S_3\leqslant{S_2+S_3\leqslant{S_1+S_2+S_3}}\\&\Leftrightarrow{m(b-a)\leqslant{\int_a^{b}{f(x)dx}\leqslant{M(b-a)}}}\\ \end{align}\begin{align} &(3)|\int_a^{b}{f(x)dx}|\leqslant{\int_a^{b}{|f(x)|dx}}\\ \end{align}2.中值定理\begin{align} &(1)若f(x)在[a,b]上连续,则\int_a^{b}{f(x)dx}=f(\xi)(b-a),(a<\xi<b)\\ &称\frac{1}{b-a}{\int_{a}^{b}{f(x)dx}为函数y=f(x)在区间[a,b]上的平均值}\\ &注解:F'(x)=f(x),F(b)-F(a)=\int_a^b{f(x)dx},f(\xi)(b-a)=F'(\xi)(b-a)\\ &(2)若f(x),g(x)在[a,b]上连续,g(x)不变号,则\int_{a}^{b}{f(x)g(x)dx}=f(\xi)\int_a^b{g(x)dx}\\ \end{align}注解:\begin{align} &\int_0^1{\frac{x}{\sin x}}dx\\ &f(x)=\begin{cases}&\frac{x}{\sin x},x\in[0,1]\\&1,x=0\\\end{cases}\\ &结论:有限处点的函数不影响定积分\\ &f(x)={\begin{cases}&x+1,[1,2]\\&x, [0,1]\\\end{cases}}\\ &\int_0^2{f(x)dx}=\int_0^1{xdx}+\int_1^2{(x+1)dx}\\ \end{align}\begin{align} &证明:\frac{1}{2}\leq\int_0^{\frac{1}{2}}\frac{1}{\sqrt{1-x^n}}dx\leq\frac{\pi}{6}\\ &估值积分:x\in[0,\frac{1}{2}]\\ &\\ \end{align}例题:\begin{align} &1.求极限\lim_{n\rightarrow \infty}\int_0^1{\frac{x^ne^x}{1+e^x}dx}\\ &根据积分容易知道0\leq\frac{x^ne^x}{1+e^x}\leq x^n,x\in[0,1],n\in N^*\\ &⽤积分的保号性\\&0\leq\int_0^1{\frac{x^ne^x}{1+e^x}dx}\leq \int_0^1{x^n}dx=\frac{1}{n+1}\\ &⽤夹逼定理\\ &\lim_{n\rightarrow\infty}\frac{1}{n+1}=0\\ &\lim_{n\rightarrow \infty}\int_0^1{\frac{x^ne^x}{1+e^x}dx}=0\\ \end{align}\begin{align} &2.设I_1=\int_0^{\frac{4}{\pi}}\frac{\tan x}{x}dx,I_2=\int_0^{\frac{4}{\pi}}\frac{x}{\tan x}dx则\\ &(A)I_1>I_2>1(B)1>I_1>I_2(C)I_2>I_1>1(D)1>I_2>I_1\\ &解:⽤保序性a<b,f(x)\leq g(x),\int_a^b f(x)\leq \int_a^b g(x)\\ &\tan x>x,x\in[0,\frac{\pi}{2}]\\ &\frac{\tan x}{x}>1>\frac{x}{\tan x},x\in[0,\frac{\pi}{4}]\\ &根据保序性\\ &\int_0^{\frac{\pi}{4}}\frac{\tan x}{x}dx>\int_0^{\frac{\pi}{4}}1dx=\frac{\pi}{4}>\int_0^{\frac{\pi}{4}}\frac{x}{\tan x},x\in[0,\frac{\pi}{4}]\\ &证:\int_0^{\frac{\pi}{4}}\frac{\tan x}{x}与1的关系\\ &积分中值定理\\ &\int_0^{\frac{\pi} {4}}\frac{\tan x}{x}=f(\xi)(\frac{\pi}{4}-0)=\frac{\tan \xi}{\xi}*\frac{\pi}{4},\xi\in{[0,\frac{\pi}{4}]}\\ &根据\frac{\tan x}{x}在x\in[0,\frac{\pi}{4}]上单调递增\\ &0<f(\xi)<\frac{4}{\pi},0<\int_0^{\frac{\pi} {4}}\frac{\tan x}{x}<1\\ &选(B)\\ \end{align}三、积分上限函数\begin{align} &如果f(x)在区间[a,b]上连续,则\Phi(x)=\int_a^b{f(t)dt}在[a,b]上可导,且\int_a^b{f(t)dt})\\ &(\int_a^xf(t)dt)'=f(x),(\int_a^{x^2}f(t)dt)'=f(x^2)*2x\\ &如果f(x)在区间[a,b]上连续,\phi_1(x),\phi_2(x)为可导函数,则\Phi(x)=\int_a^b{f(t)dt}在[a,b]上可导,且(\int_{\phi_1(x)}^{\phi_2(x)}{f(t)dt})'\\ &=f[\phi_2(x)]*\phi_2'(x)-f[\phi_1(x)]*\phi_1'(x)=(\int_{\phi_1(x)}^0{f(t)dt}+\int_{\phi_2(x)}^0{f(t)dt})'\\ &设函数f(x)在[-l,l]上连续,则\\ &如果f(x)为奇函数,那么\int_0^xf(t)dt必为偶函数\\ &如果f(x)为偶函数,那么\int_0^xf(t)dt必为奇函数\\\end{align}\begin{align} &任取x\in[a,b),取\Delta x>0,使x+\Delta x\in[a,b)\\ &\frac{\Delta F}{\Delta x}=\frac{F(x+\Delta x)-F(x)}{\Delta x}=\frac{1}{\Delta x}[\int_a^{x+\Delta x}f(t)dt-\int_a^xf(t)dt]=\frac{1} {\Delta x}\int_x^{x+\Delta x}f(t)dt=f(x+\sigma\Delta x)\rightarrow f(x)(\Delta x\rightarrow 0^+)\\ \end{align}推论:\begin{align} &若f(x)、\phi'(x)、\psi(x)于[a,b]上连续,则\\ &(1)(\int_a^{\phi(x)}f(t)dt)'=f(\phi(x))\phi'(x)\\ &(2)(\int_b^{\psi(x)}f(t)dt)'=-f(\psi(x))\psi'(x)\\ &(3)(\int_{\psi(x)}^{\phi(x)}f(t)dt)'=f(\phi(x))\phi'(x)-f(\psi(x))\psi'(x)\\ \end{align}例题\begin{align} &1.设函数f(x)在R上连续,且是奇函数,则其原函数均是偶函数.当f(x)是偶函数时?是周期函数?\\ &证:\\ &令F_0(x)\int_0^xf(t)dt,x\in R\\ &F_0(-x)=\int_0^{-x}f(t)dt\overset{t=-u} {=}\int_0^xf(-u)d(u)=\int_0^xf(u)du=F_0(x)\Rightarrow F_0(x)为偶函数\\ \end{align}\begin{align} &求变现积分导数\\ &(1)F(x)=\int_x^{e^{-x}}f(t)dt\\ &(2)F(x)=\int_0^{x^2}(x^2-t)f(t)dt\\ &(3)F(x)=\int_0^{x}f(x^2-t)dt\\ &(4)设函数y=y(x)由参数⽅程\begin{cases}&x=1+2t^2\\&y=\int_1^{1+2\ln t}\frac{e^u}{u}du\\\end{cases}(t>1),求\frac{d^2y}{dx^2}|_{x=9}\\ &解:\\ &(1)F(x)'=(\int_x^{e^{-x}}f(t)dt)'=f(e^{-x})(-e^{-x})-f(x)\\ &(2)F(x)'=(\int_0^{x^2}(x^2-t)f(t)dt)'=(\int_0^{x^2}x^2f(t)dt-\int_0^{x^2}tf(t)dt)'\\ &=2x\int_0^{x^2}f(t)dt+x^2f(x^2)2x-x^2f(x^2)2x=2x\int_0^{x^2}f(t)dt\\ &(3)F(x)=\int_0^{x}f(x^2-t)dt=-\frac{1}{2}\int_0^xf(x^2-t^2)d(x^2-t^2)\overset{u=x^2-t^2}{=}-\frac{1}{2}\int_0^xf(u)du\\ &F(x)'=\frac{1}{2}f(x^2)2x=xf(x^2)\\ &(4)\frac{dy}{dx}=\frac{\frac{e^{1+2\ln t}}{1+2\ln t}\frac{2}{t}}{4t^2}=\frac{e}{2(1+2\ln t)}\\ &\frac{d^2y}{dx^2}=\frac{d(\frac{dy}{dx})}{dx}=\frac{e}{2}(-\frac{\frac{2}{t}}{(1+2\ln t)^2})\frac{1}{4t}\\ \end{align}\begin{align} &2.求变现积分的积分:\\ &(1)设f(x)=\int_0^x{\frac{\sin t}{\pi -t}dt},求\int_0^\pi{f(x)}dx\\ &解:\\ &\int_0^\pi{f(x)}dx=\int_0^{\pi}\int_0^x\frac{\sin t}{\pi -t}dt\space dx\\&=x\int_0^x\frac{\sin t}{\pi t}|_0^{\pi}-\int_0^{\pi}x\frac{\sin x}{\pi -x}dx\\ &=\pi\int_0^{\pi}\frac{\sin x}{\pi t}+\int_0^{\pi}\frac{[(\pi-x)-\pi]\sin x}{\pi-x}dx=\int_0^{\pi}\sin xdx=2\\ &(2)\lim_{x\rightarrow\infty}{\frac{(\int_0^x{e^{t^2}}dt)^2}{\int_0^xe^{2t^2}dt}}=\lim_{x\rightarrow\infty}{\frac{(2\int_0^{x}e^{t^2}dt)e^{x^2}}{e^{2x^2}}}=\lim_{x\rightarrow\infty}\frac{2\int_0^{x}e^{t^2}}{e^{x^2}}=\lim_{x\rightarrow\infty}\frac{1}{2x}=0\\ \end{align}\begin{align} &(3)设f(x)连续,\phi(x)=\int_0^1{f(tx)dt},且\lim_{x\rightarrow0}\frac{f(x)}{x}=A(常数),求\phi'(x)并讨论\phi'(x)在x=0处的连续性\\ &当x\neq0时\\ &令u=tx,t\in[0,1],u=tx\in[0,x],\phi(x)=\int_0^1f(tx)dt\overset{tx=u}{=}\int_0^x{f(u)d(\frac{u}{x})}=\frac{\int_0^xf(u)du}{x}\\ &\phi'(x)=\frac{xf(x)-\int_0^xf(u)du}{x^2}\\ &当x=0时,f(0)=0,\phi(0)=f(0)=0,\phi'(0)=\lim_{x\rightarrow0}\frac{\phi(x)\phi(0)}{x-0}=\lim_{x\rightarrow0}\frac{\int_0^xf(u)du}{x^2}=\lim_{x\rightarrow 0}\frac{f(x)}{2x}=\frac{1}{2}A\\&\lim_{x\rightarrow0}\phi'(x)=\lim_{x\rightarrow 0}{\frac{xf(x)-\int_0^xf(u)du}{x^2}}=A-\frac{1}{2}A=\frac{1}{2}A=\phi'(0)\Leftrightarrow\phi'(x)在x=0处连续\\ \end{align}注解:\begin{align} &注意变限积分进⾏正逆运算时上下限的映射\\ &例如F(x)=\int_0^x{f(t)dt}\overset{t=-u}{=}\int_{-a}^{x}f(-u)d(-u)\\ \end{align}四、定积分的计算1.⽜顿莱布尼茨公式\int_a^bf(x)dx=F(x)|_a^b=F(b)-F(a)2.换元积分法\int_a^bf(x)dx=\int_\alpha^\beta{f(\Phi(t))\Phi'(t)dt}3.分部积分法\int_a^budv=uv|_a^b-\int_a^bvdu4.奇偶性和周期性\begin{align} &直接使⽤奇偶性周期性定义证明\\ &(1)设f(x)为[-a,a]上的连续函数(a>0),则\\ &\int_{-a}{a}f(x)dx=\begin{cases}0,&f(x)奇函数\\2\int_0^af(x)dx,&f(x)偶函数\end{cases}\\ &证:\int_{-a}^0{f(x)dx}\overset{x=-t}{=}\int_0^a{f(-t)d(-t)}=-\int_{0}^{a}f(t)d(t)=-\int_0^a{f(x)dx}\\ \end{align}\begin{align} &(2)设f(x)是以T为周期的连续函数,则对\forall A,有\int_a^{a+T}f(x)=\int_0^T{f(x)dx}\\ &\int_a^{a+T}f(x)dx\overset{x=a+t}{=}\int_0^T{f(a+t)d(a+t)}=\int_0^{a+t}f(a+t)dt\\\end{align}\begin{align} &\Phi:x\in[a,b]\rightarrow y\in[c,d],令\frac{x-a}{b-a}=\frac{y-c}{d-c},y=c+\frac{d-c}{b-a}(x-a)\\ \end{align}\\5.奇偶函数积分后的奇偶性(奇偶函数求导后的奇偶性)1.奇偶函数求导后的奇偶性\begin{align} &(1)f(x)为奇函数:\\ &f(-x)=-f(x)\\ &\Leftrightarrow f'(-x)(-1)=-f'(x)\\ &\Leftrightarrow f'(-x)=f'(x)\\ &\Leftrightarrow f'(x)为偶函数\\ &(2)f(x)为偶函数:\\ &f(-x)=f(x)\\ &\Leftrightarrowf'(-x)=f'(x)\\ &\Leftrightarrow f'(-x)(-1)=f'(x)\\ &\Leftrightarrow f'(-x)=-f'(x)\\ &\Leftrightarrow f'(x)为奇函数\\ \end{align}2.奇偶函数求积分后的奇偶性\begin{align} &设F(x)为f(x)的原函数\\ &(1)f(x)为奇函数:\\ &f(-x)=-f(x)\\ &\Leftrightarrow \int f(-x)dx=-\int f(x)dx\\ &\Leftrightarrow -\int f(-x)d(-x)=-\int f(x)dx\\ &\Leftrightarrow F(-x)=F(x)\\&\Leftrightarrow F(x)为偶函数\\ &(2)f(x)为偶函数:\\ &f(-x)=f(x)\\ &\Leftrightarrow \int f(-x)dx=\int f(x)dx\\ &\Leftrightarrow -\int f(-x)d(-x)=\int f(x)dx\\ &\Leftrightarrow F(-x)=-F(x)\\&\Leftrightarrow F(x)为奇函数\\ \end{align}3.奇偶函数复合后的奇偶性\begin{align} &\exist f(x),g(x),F(x)=f(g(x))\\ &设f(x)为奇函数\\ &(1)g(x)为偶函数\\ &F(-x)=f(g(-x))=f(g(x))=F(x),F(x)为偶函数\\ &(2)g(x)为奇函数\\ &F(-x)=f(g(-x))=f(-g(x))=-f(g(x))=-F(x),F(x)为奇函数\\ &设f(x)为偶函数\\ &(1)g(x)为奇函数\\ &F(-x)=f(g(-x))=f(g(x))=F(x),F(x)为偶函数\\ &(2)g(x)为偶函数\\ &F(-x)=f(g(-x))=f(g(x))=F(x),F(x)为偶函数\\ &注解:外偶全偶,外奇奇偶\\\end{align}例题:\begin{align} &1.设M=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{\frac{\sin x}{1+x^2}\cos^4xdx},N=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{(\sin x^3+\cos^4x)dx},P=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(x^2\sin^3x-\cos^4x)dx,则\\ &(A)N<P<M(B)M<P<N(C)N<M<P(D)P<M<N\\ &根据对称性判断\\ &M:f_M(x)为奇函数,F_M(x)为偶函数\\ &N:N=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{(\sinx^3+\cos^4x)dx}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\sin ^3xdx+\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\cos ^4xdx\\ &\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\sin ^3xdx=0,\int_{-\frac{\pi}{2}}^{\frac{\pi} {2}}\cos ^4xdx\geq 0,\Rightarrow N\geq 0\\ &P:P=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(x^2\sin^3x-\cos^4x)dx=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}x^2\sin^3xdx-\int_{-\frac{\pi}{2}}^{\frac{\pi} {2}}\cos^4xdx\\ &\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}x^2\sin^3xdx=0,\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\cos^4xdx\geq0,\Rightarrow P\leq0\\ &\Leftrightarrow P<M<N,\space\space选(D)\\\end{align}\begin{align} &2.设f(x)=\begin{cases}&kx,0\leq x\leq \frac{1}{2}a\\&c,\frac{1}{2}a<x\leq a\\\end{cases},求F(x)=\int_0^xf(t)dt,x\in[0,a]\\ &F(x)=\begin{cases}&\int_0^xktdt=\frac{1}{2}kt^2|_0^x=\frac{1}{2}kx^2,0\leq x\leq \frac{1}{2}a\\&\int_0^{\frac{1}{2}a}ktdt+\int_{\frac{1}{2}a}^c cdt=\frac{1}{8}ka^2+c^2-\frac{1}{2}ac,\frac{1}{2}a<x\leq a\\\end{cases}\\ \end{align} \begin{align} &3.证明:\int_0^{2\pi}f(|\cos x|)dx=4\int_0^{\frac{\pi}{2}}f(|\cos x|)dx\\ \end{align}6.已有公式\begin{align} &(1)\int_0^{\frac{\pi}{2}}{\sin^nxdx=\int_0^{\frac{\pi}{2}}\cos^n xdx=\begin{cases}\frac{n-1}{n}*\frac{n-3}{n-2}*...*\frac{1}{2}*\frac{\pi}{2},&n为偶数\\\frac{n-1}{n}*\frac{n-3}{n-2}*...*\frac{2}{3},&n为⼤于1的奇数\\\end{cases}}\\ &(2)\int_0^{\pi}xf(\sin x)dx=\frac{\pi}{2}\int_0^{\pi}f(\sin x)dx(f(x)为连续函数)\\ \end{align}7.与定积分有关的证明8.经典例题:例题1:\begin{align} &\lim_{n\rightarrow \infty}{(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n})}\\ &法1:夹逼定理+基本不等式\\ &\frac{1}{1+x}<\ln(x+1)<x\\ &令x=\frac{1}{n}\\ &得\frac{1}{n+1}=\frac{\frac{1}{n}}{\frac{1}{n}+1}<\ln(\frac{1}{n}+1)=\ln(n+1)-\ln(n)<\frac{1}{n}\\ &得\frac{1}{n+2}<ln(n+2)-ln(n+1)<\frac{1}{n+1}\\ &得\frac{1}{n+n}<\ln(n+n)-\ln(n+n-1)<\frac{1}{n+n-1}\\ &得\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}<ln(2n)-ln(n)=ln2\\ &法2:\lim_{n\rightarrow \infty}{(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n})}中\\ &\frac{1}{n+1}中n为主体,1为变体\\ &\frac{变体}{主体}\rightarrow^{n \rightarrow{\infty}}\begin{cases}0,次(夹逼定理)\\A\neq 0,同(定积分)\end{cases}\\ &\lim_{\lambda \rightarrow 0}{\sum_{i=1}^{n}{f(\xi_i)\Deltax_i}=\lim_{n\rightarrow \infty}\frac{1}{n}\sum_{i=1}^{n}f(\xi_i)(b-a)}=\int_0^1\frac{1}{1+x}=\ln(1+x)|_{0}^{1}=\ln2\\ \end{align}例题2\begin{align} &设f(x)=\int_0^{\pi}{\frac{\sin x}{\pi-t}dt},计算\int_0^{\pi}f(x)dx.\\ &法1:分部积分+换元法\\ &原式=xf(x)|_0^{\pi}-\int_0^{\pi}{\frac{x\sin x}{\pi-x}dx}\\ &=\pi{\int_0^{\pi}{\frac{\sin{t}}{\pi-t}dt}-\int_0^{\pi}{\frac{x\sin x}{\pi-x}}dx}\\ &=\int_0^{\pi}{\frac{(\pi-x)\sin x}{\pi-x}dx}=2\\ &法2:\\ &原式=\int_0^\pi{f(x)d(x-{\pi})}=(x-\pi)f(x)|_0^{\pi}-\int_0^{\pi}{\frac{(x-\pi)\sin x}{\pi-x}dx}=2\\ &法3:⼆重积分转化为累次积分\\ &原式=\int_0^{\pi}{\int_0^{\pi}\frac{x\sin t}{\pi-t}dt}dx\\ \end{align}例题3\begin{align} &法1:构造辅助函数\\ &根据题意f(1)=f(-1)=1,f(0)=-1\Rightarrow f(x)为偶函数,f最低点函数值为-1\\ &可以构造符合题意的辅助函数f(x)=2x^2-1\\ &法2:根据函数的性质直接判断 \end{align}例题4\begin{align} &因为\lim_{x\rightarrow 0}{\frac{ax-\sin x}{\int_b^x{\frac{\ln{1+t^3}}{t}dt}}}=c(c\neq 0)\\ &所以\lim_{x\rightarrow 0}{ax-\sin x}=0并且\lim_{x \rightarrow 0}{\int_b^x{\frac{\ln{1+t^3}}{t}dt}}=0\\ &化简,使⽤洛必达法则上下求导\\ &\lim_{x\rightarrow 0}{\frac{ax-\sin x}{\int_b^x{\frac{\ln{1+t^3}}{t}dt}}}=\lim_{x\rightarrow 0}{\frac{a-\cos x}{\frac{\ln{1+x^3}}{x}}}=\lim_{x\rightarrow 0}{\frac{a-\cos x}{x^2}}\\ &\Rightarrow a=1,c=\frac{1}{2},b=0\\ \end{align}反常积分⼀、⽆穷区间上的反常积分\begin{align} &(1)\int_a^{+\infty}{f(x)}dx=\lim_{t\rightarrow +\infty}{\int_{a}^{t}f(x)dx}\\ &(2)\int_{-\infty}^{b}{f(x)}dx=\lim_{t\rightarrow -\infty}{\int_{t}^{b}f(x)dx}\\ &(3)\int_{-\infty}^{0}{f(x)}dx和{\int_{0}^{+\infty}f(x)dx}都收敛,则{\int_{-\infty}^{+\infty}f(x)dx}收敛\\ &且{\int_{-\infty}^{+\infty}f(x)dx}=\int_{-\infty}^{0}{f(x)}dx+{\int_{0}^{+\infty}f(x)dx}\\ &如果其中⼀个发散,结果也发散\\ &常⽤结论:\int_a^{+\infty}{\frac{1}{x^p}dx}\begin{cases}&p>1,收敛\\&p\leq1 ,发散\\\end{cases},(a>0)\\ \end{align}⼆、⽆界函数的反常积分\begin{align} &如果函数f(x)在点a的任⼀领域内都⽆界,那么点a为函数f(x)的瑕点(也称为⽆界点).⽆界函数的反常积分也成为瑕积分\\ &(1)设函数f(x)在(a,b]上连续,点a为f(x)的瑕点.如果极限\lim_{t\rightarrow a^+}{\int_{t}^{b}{f(x)dx}}\exist,\\ &则称此极限为函数f(x)在区间[a,b]上的反常区间,记作\int_{a}^{b}f(x)dx,即\int_{a}^{b}f(x)dx=\lim_{t\rightarrow a^+}{\int_{t}^{b}{f(x)dx}}\\ &这时也称反常积分\int_a^b{f(x)dx}收敛,如果上述极限不存在,则反常积分\int_a^b{f(x)dx}发散\\ &(2)设函数f(x)在[a,b)上连续,点b为函数f(x)的瑕点,则可以类似定义函数f(x)在区间[a,b]上的反常积分\int_a^bf(x)dx=\lim_{t\rightarrow b^-}{\int_a^tf(x)dx}\\ &设函数f(x)在[a,b]上除点c(a<c<b)外连续,点c为函数f(x)的瑕点,如果反常积分\int_a^c{f(x)dx}和\int_c^b{f(x)dx}都收敛\\ &则称反常积分\int_a^b{f(x)dx}收敛,且\int_a^b{f(x)dx}=\int_a^c{f(x)dx}+\int_c^b{f(x)dx}\\ &如果⾄少⼀个发散,则称\int_a^b{f(x)dx}发散\\ &常⽤结论:\\ &\int_a^b{\frac{1}{(x-a)^p}}\begin{cases}&p<1,收敛\\&p\geq 1,发散\\\end{cases}\\ &\int_a^b{\frac{1}{(x-a)^p}}\begin{cases}&p<1,收敛\\&p\geq 1,发散\\\end{cases}\\ \end{align}三、例题例题1\begin{align} &\int\frac{1}{\ln^{\alpha}x}d(\ln x)\rightarrow^{\ln x=u}\int{\frac{du}{u^{\alpha+1}}}\begin{cases}&{\alpha-1< 1}\\&{\alpha+1>1}\\\end{cases}\Rightarrow 0<\alpha<2\\\end{align}定积分的应⽤⼀、⼏何应⽤1.平⾯图形的⾯积\begin{align} &(1)若平⾯域D由曲线y=f(x),y=g(x)(f(x)\geq g(x)),x=a,x=b(a<b)所围成,则平⾯域D的⾯积为\\ &S=\int_a^b{[f(x)-g(x)]dx}\\ &(2)若平⾯域D由曲线由\rho=\rho(\theta),\theta=\alpha,\theta=\beta(\alpha<\beta)所围成,则其⾯积为S=\frac{1}{2}\int_{\alpha}^{\beta}{\rho^2(\theta)d\theta} \end{align}2.旋转体的体积\begin{align} &若区域D由曲线y=f(x)(f(x)\geq 0)和直线x=a,x=b(0\leq a<b)及x轴所围成,则\\ &(1)区域D绕x轴旋转⼀周所得到的旋转体体积为V_x=\pi\int_a^b{f^2(x)dx}\\ &(2)区域D绕y轴旋转⼀周所得到的旋转体体积为V_y=2\pi\int_a^b{xf(x)dx}\\ &(3)区域D绕y=kx+b轴旋转⼀周所得到的旋转体体积为V=2\pi\int_D\int{r(x,y)d\sigma}\\ &例如:求y=x,y=x^2在第⼀象限的封闭图形绕转轴的体积\\ \end{align}\begin{align} &V_x=2\pi\int_D\int yd\sigma=2\pi\int_0^1{dx}\int_{x^2}^{x}ydy\\ &V_y=2\pi\int_D\int xd\sigma=2\pi\int_0^1{dx}\int_{x^2}^{x}xdy\\ &V_{x=1}=2\pi\int_D\int (1-x)d\sigma\\ &V_{y=2}=2\pi\int_D\int (2-y)d\sigma\\ \end{align}3.曲线弧长\begin{align} &(1)C:y=y(x),a\leq x\leq b,s=\int_a^b{\sqrt{1+y'^2}dx}\\ &(2)C:\begin{cases}&x=x(t)\\&y=y(t)\\\end{cases},\alpha \leq t\leq \beta,s=\int_{\alpha}^{\beta}{\sqrt{x'^2+y'^2}dx}\\ &(3)C:\rho=\rho(\theta),\alpha \leq \theta\leq \beta,s=\int_{\alpha}^{\beta}{\sqrt{\rho^2+\rho'^2}dx}\\ \end{align}4.旋转体侧⾯积\begin{align} &曲线y=f(x)(f(x)\geq 0)和直线x=a,x=b(0\leq a<b)及x轴所围成的区域绕x轴旋转所得到的旋转体的侧⾯积为\\ &S=2\pi\int_a^b{f(x)\sqrt{1+f'^2(x)}dx}\\ \end{align}⼆、物理应⽤1.压⼒2.变⼒做功3.引⼒(较少考)例题1\begin{align} &分析题意可知,该容器由x^2+y^2=1的圆和x^2+(y-1)^2=1的偏⼼圆组成\\ &根据图像的对称性可以避免不同表达式带来的困难\\ &对圆的⼩带⼦进⾏积分,带⼦长度为x,积分区间为-1到\frac{1}{2},\int_{-1}^{\frac{1}{2}}{\pi x^2dy}\\ &由于图像的对称性,将积分结果乘⼆\\ &(1)V=2\pi\int_{-1}^{\frac{1}{2}}{x^2}dy=2\pi\int_{-1}^{\frac{1}{2}}{(1-y^2)dy}=\frac{9\pi} {4}\\ \end{align}\begin{align} &(2)W=F*S=G*S=mg*S=\rho VSg\\ &上部为W_1=\int_{\frac{1}{2}}^{2}(2y-y^2)(2-y)dy*\rho g\\ &下部为W_2=\int^{\frac{1}{2}}_{-1}(1-y^2)(2-y)dy*\rho g\\ &W=W_1+W_2\\ \end{align}例题2\begin{align} &F_p=P*A=\rho gh*A\\ &将图像分为上部和下部,上部为矩形区域和下部的抛物线围成的⾯积区域,对其进⾏依次求解\\ &P_1=2\rho gh\int_1^{h+1}{h+1-y}dy=\rho gh^2\\ &P_2=2\rho gh\int_0^1{(h+1-y)\sqrt{y}dy=4\rho g(\frac{1}{3}h+\frac{2}{15})}\\ &\frac{P_1}{P_2}=\frac{4}{5}\Rightarrow h=2,h=-\frac{1}{3}(舍去) \end{align}。
积分的概念与定积分
积分的概念与定积分引言在数学领域中,积分是一种重要的概念和工具,广泛应用于物理学、经济学、工程学等各个领域。
积分的概念和定积分是数学分析的基础,对于理解和应用微积分的原理和方法具有重要意义。
本教案将系统地介绍积分的概念和定积分的基本性质,帮助学生全面理解和掌握相关知识。
一、积分的概念1.1 微分与积分的关系微分和积分是微积分的两个基本概念,它们之间存在着密切的关系。
通过对函数进行微分,可以得到函数的变化率和导数;而通过对函数进行积分,可以得到函数的面积、体积、平均值等重要信息。
1.2 定积分的引入为了解决曲线下面积的计算问题,人们引入了定积分的概念。
定积分可以看作是将曲线下面的面积划分成无穷多个无穷小的矩形,并将这些矩形的面积相加得到的极限值。
二、定积分的基本性质2.1 定积分的存在性对于连续函数,定积分存在且唯一。
通过引入黎曼和的概念,可以证明定积分的存在性。
2.2 定积分的性质定积分具有线性性、保号性、保序性等基本性质。
线性性表明定积分具有加法和数乘的性质;保号性和保序性则保证了定积分的结果与函数的大小关系一致。
2.3 定积分与不定积分的关系定积分与不定积分是微积分中两个重要的概念。
通过定积分与不定积分的关系,可以将定积分问题转化为不定积分问题,从而更方便地求解。
三、定积分的计算方法3.1 基本积分公式基本积分公式是求解定积分的基础,通过记忆和掌握基本积分公式,可以快速求解一些简单的积分问题。
3.2 曲线的面积计算通过定积分的概念和性质,可以求解曲线下面积的问题。
将曲线分割成无穷多个小矩形,并将这些小矩形的面积相加即可得到曲线下面积的近似值。
3.3 用定积分计算物理量定积分在物理学中有着广泛的应用,可以用来计算物体的质量、重心、转动惯量等重要物理量。
通过将物理问题转化为定积分问题,可以简化计算过程。
四、定积分的应用4.1 定积分在几何学中的应用定积分在几何学中有着重要的应用,可以用来计算曲线的弧长、曲率、曲面的面积等。
积分与定积分概念
积分与定积分概念积分和定积分是微积分中非常重要的概念,它们在各个领域都有着广泛的应用。
本文将介绍积分和定积分的概念、性质以及在实际问题中的应用。
一、积分的概念积分是微积分中的一个基本概念,它是求解曲线下面积的一种方法。
对于一个函数f(x),它的积分可以用∫f(x)dx表示,其中∫是积分符号,f(x)是被积函数。
积分的结果可以看作是函数f(x)在某个区间上的“累积”。
二、定积分的概念定积分是积分的一种特殊形式,它是从a到b的区间上的积分。
定积分可以用∫[a,b]f(x)dx表示,其中[a, b]表示积分的区间。
定积分的结果是一个具体的数值,代表了函数f(x)在[a, b]区间上的累积值。
三、积分与定积分的性质1. 积分的线性性质:对于两个函数f(x)和g(x),以及一个标量k,有∫(kf(x) + g(x))dx = k∫f(x)dx + ∫g(x)dx。
这个性质可以简化积分的计算过程。
2. 定积分与导数的关系:如果函数F(x)是函数f(x)的一个原函数(即F'(x) = f(x)),那么∫f(x)dx = F(x) + C,其中C为常数。
这个性质可以用来求解定积分的值。
3. 定积分的区间可加性:如果函数f(x)在[a, c]和[c, b]上都是可积的,那么∫[a,b]f(x)dx = ∫[a,c]f(x)dx + ∫[c,b]f(x)dx。
这个性质可以将一个区间上的积分分解成两个子区间上的积分。
四、积分在实际问题中的应用1. 曲线下面积:积分可以用来计算曲线与x轴之间的面积。
例如,在物理学中,利用定积分可以求解物体的位移、速度等问题。
2. 几何体的体积:积分可以用来计算几何体的体积。
例如,在工程学中,利用定积分可以求解复杂形状的建筑物的体积。
3. 概率密度函数:积分可以用来计算概率密度函数下的概率。
在统计学中,利用定积分可以计算出某个区间内随机变量的概率。
总结:积分和定积分是微积分中的重要概念,它们可以用来求解函数的累积值、曲线下的面积等实际问题。
定积分积分的定理
定积分积分的定理定积分积分的定理一、引言定积分是微积分中的一个重要概念,它是对函数在一定区间上的面积或体积进行求解的方法。
而积分的定理则是对于特定类型的函数,可以通过一些规律和公式来简化计算过程,提高计算效率。
本文将介绍几个常见的积分定理。
二、基本积分公式基本积分公式是指对于一些常见函数,其不定积分可以通过一些固定规律来求解。
以下是几个常见函数的不定积分:1. $\int x^n dx = \frac{1}{n+1}x^{n+1} + C$ ($n\neq -1$)2. $\int e^x dx = e^x + C$3. $\int \frac{1}{x} dx = \ln |x| + C$ ($x\neq 0$)4. $\int \sin x dx = -\cos x + C$5. $\int \cos x dx = \sin x + C$6. $\int \frac{1}{a^2+x^2}dx = \frac{1}{a}\arctan(\frac{x}{a})+C$其中C为常数项。
三、换元法换元法是指通过变量代换来简化复杂函数的不定积分。
设u=u(x)为可导函数,则有:$\int f(u(x))u'(x)dx = \int f(u)du$其中右侧的不定积分可以通过基本积分公式来求解。
以下是一个例子:$\int \frac{1}{x^2+1}dx$令$x=\tan t$,则有$dx=\sec^2 t dt$,代入原式得:$\int \frac{1}{\tan^2 t + 1}\sec^2 t dt = \int \frac{1}{\sin^2 t}dt= -\cot t + C$由于$x=\tan t$,所以$t=\arctan x$,因此有:$\int \frac{1}{x^2+1}dx = -\cot (\arctan x) + C = -\frac{1}{x} + C$四、分部积分法分部积分法是指将一个函数的乘积进行拆分,从而简化不定积分的计算。
定积分 分部积分
定积分分部积分
定积分和分部积分是高等数学中两个重要的概念,它们在求解数
学问题中起着非常重要的作用。
接下来我们将对这两个概念进行详细
的讲解。
定积分是指在一定范围内,对函数进行面积求和的过程。
在定积
分的求解过程中,往往需要用到积分区间的两个端点来确定面积范围。
对于积分区间,并不一定要求是连续的。
求取定积分的数学公式为
F(b)-F(a),其中F(x)为被积函数的不定积分。
分部积分则是指把一个积分式化解为多个积分式相加的过程。
分
部积分的求解过程需要用到被积函数的积分和导数。
通过不断的化简
和优化,可以将原本复杂的积分式变得更加简单易懂。
在实际的数学问题中,定积分和分部积分往往需要同时使用。
比如,在求某个函数的积分时,如果被积函数无法进行整体求解时,就
需要通过分部积分的方式将复杂的积分式化为简单的积分式。
然后再
进行定积分的计算,最终求得函数的积分值。
同时,定积分和分部积分也经常被应用在实际问题中。
比如,在
计算物体的质心时,往往需要使用到定积分的概念。
而在计算电场强
度时,则需要通过分部积分将电势函数化解为具有更好求解性质的函数。
总之,定积分和分部积分作为高等数学的两个重要概念,在数学和工程领域中都有着广泛的应用。
通过这两个概念的学习,不仅可以更加深入地理解整体和局部的数学概念,同时也能够在实际问题中寻找到更加简单易懂的解法,为学习和工作提供更多的便利。
高中数学中的积分与定积分计算
高中数学中的积分与定积分计算在高中数学中,积分与定积分是一个重要的概念和计算方法。
它们不仅在数学中有着广泛的应用,也在物理、工程等领域中发挥着重要的作用。
本文将从基本概念、计算方法以及应用方面来探讨高中数学中的积分与定积分计算。
一、积分的基本概念积分是微积分的重要内容之一,它是对函数在一定区间上的累加或求和。
我们可以将一个区间分成无穷多个小区间,然后对每个小区间上的函数值进行求和,最后取极限得到积分的值。
积分的符号表示为∫,其中被积函数通常写在∫符号的右侧,积分区间写在∫符号的上下限之间。
二、定积分的计算方法定积分是积分的一种特殊形式,它是在给定的区间上对函数进行积分。
定积分的计算方法有很多种,其中最常用的方法是基本积分法和换元积分法。
基本积分法是通过查表或记忆来计算常见函数的积分。
例如,对于多项式函数、指数函数、三角函数等,我们可以利用基本积分法来求解其定积分。
这种方法在高中数学中经常使用,可以帮助我们快速得到定积分的结果。
换元积分法是一种通过变量替换来简化积分计算的方法。
当被积函数中存在复杂的表达式时,我们可以通过合适的变量替换来将其化简为简单的形式,从而更容易进行积分计算。
这种方法在解决一些特殊函数的积分时非常有用,例如对于含有根号、三角函数等的函数,我们可以通过换元积分法来求解其定积分。
三、积分与定积分的应用积分与定积分在数学中有着广泛的应用,特别是在物理、工程等实际问题中。
下面我们将介绍一些常见的应用。
1. 面积与曲线长度计算通过积分与定积分,我们可以计算曲线与坐标轴之间的面积以及曲线的长度。
例如,对于给定的函数曲线,我们可以将其分成无数个小矩形,然后对每个小矩形的面积进行求和,最后取极限得到曲线与坐标轴之间的面积。
同样地,我们也可以将曲线分成无数个小线段,对每个小线段的长度进行求和,最后取极限得到曲线的长度。
2. 体积与旋转体的表面积计算通过积分与定积分,我们可以计算旋转体的体积以及旋转体的表面积。
定积分分布积分计算公式
定积分分布积分计算公式定积分是微积分中的一个重要概念,它是对函数在一定区间内的面积或体积的计算。
而分布积分则是对定积分的一种推广,它可以用来计算更加复杂的积分。
本文将介绍定积分分布积分计算公式的相关知识。
一、定积分的定义在介绍定积分分布积分计算公式之前,我们先来回顾一下定积分的定义。
设函数f(x)在区间[a,b]上连续,则[a,b]上f(x)的定积分为:∫a^b f(x)dx其中,dx表示自变量x的微小增量,f(x)dx表示因变量y的微小增量,即函数f(x)在x处的微小面积。
定积分的值表示函数f(x)在区间[a,b]上的面积或体积。
二、分布积分的定义分布积分是对定积分的一种推广,它可以用来计算更加复杂的积分。
设函数f(x)在区间[a,b]上连续,则[a,b]上f(x)的分布积分为:∫a^b f(x)dμ(x)其中,dμ(x)表示测度,它是一个函数,用来描述函数f(x)在不同点上的权重。
分布积分的值表示函数f(x)在区间[a,b]上的加权面积或加权体积。
三、定积分分布积分计算公式定积分分布积分计算公式是将定积分和分布积分结合起来的公式,它可以用来计算更加复杂的积分。
设函数f(x)在区间[a,b]上连续,则[a,b]上f(x)的定积分分布积分计算公式为:∫a^b f(x)dμ(x) = ∫a^b f(x)w(x)dx其中,w(x)表示权重函数,它是测度函数dμ(x)的原函数。
定积分分布积分计算公式的意义是将测度函数dμ(x)转化为权重函数w(x),然后再对函数f(x)进行定积分。
四、定积分分布积分计算公式的应用定积分分布积分计算公式在实际应用中有着广泛的应用。
例如,在统计学中,我们经常需要计算概率密度函数的期望值和方差。
这些计算可以通过定积分分布积分计算公式来实现。
具体来说,设概率密度函数为f(x),则其期望值和方差分别为:E(X) = ∫-∞^+∞ x f(x)dxVar(X) = ∫-∞^+∞ (x - E(X))^2 f(x)dx其中,E(X)表示期望值,Var(X)表示方差。
定积分换元法和分部积分法
x
f (t)dt 是奇函数。
0
证明:令
F(x)
x f (t)dt,则F( x)
x
f (t)dt
0
0
对
F( x)
x
f (t)dt,
设t=-u有
0
F( x)
x
x
f (u)(du) f (u)du
0
0
即
F( x)
x 0
f (u)du
F ( x), F(x),
若f (u) f (u) 若f (u) f (u)
0 f (sin x)dx 0 xf (sin x)dx,
xf (sin x)dx
f (sin x)dx.
0
20
0
1
x
sin x cos2
x
dx
2
0
1
sin x cos2
x
dx
2
0
1
1 cos2
x
d
(cos
x)
arctan(cos
2
x )0
( ) 2 . 2 44 4
sin3 x sin5 xdx
cos
x
sin
x
3
2
dx
0
0
3
2 cos xsin x2 dx
0
cos
xsin
x
3
2
dx
3
2 sin x2 d sin x
0
2
sin
x
3
2
d
sin
x
2
sin
5
x 2
2
2
2
sin
x
5
积分的概念和计算
积分的概念和计算积分的概念:在数学中,积分是微积分学中的重要概念之一。
它是求一个数学函数在某一区间上的总体变化量的方法。
积分可以看作是微分的逆运算,通过积分可以求得函数的原函数,同时也可以计算出曲线与坐标轴之间的面积或曲线的弧长等。
积分的计算方法:1. 不定积分:不定积分是指在求解函数的原函数时所进行的运算。
它的计算方法主要是根据函数的基本性质和一些常用积分公式来进行。
例如,对于阶梯函数、多项式函数和三角函数等常见的函数形式,可以利用一些基本积分公式进行求解。
2. 定积分:定积分是指在一定区间上对函数进行积分运算,并求得其函数的定义域内的总体变化量。
通常,定积分可以通过划分区间,将曲线划分为许多微小的矩形,并计算这些矩形的面积之和来进行求解。
通过逐渐缩小矩形的宽度,可以得到更加准确的结果。
3. 曲线下的面积计算:积分的一个重要应用就是计算曲线下的面积。
通过积分,我们可以求得曲线与 x 轴之间的面积。
具体而言,对于一个非负的函数 f(x),我们可以通过定积分∫f(x)dx来求得曲线与 x 轴之间的面积。
4. 物理中的应用:积分在物理学中有着重要的应用,尤其是在计算物体的质量、体积、位移、速度和加速度等方面。
通过对物理方程进行积分,我们可以得到一些重要的物理量,并且可以解决各种动力学问题。
积分的一些性质和公式:1. 基本积分公式:- ∫kdx = kx (其中 k 为常数)- ∫x^n dx = (1/(n+1)) * x^(n+1) (其中n ≠ -1)- ∫(e^x)dx = e^x + C- ∫sin(x)dx = -cos(x) + C- ∫cos(x)dx = sin(x) + C2. 积分的线性性质:- ∫(f(x)+g(x))dx = ∫f(x)dx + ∫g(x)dx- ∫k*f(x)dx = k*∫f(x)dx (k 为常数)3. 分部积分法:- ∫u * dv = u * v - ∫v * du (其中 u 和 v 均为函数,du 和 dv 分别为u 和 v 的微分)综上所述,积分是微积分学中的重要概念,用于计算函数的总体变化量、曲线下的面积以及物理学中的各种物理量。
高等数学各类积分总结
关于各类积分的一些总结一、定积分实质:直线上函数的积分,积分对象是直线元 dx 。
二、二重积分实质:平面区域上的二元函数的积分,积分对象是dxdy 。
方法:累次积分,即先固定一个变量,对另一个变量积分,再对另一个变量积分。
三、三重积分实质:对空间上的三元函数积分,积分对象是dxdydz 。
方法:累次积分,可以化成三个一次积分(如球坐标代换),也可化成一个二重积分和一个一次积分(如柱坐标代换)。
四、第一型曲线积分实质:对曲线上的一元函数积分,积分对象是曲线元ds 。
方法:转化成定积分曲线r=(x(t),y(t),z(t)),则dt z y x t z t y t x f ds z y x f s dt t t ⎰⎰⎰⎰'+'+'=222))(),(),((),,(。
五、第一型曲面积分实质:对曲面上的二元函数积分,曲面元dS.方法:转化为二重积分。
曲面r=(x(u,v),y(u,v),z(u,v)), 则(,,)((,),(,),(,))s D dr dr f x y z dS f x u v y u v z u v dudv du dv=⨯⎰⎰⎰⎰特别的dr dr dx dy ⨯= 六、第二型曲线积分实质:变力在曲线上作功,或是对有向线元的积分,即对坐标的积分。
形式:⎰++LRdz Qdy Pdx ①方法:1、拆 ①=⎰⎰⎰++L L L Rdz Qdy Pdx =⎰⎰⎰++121212z z y y x x Pdz Pdy Pdx εεε(化成三个定积分)2、合 用定义化成第一形曲线积分①=dl v dz dy dx R Q P LL τ⋅=⋅⎰⎰),,(),,(3、对于环路积分,一般用斯托克斯公式化去做①=dl v dz dy dx R Q P τ⋅=⋅⎰⎰),,(),,(=⎰⎰⋅Dnds rotv ε七、第二形曲面积分实质:通量,或是对有向面积元的积分,即对坐标的曲面积分。
积分与定积分
积分与定积分积分和定积分是微积分中的重要概念。
它们在数学和应用科学中有广泛的应用。
本文将介绍积分和定积分的定义、性质和计算方法。
一、积分的定义与性质1.1 定积分的定义定积分是函数在一个闭区间上的积分,表示曲线下的面积。
设函数f(x)在[a, b]上连续,则[a, b]上f(x)的定积分可表示为:∫(a到b) f(x) dx该积分表示曲线y=f(x)与x轴所围成的曲边梯形的面积。
1.2 积分的性质积分具有以下性质:(1)线性性质:若f(x)和g(x)在[a, b]上可积,且k为常数,则有∫(a 到b) [f(x)+g(x)] dx=∫(a到b) f(x) dx+∫(a到b) g(x) dx以及∫(a到b) kf(x) dx=k∫(a到b) f(x) dx。
(2)区间可加性:若f(x)在[a, b]和[b, c]上可积,则有∫(a到c) f(x) dx=∫(a到b) f(x) dx+∫(b到c) f(x) dx。
(3)积分中值定理:若f(x)在[a, b]上连续,则存在ξ∈[a, b],使得∫(a到b) f(x) dx=f(ξ)。
二、定积分的计算方法2.1 几何意义法定积分可以通过几何意义来计算。
例如,要计算函数f(x)=x²在区间[0, 1]上的定积分,可将函数图像与x轴所围成的面积分为若干个几何图形的面积之和,然后分别计算每个几何图形的面积并求和。
在本例中,将曲边梯形近似为矩形,计算可得定积分的值为1/3。
2.2 基本积分法基本积分法是通过函数的不定积分来计算定积分。
定积分与不定积分之间有着密切的联系,可以利用不定积分来计算定积分。
例如,要计算函数f(x)=2x在区间[1, 3]上的定积分,首先求出函数f(x)的不定积分F(x)=x²+C,其中C为常数。
然后,利用不定积分的基本性质,计算定积分的值为F(3)-F(1)=9-1=8。
2.3 分部积分法分部积分法也是计算定积分的一种常用方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定积分和积分
定积分和积分是高等数学中的两个基本概念。
定积分是用来求曲线下面所围成的面积的概念,通常表示为∫abf(x)dx。
其中,a和b 表示积分区间,f(x)表示被积函数。
积分则是对函数进行求和的运算,通常表示为∫f(x)dx。
在实际应用中,积分可以用来求函数的面积、体积、平均值等。
从计算方法上来说,定积分和积分有很大的区别。
定积分是通过将积分区间分成若干小区间,然后对每个小区间进行面积的计算和求和得到的。
而积分则是通过将函数进行无限分割,然后对每个小区间进行求和得到的。
无论是定积分还是积分,在高等数学中都有着重要的应用。
在微积分、物理学、工程学等领域中,这两个概念都是必不可少的工具。
因此,对于学习高等数学的学生来说,深入理解定积分和积分的概念和应用,是非常重要的。
- 1 -。