贵州省黔南州中考数学真题试题(解析版)

合集下载

2020年贵州省黔南中考数学试卷含答案-答案在前

2020年贵州省黔南中考数学试卷含答案-答案在前

2020年贵州省黔南州中考试卷数学答案解析一、1.【答案】A【解析】解:根据相反数的定义,可得3的相反数是:3-.故选:A .2.【答案】D【解析】解:A 、不是中心对称图形,故本选项错误;B 、不是中心对称图形,故本选项错误;C 、不是中心对称图形,故本选项错误;D 、是中心对称图形,故本选项正确.故选:D .3.【答案】C【解析】解:493 4009.3410=⨯.故选:C .4.【答案】D【解析】解:因为圆柱是矩形,圆锥是等腰三角形,球是圆,圆台是等腰梯形,故选:D .5.【答案】A【解析】解:A 、()4312a a =,故原题计算正确;B 、347a a a ⋅=,故原题计算错误;C 、2222a a a +=,故原题计算错误;D 、()222ab a b =,故原题计算错误;故选:A .6.【答案】D【解析】解:∵矩形纸条ABCD 中,AD BC ∥, '30AEG BGD ∠=∠=︒∴,18030150DEG ∠=︒-︒=︒∴,由折叠可得,111507522DEG ∠α∠==⨯︒=, 故选:D .7.【答案】B【解析】解:∵在Rt ADE △中,6DE =,1AE AB BE AB CD x =-=-=-,55ADE ∠=︒,sin55AE AD ︒=∴,cos55DE AD ︒=,1tan556AE x DE -︒==, 故选:B .8.【答案】C【解析】解:设该商品每件的进价为x 元,依题意,得:120.82x ⨯-=,解得:7.6x =.故选:C .9.【答案】D【解析】解:分两种情况:当腰为4时,449+<,所以不能构成三角形;当腰为9时,994+>,994-<,所以能构成三角形,周长是:99422++=.故选:D .10.【答案】C【解析】解:45∵,314∴<,1在3和4之间,即34a <<.故选:C .二、11.【答案】()2a ab -【解析】解:3222a a b ab -+, ()222a a ab b =-+,()2a ab =-.12.【答案】9【解析】解:27m n a b -+∵与443a b -的和仍是一个单项式,24m -=∴,74n +=,解得:6m =,3n =-,故()639m n -=--=.故答案为:9.13.【答案】4【解析】解:∵2,3,x ,1,5,7的众数为7,7x =∴,把这组数据从小到大排列为:1、2、3、5、6、7, 则中位数为3542+=; 故答案为:4.14.【答案】二【解析】解:由已知,得:0k >,0b <.故直线必经过第一、三、四象限.则不经过第二象限.故答案为:二.15.【答案】()【解析】解:∵直线443y x =+与x 轴、y 轴分别交于A 、B 两点, ∴点A 的坐标为()3,0,点B 的坐标为()0,4.过点C 作CE y ⊥轴于点E ,如图所示.BC OC OA ==∵,3OC =∴,2OE =,CE ==∴∴点C 的坐标为().故答案为:().16.【答案】10【解析】解:在Rt ABC △中,2AB =∵,1sin 3AB ACB AC ∠==, 1263AC =÷=∴ 在Rt ADC △中,AD =10=.故答案为:10.17.【答案】4【解析】解:如图所示:∵两条对角线的和为6,6AC BD +=∴,∵菱形的周长为,AB ∴AC BD ⊥,12AO AC =,12BO BD =, 3AO BO +=∴, 222AO BO AB +=∴,()29AO BO +=,即225AO BO +=,2229AO AO BO BO +⋅+=, 24AO BO ⋅=∴,∴菱形的面积1242AC BD AO BO =⋅=⋅=; 故答案为:4.18.【答案】12y x =【解析】解:如图,过点C 作CE y ⊥轴于E ,∵四边形ABCD 是正方形,10AB BC ==∴,90ABC ∠=︒,6OB ===∴,90ABC AOB ∠=∠=︒∵,90ABO CBE ∠+∠=︒∴,90ABO BAO ∠+∠=︒,BAO CBE ∠=∠∴,又90AOB BEC ∠=∠=︒∵,()ABO BCE AAS △≌△∴,6CE OB ==∴,8BE AO ==,2OE =∴,∴点()6,2C ,∵反比例函数()0ky k x =≠的图象过点C ,6212k =⨯=∴,∴反比例函数的解析式为12y x =, 故答案为:12y x =.19.【答案】5210258x y x y +=⎧⎨+=⎩【解析】解:根据题意得:5210258x y x y +=⎧⎨+=⎩.故答案为:5210258x y x y +=⎧⎨+=⎩. 20.【答案】0【解析】解:28160x x -+=,解得:4x =,即124x x ==,则2121?22*16160x x x x x =-=-=,故答案为0.三、21.【答案】解:(1)原式01232 2 0202⎛⎫=--⨯- ⎪⎝⎭ ()221 2 020=---02 2 019=--21=--1=--(2)解不等式312x -≤,得:1x ≥, 解不等式是324x +≥,得:23x ≥, 则不等式组的解集为1x ≥.【解析】具体解题过程参照答案。

2024年贵州黔南中考数学试题及答案

2024年贵州黔南中考数学试题及答案

2024年贵州黔南中考数学试题及答案同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25小题,满分150分.考试时长120分钟.考试形式为闭卷.2.请在答题卡相应位置作答,在试题卷上答题无效.3.不能使用计算器.一、选择题(本大题共12题,每题3分,共36分.每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置填涂)1. 下列有理数中最小的数是( )A. 2-B. 0C. 2D. 42. “黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A. B. C. D.3. 计算23a a +的结果正确的是( )A. 5aB. 6aC. 25aD. 26a 4. 不等式1x <的解集在数轴上的表示,正确的是( )A. B.C.D.5. 一元二次方程220x x -=的解是( )A. 13x =,21x = B. 12x =,20x = C. 13x =,22x =- D. 12x =-,21x =-6.为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为()2,0-,()0,0,则“技”所在的象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.为了解学生的阅读情况,某校在4月23日世界读书日,随机抽取100名学生进行阅读情况调查,每月阅读两本以上经典作品的有20名学生,估计该校800名学生中每月阅读经典作品两本以上的人数为( )A 100人 B. 120人 C. 150人 D. 160人8. 如图,ABCD Y 的对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB BC =B. AD BC =C. OA OB =D. AC BD^9. 小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是( )A. 小星定点投篮1次,不一定能投中B. 小星定点投篮1次,一定可以投中C. 小星定点投篮10次,一定投中4次D. 小星定点投篮4次,一定投中1次10. 如图,在扇形纸扇中,若150AOB Ð=°,24OA =,则»AB 长为( )A. 30πB. 25πC. 20πD. 10π11. 小红学习了等式的性质后,在甲、乙两台天平的左右两边分别放入“■”“●”“▲”三种物体,如图所示,天平都保持平衡.若设“■”与“●”的质量分别为x ,y ,则下列关系式正确的是( )A. x y= B. 2x y = C. 4x y = D. 5x y=12. 如图,二次函数2y ax bx c =++的部分图象与x 轴的一个交点的横坐标是3-,顶点坐标为()1,4-,则下列说法正确的是( ).的A. 二次函数图象的对称轴是直线1x =B. 二次函数图象与x 轴的另一个交点的横坐标是2C. 当1x <-时,y 随x 的增大而减小D. 二次函数图象与y 轴交点的纵坐标是3二、填空题(本大题共4题,每题4分,共16分)13.的结果是________.14.如图,在ABC V 中,以点A 为圆心,线段AB 的长为半径画弧,交BC 于点D ,连接AD .若5AB =,则AD 的长为______.15.在元朝朱世杰所著的《算术启蒙》中,记载了一道题,大意是:快马每天行240里,慢马每天行150里,慢马先行12天,则快马追上慢马需要的天数是______.16. 如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF .若4sin 5EAF Ð=,5AE =,则AB 的长为______.三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)17. (1)在①22,②2-,③()01-,④122´中任选3个代数式求和;的(2)先化简,再求值:()21122x x -×+,其中3x =.18. 已知点()1,3在反比例函数k y x=的图象上.(1)求反比例函数的表达式;(2)点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.19.根据《国家体质健康标准》规定,七年级男生、女生50米短跑时间分别不超过7.7秒、8.3秒为优秀等次.某校在七年级学生中挑选男生、女生各5人进行集训,经多次测试得到10名学生的平均成绩(单位:秒)记录如下:男生成绩:7.61,7.38,7.65,7.38,7.38女生成绩:8.23,8.27,8.16,8.26,8.32根据以上信息,解答下列问题:(1)男生成绩的众数为______,女生成绩的中位数为______;(2)判断下列两位同学的说法是否正确.(3)教练从成绩最好的32名学生代表学校参加比赛,请用画树状图或列表的方法求甲被抽中的概率.20. 如图,四边形ABCD 的对角线AC 与BD 相交于点O ,AD BC ∥,90ABC Ð=°,有下列条件:①AB CD ∥,②AD BC =.(1)请从以上①②中任选1个作为条件,求证:四边形ABCD 是矩形;(2)在(1)的条件下,若3AB =,5AC =,求四边形ABCD 的面积.21.为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?22. 综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A Ð;第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN ¢为法线,AO 为入射光线,OD 为折射光线.)测量数据】如图,点A ,B ,C ,D ,E ,F ,O ,N ,N ¢在同一平面内,测得20cm AC =,45A Ð=°,折射角32DON Ð=°.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长;(2)求B ,D 之间的距离(结果精确到0.1cm ).(参考数据:sin 320.52°»,cos320.84°»,tan 320.62°»)23.如图,AB 为半圆O 的直径,点F 在半圆上,点P 在AB 的延长线上,PC 与半圆相切于点C ,与OF 的延长线相交于点D ,AC 与OF 相交于点E ,DC DE =.(1)写出图中一个与DEC Ð相等的角:______;(2)求证:OD AB ^;【(3)若2OA OE =,2DF =,求PB 的长.24.某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y (盒)与销售单价x (元)是一次函数关系,下表是y 与x 的几组对应值.销售单价x /元…1214161820…销售量y /盒…5652484440…(1)求y 与x 的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m 元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m 的值.25. 综合与探究:如图,90AOB Ð=°,点P 在AOB Ð的平分线上,PA OA ^于点A .(1)【操作判断】如图①,过点P 作PC OB ^于点C ,根据题意在图①中画出PC ,图中APC Ð的度数为______度;(2)问题探究】如图②,点M 在线段AO 上,连接PM ,过点P 作PN PM ^交射线OB 于点N ,求证:2OM ON PA +=;(3)【拓展延伸】点M 在射线AO 上,连接PM ,过点P 作PN PM ^交射线OB 于点N ,射线NM 与射线PO 相交于点F ,若3ON OM =,求OP OF的值.【参考答案同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25小题,满分150分.考试时长120分钟.考试形式为闭卷.2.请在答题卡相应位置作答,在试题卷上答题无效.3.不能使用计算器.一、选择题(本大题共12题,每题3分,共36分.每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置填涂)【1题答案】【答案】A【2题答案】【答案】B【3题答案】【答案】A【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】A【7题答案】【答案】D【8题答案】【答案】B【9题答案】【答案】A【10题答案】【答案】C【11题答案】【答案】C【12题答案】【答案】D二、填空题(本大题共4题,每题4分,共16分)【13题答案】【14题答案】【答案】5【15题答案】【答案】20【16题答案】三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)【17题答案】【答案】(1)见解析(2)12x-,1【18题答案】【答案】(1)3 yx =(2)a c b<<,理由见解析【19题答案】【答案】(1)7.38,8.26(2)小星的说法正确,小红的说法错误(3)2 3【20题答案】【答案】(1)见解析(2)12【21题答案】【答案】(1)种植1亩甲作物和1亩乙作物分别需要5、6名学生(2)至少种植甲作物5亩【22题答案】【答案】(1)20cm(2)3.8cm【23题答案】【答案】(1)DCEÐ(答案不唯一)(2)163(3)163【24题答案】【答案】(1)280y x =-+(2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元(3)2【25题答案】【答案】(1)画图见解析,90(2)见解析 (3)23或83。

黔南中考数学试题及答案

黔南中考数学试题及答案

黔南中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2是质数B. 0是质数C. 1是质数D. 3是质数答案:D2. 以下哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 梯形D. 非等边三角形答案:B3. 如果一个数的平方是9,那么这个数是?A. 3B. -3C. 3或-3D. 以上都不是答案:C4. 以下哪个方程是一元一次方程?A. 2x + 3 = 7B. x^2 - 4x + 4 = 0C. 3x - 2y = 5D. x/2 + 3 = 0答案:A5. 以下哪个选项表示的是锐角?A. 90°B. 120°C. 45°D. 180°答案:C6. 以下哪个选项是正确的?A. 圆的面积公式是πr^2B. 圆的周长公式是2πrC. 圆的面积公式是2πrD. 圆的周长公式是πr^2答案:A7. 以下哪个选项是正确的?A. 直线是一维图形B. 圆是二维图形C. 球是三维图形D. 以上都不正确答案:C8. 以下哪个选项是正确的?A. 正数和负数的和总是负数B. 正数和负数的和总是正数C. 正数和负数的和可能是正数也可能是负数D. 正数和负数的和总是零答案:C9. 以下哪个选项是正确的?A. 任何数的绝对值都是正数B. 0的绝对值是0C. 负数的绝对值是负数D. 以上都不正确答案:B10. 以下哪个选项是正确的?A. 一个数的平方总是大于这个数B. 一个数的平方总是小于这个数C. 一个数的平方总是等于这个数D. 一个数的平方可能是大于、小于或等于这个数答案:D二、填空题(每题3分,共30分)11. 一个数的立方根是2,这个数是______。

答案:812. 如果一个角的补角是120°,那么这个角是______。

答案:60°13. 一个直角三角形的两条直角边分别是3和4,那么斜边的长度是______。

答案:514. 如果一个数的倒数是1/3,那么这个数是______。

历年贵州省黔南州中考数学试卷(含答案)

历年贵州省黔南州中考数学试卷(含答案)

2017年贵州省黔南州中考数学试卷一、选择题(共13小题,每小题4分,满分52分)1.(4分)2017的相反数是()A.﹣2017 B.2017 C.﹣D.2.(4分)下列计算正确的是()A.=8 B.(x+3)2=x2+9 C.(ab3)2=ab6D.(π﹣3.14)0=13.(4分)如图,建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,其运用到的数学原理是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.过一点有且只有一条直线和已知直线平行4.(4分)下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.5.(4分)2017年春节黄金周期间,受旅行发展大会宣传效应的影响,都匀毛尖茶、平塘大射电、罗间高原千岛湖、三都水族文化、荔波世界自然遗产等,吸引了大批国内外游客,黔南州旅游接待人次和收入实现双增长,据统计,全州共接待游客4138900人次,比上年同期增长58.79%,将4138900用科学记数法表示为()A.41.389×105 B.4.1389×105 C.4.1389×106 D.0.41389×1066.(4分)我国古代数学家利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A.B.C.D.7.(4分)如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P 是对角线AC上的一个动点,则PE+PD的最小值是()A.3B.10C.9 D.98.(4分)如果一个正多边形的内角和等于外角和2倍,则这个正多边形是()A.正方形B.正五边形C.正六边形D.正八边形9.(4分)下列调查中,适宜采用全面调查(普查)方式的是()A.了解我国民众对乐天集团“萨德事件”的看法B.了解湖南卫视《人们的名义》反腐剧的收视率C.调查我校某班学生喜欢上数学课的情况D.调查某类烟花爆竹燃放的安全情况10.(4分)如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为()A.54°B.36°C.30°D.27°11.(4分)反比例函数y=﹣(x<0)如图所示,则矩形OAPB的面积是()A.3 B.﹣3 C.D.﹣12.(4分)“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,在论坛召开之际,福田欧辉陆续向缅甸仰光公交公司应付1000台清洁能源公交车,以2017客车海外出口第一大单的成绩,创下了客车行业出口之最,同时,这也是在国家“一带一路”战略下,福田欧辉代表“中国制造”走出去的成果,预计到2019年,福田公司将向海外出口清洁能源公交车达到3000台,设平均每年的出口增长率为x,可列方程为()A.1000(1+x%)2=3000 B.1000(1﹣x%)2=3000C.1000(1+x)2=3000 D.1000(1﹣x)2=300013.(4分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac <b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0正确的有()A.3个 B.4个 C.5个 D.6个二、填空题(共6小题,每小题4分,满分24分)14.(4分)因式分解:2x2﹣8=.15.(4分)一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集为.16.(4分)如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠FPE=100°,则∠PFE的度数是.17.(4分)如图,在扇形AOB中,AC为弦,∠AOB=130°,∠CAO=60°,OA=6,则的长为.18.(4分)如图,在△ABC中,AB=3,AC=6,将△ABC绕点C按逆时针方向旋转得到△A1B1C,使CB1∥AD,分别延长AB、CA1相交于点D,则线段BD的长为.19.(4分)杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则(a+b)5=.三、解答题(共7小题,满分74分)20.(10分)(1)计算:|﹣1|+(﹣1)2017+4sin60°+.(2)先化简再求值:(﹣)÷,其中x、y满足|x﹣1|+(y+2)2=0.21.(10分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(顶点是网格线的交点)(1)先将△ABC竖直向上平移5个单位,再水平向右平移4个单位得到△A1B1C1,请画出△A1B1C1;(2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2;(3)求线段B1C1变换到B1C2的过程中扫过区域的面积.22.(10分)全面二孩政策于2016年1月1日正式实施,黔南州某中学对八年级部分学生进行了随机问卷调查,其中一个问题“你爸妈如果给你添一个弟弟(或妹妹),你的态度是什么?”共有如下四个选项(要求仅选择一个选项):A.非常愿意B.愿意C.不愿意D.无所谓如图是根据调查结果绘制的两幅不完整的统计图,请结合图中信息解答以下问题:(1)试问本次问卷调查一共调查了多少名学生?并补全条形统计图;(2)若该年级共有450名学生,请你估计全年级可能有多少名学生支持(即态度为“非常愿意”和“愿意”)爸妈给自己添一个弟弟(或妹妹)?(3)在年级活动课上,老师决定从本次调查回答“不愿意”的同学中随机选取2名同学来谈谈他们的想法,而本次调查回答“不愿意”的这些同学中只有一名男同学,请用画树状图或列表的方法求选取到两名同学中刚好有这位男同学的概率.23.(10分)阅读材料:一般地,当α、β为任意角时,tan(α+β)与tan(α﹣β)的值可以用下面的公式求得:tan(α±β)=.例如:tan15°=tan(45°﹣30°)======2﹣.根据以上材料,解决下列问题:(1)求tan75°的值;(2)都匀文峰塔,原名文笔塔,始建于明代万历年间,系五层木塔,文峰塔的木塔年久倾毁,仅存塔基,1983年,人民政府拨款维修文峰塔,成为今天的七层六面实心石塔(图1),小华想用所学知识来测量该铁搭的高度,如图2,已知小华站在离塔底中心A处5.7米的C处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC为1.72米,请帮助小华求出文峰塔AB的高度.(精确到1米,参考数据≈1.732,≈1.414)24.(10分)2016年12月29日至31日,黔南州第十届旅游产业发展大会在“中国长寿之乡”﹣﹣罗甸县举行,从中寻找到商机的人不断涌现,促成了罗甸农民工返乡创业热潮,某“火龙果”经营户有A、B两种“火龙果”促销,若买2件A种“火龙果”和1件B种“火龙果”,共需120元;若买3件A种“火龙果”和2件B种“火龙果”,共需205元.(1)设A,B两种“火龙果”每件售价分别为a元、b元,求a、b的值;(2)B种“火龙果”每件的成本是40元,根据市场调查:若按(1)中求出的单价销售,该“火龙果”经营户每天销售B种“火龙果”100件;若销售单价每上涨1元,B种“火龙果”每天的销售量就减少5件.①求每天B种“火龙果”的销售利润y(元)与销售单价(x)元之间的函数关系?②求销售单价为多少元时,B种“火龙果”每天的销售利润最大,最大利润是多少?25.(12分)如图所示,以△ABC的边AB为直径作⊙O,点C在⊙O上,BD是⊙O的弦,∠A=∠CBD,过点C作CF⊥AB于点F,交BD于点G,过C作CE∥BD 交AB的延长线于点E.(1)求证:CE是⊙O的切线;(2)求证:CG=BG;(3)若∠DBA=30°,CG=4,求BE的长.26.(12分)如图,已知直角坐标系中,A、B、D三点的坐标分别为A(8,0),B(0,4),D(﹣1,0),点C与点B关于x轴对称,连接AB、AC.(1)求过A、B、D三点的抛物线的解析式;(2)有一动点E从原点O出发,以每秒2个单位的速度向右运动,过点E作x 轴的垂线,交抛物线于点P,交线段CA于点M,连接PA、PB,设点E运动的时间为t(0<t<4)秒,求四边形PBCA的面积S与t的函数关系式,并求出四边形PBCA的最大面积;(3)抛物线的对称轴上是否存在一点H,使得△ABH是直角三角形?若存在,请直接写出点H的坐标;若不存在,请说明理由.2017年贵州省黔南州中考数学试卷参考答案与试题解析一、选择题(共13小题,每小题4分,满分52分)1.(4分)(2017•黔南州)2017的相反数是()A.﹣2017 B.2017 C.﹣D.【分析】根据相反数特性:若a.b互为相反数,则a+b=0即可解题.【解答】解:∵2017+(﹣2017)=0,∴2017的相反数是(﹣2017),故选A.【点评】本题考查了相反数之和为0的特性,熟练掌握相反数特性是解题的关键.2.(4分)(2017•黔南州)下列计算正确的是()A.=8 B.(x+3)2=x2+9 C.(ab3)2=ab6D.(π﹣3.14)0=1【分析】A、根据立方根的定义解答;B、根据完全平方公式解答;C、根据积的乘方和幂乘方解答;D、根据非零数的0次方解答.【解答】解:A、=4≠8,故本选项错误;B、(x+3)2=x2+6x+9≠x2+9,故本选项错误;C、(ab3)2=a2b6=ab6,故本选项错误;D、∵π﹣3.14≠0,∴(π﹣3.14)0=1,故本选项正确;故选D.【点评】本题考查了立方根、积的乘方和幂的乘方、完全平方公式、0指数幂,综合性较强,要细心.3.(4分)(2017•黔南州)如图,建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,其运用到的数学原理是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.过一点有且只有一条直线和已知直线平行【分析】直接利用直线的性质分析得出答案.【解答】解:建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法运用到的数学原理是:两点确定一条直线.故选:B.【点评】此题主要考查了直线的性质,正确把握直线的性质联系实际生活是解题关键.4.(4分)(2017•黔南州)下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(4分)(2017•黔南州)2017年春节黄金周期间,受旅行发展大会宣传效应的影响,都匀毛尖茶、平塘大射电、罗间高原千岛湖、三都水族文化、荔波世界自然遗产等,吸引了大批国内外游客,黔南州旅游接待人次和收入实现双增长,据统计,全州共接待游客4138900人次,比上年同期增长58.79%,将4138900用科学记数法表示为()A.41.389×105 B.4.1389×105 C.4.1389×106 D.0.41389×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将4138900用科学记数法表示为:4.1389×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(4分)(2017•黔南州)我国古代数学家利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A.B.C.D.【分析】根据主视图的定义,得出圆柱以及立方体的摆放即可得出主视图为3个正方形组合体,进而得出答案即可.【解答】解:利用圆柱直径等于立方体边长,得出此时摆放,圆柱主视图是正方得出圆柱以及立方体的摆放的主视图为两列,左边一个正方形,右边两个正方形,故选:B.【点评】此题主要考查了几何体的三视图;掌握主视图是从几何体正面看得到的平面图形是解决本题的关键.7.(4分)(2017•黔南州)如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是()A.3B.10C.9 D.9【分析】由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PE+PD=BE最小,而BE是直角△CBE的斜边,利用勾股定理即可得出结果.【解答】解:如图,连接BE,设BE与AC交于点P′,∵四边形ABCD是正方形,∴点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度.∵直角△CBE中,∠BCE=90°,BC=9,CE=CD=3,∴BE==3.故选A.【点评】此题考查了轴对称﹣﹣最短路线问题,正方形的性质,要灵活运用对称性解决此类问题.找出P点位置是解题的关键.8.(4分)(2017•黔南州)如果一个正多边形的内角和等于外角和2倍,则这个正多边形是()A.正方形B.正五边形C.正六边形D.正八边形【分析】设这个多边形的边数为n.根据题意列出方程即可解决问题.【解答】解:设这个多边形的边数为n.由题意(n﹣2)•180°=2×360°,解得n=6,答:这个多边形是正六边形.故选C.【点评】本题考查多边形的内角和、外角和等知识,解题的关键是学会构建方程解决问题.9.(4分)(2017•黔南州)下列调查中,适宜采用全面调查(普查)方式的是()A.了解我国民众对乐天集团“萨德事件”的看法B.了解湖南卫视《人们的名义》反腐剧的收视率C.调查我校某班学生喜欢上数学课的情况D.调查某类烟花爆竹燃放的安全情况【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、了解我国民众对乐天集团“萨德事件”的看法调查范围广适合抽样调查,故A不符合题意;B、了解湖南卫视《人们的名义》反腐剧的收视率调查范围广适合抽样调查,故B不符合题意;C、调查我校某班学生喜欢上数学课的情况适合普查,故C符合题意;D、调查某类烟花爆竹燃放的安全情况调查具有破坏性适合抽样调查,故D不符合题意;故选:C.【点评】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考察的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.(4分)(2017•黔南州)如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为()A.54°B.36°C.30°D.27°【分析】由AD为圆O的切线,利用切线的性质得到OA与AD垂直,在直角三角形OAD中,由直角三角形的两锐角互余,根据∠ODA的度数求出∠AOD的度数,再利用同弧所对的圆心角等于所对圆周角的2倍即可求出∠ACB的度数.【解答】解:∵AD为圆O的切线,∴AD⊥OA,即∠OAD=90°,∵∠ODA=36°,∴∠AOD=54°,∵∠AOD与∠ACB都对,∴∠ACB=∠AOD=27°.故选D.【点评】此题考查了切线的性质,以及圆周角定理,熟练掌握切线的性质是解本题的关键.11.(4分)(2017•黔南州)反比例函数y=﹣(x<0)如图所示,则矩形OAPB 的面积是()A.3 B.﹣3 C.D.﹣【分析】可设出点P的坐标,则可表示出矩形OAPB的面积.【解答】解:∵点P在反比例函数y=﹣(x<0)的图象上,∴可设P(x,﹣),∴OA=﹣x,PA=﹣,∴S=OA•PA=﹣x•(﹣)=3,矩形OAPB故选A.【点评】本题主要考查反比例函数上点的坐标特征,利用P点坐标表示出矩形OABPB的面积是解题的关键.12.(4分)(2017•黔南州)“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,在论坛召开之际,福田欧辉陆续向缅甸仰光公交公司应付1000台清洁能源公交车,以2017客车海外出口第一大单的成绩,创下了客车行业出口之最,同时,这也是在国家“一带一路”战略下,福田欧辉代表“中国制造”走出去的成果,预计到2019年,福田公司将向海外出口清洁能源公交车达到3000台,设平均每年的出口增长率为x,可列方程为()A.1000(1+x%)2=3000 B.1000(1﹣x%)2=3000C.1000(1+x)2=3000 D.1000(1﹣x)2=3000【分析】根据题意得出2018年的台数为1000(1+x)台,2019年为1000(1+x)2台,列出方程即可.【解答】解:根据题意:2019年为1000(1+x)2台.则1000(1+x)2=3000;故选:C.【点评】此题考查了由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为a(1+x)2=b (a<b);平均降低率问题,在理解的基础上,可归结为a(1﹣x)2=b(a>b).13.(4分)(2017•黔南州)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0正确的有()A.3个 B.4个 C.5个 D.6个【分析】根据二次函数的性质和二次函数的图象可以判断题目中各个小题的结论是否成立,从而可以解答本题.【解答】解:由图象可知,抛物线开口向上,则a>0,顶点在y轴右侧,则b<0,与y轴交于负半轴,则c<0,∴abc>0,故①正确,函数图象与x轴有两个不同的交点,则b2﹣4ac>0,即4ac<b2,故②正确,由图象可知,,则2b=﹣2a,2a+b=﹣b>0,故③正确,由抛物线过点(﹣1,0),(0,﹣2),(2,0),可得,,得,∴y=x2﹣x﹣2=,∴顶点坐标是(,﹣),故④错误,∴当x<时,y随x的增大而减小,故⑤正确,当x=1时,y=a+b+c<0,故⑥错误,由上可得,正确是①②③⑤,故选B.【点评】本题考查二次函数图象与系数的关系,解答本题的关键是明确二次函数的性质,利用数形结合的思想解答.二、填空题(共6小题,每小题4分,满分24分)14.(4分)(2017•黔南州)因式分解:2x2﹣8=2(x+2)(x﹣2).【分析】观察原式,找到公因式2,提出即可得出答案.【解答】解:2x2﹣8=2(x+2)(x﹣2).【点评】本题考查提公因式法分解因式,是基础题.15.(4分)(2017•黔南州)一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集为x<1.【分析】根据一次函数与一元一次不等式的关系即可求出答案.【解答】解:∵y=kx+b,kx+b<0∴y<0,由图象可知:x<1故答案为:x<1【点评】本题考查一次函数与一元一次不等式,解题的关键是正确理解一次函数与一元一次不等式的关系,本题属于基础题型.16.(4分)(2017•黔南州)如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠FPE=100°,则∠PFE的度数是40°.【分析】根据三角形中位线定理得到EP=AD,FP=BC,得到PE=PF,根据等腰三角形的性质、三角形内角和定理计算即可.【解答】解:∵P是对角线BD的中点,E是AB的中点,∴EP=AD,同理,FP=BC,∵AD=BC,∴PE=PF,∵∠FPE=100°,∴∠PFE=40°,故答案为:40°.【点评】本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.17.(4分)(2017•黔南州)如图,在扇形AOB中,AC为弦,∠AOB=130°,∠CAO=60°,OA=6,则的长为π.【分析】连接OC,如图,利用等腰三角形的性质和三角形内角和可计算出∠AOC=60°,则∠BOC=70°,然后根据弧长公式计算的长.【解答】解:连接OC,如图,∴∠OCA=∠CAO=60°,∴∠AOC=60°,∴∠BOC=130°﹣60°=70°,∴的长==π.故答案为π.【点评】本题考查了弧长的计算:圆周长公式:C=2πR;弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R),在弧长的计算公式中,n是表示1°的圆心角的倍数,n和180都不要带单位.18.(4分)(2017•黔南州)如图,在△ABC中,AB=3,AC=6,将△ABC绕点C 按逆时针方向旋转得到△A1B1C,使CB1∥AD,分别延长AB、CA1相交于点D,则线段BD的长为9.【分析】利用平行线的性质以及旋转的性质得出△CAD∽△B′A′C,再利用相似三角形的性质得出AD的长,进而得出BD的长.【解答】解:∵将△ABC绕点C按逆时针方向旋转得到△A′B′C,∴AC=CA′=6,AB=B′A′=3,∠A=∠CA′B′,∵CB′∥AB,∴∠B′CA′=∠D,∴△CAD∽△B′A′C,∴,解得AD=12,∴BD=AD﹣AB=12﹣3=9.故答案为:9.【点评】此题主要考查了旋转的性质以及相似三角形的判定与性质等知识,得出△CAD∽△B′A′C是解题关键.19.(4分)(2017•黔南州)杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则(a+b)5=1a5+5a4b+10a3b2+10a2b3+5ab4+1b5.【分析】观察图形,找出二项式系数与杨辉三角之间的关系,即可得出(a+b)5=1a5+5a4b+10a3b2+10a2b3+5ab4+1b5,此题得解.【解答】解:观察图形,可知:(a+b)5=1a5+5a4b+10a3b2+10a2b3+5ab4+1b5.故答案为:1a5+5a4b+10a3b2+10a2b3+5ab4+1b5.【点评】本题考查了完全平方公式以及规律型中数字的变化,观察图形,找出二项式系数与杨辉三角之间的关系是解题的关键.三、解答题(共7小题,满分74分)20.(10分)(2017•黔南州)(1)计算:|﹣1|+(﹣1)2017+4sin60°+.(2)先化简再求值:(﹣)÷,其中x、y满足|x﹣1|+(y+2)2=0.【分析】(1)根据绝对值、乘方、三角函数、平方根的定义解答;(2)先将括号内通分,再将除法转化为乘法解答.【解答】解:(1)原式=﹣1﹣1+4×+2=3;(2)∵x、y满足|x﹣1|+(y+2)2=0,∴x﹣1=0,y+2=0,∴x=1,y=﹣2.原式=×=,当x=1,y=﹣2时,原式==﹣1.【点评】(1)本题考查了绝对值、乘方、三角函数、平方根,熟悉定义是解题的关键;(2)本题考查了分式的化简求值,熟悉约分、通分是解题的关键.21.(10分)(2017•黔南州)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(顶点是网格线的交点)(1)先将△ABC竖直向上平移5个单位,再水平向右平移4个单位得到△A1B1C1,请画出△A1B1C1;(2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2;(3)求线段B1C1变换到B1C2的过程中扫过区域的面积.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质进而得出对应点位置,进而得出答案;(3)首先得出圆心角以及半径,再利用扇形面积公式直接计算得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B1C2,即为所求;(3)线段B1C1变换到B1C2的过程中扫过区域的面积为:=π.【点评】此题主要考查了平移变换以及旋转变换和扇形面积求法,正确得出对应点位置是解题关键.22.(10分)(2017•黔南州)全面二孩政策于2016年1月1日正式实施,黔南州某中学对八年级部分学生进行了随机问卷调查,其中一个问题“你爸妈如果给你添一个弟弟(或妹妹),你的态度是什么?”共有如下四个选项(要求仅选择一个选项):A.非常愿意B.愿意C.不愿意D.无所谓如图是根据调查结果绘制的两幅不完整的统计图,请结合图中信息解答以下问题:(1)试问本次问卷调查一共调查了多少名学生?并补全条形统计图;(2)若该年级共有450名学生,请你估计全年级可能有多少名学生支持(即态度为“非常愿意”和“愿意”)爸妈给自己添一个弟弟(或妹妹)?(3)在年级活动课上,老师决定从本次调查回答“不愿意”的同学中随机选取2名同学来谈谈他们的想法,而本次调查回答“不愿意”的这些同学中只有一名男同学,请用画树状图或列表的方法求选取到两名同学中刚好有这位男同学的概率.【分析】(1)用选D的人数除以它所占的百分比即可得到调查的总人数,再用总人数乘以选B所占的百分比得到选B的人数,然后用总人数分别减去选B、C、D的人数得到选A的人数,再补全条形统计图;(2)利用样本估计总体,用450乘以样本中选A和选B所占的百分比可估计全年级支持的学生数;(3)“非常愿意”的四名同学分别用1、2、3、4表示,其中1表示男同学,画树状图展示所有12种等可能的结果数,再找出选取到两名同学中刚好有这位男同学的结果数,然后根据概率公式计算.【解答】解:(1)20÷50%=40(名),所以本次问卷调查一共调查了40名学生,选B的人数=40×30%=12(人),选A的人数=40﹣12﹣20﹣4=4(人)补全条形统计图为:(2)450×=180,所以估计全年级可能有180名学生支持;(3)“非常愿意”的四名同学分别用1、2、3、4表示,其中1表示男同学,画树状图为:共有12种等可能的结果数,其中选取到两名同学中刚好有这位男同学的结果数为6,所以选取到两名同学中刚好有这位男同学的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了统计图.23.(10分)(2017•黔南州)阅读材料:一般地,当α、β为任意角时,tan(α+β)与tan(α﹣β)的值可以用下面的公式求得:tan(α±β)=.例如:tan15°=tan(45°﹣30°)======2﹣.根据以上材料,解决下列问题:(1)求tan75°的值;(2)都匀文峰塔,原名文笔塔,始建于明代万历年间,系五层木塔,文峰塔的木塔年久倾毁,仅存塔基,1983年,人民政府拨款维修文峰塔,成为今天的七层六面实心石塔(图1),小华想用所学知识来测量该铁搭的高度,如图2,已知小华站在离塔底中心A处5.7米的C处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC为1.72米,请帮助小华求出文峰塔AB的高度.(精确到1米,参考数据≈1.732,≈1.414)【分析】(1)利用题中的公式和特殊角的三角函数值计算75度的正切值;(2)如图2,先在Rt△BDE中利用正切的定义计算出BE,然后计算BE+AE即可.【解答】解:(1)tan75°=tan(45°+30°)====2+;(2)如图2,易得DE=CA=5.7,AE=CD=1.72,在Rt△BDE中,∵tan∠BDE=,∴BE=DEtan75°=5.7×(2+)≈21.2724,∴AB=BE+AE=21.2724+1.72≈23(m).答:文峰塔AB的高度约为23m.【点评】本题考查了解直角三角形的应用﹣仰角俯角:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.24.(10分)(2017•黔南州)2016年12月29日至31日,黔南州第十届旅游产业发展大会在“中国长寿之乡”﹣﹣罗甸县举行,从中寻找到商机的人不断涌现,促成了罗甸农民工返乡创业热潮,某“火龙果”经营户有A、B两种“火龙果”促销,若买2件A种“火龙果”和1件B种“火龙果”,共需120元;若买3件A种“火龙果”和2件B种“火龙果”,共需205元.(1)设A,B两种“火龙果”每件售价分别为a元、b元,求a、b的值;(2)B种“火龙果”每件的成本是40元,根据市场调查:若按(1)中求出的单价销售,该“火龙果”经营户每天销售B种“火龙果”100件;若销售单价每上涨1元,B种“火龙果”每天的销售量就减少5件.①求每天B种“火龙果”的销售利润y(元)与销售单价(x)元之间的函数关系?②求销售单价为多少元时,B种“火龙果”每天的销售利润最大,最大利润是多少?【分析】(1)根据题意列方程组即可得到结论;(2)①由题意列出y与x之间的关系式即可;②利用配方法,根据二次函数的性质解答即可;【解答】解:(1)根据题意得:,。

2020年贵州省黔南州中考数学试卷(解析版)

2020年贵州省黔南州中考数学试卷(解析版)

2020年贵州省黔南州中考数学试卷一、选择题(本题10小题,每题4分,共40分)1.3的相反数是()A.﹣3B.3C.﹣D.2.观察下列图形,是中心对称图形的是()A.B.C.D.3.某市2020年参加中考的考生人数的为93400人,将93400用科学记数法表示为()A.934×102B.93.4×103C.9.34×104D.0.934×1054.下列四个几何体中,左视图为圆的是()A.B.C.D.5.下列运算正确的是()A.(a3)4=a12B.a3•a4=a12C.a2+a2=a4D.(ab)2=ab2 6.如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=30°,则∠α的度数是()A.30°B.45°C.74°D.75°7.如图,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点D处测得旗杆顶端A 的仰角∠ADE为55°,测角仪CD的高度为1米,其底端C与旗杆底端B之间的距离为6米,设旗杆AB的高度为x米,则下列关系式正确的是()A.tan55°=B.tan55°=C.sin55°=D.cos55°=8.某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为()A.7.4元B.7.5元C.7.6元D.7.7元9.已知等腰三角形的一边长等于4,一边长等于9,则它的周长为()A.9B.17或22C.17D.2210.已知a=﹣1,a介于两个连续自然数之间,则下列结论正确的是()A.1<a<2B.2<a<3C.3<a<4D.4<a<5二.填空题(本题10小题,每题3分,共30分)11.分解因式:a3﹣2a2b+ab2=.12.若单项式a m﹣2b n+7与单项式﹣3a4b4的和仍是一个单项式,则m﹣n=.13.若一组数据2,3,x,1,5,7的众数为7,则这组数据的中位数为.14.函数y=x﹣1的图象一定不经过第象限.15.如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于A、B两点,点C 在第二象限,若BC=OC=OA,则点C的坐标为.16.如图所示,在四边形ABCD中,∠B=90°,AB=2,CD=8.连接AC,AC⊥CD,若sin∠ACB=,则AD长度是.17.已知菱形的周长为4,两条对角线长的和为6,则菱形的面积为.18.如图,正方形ABCD的边长为10,点A的坐标为(﹣8,0),点B在y轴上,若反比例函数y=(k≠0)的图象过点C,则该反比例函数的解析式为.19.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.【考点】99:由实际问题抽象出二元一次方程组.【答案】见试题解答内容【分析】根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到等量关系,即可列出方程组.【解答】解:根据题意得:.故答案为:.20.对于实数a,b,定义运算“*“,a*b=例如4*2,因为4>2,所以4*2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣8x+16=0的两个根,则x1*x2=.【考点】2C:实数的运算;A6:解一元二次方程﹣配方法;AB:根与系数的关系.【专题】23:新定义;523:一元二次方程及应用;65:数据分析观念.【答案】0.【分析】求出x2﹣8x+16=0的解,代入新定义对应的表达式即可求解.【解答】解:x2﹣8x+16=0,解得:x=4,即x1=x2=4,则x1*x2=x1•x2﹣x22=16﹣16=0,故答案为0.三、解答题(本题6小题,共80分)21.(1)计算(﹣)﹣1﹣3tan60°+|﹣|+(2cos60°﹣2020)0;(2)解不等式组:.22.古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的圆”,请研究如下美丽的圆,如图,Rt△ABC中,∠BCA=90°,AC=3,BC=4,点O在线段BC上,且OC=,以O为圆心.OC为半径的⊙O交线段AO于点D,交线段AO的延长线于点E.(1)求证:AB是⊙O的切线;(2)研究过短中,小明同学发现=,回答小明同学发现的结论是否正确?如果正确,给出证明;如果不正确,说明理由.23.勤劳是中生民的传統美德,学校要求学们在家帮助父母做一些力所能及的家务.在学期初,小丽同学随机调查了七年级部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并将调查结果绘制了如图两幅不完整的统计图:根据统计图提供的作息,解答下列问题:(1)本次共调查了名学生;(2)根据以上信息直接在答题卡上补全条形统计图;(3)扇形統计图中m=,类别D所对应的扇形圆心角α的度数是度;(4)若该校七年级共有400名学生,根据抽样调查的结果,估计该校七年級有多少名学生寒假在家做家务的总时间不低于20小时?24.某单位计划购买甲、乙两种品牌的消毒剂,乙种品牌消毒剂每瓶的价格比甲种品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲种品牌消毒剂的数量与用400元购买乙种品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该单位从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙种品牌消毒剂?25.在2020年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级1班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有48名同学,若每两名同学之间仅通过一次电话,那么全同学共通过多少次电话呢?我们可以用下面的方式来解决问题.用点A1、A2、A3…A48分表示第1名同学、第2名同学、第3名同学…第48名同学,把该班级人数x与通电话次数y之间的关系用如图模型表示:(1)填写上图中第四个图中y的值为,第五个图中y的值为.(2)通过探索发现,通电话次数y与该班级人数x之间的关系式为,当x=48时,对应的y=.(3)若九年级1班全体女生相互之间共通话190次,问:该班共有多少名女生?26.如图,已知AB是⊙O的直径,⊙O经过Rt△ACD的直角边DC上的点F,交AC边于点E,点F是弧EB的中点,∠C=90°,连接AF.(1)求证:直线CD是⊙O切线.(2)若BD=2,OB=4,求tan∠AFC的值.27.如图(1),在平面直角坐标系中,抛物线y=ax2+bx+4(a≠0)与y轴交于点A,与x轴交于点C(﹣2,0),且经过点B(8,4),连接AB,BO,作AM⊥OB于点M,将Rt△OMA沿y轴翻折,点M的对应点为点N.解答下列问题:(1)抛物线的解析式为,顶点坐标为;(2)判断点N是否在直线AC上,并说明理由;(3)如图(2),将图(1)中Rt△OMA沿着OB平移后,得到Rt△DEF.若DE边在线段OB上,点F在抛物线上,连接AF,求四边形AMEF的面积.2020年贵州省黔南州中考数学试卷参考答案与试题解析一.选择题1.3的相反数是()A.﹣3B.3C.﹣D.【分析】根据相反数的定义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:根据相反数的定义,可得3的相反数是:﹣3.故选:A.2.观察下列图形,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选:D.3.某市2020年参加中考的考生人数的为93400人,将93400用科学记数法表示为()A.934×102B.93.4×103C.9.34×104D.0.934×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:93400=9.34×104.故选:C.4.下列四个几何体中,左视图为圆的是()A.B.C.D.【分析】四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,圆台是等腰梯形,由此可确定答案.【解答】解:因为圆柱是矩形,圆锥是等腰三角形,球是圆,圆台是等腰梯形,故选:D.5.下列运算正确的是()A.(a3)4=a12B.a3•a4=a12C.a2+a2=a4D.(ab)2=ab2【分析】利用幂的乘方的性质、同底数幂的乘法法则、合并同类项法则、积的乘方的性质分别进行计算即可.【解答】解:A、(a3)4=a12,故原题计算正确;B、a3•a4=a7,故原题计算错误;C、a2+a2=2a2,故原题计算错误;D、(ab)2=a2b2,故原题计算错误;故选:A.6.如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=30°,则∠α的度数是()A.30°B.45°C.74°D.75°【分析】依据平行线的性质,即可得到∠AEG的度数,再根据折叠的性质,即可得出∠α的度数.【解答】解:∵矩形纸条ABCD中,AD∥BC,∴∠AEG=∠BGD'=30°,∴∠DEG=180°﹣30°=150°,由折叠可得,∠α=∠DEG=×150°=75°,故选:D.7.如图,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点D处测得旗杆顶端A 的仰角∠ADE为55°,测角仪CD的高度为1米,其底端C与旗杆底端B之间的距离为6米,设旗杆AB的高度为x米,则下列关系式正确的是()A.tan55°=B.tan55°=C.sin55°=D.cos55°=【分析】根据锐角三角函数和直角三角形的性质解答即可.【解答】解:∵在Rt△ADE中,DE=6,AE=AB﹣BE=AB﹣CD=x﹣1,∠ADE=55°,∴sin55°=,cos55°=,tan55°=,故选:B.8.某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为()A.7.4元B.7.5元C.7.6元D.7.7元【分析】设该商品每件的进价为x元,根据利润=售价﹣成本,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设该商品每件的进价为x元,依题意,得:12×0.8﹣x=2,解得:x=7.6.故选:C.9.已知等腰三角形的一边长等于4,一边长等于9,则它的周长为()A.9B.17或22C.17D.22【分析】题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:分两种情况:当腰为4时,4+4<9,所以不能构成三角形;当腰为9时,9+9>4,9﹣9<4,所以能构成三角形,周长是:9+9+4=22.故选:D.10.已知a=﹣1,a介于两个连续自然数之间,则下列结论正确的是()A.1<a<2B.2<a<3C.3<a<4D.4<a<5【分析】先估算出的范围,即可得出答案.【解答】解:∵4<<5,∴3<﹣1<4,∴﹣1在3和4之间,即3<a<4.故选:C.二.填空题11.分解因式:a3﹣2a2b+ab2=a(a﹣b)2.【分析】先提取公因式a,再对余下的多项式利用完全平方公式继续分解.【解答】解:a3﹣2a2b+ab2,=a(a2﹣2ab+b2),=a(a﹣b)2.12.若单项式a m﹣2b n+7与单项式﹣3a4b4的和仍是一个单项式,则m﹣n=9.【分析】直接利用合并同类项法则得出m,n的值,进而得出答案.【解答】解:∵a m﹣2b n+7与﹣3a4b4的和仍是一个单项式,∴m﹣2=4,n+7=4,解得:m=6,n=﹣3,故m﹣n=6﹣(﹣3)=9.故答案为:9.13.若一组数据2,3,x,1,5,7的众数为7,则这组数据的中位数为4.【分析】根据众数的定义可得x的值,再依据中位数的定义即可得答案.【解答】解:∵2,3,x,1,5,7的众数为7,∴x=7,把这组数据从小到大排列为:1、2、3、5、6、7,则中位数为=4;故答案为:4.14.函数y=x﹣1的图象一定不经过第二象限.【分析】根据一次函数y=kx+b的图象的性质作答.【解答】解:由已知,得:k>0,b<0.故直线必经过第一、三、四象限.则不经过第二象限.故答案为:二.15.如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于A、B两点,点C 在第二象限,若BC=OC=OA,则点C的坐标为(﹣,2).【分析】根据一次函数图象上点的坐标特征可求出点A、B的坐标,由BC=OC利用等腰三角形的性质可得出OC、OE的值,再利用勾股定理可求出CE的长度,此题得解.【解答】解:∵直线y=﹣x+4与x轴、y轴分别交于A、B两点,∴点A的坐标为(3,0),点B的坐标为(0,4).过点C作CE⊥y轴于点E,如图所示.∵BC=OC=OA,∴OC=3,OE=2,∴CE==,∴点C的坐标为(﹣,2).故答案为:(﹣,2).16.如图所示,在四边形ABCD中,∠B=90°,AB=2,CD=8.连接AC,AC⊥CD,若sin∠ACB=,则AD长度是10.【分析】根据直角三角形的边角间关系,先计算AC,再在直角三角形ACD中,利用勾股定理求出AD.【解答】解:在Rt△ABC中,∵AB=2,sin∠ACB==,∴AC=2÷=6.在Rt△ADC中,AD===10.故答案为:10.17.已知菱形的周长为4,两条对角线长的和为6,则菱形的面积为4.【分析】由菱形的性质和勾股定理得出AO+BO=3,AO2+BO2=AB2,(AO+BO)2=9,求出2AO•BO=4,即可得出答案.【解答】解:如图所示:∵两条对角线的和为6,∴AC+BD=6,∵菱形的周长为4,∴AB=,AC⊥BD,AO=AC,BO=BD,∴AO+BO=3,∴AO2+BO2=AB2,(AO+BO)2=9,即AO2+BO2=5,AO2+2AO•BO+BO2=9,∴2AO•BO=4,∴菱形的面积=AC•BD=2AO•BO=4;故答案为:4.18.如图,正方形ABCD的边长为10,点A的坐标为(﹣8,0),点B在y轴上,若反比例函数y=(k≠0)的图象过点C,则该反比例函数的解析式为y=.【分析】过点C作CE⊥y轴于E,由“AAS”可证△ABO≌△BCE,可得CE=OB=6,BE=AO=8,可求点C坐标,即可求解.【解答】解:如图,过点C作CE⊥y轴于E,∵四边形ABCD是正方形,∴AB=BC=10,∠ABC=90°,∴OB===6,∵∠ABC=∠AOB=90°,∴∠ABO+∠CBE=90°,∠ABO+∠BAO=90°,∴∠BAO=∠CBE,又∵∠AOB=∠BEC=90°,∴△ABO≌△BCE(AAS),∴CE=OB=6,BE=AO=8,∴OE=2,∴点C(6,2),∵反比例函数y=(k≠0)的图象过点C,∴k=6×2=12,∴反比例函数的解析式为y=,故答案为:y=.19.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.【考点】99:由实际问题抽象出二元一次方程组.【答案】见试题解答内容【分析】根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到等量关系,即可列出方程组.【解答】解:根据题意得:.故答案为:.20.对于实数a,b,定义运算“*“,a*b=例如4*2,因为4>2,所以4*2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣8x+16=0的两个根,则x1*x2=.【考点】2C:实数的运算;A6:解一元二次方程﹣配方法;AB:根与系数的关系.【专题】23:新定义;523:一元二次方程及应用;65:数据分析观念.【答案】0.【分析】求出x2﹣8x+16=0的解,代入新定义对应的表达式即可求解.【解答】解:x2﹣8x+16=0,解得:x=4,即x1=x2=4,则x1*x2=x1•x2﹣x22=16﹣16=0,故答案为0.三、解答题21.(1)计算(﹣)﹣1﹣3tan60°+|﹣|+(2cos60°﹣2020)0;(2)解不等式组:.【考点】2C:实数的运算;6F:负整数指数幂;CB:解一元一次不等式组;T5:特殊角的三角函数值.【专题】524:一元一次不等式(组)及应用;66:运算能力.【答案】(1)﹣1﹣2;(2)x≥1.【分析】(1)根据负整数指数幂和零指数幂的规定、绝对值的性质及特殊锐角的三角函数值计算可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)原式=﹣2﹣3×++(2×﹣2020)0=﹣2﹣3++(1﹣2020)2=﹣2﹣2+20190=﹣2﹣2+1=﹣1﹣2;(2)解不等式≤1,得:x≥1,解不等式是3x+2≥4,得:x≥,则不等式组的解集为x≥1.22.古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的圆”,请研究如下美丽的圆,如图,Rt△ABC中,∠BCA=90°,AC=3,BC=4,点O在线段BC上,且OC=,以O为圆心.OC为半径的⊙O交线段AO于点D,交线段AO的延长线于点E.(1)求证:AB是⊙O的切线;(2)研究过短中,小明同学发现=,回答小明同学发现的结论是否正确?如果正确,给出证明;如果不正确,说明理由.【考点】1O:数学常识;KQ:勾股定理;M5:圆周角定理;ME:切线的判定与性质;S9:相似三角形的判定与性质.【专题】55A:与圆有关的位置关系;55D:图形的相似;67:推理能力.【答案】(1)证明见解析过程;(2)结论正确,理由见解析过程.【分析】(1)过点O作OH⊥AB于H,由勾股定理可求AB的长,由面积法可求OH==OC,即可求结论.(2)连接CD,EC,通过证明△DAC∽△CAE,可得,由DE=AC=3,可得结论.【解答】解:(1)如图1,过点O作OH⊥AB于H,∵∠BCA=90°,AC=3,BC=4,∴AB===5,∵S△ABC=S△AOC+S△ABO,∴×3×4=×3×+×5×OH,∴OH=,∴OC=OH,且OH⊥BA,∴AB是⊙O的切线;(2)结论成立,理由如下:连接CD,EC,∵DE是直径,∴∠ECD=90°=∠ACO,∴∠ECO=∠ACD,∵OC=OE,∴∠CEO=∠OCE,∴∠ACD=∠CEO,又∵∠DAC=∠EAC,∴△DAC∽△CAE,∴,∵OC=,∴DE=2OC=3=AC,∴=,故小明同学发现的结论是正确的.23.勤劳是中生民的传統美德,学校要求学们在家帮助父母做一些力所能及的家务.在学期初,小丽同学随机调查了七年级部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并将调查结果绘制了如图两幅不完整的统计图:根据统计图提供的作息,解答下列问题:(1)本次共调查了名学生;(2)根据以上信息直接在答题卡上补全条形统计图;(3)扇形統计图中m=,类别D所对应的扇形圆心角α的度数是度;(4)若该校七年级共有400名学生,根据抽样调查的结果,估计该校七年級有多少名学生寒假在家做家务的总时间不低于20小时?【考点】V5:用样本估计总体;V8:频数(率)分布直方图;VB:扇形统计图;VC:条形统计图.【专题】54:统计与概率;65:数据分析观念.【答案】见试题解答内容【分析】(1)根据A类的人数和所占的百分比,可以求得本次调查的人数;(2)根据统计图中的数据,可以得到B类和C类的人数,然后即可将频数分布直方图补充完整;(3)根据统计图中的数据,可以得到m和α的值;(4)根据统计图中的数据,可以计算出该校七年級有多少名学生寒假在家做家务的总时间不低于20小时.【解答】解:(1)本次共调查了10÷20%=50名学生,故答案为:50;(2)B类学生有:50×24%=12(人),D类学生有:50﹣10﹣12﹣16﹣4=8(人),补全的条形统计图如右图所示;(3)m%=16÷50×100%=32%,即m=32,类别D所对应的扇形圆心角α的度数是:360°×=57.6°,故答案为:32,57.6;(4)400×=224(人),即该校七年級有224名学生寒假在家做家务的总时间不低于20小时.24.某单位计划购买甲、乙两种品牌的消毒剂,乙种品牌消毒剂每瓶的价格比甲种品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲种品牌消毒剂的数量与用400元购买乙种品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该单位从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙种品牌消毒剂?【考点】8A:一元一次方程的应用;B7:分式方程的应用.【专题】521:一次方程(组)及应用;522:分式方程及应用;69:应用意识.【答案】(1)甲品牌消毒剂每瓶的价格为30元;乙品牌消毒剂每瓶的价格为40元;(2)购买了20瓶乙品牌消毒剂.【分析】(1)设甲品牌消毒剂每瓶的价格为x元;乙品牌消毒剂每瓶的价格为(3x﹣50)元,由题意列出分式方程,解方程即可;(2)设购买甲种品牌的消毒剂y瓶,则购买乙种品牌的消毒剂(40﹣y)瓶,由题意列出一元一次方程,解方程即可.【解答】解:(1)设甲品牌消毒剂每瓶的价格为x元;乙品牌消毒剂每瓶的价格为(3x ﹣50)元,由题意得:=,解得:x=30,经检验,x=30是原方程的解且符合实际意义,3x﹣5═40,答:甲品牌消毒剂每瓶的价格为30元;乙品牌消毒剂每瓶的价格为40元;(2)设购买甲种品牌的消毒剂y瓶,则购买乙种品牌的消毒剂(40﹣y)瓶,由题意得:30y+40(40﹣y)=1400,解得:y=20,∴40﹣y=40﹣20=20,答:购买了20瓶乙品牌消毒剂.25.在2020年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级1班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有48名同学,若每两名同学之间仅通过一次电话,那么全同学共通过多少次电话呢?我们可以用下面的方式来解决问题.用点A1、A2、A3…A48分表示第1名同学、第2名同学、第3名同学…第48名同学,把该班级人数x与通电话次数y之间的关系用如图模型表示:(1)填写上图中第四个图中y的值为,第五个图中y的值为.(2)通过探索发现,通电话次数y与该班级人数x之间的关系式为,当x=48时,对应的y=.(3)若九年级1班全体女生相互之间共通话190次,问:该班共有多少名女生?【考点】38:规律型:图形的变化类;AD:一元二次方程的应用.【专题】2A:规律型;523:一元二次方程及应用;69:应用意识.【答案】(1)10;15;(2)y=;1128;(3)该班共有20名女生.【分析】(1)观察图形,可以找出第四和第五个图中的y值;(2)根据y值随x值的变化,可找出y=,再代入x=48可求出当x=48时对应的y值;(3)根据(2)的结论结合九年级1班全体女生相互之间共通话190次,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【解答】解:(1)观察图形,可知:第四个图中y的值为10,第五个图中y的值为15.故答案为:10;15.(2)∵1=,3=,6=,10=,15=,∴y=,当x=48时,y==1128.故答案为:y=;1128.(3)依题意,得:=190,化简,得:x2﹣x﹣380=0,解得:x1=20,x2=﹣19(不合题意,舍去).答:该班共有20名女生.26.如图,已知AB是⊙O的直径,⊙O经过Rt△ACD的直角边DC上的点F,交AC边于点E,点F是弧EB的中点,∠C=90°,连接AF.(1)求证:直线CD是⊙O切线.(2)若BD=2,OB=4,求tan∠AFC的值.【考点】M5:圆周角定理;ME:切线的判定与性质;T7:解直角三角形.【专题】554:等腰三角形与直角三角形;559:圆的有关概念及性质;55A:与圆有关的位置关系;55D:图形的相似;67:推理能力.【答案】见试题解答内容【分析】(1)连结OF,BE,得到BE∥CD,根据平行线的性质得到CD⊥OF,即可得出结论;(2)由相似三角形的性质求出AC长,再由勾股定理可求得DC长,则能求出CF长,即可得出结果.【解答】(1)证明:连结OF,BE,如图:∵AB是⊙O的直径,∴∠AEB=90°,∵∠C=90°,∴∠AEB=∠ACD,∴BE∥CD,∵点F是弧BE的中点,∴OF⊥BE,∴OF⊥CD,∵OF为半径,∴直线DF是⊙O的切线;(2)解:∵∠C=∠OFD=90°,∴AC∥OF,∴△OFD∽△ACD,∴=,∵BD=2,OF=OB=4,∴OD=6,AD=10,∴AC===,∴CD===,∵AC∥OF,OA=4,∴=,即=,解得:CF=,∴tan∠AFC===.27.如图(1),在平面直角坐标系中,抛物线y=ax2+bx+4(a≠0)与y轴交于点A,与x轴交于点C(﹣2,0),且经过点B(8,4),连接AB,BO,作AM⊥OB于点M,将Rt△OMA沿y轴翻折,点M的对应点为点N.解答下列问题:(1)抛物线的解析式为,顶点坐标为;(2)判断点N是否在直线AC上,并说明理由;(3)如图(2),将图(1)中Rt△OMA沿着OB平移后,得到Rt△DEF.若DE边在线段OB上,点F在抛物线上,连接AF,求四边形AMEF的面积.【考点】HF:二次函数综合题.【专题】535:二次函数图象及其性质;553:图形的全等;555:多边形与平行四边形;558:平移、旋转与对称;55E:解直角三角形及其应用;69:应用意识.【答案】(1)y=﹣x2+x+4,(4,);(2)点N在直线AC上,理由见解析过程;(3)四边形AMEF的面积=22.【分析】(1)将点B,点C坐标代入解析式可求a,b的值,由配方法可求顶点坐标;(2)由余角的性质可得∠MAO=∠B,利用三角函数可求tan∠MAO=tan∠NAO=tan∠CAO=,可得∠CAO=∠NAO,可得AC与AN共线,即可求解;(3)先求出OB解析式,AF解析式,联立方程组可求点F坐标,由四边形AMEF的面积=S四边形AMDF+S△DEF=S四边形AMDF+S△OAM=S四边形OAFD,可求解.【解答】解:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴交于点C(﹣2,0),且经过点B (8,4),∴,解得:,∴抛物线解析式为:y=﹣x2+x+4,∵:y=﹣x2+x+4=﹣(x﹣4)2+,∴顶点坐标为(4,)故答案为:y=﹣x2+x+4,(4,);(2)点N在直线AC上,理由如下:∵抛物线y=﹣x2+x+4与y轴交于点A,∴点A(0,4),即OA=4,∵点B(8,4),∴AB∥x轴,AB=8,∴AB⊥AO,∴∠OAB=90°,∴∠OAM+∠BAM=90°,∵AM⊥OB,∴∠BAM+∠B=90°,∴∠B=∠OAM,∴tan∠B=tan∠OAM===,∵将Rt△OMA沿y轴翻折,∴∠NAO=∠OAM,∴tan∠NAO=tan∠OAM=,∵OC=2,OA=4,∴tan∠CAO==,∴tan∠CAO=tan∠NAO,∴∠CAO=∠NAO,∴AN,AC共线,∴点N在直线AC上;(3)∵点B(8,4),点O(0,0),∴直线OB解析式为y=x,∵Rt△OMA沿着OB平移后,得到Rt△DEF,∴AF∥OB,∴直线AF的解析式为:y=x+4,联立方程组:解得:或∴点F(,),∵Rt△OMA沿着OB平移后,得到Rt△DEF,∴Rt△OMA≌Rt△DEF,OA=DF,OA∥DF∴S△OMA=S△DEF,四边形OAFD是平行四边形,∵四边形AMEF的面积=S四边形AMDF+S△DEF=S四边形AMDF+S△OAM=S四边形OAFD,∴四边形AMEF的面积=S四边形OAFD=4×=22.。

2023年贵州黔南州中考数学真题含答案

2023年贵州黔南州中考数学真题含答案

2023年贵州省黔南州中考数学试卷一、选择题(共13小题,每题4分,满分52分) 1.2023旳相反数是( )A.﹣2023B.2023C.﹣12017D.12017【答案】A.2.下列计算对旳旳是( )A.3648=B.22(3)9x x+=+ C.326()ab ab=D.0( 3.14)1π-=【答案】D.3.如图,建筑工人砌墙时,常常在两个墙脚旳位置分别插一根木桩,然后拉一条直旳参照线,其运用到旳数学原理是()A.两点之间,线段最短 B.两点确定一条直线C.垂线段最短D.过一点有且只有一条直线和已知直线平行【答案】B.4.下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形旳是()A. B.C. D.【答案】D.5.2023年春节黄金周期间,受旅行发展大会宣传效应旳影响,都匀毛尖茶、平塘大射电、罗间高原千岛湖、三都水族文化、荔波世界自然遗产等,吸引了大批国内外游客,黔南州旅游接待人次和收入实现双增长,据记录,全州共接待游客4138900人次,比上年同期增长58.79%,将4138900用科学记数法表达为( )A.41.389×105B.4.1389×105C.4.1389×106 D.0.41389×106【答案】C.6.我国古代数学家运用“牟合方盖”找到了球体体积旳计算措施.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一种正方体时两圆柱公共部分形成旳几何体,如图所示旳几何体是可以形成“牟合方盖”旳一种模型,它旳主视图是( )A. B. C.D.【答案】B.7.如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上旳一种动点,则PE+PD旳最小值是()A.310B.103C.9D.92【答案】A.8.假如一种正多边形旳内角和等于外角和2倍,则这个正多边形是()A.正方形B.正五边形C.正六边形 D.正八边形【答案】C.9.下列调查中,合适采用全面调查(普查)方式旳是()A.理解我国民众对乐天集团“萨德事件”旳见解B.理解湖南卫视《人们旳名义》反腐剧旳收视率C.调查我校某班学生喜欢上数学课旳状况D.调查某类烟花爆竹燃放旳安全状况【答案】C.10.如图,已知直线AD是⊙O旳切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB旳度数为( )A.54°B.36° C.30° D.27°【答案】D.11.反比例函数3yx=-(x<0)如图所示,则矩形OAPB旳面积是( )A.3 B.﹣3C.32D.﹣32【答案】A.12.“一带一路”国际合作高峰论坛于2023年5月14日至15日在北京举行,在论坛召开之际,福田欧辉陆续向缅甸仰光公交企业应付1000台清洁能源公交车,以2023客车海外出口第一大单旳成绩,创下了客车行业出口之最,同步,这也是在国家“一带一路”战略下,福田欧辉代表“中国制造”走出去旳成果,估计到2023年,福田企业将向海外出口清洁能源公交车到达3000台,设平均每年旳出口增长率为x,可列方程为( )A.1000(1+x%)2=3000B.1000(1﹣x%)2=3000C.1000(1+x)2=3000D.1000(1﹣x)2=3000【答案】C.13.二次函数2y ax bx c=++旳图象如图所示,如下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(12,﹣2);⑤当x<12时,y随x旳增大而减小;⑥a+b+c>0对旳旳有( )A.3个B.4个C.5个D.6个【答案】B.二、填空题(共6小题,每题4分,满分24分)14.因式分解:228x-= .【答案】2(x+2)(x﹣2).15.一次函数y=kx+b旳图象如图所示,则不等式kx+b<0旳解集为.【答案】x<1.16.如图,在四边形ABCD中,P是对角线BD旳中点,E、F分别是A B、CD旳中点,AD=BC,∠FPE=100°,则∠PFE旳度数是.【答案】40°.17.如图,在扇形AOB中,AC为弦,∠AOB=130°,∠CAO=60°,O A=6,则BC旳长为 .【答案】7.318.如图,在△ABC中,AB=3,AC=6,将△ABC绕点C按逆时针方向旋转得到△A1B1C,使CB1∥AD,分别延长AB、CA1相交于点D,则线段BD旳长为 .【答案】9.19.杨辉三角,又称贾宪三角,是二项式系数在三角形中旳一种几何排列,如图,观测下面旳杨辉三角:按照前面旳规律,则(a +b )5= . 【答案】1a 5+5a4b +10a 3b2+10a 2b 3+5ab 4+1b 5.三、解答题(共7小题,满分74分)20.(1)计算:201731(1)4sin 604-+-++.(2)先化简再求值:112()y x y x y x y-÷-+-,其中x 、y 满足21(2)0x y -++= . 【答案】(1)33;(2)1x y +,-1. 21.如图,在边长为1个单位长度旳小正方形构成旳网格中,给出了格点三角形ABC (顶点是网格线旳交点)(1)先将△ABC 竖直向上平移5个单位,再水平向右平移4个单位得到△A 1B 1C1,请画出△A 1B 1C1;(2)将△A 1B 1C 1绕B 1点顺时针旋转90°,得△A2B 1C 2,请画出△A2B 1C 2;(3)求线段B1C 1变换到B1C 2旳过程中扫过区域旳面积.【答案】(1)作图见解析;(2)作图见解析;(3)9.422.全面二孩政策于2023年1月1日正式实行,黔南州某中学对八年级部分学生进行了随机问卷调查,其中一种问题“你爸妈假如给你添一种弟弟(或妹妹),你旳态度是什么?”共有如下四个选项(规定仅选择一种选项):A.非常乐意 B.乐意 C.不乐意D.无所谓如图是根据调查成果绘制旳两幅不完整旳记录图,请结合图中信息解答如下问题:(1)试问本次问卷调查一共调查了多少名学生?并补全条形记录图;(2)若该年级共有450名学生,请你估计整年级也许有多少名学生支持(即态度为“非常乐意”和“乐意”)爸妈给自己添一种弟弟(或妹妹)?(3)在年级活动课上,老师决定从本次调查回答“不乐意”旳同学中随机选用2名同学来谈谈他们旳想法,而本次调查回答“不乐意”旳这些同学中只有一名男同学,请用画树状图或列表旳措施求选用到两名同学中刚好有这位男同学旳概率.【答案】(1)40;(2)180;(3)12. 23.阅读材料: 一般地,当α、β为任意角时,tan (α+β)与tan (α﹣β)旳值可以用下面旳公式求得:ta n(α±β)=tan tan 1tan tan αβαβ±⋅.例如:tan15°=tan (45°﹣30°)=tan 45tan 301tan 45tan 30-+⋅=3133113-+⨯ =3333-+ =2(33)(33)(33)-+- =23-. 根据以上材料,处理下列问题:(1)求tan 75°旳值;(2)都匀文峰塔,原名文笔塔,始建于明代万历年间,系五层木塔,文峰塔旳木塔年久倾毁,仅存塔基,1983年,人民政府拨款维修文峰塔,成为今天旳七层六面实心石塔(图1),小华想用所学知识来测量该铁搭旳高度,如图2,已知小华站在离塔底中心A处5.7米旳C 处,测得塔顶旳仰角为75°,小华旳眼睛离地面旳距离DC 为1.72米,请协助小华求出文峰塔AB旳高度.(精确到1米,参照数据3≈1.732,2≈1.414)【答案】(1)23;(2)23.24.2023年12月29日至31日,黔南州第十届旅游产业发展大会在“中国长寿之乡”﹣﹣罗甸县举行,从中寻找到商机旳人不停涌现,促成了罗甸农民工返乡创业热潮,某“火龙果”经营户有A、B两种“火龙果”促销,若买2件A种“火龙果”和1件B种“火龙果”,共需120元;若买3件A种“火龙果”和2件B种“火龙果”,共需205元. (1)设A,B两种“火龙果”每件售价分别为a元、b元,求a、b旳值;(2)B种“火龙果”每件旳成本是40元,根据市场调查:若按(1)中求出旳单价销售,该“火龙果”经营户每天销售B种“火龙果”100件;若销售单价每上涨1元,B种“火龙果”每天旳销售量就减少5件.①求每天B种“火龙果”旳销售利润y(元)与销售单价(x)元之间旳函数关系?②求销售单价为多少元时,B种“火龙果”每天旳销售利润最大,最大利润是多少?【答案】(1)a=35,b=50;(2)①y=﹣5x2+550x﹣14000;②销售单价为55元时,B商品每天旳销售利润最大,最大利润是1125元.25.如图所示,以△ABC旳边AB为直径作⊙O,点C在⊙O上,BD 是⊙O旳弦,∠A=∠CBD,过点C作CF⊥AB于点F,交BD于点G,过C作CE∥BD交AB旳延长线于点E.(1)求证:CE是⊙O旳切线;(2)求证:CG=BG;(3)若∠DBA=30°,CG=4,求BE旳长..【答案】(1)证明见解析;(2)证明见解析;(3)3326.如图,已知直角坐标系中,A、B、D三点旳坐标分别为A(8,0),B(0,4),D(﹣1,0),点C与点B有关x轴对称,连接AB、AC. (1)求过A、B、D三点旳抛物线旳解析式;(2)有一动点E从原点O出发,以每秒2个单位旳速度向右运动,过点E作x轴旳垂线,交抛物线于点P,交线段CA于点M,连接PA、PB,设点E运动旳时间为t(0<t<4)秒,求四边形PBCA旳面积S与t 旳函数关系式,并求出四边形PBCA旳最大面积;(3)抛物线旳对称轴上与否存在一点H ,使得△ABH 是直角三角形?若存在,请直接写出点H 旳坐标;若不存在,请阐明理由.【答案】(1)217422y x x =-++;(2)S =﹣8t2+32t +32,当t =2时,S 有最大值,且最大值为64;(3)H (72,11),(721279+).。

贵州省黔南州中考数学试卷含

贵州省黔南州中考数学试卷含

贵州省黔南州2018 年中考数学试卷一、单项选择题 <每题 4 分,共 13 小题,满分 52 分)< )1.<4 分)<2018?黔南州)在﹣ 2,﹣ 3,0.1 四个数中,最小的实数是A ﹣3B ﹣2C 0D 1....考实数大小比较点:分依据正数> 0>负数,几个负数比较大小时,绝对值越大的负数析:越小解答即可.解解:∵﹣ 3<﹣ 2<0<1,答:∴最小的数是﹣ 3,故答案选: A.点本题主要考察了正、负数、0 和负数间的大小比较.几个负数评:比较大小时,绝对值越大的负数越小.2.<4 分)<2018?黔南州)计算 <﹣1) 2+20﹣| ﹣3| 的值等于 <)A ﹣1B 0C 1D 5....考实数的运算;零指数幂.点:分依据零指数幂、乘方、绝对值三个考点.针对每个考点分别进析:行计算,而后依据实数的运算法例求得计算结果.解解:原式 =1+1﹣3答: =﹣1,应选 A.点本题考察实数的综合运算能力,是各地中考题中常有的计算题评:型.解决此类题目的重点是娴熟掌握零指数幂、乘方、绝对值等考点的运算.3.<4 分)<2018?黔南州)二元一次方程组的解是 < )A B C D....考解二元一次方程组.点:专计算题.题:分方程组利用加减消元法求出解即可.析:解解:,答:①+②得: 2x=2,即 x=1,①﹣②得: 2y=4,即 y=2,则方程组的解为.应选 B点本题考察认识二元一次方程组,利用了消元的思想,消元的方评:法有:代入消元法与加减消元法.4.<4 分)<2018?黔南州)以下事件是必定事件的是A 投掷一枚硬币四次,有两次正面向上< ).B 翻开电视频道,正在播放《十二在线》.C 射击运动员射击一次,命中十环.D方程 x2﹣2x﹣1=0 必有实数根.考随机事件点:分依据必定事件的定义逐项进行剖析即可做出判断,必定事件是析:必定会发生的事件.解解: A、投掷一枚硬币四次,有两次正面向上,随机事件,故本答:选项错误;B、翻开电视频道,正在播放《十二在线》,随机事件,故本选项错误;C、射击运动员射击一次,命中十环,随机事件,故本选项错误;D、因为在方程 2x2﹣2x﹣1=0 中△ =4﹣4×2× <﹣1)=12>0,故本选项正确.应选 D.点解决本题要正确理解必定事件、不行能事件、随机事件的概评:念,理解观点是解决基础题的主要方法.用到的知识点为:必定事件指在必定条件下必定发生的事件;不确立事件即随机事件是指在必定条件下,可能发生也可能不发生的事件.5.<4 分)<2018?黔南州)以下计算错误的选项是<A a?a2=a3B a2b﹣C 2m+3n=5mn )D <x2)3=x6.. ab2=ab<a﹣..b)考幂的乘方与积的乘方;归并同类项;同底数幂的乘法;因式分点:解- 提公因式法.分依据归并同类项的法例,同底数幂的乘法,幂的乘方和提取公析:因式的知识求解即可求得答案.解解: A、a?a2=a3,故 A 选项正确;答: B、a2b﹣ab2=ab<a﹣b),故 B 选项正确;C、2m+3n不是同类项,故 C选项错误;D、<x2)3=x6,故 D选项正确.应选: C.点本题考察了归并同类项的法例,同底数幂的乘法,幂的乘方和评:提取公因式等知识,解题要注意仔细.6.<4 分)<2018?黔南州)以下图形中,∠ 2 大于∠ 1 的是 < )A B C D....考平行四边形的性质;对顶角、邻补角;平行线的性质;三角形点:的外角性质.分依据平行线的性质以及平行四边形的性质,对顶角的性质、三析:角形的外角的性质即可作出判断.解解: A、∠ 1=∠2,应选项错误;答: B、依据三角形的外角的性质可得∠2>∠1,选项正确;C、依据平行四边形的对角相等,得:∠1=∠2,应选项错误;D、依据对顶角相等,则∠1=∠2,应选项错误;应选 B.点本题考察了行线的性质以及平行四边形的性质,对顶角的性评:质、三角形的外角的性质,正确掌握性质定理是重点.7.<4 分)<2018?黔南州)正比率函数y=kx<k≠0)的图象在第二、四象限,则一次函数 y=x+k 的图象大概是 <)b5E2RGbCAPA B C D....考一次函数的图象;正比率函数的图象.点:分依据正比率函数图象所经过的象限判断 k<0,由此能够推知一析:次函数 y=x+k 的图象与 y 轴交于负半轴,且经过第一、三象限.解解:∵正比率函数 y=kx<k≠0)的图象在第二、四象限,答:∴k<0,∴一次函数 y=x+k 的图象与 y 轴交于负半轴,且经过第一、三象限.察看选项,只有B选项正确.应选: B.点本题考察一次函数,正比率函数中系数及常数项与图象地点之评:间关系.解题时需要“数形联合”的数学思想.8.<4 分)<2018?黔南州)形状同样、大小相等的两个小木块搁置于桌面,其俯视图以以下图所示,则其主视图是<)p1EanqFDPwA B C D....考简单组合体的三视图点:分由实物联合它的俯视图,复原它的详细形状和地点,再判断主析:视图.解解:由实物联合它的俯视图可得该物体是由两个长方体木块一答:个横放一个竖放组合而成,由此获得它的主视图应为选项D.应选 D.点本题考察了物体的三视图.在解题时要注意,看不见的线画成评:虚线.9.<4 分)<2018?黔南州)以下说法中,正确的选项是< )A 当 x<1 时,存心义B 方程 x2+x﹣2=0 的根是 x1=﹣.. 1,x2=2C 的化简结果是D a,b,c 均为实数,若 a>b,b..>c,则 a>c考二次根式存心义的条件;实数大小比较;分母有理化;解一元点:二次方程 - 因式分解法.分依据二次根式存心义,被开方数大于等于0,因式分解法解一析:元二次方程,分母有理化以及实数的大小比较对各选项剖析判断利用清除法求解.解解: A、 x< 1,则 x﹣1<0,无心义,故本选项错误;答:B、方程 x2+x﹣2=0 的根是 x1=1,x2=﹣2,故本选项错误;C、的化简结果是,故本选项错误;D、a,b,c 均为实数,若 a>b,b> c,则 a>c 正确,故本选项正确.应选 D.点本题考察了二次根式存心义的条件,实数的大小比较,分母有评:理化,以及因式分解法解一元二次方程,是基础题,熟记各概念以及解法是解题的重点.10.<4 分) <2018?黔南州)货车行驶25 千 M与小车行驶 35 千 M所用时间同样,已知小车每小时比货车多行驶20 千 M,求两车的速度各为多少?设货车的速度为x 千 M/小时,依题意列方程正确的选项是< )DXDiTa9E3dA B C D....考由实质问题抽象出分式方程.点:专应用题;压轴题.题:分题中等量关系:货车行驶25 千 M与小车行驶 35 千 M所用时间析:同样,列出关系式.解解:依据题意,得答:.应选 C.点理解题意是解答应用题的重点,找出题中的等量关系,列出关评:系式.11.<4 分) <2018?黔南州)如图,在△ ABC中,∠ ACB=90°, BE均分∠ ABC,ED⊥AB于 D.假如∠ A=30°, AE=6cm,那么 CE等于 <)RTCrpUDGiTA cmB 2cmC 3cmD 4cm....考含 30 度角的直角三角形.点:分依据在直角三角形中, 30 度所对的直角边等于斜边的一半得出析: AE=2ED,求出 ED,再依据角均分线到两边的记录相等得出ED=CE,即可得出 CE的值.解解:∵ ED⊥AB,∠ A=30°,答:∴AE=2ED,∵A E=6cm,∴E D=3cm,∵∠ ACB=90°, BE均分∠ ABC,∴E D=CE,∴C E=3cm;应选 C.点本题考察了含30°角的直角三角形,用到的知识点是在直角三评:角形中, 30 度所对的直角边等于斜边的一半和角均分线的基本性质,重点是求出 ED=CE.12.<4 分) <2018?黔南州)如图,圆锥的侧面积为 15π,底面积半径为 3,则该圆锥的高 AO为<)5PCzVD7HxAA 3B 4C 5D 15....考圆锥的计算点:分要求圆锥的高,重点是求出圆锥的母线长,即圆锥侧面睁开图析:中的扇形的半径.已知圆锥的底面半径便可求得底面圆的周长,即扇形的弧长,已知扇形的面积和弧长便可求出扇形的半径,即圆锥的高.解解:由题意知:睁开图扇形的弧长是 2×3π=6π,答:设母线长为 L,则有×6πL=15π,解得: L=5,∵因为母线,高,底面半径正好构成直角三角形,∴在直角△ AOC中高 AO==4.应选 B.点本题考察了圆锥体的侧面睁开图的计算,揭露了平面图形与立评:体图形之间的关系,难度一般.13.<4 分) <2018?黔南州)如图,把矩形纸片ABCD沿对角线 BD折叠,设重叠部分为△ EBD,则以下说法错误的选项是 <)jLBHrnAILgA AB=CDB ∠BAE=∠DCEC EB=ED D ∠ABE必定等....于30°考翻折变换 <折叠问题).点:分依据 ABCD为矩形,因此∠ BAE=∠DCE,AB=CD,再由对顶角相等析:可得∠ AEB=∠CED,因此△ AEB≌△ CED,就能够得出 BE=DE,由此判断即可.解解:∵四边形ABCD为矩形答:∴∠ BAE=∠DCE,AB=CD,故 A、B 选项正确;在△ AEB和△ CED中,,∴△ AEB≌△ CED<AAS),∴BE=DE,故 C正确;∵得不出∠ ABE=∠EBD,∴∠ ABE不必定等于 30°,故 D错误.应选: D.点本题考察图形的翻折变换,解题过程中应注意折叠是一种对称评:变换,它属于轴对称,依据轴对称的性质,折叠前后图形的形状和大小不变.二、填空题 <共 6 小题,每题 5 分,满分 30 分)14.<5 分) <2018?黔南州)在全国初中数学比赛中,都匀市有40 名同学进入复赛,把他们的成绩分为六组,第一组一第四组的人数分别为10,5,7,6,第五组的频次是 0.2 ,则第六组的频次是0.1 xHAQX74J0X考频数与频次点:分先用数据总数乘第五组的频次得出第五组的频数,再求出第六析:组的频数,而后依据频次 =频数÷数据总数即可求解.解解:∵都匀市有 40 名同学进入复赛,把他们的成绩分为六组,答:第一组一第四组的人数分别为 10,5,7,6,第五组的频次是0.2 ,∴第五组的频数为40×0.2= 8,第六组的频数为40﹣<10+5+7+6+8)=4,∴第六组的频次是4÷40=0. 1.故答案为 0.1 .点本题考察了频数与频次,用到的知识点:频数 =数据总数×频评:率,频次 =频数÷数据总数,各组频数之和等于数据总数.15.<5 分) <2018?黔南州)如图,在△ ABC中,点 D、E分别在 AB、AC上,DE∥BC.若 AD=4,DB=2,则的值为.LDAYtRyKfE考相像三角形的判断与性质.点:分由 AD=3,DB=2,即可求得 AB的长,又由 DE∥ BC,依据平行线析:分线段成比率定理,可得 DE:BC=AD:AB,则可求得答案.解解:∵ AD=4,DB=2,答:∴AB=AD+BD=4+2=6,∵D E∥BC,△ADE∽△ ABC,∴=,故答案为:.点本题考察了平行线分线段成比率定理.本题比较简单,注意掌评:握比率线段的对应关系是解本题的重点.16.<5 分) <2018?黔南州)如图,正比率函数y1=k1x 与反比率函数y2= 的图象交于<0 或A、B 两点,依据图象可直接写出当x>1 .Zzz6ZB2Ltky1>y2 时, x 的取值范围是﹣1<x考反比率函数与一次函数的交点问题点:专计算题.题:分先依据正比率函数图象和反比率函数图象的性质获得点 A 与点析:B 对于原点对称,则 B 点坐标为 <﹣1,﹣ 2),而后察看函数图象,当﹣ 1<x<0 或 x>1 时,正比率函数图象都在反比率函数图象上方,即有 y1>y2.解解:∵正比率函数 y1=k1x 与反比率函数 y2= 的图象交于 A、B 答:两点,∴点 A 与点 B 对于原点对称,∴B 点坐标为 <﹣1,﹣ 2),当﹣ 1<x<0 或 x>1 时, y1>y2.故答案为:﹣ 1<x<0 或 x>1.点本题考察了反比率函数与一次函数的交点问题:反比率函数与评:一次函数图象的交点坐标知足两函数解读式.也考察了待定系数法求函数解读式以及察看函数图象的能力.17.<5 分) <2018?黔南州)实数 a 在数轴上的地点如图,化简+a= 1.考二次根式的性质与化简;实数与数轴.点:分依据二次根式的性质,可化简二次根式,依据整式的加法,可析:得答案.解解:+a=1﹣a+a=1,答:故答案为: 1.点本题考察了实数的性质与化简,=a<a≥0)是解题重点.评:18.<5 分) <2018?黔南州)已知= =3, = =10,= =15,察看以上计算过程,找寻规律计算= 56 .dvzfvkwMI1考规律型:数字的变化类.点:分对于 Cab<b<a)来讲,等于一个分式,此中分母是从 1 到 b 的析: b 个数相乘,分子是从 a 开始乘,乘 b 的个数.解解:∵==3, = =10,= =15,答:∴ = =56.故答案为 56.点本题主要考察了数字的变化规律,利用已知得出分子与分母之评:间的规律是解题重点.19.<5 分) <2018?黔南州)如图,直径为10 的⊙A 经过点 C<0,6)和点 O<0,0),与 x 轴的正半轴交于点D,B 是 y 轴右边圆弧上一点,则cos∠OBC的值为.rqyn14ZNXI考勾股定理;圆周角定理;锐角三角函数的定义.点:分连结 CD,易得 CD是直径,在直角△ OCD中运用勾股定理求出析: OD的长,得出 cos∠ODC的值,又由圆周角定理,即可求得cos∠OBC的值.解解:连结 CD,答:∵∠ COD=90°,∴C D是直径,即CD=10,∵点 C<0,6),∴O C=6,∴OD==8,∴c os∠ODC= = = ,∵∠ OBC=∠ODC,∴c os∠OBC=.故答案为.点本题考察了圆周角定理,勾股定理以及三角函数的定义.本题评:难度适中,注意掌握协助线的作法,注意掌握转变思想的应用.三、解答题<共7 小题,满分68 分)20.<10 分) <2018?黔南州) <1)解不等式组,并把它的解集在数轴上表示出来.<2)先阅读以下资料,而后解答问题,分解因式.mx+nx+my+ny=<mx+nx)+<my+ny)=x<m+n)+y<m+n)=<m+n)<x+y);也能够mx+nx+my+ny=<mx+my)+<nx+ny)=m<x+y)+n<x+y)=<m+n)<x+y).以上分解因式的方法称为分组分解法,请用分组分解法分解因式: a3﹣b3+a2b﹣ab2.EmxvxOtOco考解一元一次不等式组;因式分解- 分组分解法;在数轴上表示不点:等式的解集.专阅读型.题:分<1)先求出不等式组中每一个不等式的解集,再求出它们的公析:共部分,而后把不等式的解集表示在数轴上即可;<2)式子变形成 a3+a2b﹣<b3+ab2),而后利用提公因式法分解,而后利用公式法即可分解.解答:解: <1),解①得: x>1,解②得: x<3,,不等式组的解集是: 1<x<3;<2)a3﹣b3+a2b﹣ab2=a3+a2b﹣<b3+ab2)=a2<a+b)﹣ b2<a+b)=<a+b)<a2﹣b2)=<a+b)2<a﹣b).点本题考察的是一元一次不等式组的解,解此类题目经常要联合评:数轴来判断.还能够察看不等式的解,若 x>较小的数、<较大的数,那么解集为x 介于两数之间.21.<8 分)<2018?黔南州)以下是九年级某班学生适应性考试文综成绩<挨次A、B、C、D等级区分,且A 等为成绩最好)的条形统计图和扇形统计图,请依据图中的信息回答以下问题: SixE2yXPq5<1)补全条形统计图;<2)求 C等所对应的扇形统计图的圆心角的度数;<3)求该班学生共有多少人?<4)假如文综成绩是 B 等及 B 等以上的学生才能报考示范性高中,请你用该班学生的状况预计该校九年级 400 名学生中,有多少名学生有资格报考示范性高中?6ewMyirQFL考条形统计图;用样本预计整体;扇形统计图.点:分<1)依据 A 等级的有 15 人,占 25%,据此即可求得总人数,然析:后求得 B等级的人数,即可作出直方图;<2)利用 360°乘以对应的百分比即可求解;<3)依据 <1)的计算即可求解;<4)利用总人数 400乘以对应的百分比即可求解.解解: <1)检查的总人数是: 15÷25%=60<人),答:则 B 类的人数是: 60×40%=24<人).;<2)C等所对应的扇形统计图的圆心角的度数是:360°×<1﹣25%﹣40%﹣5%)=108°;<3)该班学生共有60 人;<4)400×<25%+40%)=260<人).点本题考察的是条形统计图和扇形统计图的综合运用,读懂统计评:图,从不一样的统计图中获得必需的信息是解决问题的重点.条形统计图能清楚地表示出每个工程的数据;扇形统计图直接反映部分占整体的百分比大小.22.<8 分) <2018?黔南州)如图的方格地面上,标有编号 A、B、C 的 3 个小方格地面是空地,此外 6 个小方格地面是草坪,除此之外小方格地面完整相同. kavU42VRUs<1)一只自由飞翔的鸟,将任意地落在图中的方格地面上,问小鸟落在草坪上的概率是多少?<2)现从 3 个小方格空地中任意选用 2 个栽种草坪,则恰好选用 A 和 B 的 2 个小方格空地栽种草坪的概率是多少 <用树形图或列表法求解)? y6v3ALoS89考列表法与树状图法;几何概率点:分<1)直接利用概率公式计算即可;析: <2)列表或树状图后利用概率公式求解即可.解解: <1)P<小鸟落在草坪上) = = ;答:<2)用树状图或列表格列出所有问题的可能的结果:A AB C<A ,B)<A , C)B <B ,A )<B, C)C <C ,A )<C, B)由树状图 <列表)可知,共有 6 种等可能结果,编号为A、B的2 个小方格空地栽种草坪有 2 种,因此 P<编号为 A、B 的 2 个小方格空地栽种草坪)= = .点本题主要考察了概率的求法:概率 =所讨状况数与总状况数之评:比.依据概率的求法,找准两点:①所有状况的总数;②切合条件的状况数量;两者的比值就是其发生的概率.使用树状图剖析时,必定要做到不重不漏.23.<10 分) <2018?黔南州)两个长为 2cm,宽为 1cm的长方形,摆放在直线 l上<如图①), CE=2cm,将长方形 ABCD绕着点 C顺时针旋转α角,将长方形EFGH绕着点 E 逆时针旋转同样的角度. M2ub6vSTnP<1)当旋转到极点D、H重合时,连结AE、CG,求证:△ AED≌△ GCD<如图②).<2)当α=45°时<如图③),求证:四边形MHND为正方形.考旋转的性质;全等三角形的判断与性质;矩形的性质;正方形点:的判断.分<1)由全等三角形的判断定理 SAS证得:△ AED≌△ GCD<如图析:②);<2)经过判断四边形 MHND四个角是 90°,且邻边 DN=NH来判断四边形 MHND是正方形.解证明: <1)如图②,∵由题意知, AD=GD,ED=CD,答:∠ADC=∠GDE=90°,∴∠ ADC+∠CDE=∠GDE+∠CDE,即∠ADE=∠GDC,在△ AED与△ GCD中,,∴△ AED≌△ GCD<SAS);<2)如图③,∵α=45°, BC∥EH,∴∠ NCE=∠NEC=45°, CN=NE,∴∠ CNE=90°,∴∠ DNH=90°,∵∠ D=∠H=90°,∴四边形 MHND是矩形,∵CN=NE,∴DN=NH,∴矩形 MHND是正方形.点本题考察旋转的性质,全等三角形的判断以及正方形的判断的评:方法. <旋转的性质:对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.正方形的判断的方法:两邻边相等的矩形是正方形.)24.<10 分) <2018?黔南州)如图, AB是⊙ O的直径,弦 CD⊥AB于点 G,点 F 是CD上一点,且知足 = ,连结 AF 并延伸交⊙ O于点 E,连结 AD、 DE,若 CF=2,AF=3.0YujCfmUCw<1)求证:△ ADF∽△ AED;<2)求 FG的长;<3)求证: tan ∠E=.考相像三角形的判断与性质;垂径定理;圆周角定理;解直角三点:角形.分①由 AB是⊙ O的直径,弦 CD⊥AB,依据垂径定理可得:弧 AD=析:弧 AC,DG=CG,既而证得△ ADF∽△ AED;②由= ,CF=2,可求得 DF的长,既而求得CG=DG=4,则可求得FG=2;③由勾股定理可求得 AG的长,即可求得 tan ∠ADF的值,既而求得 tan ∠E= .解解:①∵ AB是⊙ O的直径,弦CD⊥AB,答:∴DG=CG,∴弧 AD=弧 AC,∠ ADF=∠AED,∵∠ FAD=∠DAE<公共角),∴△ ADF∽△ AED;②∵= ,CF=2,∴F D=6,∴C D=DF+CF=8,∴C G=DG=4,∴FG=CG﹣CF=2;③∵ AF=3,FG=2,③∵ AF=3,FG=2,∴ AG=,tan ∠E=.点本题考察了相像三角形的判断与性质、圆周角定理、垂径定评:理、勾股定理以及三角函数等知识.本题综合性较强,难度适中,注意掌握数形联合思想的应用.25.<10 分) <2018?黔南州)已知某厂现有 A 种金属 70 吨, B 种金属 52 吨,现计划用这两种金属生产 M、N两种型号的合金产品共80000 套,已知做一套M型号的合金产品需要 A 种金属 0.6kg ,B种金属 0.9kg ,可获收益 45 元;做一套 N 型号的合金产品需要 A 种金属 1.1kg ,B 种金属 0.4kg ,可获收益 50 元.若设生产N种型号的合金产品大数为 x,用这批金属生产这两种型号的合金产品所获总收益为 y 元. eUts8ZQVRd<1)求 y 与 x 的函数关系式,并求出自变量x 的取值范围;<2)在生产这批合金产品时,N型号的合金产品应生产多少套,该厂所获收益最大?最大收益是多少?考一次函数的应用点:分<1)依据总收益等于M、N两种型号时装的收益之和列式整理即析:可,再依据 M、N 两种合金所用 A、B 两种金属不超出现有金属列出不等式组求解即可;<2)依据一次函数的增减性求出所获收益最大值即可.解解: <1)y=50x+45<8000﹣x)=5x+360000,答:由题意得,,解不等式①得, x≤44000,解不等式②得, x≥40000,因此,不等式组的解集是40000≤x≤44000,∴y与 x 的函数关系式是 y=5x+360000<40000≤x≤44000);<2)∵ k=5>0,∴y随 x 的增大而增大,∴当 x=44000 时, y 最大 =580000,即生产 N型号的时装 44000 套时,该厂所获收益最大,最大收益是 580000 元.点本题考察了一次函数的应用,一元一次不等式组的应用,利用评:一次函数求最值时,重点是应用一次函数的性质:即由函数y 随 x 的变化,联合自变量的取值范围确立最值.26.<12 分) <2018?黔南州)如图,在平面直角坐标系中,极点为 <4,﹣ 1)的抛物线交 y 轴于 A 点,交 x 轴于 B,C 两点 <点 B 在点 C的左边),已知 A 点坐标为<0,3). sQsAEJkW5T<1)求此抛物线的解读式<2)过点 B 作线段 AB的垂线交抛物线于点 D,假如以点 C 为圆心的圆与直线 BD 相切,请判断抛物线的对称轴 l 与⊙ C有如何的地点关系,并给出证明;GMsIasNXkA<3)已知点 P 是抛物线上的一个动点,且位于 A,C两点之间,问:当点 P 运动到什么地点时,△ PAC的面积最大?并求出此时 P 点的坐标和△ PAC的最大面积. TIrRGchYzg。

初中毕业升学考试(贵州黔南州卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(贵州黔南州卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(贵州黔南州卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】一组数据:-5,2,0,3,则该组数据中最大的数为()A. ﹣5B. ﹣2C. 0D. 3【答案】D【解析】试题分析:∵正数>0>负数,∴3>0>﹣2>﹣5,∴最大的数为3,故选D.考点:有理数大小比较.【题文】下面四个图形中,∠1=∠2一定成立的是()A. B.C. D.【答案】B.【解析】试题分析:A.∠1、∠2是邻补角,∠1+∠2=180°;故本选项错误;B.∠1、∠2是对顶角,根据其定义;故本选项正确;C.根据平行线的性质:同位角相等,同旁内角互补,内错角相等;故本选项错误;D.根据三角形的外角一定大于与它不相邻的内角;故本选项错误.故选B.考点:对顶角、邻补角;平行线的性质;三角形的外角性质.【题文】如图是一个三棱柱笔筒,则该物体的主视图是()A. B. C. D.【答案】C.评卷人得分【解析】试题分析:如lA. B.C. D.【答案】D.【解析】试题分析:,A错误;,B错误;,C错误;,D正确.故选D.考点:整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【题文】下列说法中正确的是()A.化简后的结果是 B.9的平方根为3C.是最简二次根式 D.﹣27没有立方根【答案】A.【解析】试题分析:A.=,故正确.B.9的平方根为±3,故错误.C.=,不是最简二次根式,故错误.D.﹣27的立方根为﹣3,故错误.故选A.考点:最简二次根式;平方根;立方根;分母有理化.【题文】函数的自变量x的取值范围在数轴上表示正确的是()A. B.C. D.【答案】B.【解析】试题分析:根据题意得,x﹣2>0,解得:x>2,故选B.考点:在数轴上表示不等式的解集;函数自变量的取值范围.【题文】王杰同学在解决问题“已知A、B两点的坐标为A(3,﹣2)、B(6,﹣5)求直线AB关于x轴的对称直线A′B′的解析式”时,解法如下:先是建立平面直角坐标系(如图),标出A、B两点,并利用轴对称性质求出A′、B′的坐标分别为A′(3,2),B′(6,5);然后设直线A′B′的解析式为y=kx+b(k≠0),并将A′(3,2)、B′(6,5)代入y=kx+b中,得方程组:,解得,最后求得直线A′B′的解析式为y=x﹣1.则在解题过程中他运用到的数学思想是()A.分类讨论与转化思想 B.分类讨论与方程思想C.数形结合与整体思想 D.数形结合与方程思想【答案】D.【解析】试题分析:第一步:建立平面直角坐标系,标出A、B两点,并利用轴对称性质求出A′、B′的坐标分别为A′(3,2),B′(6,5),这是依据轴对称的性质求得点的坐标(有序实数对),运用了数形结合的数学思想;第二步:设直线A′B′的解析式为y=kx+b(k≠0),并将A′(3,2)、B′(6,5)代入y=kx+b中,得方程组,解得:,最后求得直线A′B′的解析式为y=x﹣1,这里根据一次函数图象上点的坐标特征,列出方程求得待定系数,运用了方程思想;所以王杰同学在解题过程中,运用到的数学思想是数形结合与方程思想.故选D.考点:一次函数与二元一次方程(组);一次函数图象与几何变换;待定系数法求一次函数解析式.【题文】如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数(x<0)的图象经过顶点B,则k的值为()A.﹣12 B.﹣27 C.﹣32 D.﹣36【答案】C.【解析】试题分析:∵A(﹣3,4),∴OC==5,∴CB=OC=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B的坐标代入得,4=,解得:k=﹣32.故选C.考点:菱形的性质;反比例函数图象上点的坐标特征.【题文】如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为5cm,则圆心O到弦CD的距离为()A.cm B.3cm C.cm D.6cm【答案】A.【解析】试题分析:连接CB.∵AB是⊙O的直径,弦CD⊥AB于点E,∴圆心O到弦CD的距离为OE;∵∠COB=2∠CDB (同弧所对的圆周角是所对的圆心角的一半),∠CDB=30°,∴∠COB=60°;在Rt△OCE中,OC=5cm,OE=OC•cos∠COB,∴OE=cm.故选A.考点:垂径定理.【题文】是关于x的一次函数,则一元二次方程的根的情况为()A.没有实数根 B.有一个实数根C.有两个不相等的实数根 D.有两个相等的实数根【答案】A.【解析】试题分析:由一次函数的定义可求得k的取值范围,再根据一lA. B. C. D.【答案】B.【解析】试题分析:①x≤1时,两个三角形重叠面积为小三角形的面积,∴y==;②当1<x≤2时,重叠三角形的边长为2﹣x,高为,y==;③当x=2时,两个三角形没有重叠的部分,即重叠面积为0,故选B.考点:动点问题的函数图象;动点型;分类讨论.【题文】已知二次函数(a≠0)的图象如图所示,则下列结论:①b<0,c>0;②a+b+c <0;③方程的两根之和大于0;④a﹣b+c<0,其中正确的个数是()A.4个 B.3个 C.2个 D.1个【答案】B.【解析】试题分析:∵抛物线开口向下,∴a<0,∵抛物线对称轴x>0,且抛物线与y轴交于正半轴,∴b>0,c >0,故①错误;由图象知,当x=1时,y<0,即a+b+c<0,故②正确,令方程的两根为、,由对称轴x>0,可知>0,即>0,故③正确;由可知抛物线与x轴的左侧交点的横坐标的取值范围为:﹣1<x<0,∴当x=﹣1时,y=a﹣b+c<0,故④正确.故选B.考点:二次函数图象与系数的关系.【题文】若ab=2,a﹣b=﹣1,则代数式的值等于.【答案】﹣2.【解析】试题分析:∵ab=2,a﹣b=﹣1,∴=ab(a﹣b)=2×(﹣1)=﹣2.故答案为:﹣2.考点:因式分解-提公因式法;因式分解.【题文】计算:=.【答案】.【解析】试题分析:原式==.故答案为:.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【题文】如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线ED交AB于点E,交BC于点D,若CD=3,则BD的长为.【答案】6.【解析】试题分析:∵DE是AB的垂直平分线,∴AD=BD,∴∠DAE=∠B=30°,∴∠ADC=60°,∴∠CAD=30°,∴AD 为∠BAC的角平分线,∵∠C=90°,DE⊥AB,∴DE=CD=3,∵∠B=30°,∴BD=2DE=6,故答案为:6.考点:含30度角的直角三角形;线段垂直平分线的性质.【题文】如图,矩形ABCD的对角线AC的中点为O,过点O作OE⊥BC于点E,连接OD,已知AB=6,BC=8,则四边形OECD的周长为.【答案】18.【解析】试题分析:∵AB=6,BC=8,∴AC==10,∵矩形ABCD的对角线AC的中点为O,∴OD=AC=5,又∵OE⊥BC ,∴OE∥AB,∴CE=BC=4,OE=AB=3,∵CD=AB=6,∴四边形OECD的周长为5+3+4+6=18.故答案为:18.考点:矩形的性质;勾股定理;平行线分线段成比例.【题文】在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(﹣a,b);②○(a,b)=(﹣a,﹣b);③Ω(a,b)=(a,﹣b),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于.【答案】(﹣3,4).【解析】试题分析:○(Ω(3,4))=○(3,﹣4)=(﹣3,4).故答案为:(﹣3,4).考点:点的坐标;新定义.【题文】为解决都匀市停车难的问题,计划在一段长为56米的路段规划处如图所示的停车位,已知每个车位是长为5米,宽为2米的矩形,且矩形的宽与路的边缘成45°角,则该路段最多可以划出个这样的停车位.(取=1.4,结果保留整数)【答案】19.【解析】试题分析:如图,CE=2÷sin45°=2×,BC=(5﹣2)×sin45°=(5﹣2)×=,设至多可划x 个车位,依题意可列不等式:2×x+(5﹣2)×≤56,将=1.4代入不等式,化简整理得,28x≤539,解得x≤,因为是正整数,所以x=19,所以这个路段最多可以划出19个这样的停车位.故答案为:19.考点:解直角三角形的应用;矩形的性质;最值问题.【题文】如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上):①把△ABC沿BA方向平移,请在网格中画出当点A移动到点A1时的△A1B1C1;②把△A1B1C1绕点A1按逆时针方向旋转90°后得到△A2B2C2,如果网格中小正方形的边长为1,求点B1旋转到B2的路径长.【答案】①作图见解析;②.【解析】试题分析:①根据△ABC沿BA方向平移,在网格中画出当点A移动到点A1时的△A1B1C1即可;②画出△A1B1C1绕点A1按逆时针方向旋转90°后得到△A2B2C2,求出点B1旋转到B2的路径长即可.试题解析:①如图所示,△A1B1C1为所求三角形;②画出图形,如图所示,∵A1B1==,∴点B1旋转到B2的路径长l==.考点:作图-旋转变换;作图-平移变换;作图题;平移、旋转与对称.【题文】解方程:.【答案】x=﹣3.【解析】试题分析:观察可得最简公分母是(x﹣2)(x+2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.试题解析:方程两边乘(x﹣2)(x+2),得x(x+2)﹣8=x﹣2,,(x+3)(x﹣2)=0,解得=﹣3,=2.经检验:=﹣3是原方程的根,=2是增根,∴原方程的根是x=﹣3.考点:解分式方程;解一元二次方程-因式分解法.【题文】“2016国际大数据产业博览会”于5月25日至5月29日在贵阳举行.参展内容为:A﹣经济和社会发展;B﹣产业与应用;C﹣技术与趋势;D﹣安全和隐私保护;E﹣电子商务,共五大板块,为了解观众对五大板块的“关注情况”,某机构进行了随机问卷调查,并将调查结果绘制成如下两幅统计图(均不完整),请根据统计图中提供的信息,解答下列问题:(1)本次随机调查了多少名观众?(2)请补全统计图,并求出扇形统计图中“D﹣安全和隐私保护”所对应的扇形圆心角的度数.(3)据相关报道,本次博览会共吸引力90000名观众前来参观,请估计关注“E﹣电子商务”的人数是多少?【答案】(1)1000;(2)作图见解析,72°;(3)28800.【解析】试题分析:(1)根据A﹣经济和社会发展在扇形统计图所占的比例和条形图中的数据,得出结论;(2)根据扇形统计图和条形图统计图的对应数据补全统计图;(3)根据样本估计总体,得出结论.试题解析:(1)随机调查的人数为80÷8%=1000(名);(2)补全图形如图所示:在扇形统计图中“D﹣安全和隐私保护”所对应的扇形圆心角的度数为×360°=72°.(3)∵×90000=28800,∴关注“E﹣电子商务”的人数是28800名.考点:条形统计图;用样本估计总体;扇形统计图.【题文】为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B .宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或;列表的方法进行说明.【答案】(1);(2).【解析】试题分析:(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.试题解析:(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=;(2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.考点:列表法与树状图法;概率公式.【题文】已知二次函数的图象与y轴交于点C(0,﹣6),与x轴的一个交点坐标是A(﹣2,0).(1)求二次函数的解析式,并写出顶点D的坐标;(2)将二次函数的图象沿x轴向左平移个单位长度,当 y<0时,求x的取值范围.【答案】(1),D(,);(2)<x<.【解析】试题分析:(1)将点A和点C的坐标代入抛物线的解析式可求得b、c的值,从而得到抛物线的解析式,然后依据配方法可求得抛物线的顶点坐标;(2)依据抛物线的解析式与平移的规划规律,写出平移后抛物线的解析式,然后求得抛物线与x轴的交点坐标,最后依据y<0可求得x的取值范围.试题解析:(1)∵把C(0,﹣6)代入抛物线的解析式得:C=﹣6,把A(﹣2,0)代入得:b=﹣1,∴抛物线的解析式为,∴,∴抛物线的顶点坐标D(,).(2)二次函数的图形沿x轴向左平移个单位长度得:.令y=0得:,解得:,.∵a>0,∴当y<0时,x的取值范围是<x<.考点:抛物线与x轴的交点;二次函数图象与几何变换.【题文】如图,AB是⊙O的直径,点D是上一点,且∠BDE=∠CBE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠A BE,求证:=DF•DB;(3)在(2)的条件下,延长ED、BA交于点P,若PA=AO,DE=2,求PD的长.【答案】(1)证明见解析;(2)证明见解析;(3)4.【解析】试题分析:(1)利用圆周角定理得到∠AEB=90°,∠EAB=∠BDE,而∠BDE=∠CBE,则∠CBE+∠ABE=90°,则根据切线的判定方法可判断BC是⊙O的切线;(2)证明△DFE∽△DEB,然后利用相似比可得到结论;’(3)连结DE,先证明OD∥BE,则可判断△POD∽△PBE,然后利用相似比可得到关于PD的方程,再解方程求出PD即可.试题解析:(1)证明:∵AB是⊙O的直径,∴∠AEB=90°,∴∠EAB+∠ABE=90°,∵∠EAB=∠BDE,∠BDE=∠CBE ,∴∠CBE+∠ABE=90°,即∠ABC=90°,∴AB⊥BC,∴BC是⊙O的切线;(2)证明:∵BD平分∠ABE,∴∠1=∠2,而∠2=∠AED,∴∠AED=∠1,∵∠FDE=∠EDB,∴△DFE∽△DEB ,∴DE:DF=DB:DE,∴=DF•DB;(3)连结DE,如图,∵OD=OB,∴∠2=∠ODB,而∠1=∠2,∴∠ODB=∠1,∴OD∥BE,∴△POD∽△PBE,∴,∵PA=AO,∴PA=AO=BO,∴,即,∴PD=4.考点:圆的综合题;综合题.【题文】都匀某校准备组织学生及家长代表到桂林进行社会实践活动,为便于管理,所有人员必须乘坐同一列高铁,高铁单程票价格如表所示,二等座学生票可打7.5折,已知所有人员都买一等座单程火车票需6175元,都买二等座单程火车票需3150元;如果家长代表与教师的人数之比为2:1.(1)参加社会实践活动的老师、家长代表与学生各有多少人?(2)由于各种原因,二等座单程火车票只能买x张(x<参加社会实践的总人数),其余的须买一等座单程火车票,在保证所有人员都有座位的前提下,请你设计最经济的购票方案,并写出购买单程火车票的总费用y与x之间的函数关系式.(3)在(2)的方案下,请求出当x=30时,购买单程火车票的总费用.【答案】(1)参加社会实践的老师有5人,家长有10人,学生有50人;(2);(3)4675.【解析】试题分析:(1)设参加社会实践的老师有m人,学生有n人,则学生家长有2m人,若都买二等座单程火车票且花钱最少,则全体学生都需买二等座学生票,根据题意得到方程组,求出方程组的解即可;(2)有两种情况:①当50≤x<65时,学生都买学生票共50张,(x﹣50)名成年人买二等座火车票,(65﹣x)名成年人买一等座火车票,得到解析式:y=60×0.75×50+60(x﹣50)+95(65﹣x);②当0<x <50时,一部分学生买学生票共x张,其余的学生与家长老师一起购买一等座火车票共(65﹣x)张,得到解析式是y=﹣50x+6175;(3)由(2)小题知:当x=30时,y=﹣50x+6175,代入求解即可求得答案.试题解析:(1)设参加社会实践的老师有m人,学生有n人,则学生家长有2m人,根据题意得:,解得:,则2m=10.答:参加社会实践的老师有5人,家长有10人,学生有50人.(2)由(1)知所有参与人员总共有65人,其中学生有50人,①当50≤x<65时,最经济的购票方案为:学生都买学生票共50张,(x﹣50)名成年人买二等座火车票,(65﹣x)名成年人买一等座火车票,∴火车票的总费用(单程)y与x之间的函数关系式为:y=60×0.75×50+60(x﹣50)+95(65﹣x),即y=﹣35x+5425(50≤x<65);②当0<x<50时,最经济的购票方案为:一部分学生买学生票共x张,其余的学生与家长老师一起购买一等座火车票共(65﹣x)张,∴火车票的总费用(单程)y与x之间的函数关系式为:y=60×0.75x+95(65﹣x),即y=﹣50x+6175(0<x<50),∴购买单程火车票的总费用y与x之间的函数关系式为:.(3)∵x=30<50,∴y=﹣50x+6175=﹣50×30+6185=4675.答:当x=30时,购买单程火车票的总费用为4675元.考点:一次函数的应用;分段函数;分类讨论.【题文】如图,在四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连接CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M作MN∥AO,交BO于点N,连结ND、BM,设OP=t.(1)求点M的坐标(用含t的代数式表示);(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由.(3)当t为何值时,四边形BNDM的面积最小;(4)在x轴正半轴上存在点Q,使得△QMN是等腰三角形,请直接写出不少于4个符合条件的点Q的坐标(用含t的式子表示).【答案】(1)M(4+t,t);(2)线段MN长度不变;(3)当t=2时,四边形BNDM的面积最小,最小值6;(4)Q1(t+2,0),Q2(4+t﹣,0),Q3(4+t+,0)Q4(t+,0).【解析】试题分析:(1)作ME⊥OA于点E,要求点M的坐标只要证明△OPC≌△EM即可,根据题目中的条件可证明两个三角形全等,从而可以得到点M的坐标;(2)首先判断是否变化,然后针对判断结合题目中的条件说明理由即可解答本题;(3)要求t为何值时,四边形BNDM的面积最小,只要用含t的代数式表示出四边形的面积,然后化为顶点式即可解答本题;(4)首先写出符合要求的点Q的坐标,然后根据写出的点的坐标写出推导过程即可解答本题.试题解析:(1)如图1所示,作ME⊥OA于点E,∴∠MEP=∠POC=90°,∵PM⊥CP,∴∠CPM=90°,∴∠OPC+∠MPE=90°,又∵∠OPC+∠PCO=90°,∴∠MPE=∠PCO,∵PM=CP,∴△MPE≌△PCO(AAS),∴PE=CO=4,ME=PO=t,∴OE=4+t,∴点M的坐标为(4+t,t);(2)线段MN长度不变,理由:∵OA=AB=4,∴点B(4,4),∴直线OB的解析式为:y=x,∵点N在直线OB上,∴点N(t,t),∵MN∥OA,M(4+t,t),∴MN=|(4+t)﹣t|=4,即MN的长度不变;(3)由(1)知,∠MPE=∠PCO,又∵∠DAP=∠POC=90°,∴△DAP∽△POC,∴,∵OP=t,OC=4,∴AP=4﹣t,∴,得AD=,∴BD=4﹣=,∵MN∥OA,AB⊥OA,∴MN⊥BD,∵=MN•BD=×4×=,∴当t=2时,四边形BNDM的面积最小,最小值6;(4)在x轴正半轴上存在点Q,使得△QMN是等腰三角形,此时点Q的坐标为:Q1(t+2,0),Q2(4+t﹣,0),Q3(4+t+,0)Q4(t+,0).理由:当(2)可知,OP=t(0<t<4),MN=PE=4,MN∥x轴,第一种情况:当MN为底边时,作MN的垂直平分线,与x轴的交点为Q1,如图2所示,PQ1=PE=MN=2,∴OQ1=t+2,∴Q1(t+2,0);第二种情况:如图3所示,当MN为腰时,以M为圆心,MN的长为半径画弧交x轴于点Q2、Q3,连接MQ2、MQ3,则MQ2=MQ3=4,∴Q2E==,∴OQ2=OE﹣Q2E=4+t﹣,∴Q2(4+t﹣,0),∵OQ3=OE+Q3E=4+t+,∴Q3(4+t+,0);第三种情况,当MN为腰时,以N为圆心,MN长为半径画圆弧交x轴于点Q4,当0<t<时,如图4所示,则PQ4===,∴OQ4=OP+PQ4=t+,即Q4(t+,0).考点:四边形综合题;定值问题;最值问题;二次函数的最值;分类讨论;压轴题.。

2020年贵州省黔南州中考数学试卷(附答案详解)

2020年贵州省黔南州中考数学试卷(附答案详解)

2020年贵州省黔南州中考数学试卷一、选择题(本大题共10小题,共30.0分)1.(2021·黑龙江省齐齐哈尔市·历年真题)3的相反数是()A. −3B. 3C. −13D. 132.(2021·江苏省盐城市·单元测试)观察下列图形,是中心对称图形的是()A. B. C. D.3.(2020·全国·历年真题)某市2020年参加中考的考生人数的为93400人,将93400用科学记数法表示为()A. 934×102B. 93.4×103C. 9.34×104D. 0.934×1054.(2021·新疆维吾尔自治区塔城地区·模拟题)下列四个几何体中,左视图为圆的是()A. B. C. D.5.(2021·四川省·单元测试)下列运算正确的是()A. (a3)4=a12B. a3⋅a4=a12C. a2+a2=a4D. (ab)2=ab26.(2021·安徽省安庆市·月考试卷)如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=30°,则∠α的度数是()A. 30°B. 45°C. 74°D. 75°7.(2021·贵州省贵阳市·单元测试)如图,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点D处测得旗杆顶端A的仰角∠ADE为55°,测角仪CD的高度为1米,其底端C与旗杆底端B之间的距离为6米,设旗杆AB的高度为x米,则下列关系式正确的是()A. tan55°=6x−1B. tan55°=x−16C. sin55°=x−16D. cos55°=x−168.(2021·湖南省·单元测试)某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为()A. 7.4元B. 7.5元C. 7.6元D. 7.7元9.(2020·陕西省西安市·期末考试)已知等腰三角形的一边长等于4,一边长等于9,则它的周长为()A. 22B. 17C. 17或22D. 2610.(2021·天津市·单元测试)已知a=√17−1,a介于两个连续自然数之间,则下列结论正确的是()A. 1<a<2B. 2<a<3C. 3<a<4D. 4<a<5二、填空题(本大题共10小题,共30.0分)11.(2021·山东省·其他类型)分解因式:a3−2a2b+ab2=______.12.(2021·山东省·单元测试)若a m−2b n+7与−3a4b4的和仍是一个单项式,则m−n=______.13.(2021·全国·模拟题)若一组数据2,3,x,1,5,7的众数为7,则这组数据的中位数为______.14.(2020·全国·历年真题)函数y=x−1一定不经过第______ 象限.15.(2020·江苏省·单元测试)如图,在平面直角坐标系中,直x+4与x轴、y轴分别交于A、B两点,点C线y=−43在第二象限,若BC=OC=OA,则点C的坐标为______.16.(2021·广东省·单元测试)如图所示,在四边形ABCD中,∠B=90°,AB=2,CD=8.连接AC,AC⊥CD,若sin∠ACB=1,则AD长度是______.317.(2021·湖北省武汉市·期中考试)已知菱形的周长为4√5,两条对角线的和为6,则菱形的面积为______.18.(2021·江苏省常州市·模拟题)如图,正方形ABCD的边长为10,点A的坐标为(−8,0),(k≠0)的图象过点C,则该反比例函数的解析点B在y轴上,若反比例函数y=kx式为______.19. (2021·四川省成都市·期末考试)《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少两?”设每头牛值金x 两,每只羊值金y 两,可列方程组为______.20. (2021·河南省驻马店市·期末考试)对于实数a ,b ,定义运算“∗“,a ∗b ={a 2−ab(a >b)ab −b 2(a ≤b)例如4∗2,因为4>2,所以4∗2=42−4×2=8.若x 1,x 2是一元二次方程x 2−8x +16=0的两个根,则x 1∗x 2=______.三、解答题(本大题共7小题,共90.0分)21. (2020·全国·历年真题)(1)计算(−12)−1−3tan60°+|−√3|+(2cos60°−2020)0;(2)解不等式组:{3−x 2≤13x +2≥4.22. (2020·全国·历年真题)古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的圆”,请研究如下美丽的圆,如图,Rt △ABC 中,∠BCA =90°,AC =3,BC =4,点O 在线段BC 上,且OC =32,以O 为圆心.OC 为半径的⊙O 交线段AO 于点D ,交线段AO 的延长线于点E .(1)求证:AB是⊙O的切线;(2)研究过短中,小明同学发现ADDE =DEAE,回答小明同学发现的结论是否正确?如果正确,给出证明;如果不正确,说明理由.23.(2020·全国·历年真题)勤劳是中生民的传統美德,学校要求学们在家帮助父母做一些力所能及的家务.在学期初,小丽同学随机调查了七年级部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并将调查结果绘制了如图两幅不完整的统计图:根据统计图提供的作息,解答下列问题:(1)本次共调查了______名学生;(2)根据以上信息直接在答题卡上补全条形统计图;(3)扇形統计图中m=______,类别D所对应的扇形圆心角α的度数是______度;(4)若该校七年级共有400名学生,根据抽样调查的结果,估计该校七年級有多少名学生寒假在家做家务的总时间不低于20小时?24.(2021·安徽省芜湖市·单元测试)某单位计划购买甲、乙两种品牌的消毒剂,乙种品牌消毒剂每瓶的价格比甲种品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲种品牌消毒剂的数量与用400元购买乙种品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该单位从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙种品牌消毒剂?25.(2020·辽宁省沈阳市·月考试卷)在2020年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级1班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有48名同学,若每两名同学之间仅通过一次电话,那么全同学共通过多少次电话呢?我们可以用下面的方式来解决问题.用点A1、A2、A3…A48分表示第1名同学、第2名同学、第3名同学…第48名同学,把该班级人数x与通电话次数y之间的关系用如图模型表示:(1)填写上图中第四个图中y的值为______,第五个图中y的值为______.(2)通过探索发现,通电话次数y与该班级人数x之间的关系式为______,当x=48时,对应的y=______.(3)若九年级1班全体女生相互之间共通话190次,问:该班共有多少名女生?26.(2021·湖南省怀化市·模拟题)如图,已知AB是⊙O的直径,⊙O经过Rt△ACD的直角边DC上的点F,交AC边于点E,点F是弧EB的中点,∠C=90°,连接AF.(1)求证:直线CD是⊙O切线.(2)若BD=2,OB=4,求tan∠AFC的值.27.(2021·广东省·单元测试)如图(1),在平面直角坐标系中,抛物线y=ax2+bx+4(a≠0)与y轴交于点A,与x轴交于点C(−2,0),且经过点B(8,4),连接AB,BO,作AM⊥OB于点M,将Rt△OMA沿y轴翻折,点M的对应点为点N.解答下列问题:(1)抛物线的解析式为______,顶点坐标为______;(2)判断点N是否在直线AC上,并说明理由;(3)如图(2),将图(1)中Rt△OMA沿着OB平移后,得到Rt△DEF.若DE边在线段OB上,点F在抛物线上,连接AF,求四边形AMEF的面积.答案和解析1.【答案】A【知识点】相反数【解析】解:根据相反数的含义,可得3的相反数是:−3.故选:A.根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“−”,据此解答即可.此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“−”.2.【答案】D【知识点】中心对称图形【解析】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选:D.根据中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】C【知识点】科学记数法-绝对值较大的数【解析】解:93400=9.34×104.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】D【知识点】简单几何体的三视图【解析】解:因为圆柱是矩形,圆锥是等腰三角形,球是圆,圆台是等腰梯形,故选:D.四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,圆台是等腰梯形,由此可确定答案.主要考查立体图形的左视图,关键是几何体的左视图.5.【答案】A【知识点】同底数幂的乘法、幂的乘方与积的乘方、合并同类项【解析】解:A、(a3)4=a12,故原题计算正确;B、a3⋅a4=a7,故原题计算错误;C、a2+a2=2a2,故原题计算错误;D、(ab)2=a2b2,故原题计算错误;故选:A.利用幂的乘方的性质、同底数幂的乘法法则、合并同类项法则、积的乘方的性质分别进行计算即可.此题主要考查了幂的乘方、同底数幂的乘法、合并同类项、积的乘方,关键是熟练掌握各计算法则.6.【答案】D【知识点】翻折变换(折叠问题)、平行线的性质【解析】解:∵矩形纸条ABCD中,AD//BC,∴∠AEG=∠BGD′=30°,∴∠DEG=180°−30°=150°,由折叠可得,∠α=12∠DEG=12×150°=75°,故选:D.依据平行线的性质,即可得到∠AEG的度数,再根据折叠的性质,即可得出∠α的度数.本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.7.【答案】B【知识点】解直角三角形的应用【解析】解:∵在Rt △ADE 中,DE =6,AE =AB −BE =AB −CD =x −1,∠ADE =55°, ∴sin55°=AE AD ,cos55°=DE AD ,tan55°=AE DE =x−16,故选:B .根据锐角三角函数和直角三角形的性质解答即可.此题考查了考查仰角的定义,三角函数的定义,注意数形结合思想的应用. 8.【答案】C【知识点】一元一次方程的应用【解析】解:设该商品每件的进价为x 元,依题意,得:12×0.8−x =2,解得:x =7.6.故选:C .设该商品每件的进价为x 元,根据利润=售价−成本,即可得出关于x 的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 9.【答案】A【知识点】三角形三边关系、等腰三角形的性质【解析】解:分两种情况:当腰为4时,4+4<9,所以不能构成三角形;当腰为9时,9+9>4,9−9<4,所以能构成三角形,周长是:9+9+4=22. 故选:A .题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.10.【答案】C【知识点】估算无理数的大小【解析】解:∵4<√17<5,∴3<√17−1<4,∴√17−1在3和4之间,即3<a<4.故选:C.先估算出√17的范围,即可得出答案.本题考查了估算无理数的大小,能估算出√17的范围是解此题的关键.11.【答案】a(a−b)2【知识点】提公因式法与公式法的综合运用【解析】解:a3−2a2b+ab2,=a(a2−2ab+b2),=a(a−b)2.先提取公因式a,再对余下的多项式利用完全平方公式继续分解.本题考查提公因式法分解因式和完全平方公式分解因式,熟记公式结构是解题的关键,分解因式一定要彻底.12.【答案】9【知识点】单项式、合并同类项【解析】解:∵a m−2b n+7与−3a4b4的和仍是一个单项式,∴m−2=4,n+7=4,解得:m=6,n=−3,故m−n=6−(−3)=9.故答案为:9.直接利用合并同类项法则得出m,n的值,进而得出答案.此题主要考查了合并同类项,正确得出m,n的值是解题关键.13.【答案】4【知识点】中位数、众数【解析】解:∵2,3,x,1,5,7的众数为7,∴x=7,把这组数据从小到大排列为:1、2、3、5、6、7,=4;则中位数为3+52故答案为:4.根据众数的定义可得x的值,再依据中位数的定义即可得答案.本题考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据中出现最多的一个数.14.【答案】二【知识点】一次函数的性质【解析】解:由已知,得:k>0,b<0.故直线必经过第一、三、四象限.则不经过第二象限.故答案为:二.根据一次函数y=kx+b的图象的性质作答.考查了一次函数的性质,能够根据k,b的符号正确判断直线所经过的象限.15.【答案】(−√5,2)【知识点】一次函数图象上点的坐标特征、等腰三角形的性质【解析】【分析】本题考查了一次函数图象上点的坐标特征、等腰三角形的性质以及勾股定理,利用等腰直角三角形的性质结合勾股定理求出CE、OE的长度是解题的关键.根据一次函数图象上点的坐标特征可求出点A、B的坐标,由BC=OC=OA利用等腰三角形的性质可得出OC、OE的值,再利用勾股定理可求出CE的长度,此题得解.【解答】x+4与x轴、y轴分别交于A、B两点,解:∵直线y=−43∴点A的坐标为(3,0),点B的坐标为(0,4).过点C作CE⊥y轴于点E,如图所示.∵BC=OC=OA,∴OC=3,OE=2,∴CE=√OC2−OE2=√5,∴点C的坐标为(−√5,2).故答案为:(−√5,2).16.【答案】10【知识点】角平分线的性质、勾股定理、解直角三角形【解析】解:在Rt△ABC中,∵AB=2,sin∠ACB=ABAC =13,∴AC=2÷13=6.在Rt△ADC中,AD=√AC2+CD2=√62+82=10.故答案为:10.根据直角三角形的边角间关系,先计算AC,再在直角三角形ACD中,利用勾股定理求出AD.本题考查了解直角三角形和勾股定理,利用直角三角形的边角间关系,求出AC是解决本题的关键.17.【答案】4【知识点】菱形的性质【解析】解:如图所示:∵两条对角线的和为6,∴AC+BD=6,∵菱形的周长为4√5,∴AB=√5,AC⊥BD,AO=12AC,BO=12BD,∴AO+BO=3,∴AO2+BO2=AB2,(AO+BO)2=9,即AO2+BO2=5,AO2+2AO⋅BO+BO2=9,∴2AO⋅BO=4,∴菱形的面积=12AC⋅BD=2AO⋅BO=4;故答案为:4.由菱形的性质和勾股定理得出AO+BO=3,AO2+BO2=AB2,(AO+BO)2=9,求出2AO⋅BO=4,即可得出答案.本题考查菱形的性质、勾股定理;解题的关键是记住菱形的面积公式,记住菱形的对角线互相垂直.18.【答案】y=12x【知识点】待定系数法求反比例函数解析式、全等三角形的判定与性质、正方形的性质【解析】解:如图,过点C作CE⊥y轴于E,∵四边形ABCD是正方形,∴AB=BC=10,∠ABC=90°,∴OB=√AB2−AO2=√100−64=6,∵∠ABC=∠AOB=90°,∴∠ABO+∠CBE=90°,∠ABO+∠BAO=90°,∴∠BAO=∠CBE,又∵∠AOB=∠BEC=90°,∴△ABO≌△BCE(AAS),∴CE=OB=6,BE=AO=8,∴OE=2,∴点C(6,2),(k≠0)的图象过点C,∵反比例函数y=kx∴k=6×2=12,∴反比例函数的解析式为y=12,x故答案为:y=12.x过点C作CE⊥y轴于E,由“AAS”可证△ABO≌△BCE,可得CE=OB=6,BE=AO= 8,可求点C坐标,即可求解.本题考查了反比例函数图象上点的坐标特征,正方形的性质,利用待定系数法求解析式,求出点C 坐标是本题的关键.19.【答案】{5x +2y =102x +5y =8【知识点】由实际问题抽象出二元一次方程组【解析】【分析】本题考查了由实际问题抽象出二元一次方程组,解决本题的关键是找到题目中所存在的等量关系.根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到等量关系,即可列出方程组.【解答】解:根据题意得:{5x +2y =102x +5y =8. 故答案为{5x +2y =102x +5y =8. 20.【答案】0【知识点】解一元二次方程-配方法、实数的运算、一元二次方程的根与系数的关系*【解析】解:x 2−8x +16=0,解得:x =4,即x 1=x 2=4,则x 1∗x 2=x 1⋅x 2−x 22=16−16=0,故答案为0.求出x 2−8x +16=0的解,代入新定义对应的表达式即可求解.此题主要考查了根与系数的关系,对新定义的正确理解是解题的关键.21.【答案】解:(1)原式=−2−3×√3+√3+(2×12−2020)0=−2−3√3+√3+(1−2020)2=−2−2√3+20190=−2−2√3+1=−1−2√3;(2)解不等式3−x 2≤1,得:x ≥1,解不等式是3x +2≥4,得:x ≥23,则不等式组的解集为x≥1.【知识点】特殊角的三角函数值、负整数指数幂、实数的运算、一元一次不等式组的解法【解析】(1)根据负整数指数幂和零指数幂的规定、绝对值的性质及特殊锐角的三角函数值计算可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.【答案】解:(1)如图1,过点O作OH⊥AB于H,∵∠BCA=90°,AC=3,BC=4,∴AB=√AC2+BC2=√9+16=5,∵S△ABC=S△AOC+S△ABO,∴12×3×4=12×3×32+12×5×OH,∴OH=32,∴OC=OH,且OH⊥BA,∴AB是⊙O的切线;(2)结论成立,理由如下:连接CD,EC,∵DE是直径,∴∠ECD=90°=∠ACO,∴∠ECO=∠ACD,∵OC=OE,∴∠CEO=∠OCE,∴∠ACD=∠CEO,又∵∠DAC=∠EAC,∴△DAC∽△CAE,∴ACAE =ADAC,∵OC=32,∴DE=2OC=3=AC,∴DEAE =ADDE,故小明同学发现的结论是正确的.【知识点】勾股定理、数学常识、相似三角形的判定与性质、切线的判定与性质、圆周角定理【解析】(1)过点O作OH⊥AB于H,由勾股定理可求AB的长,由面积法可求OH=32= OC,即可求结论.(2)连接CD,EC,通过证明△DAC∽△CAE,可得ACAE =ADAC,由DE=AC=3,可得结论.本题考查了相似三角形的判定和性质,切线的判定和性质,圆的有关知识,证明△DAC∽△CAE是本题的关键.23.【答案】50 32 57.6【知识点】扇形统计图、用样本估计总体、条形统计图、频数(率)分布直方图【解析】解:(1)本次共调查了10÷20%=50名学生,故答案为:50;(2)B类学生有:50×24%=12(人),D类学生有:50−10−12−16−4=8(人),补全的条形统计图如右图所示;(3)m%=16÷50×100%=32%,即m=32,类别D所对应的扇形圆心角α的度数是:360°×850=57.6°,故答案为:32,57.6;(4)400×16+8+450=224(人),即该校七年級有224名学生寒假在家做家务的总时间不低于20小时.(1)根据A类的人数和所占的百分比,可以求得本次调查的人数;(2)根据统计图中的数据,可以得到B类和C类的人数,然后即可将频数分布直方图补充完整;(3)根据统计图中的数据,可以得到m和α的值;(4)根据统计图中的数据,可以计算出该校七年級有多少名学生寒假在家做家务的总时间不低于20小时.本题考查频数分布直方图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.24.【答案】解:(1)设甲品牌消毒剂每瓶的价格为x元;乙品牌消毒剂每瓶的价格为(3x−50)元,由题意得:300x =4003x−50,解得:x=30,经检验,x=30是原方程的解且符合实际意义,3x−5═40,答:甲品牌消毒剂每瓶的价格为30元;乙品牌消毒剂每瓶的价格为40元;(2)设购买甲种品牌的消毒剂y瓶,则购买乙种品牌的消毒剂(40−y)瓶,由题意得:30y+40(40−y)=1400,解得:y =20,∴40−y =40−20=20,答:购买了20瓶乙品牌消毒剂.【知识点】分式方程的应用、一元一次方程的应用【解析】(1)设甲品牌消毒剂每瓶的价格为x 元;乙品牌消毒剂每瓶的价格为(3x −50)元,由题意列出分式方程,解方程即可;(2)设购买甲种品牌的消毒剂y 瓶,则购买乙种品牌的消毒剂(40−y)瓶,由题意列出一元一次方程,解方程即可.本题考查分式方程的应用和一元一次方程的应用,解题的关键是:(1)正确找出等量关系,列出分式方程,(2)正确找出等量关系,列出一元一次方程.25.【答案】10 15 y =x(x−1)2 1128【知识点】一元二次方程的应用、图形规律问题【解析】解:(1)观察图形,可知:第四个图中y 的值为10,第五个图中y 的值为15. 故答案为:10;15.(2)∵1=2×12,3=3×22,6=4×32,10=5×42,15=6×52, ∴y =x(x−1)2,当x =48时,y =48×(48−1)2=1128. 故答案为:y =x(x−1)2;1128.(3)依题意,得:x(x−1)2=190, 化简,得:x 2−x −380=0,解得:x 1=20,x 2=−19(不合题意,舍去).答:该班共有20名女生.(1)观察图形,可以找出第四和第五个图中的y 值;(2)根据y 值随x 值的变化,可找出y =x(x−1)2,再代入x =48可求出当x =48时对应的y值;(3)根据(2)的结论结合九年级1班全体女生相互之间共通话190次,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用以及图形的变化规律,解题的关键是:(1)观察图形,数出当x =5和x =6时对应的y 值;(2)根据y 随x 的变化,找出变化规律y =x(x−1)2;(3)找准等量关系,正确列出一元二次方程. 26.【答案】(1)证明:连结OF ,BE ,如图: ∵AB 是⊙O 的直径, ∴∠AEB =90°,∵∠C =90°,∴∠AEB =∠ACD ,∴BE//CD ,∵点F 是弧BE 的中点,∴OF ⊥BE ,∴OF ⊥CD ,∵OF 为半径,∴直线DF 是⊙O 的切线;(2)解:∵∠C =∠OFD =90°,∴AC//OF ,∴△OFD∽△ACD ,∴OFAC =ODAD ,∵BD =2,OF =OB =4,∴OD =6,AD =10,∴AC =OF×ADOD =4×106=203,∴CD =√AD 2−AC 2=√102−(203)2=10√53,∵AC//OF ,OA =4,∴CF OA =CD AD ,即CF 4=10√5310,解得:CF =4√53, ∴tan∠AFC =AC CF =2034√53=√5.【知识点】解直角三角形、切线的判定与性质、圆周角定理【解析】(1)连结OF ,BE ,得到BE//CD ,根据平行线的性质得到CD ⊥OF ,即可得出结论;(2)由相似三角形的性质求出AC 长,再由勾股定理可求得DC 长,则能求出CF 长,即可得出结果.本题考查的是切线的判定、圆周角定理、平行线的性质、相似三角形的判定与性质、勾股定理以及三角函数定义等知识;掌握切线的判定定理和圆周角定理是解题的关键. 27.【答案】y =−15x 2+85x +4 (4,365)【知识点】二次函数综合【解析】解:(1)∵抛物线y =ax 2+bx +4(a ≠0)与x 轴交于点C(−2,0),且经过点B(8,4), ∴{0=4a −2b +44=64a +8b +4,解得:{a =−15b =85,∴抛物线解析式为:y =−15x 2+85x +4,∵:y =−15x 2+85x +4=−15(x −4)2+365,∴顶点坐标为(4,365)故答案为:y =−15x 2+85x +4,(4,365);(2)点N 在直线AC 上,理由如下:∵抛物线y =−15x 2+85x +4与y 轴交于点A ,∴点A(0,4),即OA =4,∵点B(8,4),∴AB//x 轴,AB =8,∴AB ⊥AO ,∴∠OAB =90°,∴∠OAM +∠BAM =90°,∵AM ⊥OB ,∴∠BAM +∠B =90°,∴∠B =∠OAM ,∴tan∠B =tan∠OAM =OA AB =48=12,∵将Rt △OMA 沿y 轴翻折,∴∠NAO =∠OAM ,∴tan∠NAO =tan∠OAM =12,∵OC =2,OA =4,∴tan∠CAO =OC OA =12, ∴tan∠CAO =tan∠NAO ,∴∠CAO =∠NAO ,∴AN ,AC 共线,∴点N 在直线AC 上;(3)∵点B(8,4),点O(0,0),∴直线OB 解析式为y =12x ,∵Rt △OMA 沿着OB 平移后,得到Rt △DEF ,∴AF//OB ,∴直线AF 的解析式为:y =12x +4,联立方程组:{y =12x +4y =−15x 2+85x +4解得:{x 1=0y 1=4或{x 2=112y 2=274 ∴点F(112,274),∵Rt △OMA 沿着OB 平移后,得到Rt △DEF ,∴Rt △OMA≌Rt △DEF ,OA =DF ,OA//DF∴S △OMA =S △DEF ,四边形OAFD 是平行四边形,∵四边形AMEF 的面积=S 四边形AMDF +S △DEF =S 四边形AMDF +S △OAM =S 四边形OAFD , ∴四边形AMEF 的面积=S 四边形OAFD =4×112=22.(1)将点B ,点C 坐标代入解析式可求a ,b 的值,由配方法可求顶点坐标;(2)由余角的性质可得∠MAO =∠B ,利用三角函数可求tan∠MAO =tan∠NAO =tan∠CAO =12,可得∠CAO =∠NAO ,可得AC 与AN 共线,即可求解;(3)先求出OB 解析式,AF 解析式,联立方程组可求点F 坐标,由四边形AMEF 的面积=S 四边形AMDF +S △DEF =S 四边形AMDF +S △OAM =S 四边形OAFD ,可求解.本题是二次函数综合题,考查了待定系数法求解析式,锐角三角函数,直角三角形的性质,折叠的性质,平移的性质,平行四边形的性质等知识,求出点F 的坐标是本题的关键.。

2020年贵州省黔南中考数学试卷-答案

2020年贵州省黔南中考数学试卷-答案

2020年贵州省黔南州初中学业水平考试数学答案解析一、1.【答案】A【解析】解:根据相反数的定义,可得3的相反数是:3-.故选:A .2.【答案】D【解析】解:A 、不是中心对称图形,故本选项错误;B 、不是中心对称图形,故本选项错误;C 、不是中心对称图形,故本选项错误;D 、是中心对称图形,故本选项正确.故选:D .3.【答案】C【解析】解:493 4009.3410=⨯.故选:C .4.【答案】D【解析】解:因为圆柱是矩形,圆锥是等腰三角形,球是圆,圆台是等腰梯形,故选:D .5.【答案】A【解析】解:A 、()4312a a =,故原题计算正确;B 、347a a a ⋅=,故原题计算错误;C 、2222a a a +=,故原题计算错误;D 、()222ab a b =,故原题计算错误; 故选:A .6.【答案】D【解析】解:∵矩形纸条ABCD 中,AD BC ∥,'30AEG BGD ∠=∠=︒∴,18030150DEG ∠=︒-︒=︒∴,由折叠可得,111507522DEG ∠α∠==⨯︒=, 故选:D .7.【答案】B 【解析】解:∵在Rt ADE △中,6DE =,1AE AB BE AB CD x =-=-=-,55ADE ∠=︒,sin55AE AD ︒=∴,cos55DE AD ︒=,1tan556AE x DE -︒==, 故选:B .8.【答案】C【解析】解:设该商品每件的进价为x 元,依题意,得:120.82x ⨯-=,解得:7.6x =.故选:C .9.【答案】D【解析】解:分两种情况:当腰为4时,449+<,所以不能构成三角形;当腰为9时,994+>,994-<,所以能构成三角形,周长是:99422++=.故选:D .10.【答案】C【解析】解:45∵,314∴<,1在3和4之间,即34a <<.故选:C .二、11.【答案】()2a ab - 【解析】解:3222a a b ab -+,()222a a ab b =-+,()2a ab =-.12.【答案】9【解析】解:27m n a b -+∵与443a b -的和仍是一个单项式,24m -=∴,74n +=,解得:6m =,3n =-,故()639m n -=--=.故答案为:9.13.【答案】4【解析】解:∵2,3,x ,1,5,7的众数为7,7x =∴,把这组数据从小到大排列为:1、2、3、5、6、7, 则中位数为3542+=; 故答案为:4.14.【答案】二【解析】解:由已知,得:0k >,0b <.故直线必经过第一、三、四象限.则不经过第二象限.故答案为:二.15.【答案】()【解析】解:∵直线443y x =+与x 轴、y 轴分别交于A 、B 两点, ∴点A 的坐标为()3,0,点B 的坐标为()0,4.过点C 作CE y ⊥轴于点E ,如图所示.BC OC OA ==∵,3OC =∴,2OE =,CE ==∴∴点C 的坐标为().故答案为:().16.【答案】10【解析】解:在Rt ABC △中,2AB =∵,1sin 3AB ACB AC ∠==, 1263AC =÷=∴ 在Rt ADC △中,AD ==10=.故答案为:10.17.【答案】4【解析】解:如图所示:∵两条对角线的和为6,6AC BD +=∴,∵菱形的周长为AB =∴AC BD ⊥,12AO AC =,12BO BD =, 3AO BO +=∴,222AO BO AB +=∴,()29AO BO +=,即225AO BO +=,2229AO AO BO BO +⋅+=, 24AO BO ⋅=∴,∴菱形的面积1242AC BD AO BO =⋅=⋅=; 故答案为:4.18.【答案】12y x =【解析】解:如图,过点C 作CE y ⊥轴于E ,∵四边形ABCD 是正方形,10AB BC ==∴,90ABC ∠=︒,6OB ===∴,90ABC AOB ∠=∠=︒∵,90ABO CBE ∠+∠=︒∴,90ABO BAO ∠+∠=︒,BAO CBE ∠=∠∴,又90AOB BEC ∠=∠=︒∵,()ABO BCE AAS △≌△∴,6CE OB ==∴,8BE AO ==,2OE =∴,∴点()6,2C ,∵反比例函数()0ky k x =≠的图象过点C ,6212k =⨯=∴,∴反比例函数的解析式为12y x =, 故答案为:12y x =.19.【答案】5210258x y x y +=⎧⎨+=⎩【解析】解:根据题意得:5210258x y x y +=⎧⎨+=⎩. 故答案为:5210258x y x y +=⎧⎨+=⎩. 20.【答案】0【解析】解:28160x x -+=,解得:4x =,即124x x ==,则2121?22*16160x x x x x =-=-=,故答案为0.三、21.【答案】解:(1)原式01232 2 0202⎛⎫=--⨯- ⎪⎝⎭ ()221 2 020=---02 2 019=--21=--1=-- (2)解不等式312x -≤,得:1x ≥, 解不等式是324x +≥,得:23x ≥, 则不等式组的解集为1x ≥.【解析】具体解题过程参照答案。

2020年贵州省黔南州中考数学试卷(含答案解析)

2020年贵州省黔南州中考数学试卷(含答案解析)

2020年贵州省黔南州中考数学试卷副标题题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.3的相反数是()A. −3B. 3C. −13D. 132.观察下列图形,是中心对称图形的是()A. B. C. D.3.某市2020年参加中考的考生人数的为93400人,将93400用科学记数法表示为()A. 934×102B. 93.4×103C. 9.34×104D. 0.934×1054.下列四个几何体中,左视图为圆的是()A. B. C. D.5.下列运算正确的是()A. (a3)4=a12B. a3⋅a4=a12C. a2+a2=a4D. (ab)2=ab26.如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=30°,则∠α的度数是()A. 30°B. 45°C. 74°D. 75°7.如图,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点D处测得旗杆顶端A的仰角∠ADE为55°,测角仪CD的高度为1米,其底端C与旗杆底端B之间的距离为6米,设旗杆AB的高度为x米,则下列关系式正确的是()A. tan55°=6x−1B. tan55°=x−16C. sin55°=x−16D. cos55°=x−168.某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为()A. 7.4元B. 7.5元C. 7.6元D. 7.7元9.已知等腰三角形的一边长等于4,一边长等于9,则它的周长为()A. 22B. 17C. 17或22D. 2610.已知a=√17−1,a介于两个连续自然数之间,则下列结论正确的是()A. 1<a<2B. 2<a<3C. 3<a<4D. 4<a<5二、填空题(本大题共10小题,共30.0分)11.分解因式:a3−2a2b+ab2=______.12.若a m−2b n+7与−3a4b4的和仍是一个单项式,则m−n=______.13.若一组数据2,3,x,1,5,7的众数为7,则这组数据的中位数为______.14.函数y=x−1一定不经过第______ 象限.15.如图,在平面直角坐标系中,直线y=−43x+4与x轴、y轴分别交于A、B两点,点C在第二象限,若BC=OC=OA,则点C的坐标为______.16.如图所示,在四边形ABCD中,∠B=90°,AB=2,CD=8.连接AC,AC⊥CD,若sin∠ACB=13,则AD长度是______.17.已知菱形的周长为4√5,两条对角线的和为6,则菱形的面积为______.18.如图,正方形ABCD的边长为10,点A的坐标为(−8,0),点B在y轴上,若反比例函数y=kx(k≠0)的图象过点C,则该反比例函数的解析式为______.19.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为______.20.对于实数a,b,定义运算“∗“,a∗b={a2−ab(a>b)ab−b2(a≤b)例如4∗2,因为4>2,所以4∗2=42−4×2=8.若x1,x2是一元二次方程x2−8x+16=0的两个根,则x1∗x2=______.三、解答题(本大题共7小题,共90.0分)21.(1)计算(−12)−1−3tan60°+|−√3|+(2cos60°−2020)0;(2)解不等式组:{3−x2≤13x+2≥4.22.古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的圆”,请研究如下美丽的圆,如图,Rt△ABC中,∠BCA=90°,AC=3,BC=4,点O在线段BC上,且OC=32,以O为圆心.OC为半径的⊙O交线段AO于点D,交线段AO的延长线于点E.(1)求证:AB是⊙O的切线;(2)研究过短中,小明同学发现ADDE =DEAE,回答小明同学发现的结论是否正确?如果正确,给出证明;如果不正确,说明理由.23.勤劳是中生民的传統美德,学校要求学们在家帮助父母做一些力所能及的家务.在学期初,小丽同学随机调查了七年级部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并将调查结果绘制了如图两幅不完整的统计图:根据统计图提供的作息,解答下列问题:(1)本次共调查了______名学生;(2)根据以上信息直接在答题卡上补全条形统计图;(3)扇形統计图中m=______,类别D所对应的扇形圆心角α的度数是______度;(4)若该校七年级共有400名学生,根据抽样调查的结果,估计该校七年級有多少名学生寒假在家做家务的总时间不低于20小时?24.某单位计划购买甲、乙两种品牌的消毒剂,乙种品牌消毒剂每瓶的价格比甲种品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲种品牌消毒剂的数量与用400元购买乙种品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该单位从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙种品牌消毒剂?25.在2020年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级1班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有48名同学,若每两名同学之间仅通过一次电话,那么全同学共通过多少次电话呢?我们可以用下面的方式来解决问题.用点A1、A2、A3…A48分表示第1名同学、第2名同学、第3名同学…第48名同学,把该班级人数x与通电话次数y之间的关系用如图模型表示:(1)填写上图中第四个图中y的值为______,第五个图中y的值为______.(2)通过探索发现,通电话次数y与该班级人数x之间的关系式为______,当x=48时,对应的y=______.(3)若九年级1班全体女生相互之间共通话190次,问:该班共有多少名女生?26.如图,已知AB是⊙O的直径,⊙O经过Rt△ACD的直角边DC上的点F,交AC边于点E,点F是弧EB的中点,∠C=90°,连接AF.(1)求证:直线CD是⊙O切线.(2)若BD=2,OB=4,求tan∠AFC的值.27.如图(1),在平面直角坐标系中,抛物线y=ax2+bx+4(a≠0)与y轴交于点A,与x轴交于点C(−2,0),且经过点B(8,4),连接AB,BO,作AM⊥OB于点M,将Rt△OMA沿y轴翻折,点M的对应点为点N.解答下列问题:(1)抛物线的解析式为______,顶点坐标为______;(2)判断点N是否在直线AC上,并说明理由;(3)如图(2),将图(1)中Rt△OMA沿着OB平移后,得到Rt△DEF.若DE边在线段OB上,点F在抛物线上,连接AF,求四边形AMEF的面积.答案和解析1.【答案】A【解析】解:根据相反数的含义,可得3的相反数是:−3.故选:A.根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“−”,据此解答即可.此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“−”.2.【答案】D【解析】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选:D.根据中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】C【解析】解:93400=9.34×104.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】D【解析】解:因为圆柱是矩形,圆锥是等腰三角形,球是圆,圆台是等腰梯形, 故选:D .四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,圆台是等腰梯形,由此可确定答案.主要考查立体图形的左视图,关键是几何体的左视图.5.【答案】A【解析】解:A 、(a 3)4=a 12,故原题计算正确; B 、a 3⋅a 4=a 7,故原题计算错误; C 、a 2+a 2=2a 2,故原题计算错误; D 、(ab)2=a 2b 2,故原题计算错误; 故选:A .利用幂的乘方的性质、同底数幂的乘法法则、合并同类项法则、积的乘方的性质分别进行计算即可.此题主要考查了幂的乘方、同底数幂的乘法、合并同类项、积的乘方,关键是熟练掌握各计算法则.6.【答案】D【解析】解:∵矩形纸条ABCD 中,AD//BC , ∴∠AEG =∠BGD′=30°, ∴∠DEG =180°−30°=150°,由折叠可得,∠α=12∠DEG =12×150°=75°, 故选:D .依据平行线的性质,即可得到∠AEG 的度数,再根据折叠的性质,即可得出∠α的度数. 本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.7.【答案】B【解析】解:∵在Rt △ADE 中,DE =6,AE =AB −BE =AB −CD =x −1,∠ADE =55°, ∴sin55°=AEAD ,cos55°=DEAD ,tan55°=AEDE =x−16,故选:B .根据锐角三角函数和直角三角形的性质解答即可.此题考查了考查仰角的定义,三角函数的定义,注意数形结合思想的应用.8.【答案】C【解析】解:设该商品每件的进价为x元,依题意,得:12×0.8−x=2,解得:x=7.6.故选:C.设该商品每件的进价为x元,根据利润=售价−成本,即可得出关于x的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.9.【答案】A【解析】解:分两种情况:当腰为4时,4+4<9,所以不能构成三角形;当腰为9时,9+9>4,9−9<4,所以能构成三角形,周长是:9+9+4=22.故选:A.题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.10.【答案】C【解析】解:∵4<√17<5,∴3<√17−1<4,∴√17−1在3和4之间,即3<a<4.故选:C.先估算出√17的范围,即可得出答案.本题考查了估算无理数的大小,能估算出√17的范围是解此题的关键.11.【答案】a(a−b)2【解析】解:a3−2a2b+ab2,=a(a2−2ab+b2),=a(a−b)2.先提取公因式a,再对余下的多项式利用完全平方公式继续分解.本题考查提公因式法分解因式和完全平方公式分解因式,熟记公式结构是解题的关键,分解因式一定要彻底.12.【答案】9【解析】解:∵a m−2b n+7与−3a4b4的和仍是一个单项式,∴m−2=4,n+7=4,解得:m=6,n=−3,故m−n=6−(−3)=9.故答案为:9.直接利用合并同类项法则得出m,n的值,进而得出答案.此题主要考查了合并同类项,正确得出m,n的值是解题关键.13.【答案】4【解析】解:∵2,3,x,1,5,7的众数为7,∴x=7,把这组数据从小到大排列为:1、2、3、5、6、7,=4;则中位数为3+52故答案为:4.根据众数的定义可得x的值,再依据中位数的定义即可得答案.本题考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据中出现最多的一个数.14.【答案】二【解析】解:由已知,得:k>0,b<0.故直线必经过第一、三、四象限.则不经过第二象限.故答案为:二.根据一次函数y=kx+b的图象的性质作答.考查了一次函数的性质,能够根据k,b的符号正确判断直线所经过的象限.15.【答案】(−√5,2)【解析】【分析】本题考查了一次函数图象上点的坐标特征、等腰三角形的性质以及勾股定理,利用等腰直角三角形的性质结合勾股定理求出CE、OE的长度是解题的关键.根据一次函数图象上点的坐标特征可求出点A、B的坐标,由BC=OC=OA利用等腰三角形的性质可得出OC、OE的值,再利用勾股定理可求出CE的长度,此题得解.【解答】解:∵直线y=−43x+4与x轴、y轴分别交于A、B两点,∴点A的坐标为(3,0),点B的坐标为(0,4).过点C作CE⊥y轴于点E,如图所示.∵BC=OC=OA,∴OC=3,OE=2,∴CE=√OC2−OE2=√5,∴点C的坐标为(−√5,2).故答案为:(−√5,2).16.【答案】10【解析】解:在Rt△ABC中,∵AB=2,sin∠ACB=ABAC =13,∴AC=2÷13=6.在Rt△ADC中,AD=√AC2+CD2=√62+82=10.故答案为:10.根据直角三角形的边角间关系,先计算AC,再在直角三角形ACD中,利用勾股定理求出AD.本题考查了解直角三角形和勾股定理,利用直角三角形的边角间关系,求出AC是解决本题的关键.17.【答案】4【解析】解:如图所示:∵两条对角线的和为6,∴AC+BD=6,∵菱形的周长为4√5,∴AB=√5,AC⊥BD,AO=12AC,BO=12BD,∴AO+BO=3,∴AO2+BO2=AB2,(AO+BO)2=9,即AO2+BO2=5,AO2+2AO⋅BO+BO2=9,∴2AO⋅BO=4,∴菱形的面积=12AC⋅BD=2AO⋅BO=4;故答案为:4.由菱形的性质和勾股定理得出AO+BO=3,AO2+BO2=AB2,(AO+BO)2=9,求出2AO⋅BO=4,即可得出答案.本题考查菱形的性质、勾股定理;解题的关键是记住菱形的面积公式,记住菱形的对角线互相垂直.18.【答案】y=12x【解析】解:如图,过点C作CE⊥y轴于E,∵四边形ABCD是正方形,∴AB=BC=10,∠ABC=90°,∴OB=√AB2−AO2=√100−64=6,∵∠ABC =∠AOB =90°,∴∠ABO +∠CBE =90°,∠ABO +∠BAO =90°,∴∠BAO =∠CBE ,又∵∠AOB =∠BEC =90°,∴△ABO≌△BCE(AAS),∴CE =OB =6,BE =AO =8,∴OE =2,∴点C(6,2),∵反比例函数y =k x (k ≠0)的图象过点C ,∴k =6×2=12,∴反比例函数的解析式为y =12x , 故答案为:y =12x .过点C 作CE ⊥y 轴于E ,由“AAS ”可证△ABO≌△BCE ,可得CE =OB =6,BE =AO =8,可求点C 坐标,即可求解.本题考查了反比例函数图象上点的坐标特征,正方形的性质,利用待定系数法求解析式,求出点C 坐标是本题的关键.19.【答案】{5x +2y =102x +5y =8【解析】【分析】本题考查了由实际问题抽象出二元一次方程组,解决本题的关键是找到题目中所存在的等量关系.根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到等量关系,即可列出方程组.【解答】解:根据题意得:{5x +2y =102x +5y =8. 故答案为{5x +2y =102x +5y =8. 20.【答案】0【解析】解:x 2−8x +16=0,解得:x =4,即x 1=x 2=4,则x1∗x2=x1⋅x2−x22=16−16=0,故答案为0.求出x2−8x+16=0的解,代入新定义对应的表达式即可求解.此题主要考查了根与系数的关系,对新定义的正确理解是解题的关键.21.【答案】解:(1)原式=−2−3×√3+√3+(2×12−2020)0=−2−3√3+√3+(1−2020)2=−2−2√3+20190=−2−2√3+1=−1−2√3;(2)解不等式3−x2≤1,得:x≥1,解不等式是3x+2≥4,得:x≥23,则不等式组的解集为x≥1.【解析】(1)根据负整数指数幂和零指数幂的规定、绝对值的性质及特殊锐角的三角函数值计算可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.【答案】解:(1)如图1,过点O作OH⊥AB于H,∵∠BCA=90°,AC=3,BC=4,∴AB=√AC2+BC2=√9+16=5,∵S△ABC=S△AOC+S△ABO,∴12×3×4=12×3×32+12×5×OH,∴OH=32,∴OC=OH,且OH⊥BA,∴AB是⊙O的切线;(2)结论成立,理由如下:连接CD,EC,∵DE是直径,∴∠ECD=90°=∠ACO,∴∠ECO=∠ACD,∵OC=OE,∴∠CEO=∠OCE,∴∠ACD=∠CEO,又∵∠DAC=∠EAC,∴△DAC∽△CAE,∴ACAE =ADAC,∵OC=32,∴DE=2OC=3=AC,∴DEAE =ADDE,故小明同学发现的结论是正确的.【解析】(1)过点O作OH⊥AB于H,由勾股定理可求AB的长,由面积法可求OH=32= OC,即可求结论.(2)连接CD,EC,通过证明△DAC∽△CAE,可得ACAE =ADAC,由DE=AC=3,可得结论.本题考查了相似三角形的判定和性质,切线的判定和性质,圆的有关知识,证明△DAC∽△CAE是本题的关键.23.【答案】50 32 57.6【解析】解:(1)本次共调查了10÷20%=50名学生,故答案为:50;(2)B类学生有:50×24%=12(人),D类学生有:50−10−12−16−4=8(人),补全的条形统计图如右图所示;(3)m%=16÷50×100%=32%,即m=32,类别D所对应的扇形圆心角α的度数是:360°×850=57.6°,故答案为:32,57.6;(4)400×16+8+450=224(人),即该校七年級有224名学生寒假在家做家务的总时间不低于20小时.(1)根据A类的人数和所占的百分比,可以求得本次调查的人数;(2)根据统计图中的数据,可以得到B类和C类的人数,然后即可将频数分布直方图补充完整;(3)根据统计图中的数据,可以得到m和α的值;(4)根据统计图中的数据,可以计算出该校七年級有多少名学生寒假在家做家务的总时间不低于20小时.本题考查频数分布直方图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.24.【答案】解:(1)设甲品牌消毒剂每瓶的价格为x元;乙品牌消毒剂每瓶的价格为(3x−50)元,由题意得:300x =4003x−50,解得:x=30,经检验,x=30是原方程的解且符合实际意义,3x−5═40,答:甲品牌消毒剂每瓶的价格为30元;乙品牌消毒剂每瓶的价格为40元;(2)设购买甲种品牌的消毒剂y 瓶,则购买乙种品牌的消毒剂(40−y)瓶,由题意得:30y +40(40−y)=1400,解得:y =20,∴40−y =40−20=20,答:购买了20瓶乙品牌消毒剂.【解析】(1)设甲品牌消毒剂每瓶的价格为x 元;乙品牌消毒剂每瓶的价格为(3x −50)元,由题意列出分式方程,解方程即可;(2)设购买甲种品牌的消毒剂y 瓶,则购买乙种品牌的消毒剂(40−y)瓶,由题意列出一元一次方程,解方程即可.本题考查分式方程的应用和一元一次方程的应用,解题的关键是:(1)正确找出等量关系,列出分式方程,(2)正确找出等量关系,列出一元一次方程.25.【答案】10 15 y =x(x−1)2 1128【解析】解:(1)观察图形,可知:第四个图中y 的值为10,第五个图中y 的值为15. 故答案为:10;15.(2)∵1=2×12,3=3×22,6=4×32,10=5×42,15=6×52, ∴y =x(x−1)2,当x =48时,y =48×(48−1)2=1128. 故答案为:y =x(x−1)2;1128.(3)依题意,得:x(x−1)2=190, 化简,得:x 2−x −380=0,解得:x 1=20,x 2=−19(不合题意,舍去).答:该班共有20名女生.(1)观察图形,可以找出第四和第五个图中的y 值;(2)根据y 值随x 值的变化,可找出y =x(x−1)2,再代入x =48可求出当x =48时对应的y值;(3)根据(2)的结论结合九年级1班全体女生相互之间共通话190次,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用以及图形的变化规律,解题的关键是:(1)观察图形,数出当x =5和x =6时对应的y 值;(2)根据y 随x 的变化,找出变化规律y =x(x−1)2;(3)找准等量关系,正确列出一元二次方程. 26.【答案】(1)证明:连结OF ,BE ,如图:∵AB 是⊙O 的直径,∴∠AEB =90°,∵∠C =90°,∴∠AEB =∠ACD ,∴BE//CD ,∵点F 是弧BE 的中点,∴OF ⊥BE ,∴OF ⊥CD ,∵OF 为半径,∴直线DF 是⊙O 的切线;(2)解:∵∠C =∠OFD =90°,∴AC//OF ,∴△OFD∽△ACD ,∴OFAC =ODAD ,∵BD =2,OF =OB =4,∴OD =6,AD =10,∴AC =OF×ADOD =4×106=203,∴CD =√AD 2−AC 2=√102−(203)2=10√53,∵AC//OF ,OA =4,∴CF OA =CD AD ,即CF 4=10√5310,解得:CF =4√53, ∴tan∠AFC =AC CF =2034√53=√5.【解析】(1)连结OF ,BE ,得到BE//CD ,根据平行线的性质得到CD ⊥OF ,即可得出结论;(2)由相似三角形的性质求出AC 长,再由勾股定理可求得DC 长,则能求出CF 长,即可得出结果.本题考查的是切线的判定、圆周角定理、平行线的性质、相似三角形的判定与性质、勾股定理以及三角函数定义等知识;掌握切线的判定定理和圆周角定理是解题的关键. 27.【答案】y =−15x 2+85x +4 (4,365)【解析】解:(1)∵抛物线y =ax 2+bx +4(a ≠0)与x 轴交于点C(−2,0),且经过点B(8,4),∴{0=4a −2b +44=64a +8b +4, 解得:{a =−15b =85, ∴抛物线解析式为:y =−15x 2+85x +4,∵:y =−15x 2+85x +4=−15(x −4)2+365, ∴顶点坐标为(4,365)故答案为:y =−15x 2+85x +4,(4,365);(2)点N 在直线AC 上,理由如下:∵抛物线y =−15x 2+85x +4与y 轴交于点A ,∴点A(0,4),即OA =4,∵点B(8,4),∴AB//x 轴,AB =8,∴AB ⊥AO ,∴∠OAB =90°,∴∠OAM +∠BAM =90°,∵AM ⊥OB ,∴∠BAM +∠B =90°,∴∠B =∠OAM ,∴tan∠B =tan∠OAM =OA AB =48=12,∵将Rt △OMA 沿y 轴翻折,∴∠NAO =∠OAM ,∴tan∠NAO =tan∠OAM =12,∵OC =2,OA =4,∴tan∠CAO =OC OA =12,第15页,共21页 ∴tan∠CAO =tan∠NAO ,∴∠CAO =∠NAO ,∴AN ,AC 共线,∴点N 在直线AC 上;(3)∵点B(8,4),点O(0,0),∴直线OB 解析式为y =12x ,∵Rt △OMA 沿着OB 平移后,得到Rt △DEF ,∴AF//OB ,∴直线AF 的解析式为:y =12x +4,联立方程组:{y =12x +4y =−15x 2+85x +4解得:{x 1=0y 1=4或{x 2=112y 2=274∴点F(112,274),∵Rt △OMA 沿着OB 平移后,得到Rt △DEF ,∴Rt △OMA≌Rt △DEF ,OA =DF ,OA//DF∴S △OMA =S △DEF ,四边形OAFD 是平行四边形,∵四边形AMEF 的面积=S 四边形AMDF +S △DEF =S 四边形AMDF +S △OAM =S 四边形OAFD , ∴四边形AMEF 的面积=S 四边形OAFD =4×112=22.(1)将点B ,点C 坐标代入解析式可求a ,b 的值,由配方法可求顶点坐标;(2)由余角的性质可得∠MAO =∠B ,利用三角函数可求tan∠MAO =tan∠NAO =tan∠CAO =12,可得∠CAO =∠NAO ,可得AC 与AN 共线,即可求解; (3)先求出OB 解析式,AF 解析式,联立方程组可求点F 坐标,由四边形AMEF 的面积=S 四边形AMDF +S △DEF =S 四边形AMDF +S △OAM =S 四边形OAFD ,可求解.本题是二次函数综合题,考查了待定系数法求解析式,锐角三角函数,直角三角形的性质,折叠的性质,平移的性质,平行四边形的性质等知识,求出点F 的坐标是本题的关键.。

2020年贵州省黔南州中考数学试卷含答案解析(word版)

2020年贵州省黔南州中考数学试卷含答案解析(word版)

2020年贵州省黔南州中考数学试卷一、选择题(共13小题,每小题4分,满分52分)1.一组数据:﹣5,﹣2,0,3,则该组数据中最大的数为()A.﹣5 B.﹣2 C.0 D.32.下面四个图形中,∠1=∠2一定成立的是()A.B.C.D.3.如图是一个三棱柱笔筒,则该物体的主视图是()A. B.C.D.4.一组数据:1,﹣1,3,x,4,它有唯一的众数是3,则这组数据的中位数为()A.﹣1 B.1 C.3 D.45.下列运算正确的是()A.a3•a=a3B.(﹣2a2)3=﹣6a5C.a5+a5=a10D.8a5b2÷2a3b=4a2b6.下列说法中正确的是()A.化简后的结果是B.9的平方根为3C.是最简二次根式D.﹣27没有立方根7.函数y=的自变量x的取值范围在数轴上表示正确的是()A.B.C.D.8.王杰同学在解决问题“已知A、B两点的坐标为A(3,﹣2)、B(6,﹣5)求直线AB关于x轴的对称直线A′B′的解析式”时,解法如下:先是建立平面直角坐标系(如图),标出A、B两点,并利用轴对称性质求出A′、B′的坐标分别为A′(3,2),B′(6,5);然后设直线A′B′的解析式为y=kx+b(k≠0),并将A′(3,2)、B′(6,5)代入y=kx+b中,得方程组,解得,最后求得直线A′B′的解析式为y=x﹣1.则在解题过程中他运用到的数学思想是()A.分类讨论与转化思想B.分类讨论与方程思想C.数形结合与整体思想D.数形结合与方程思想9.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12 B.﹣27 C.﹣32 D.﹣3610.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为5cm,则圆心O到弦CD的距离为()A.cm B.3cm C.3cm D.6cm11.y=x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为()A.没有实数根B.有一个实数根C.有两个不相等的实数根 D.有两个相等的实数根12.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.13.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①b<0,c>0;②a+b+c <0;③方程的两根之和大于0;④a﹣b+c<0,其中正确的个数是()A.4个B.3个C.2个D.1个二、填空题(共6小题,每小题4分,满分24分)14.若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于.15.计算: +60﹣()﹣1+|﹣2|﹣cos30°=.16.如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线ED交AB于点E,交BC 于点D,若CD=3,则BD的长为.17.如图,矩形ABCD的对角线AC的中点为O,过点O作OE⊥BC于点E,连接OD,已知AB=6,BC=8,则四边形OECD的周长为.18.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(﹣a,b);②○(a,b)=(﹣a,﹣b);③Ω(a,b)=(a,﹣b),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于.19.为解决都匀市停车难的问题,计划在一段长为56米的路段规划处如图所示的停车位,已知每个车位是长为5米,宽为2米的矩形,且矩形的宽与路的边缘成45°角,则该路段最多可以划出个这样的停车位.(取=1.4,结果保留整数)三、解答题(本大题共8小题,满分74分)20.如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上):①把△ABC沿BA方向平移,请在网格中画出当点A移动到点A1时的△A1B1C1;②把△A1B1C1绕点A1按逆时针方向旋转90°后得到△A2B2C2,如果网格中小正方形的边长为1,求点B1旋转到B2的路径长.21.解方程:.22.“2020国际大数据产业博览会”于5月25日至5月29日在贵阳举行.参展内容为:A﹣经济和社会发展;B﹣产业与应用;C﹣技术与趋势;D﹣安全和隐私保护;E﹣电子商务,共五大板块,为了解观众对五大板块的“关注情况”,某机构进行了随机问卷调查,并将调查结果绘制成如下两幅统计图(均不完整),请根据统计图中提供的信息,解答下列问题:(1)本次随机调查了多少名观众?(2)请补全统计图,并求出扇形统计图中“D﹣安全和隐私保护”所对应的扇形圆心角的度数.(3)据相关报道,本次博览会共吸引力90000名观众前来参观,请估计关注“E﹣电子商务”的人数是多少?23.为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或;列表的方法进行说明.24.已知二次函数y=x2+bx+c的图象与y轴交于点C(0,﹣6),与x轴的一个交点坐标是A(﹣2,0).(1)求二次函数的解析式,并写出顶点D的坐标;(2)将二次函数的图象沿x轴向左平移个单位长度,当y<0时,求x的取值范围.25.如图,AB是⊙O的直径,点D是上一点,且∠BDE=∠CBE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:DE2=DF•DB;(3)在(2)的条件下,延长ED、BA交于点P,若PA=AO,DE=2,求PD的长.26.都匀某校准备组织学生及家长代表到桂林进行社会实践活动,为便于管理,所有人员必须乘坐同一列高铁,高铁单程票价格如表所示,二等座学生票可打7.5折,已知所有人员都买一等座单程火车票需6175元,都买二等座单程火车票需3150元;如果家长代表与教师的人数之比为2:1.运行区间票价起点站终点站一等座二等座都匀桂林95(元)60(元)(1)参加社会实践活动的老师、家长代表与学生各有多少人?(2)由于各种原因,二等座单程火车票只能买x张(x<参加社会实践的总人数),其余的须买一等座单程火车票,在保证所有人员都有座位的前提下,请你设计最经济的购票方案,并写出购买单程火车票的总费用y与x之间的函数关系式.(3)在(2)的方案下,请求出当x=30时,购买单程火车票的总费用.27.如图,在四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A 不重合),连接CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M作MN∥AO,交BO于点N,连结ND、BM,设OP=t.(1)求点M的坐标(用含t的代数式表示);(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由.(3)当t为何值时,四边形BNDM的面积最小;(4)在x轴正半轴上存在点Q,使得△QMN是等腰三角形,请直接写出不少于4个符合条件的点Q的坐标(用含t的式子表示).2020年贵州省黔南州中考数学试卷参考答案与试题解析一、选择题(共13小题,每小题4分,满分52分)1.一组数据:﹣5,﹣2,0,3,则该组数据中最大的数为()A.﹣5 B.﹣2 C.0 D.3【考点】有理数大小比较.【分析】根据正数大于0、大于负数、两个负数绝对值大的小,进行比例大小即可求得答案.【解答】解:∵正数>0>负数,∴3>0>﹣2>﹣5,∴最大的数为3,故选D.2.下面四个图形中,∠1=∠2一定成立的是()A.B.C.D.【考点】对顶角、邻补角;平行线的性质;三角形的外角性质.【分析】根据对顶角、邻补角、平行线的性质及三角形的外角性质,可判断;【解答】解:A、∠1、∠2是邻补角,∠1+∠2=180°;故本选项错误;B、∠1、∠2是对顶角,根据其定义;故本选项正确;C、根据平行线的性质:同位角相等,同旁内角互补,内错角相等;故本选项错误;D、根据三角形的外角一定大于与它不相邻的内角;故本选项错误.故选B.3.如图是一个三棱柱笔筒,则该物体的主视图是()A. B.C.D.【考点】简单几何体的三视图.【分析】从正面看三棱柱笔筒,得出主视图即可.【解答】解:如图是一个三棱柱笔筒,则该物体的主视图是,故选C4.一组数据:1,﹣1,3,x,4,它有唯一的众数是3,则这组数据的中位数为()A.﹣1 B.1 C.3 D.4【考点】众数;中位数.【分析】先根据数据:1,﹣1,3,x,4有唯一的众数是3,求得x的值,再计算中位数的大小.【解答】解:∵数据:1,﹣1,3,x,4有唯一的众数是3,∴x=3,∴这组数据按大小排序后为:﹣1,1,3,3,4,∴这组数据的中位数为3.故选(C)5.下列运算正确的是()A.a3•a=a3B.(﹣2a2)3=﹣6a5C.a5+a5=a10D.8a5b2÷2a3b=4a2b【考点】整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法、积的乘方、合并同类项以及多项式的除法法则判断即可.【解答】解:a3•a=a4,A错误;(﹣2a2)3=﹣6a6,B错误;a5+a5=2a5,C错误;8a5b2÷2a3b=4a2b,D正确,故选:D.6.下列说法中正确的是()A.化简后的结果是B.9的平方根为3C.是最简二次根式D.﹣27没有立方根【考点】最简二次根式;平方根;立方根;分母有理化.【分析】根据平方根、立方根的定义、最简二次根式的定义、二次根式的化简法则一一判断即可.【解答】解:A、=,故正确.B、9的平方根为±3,故错误.C、=2,不是最简二次根式,故错误.D、﹣27的立方根为﹣3,故错误.故选A.7.函数y=的自变量x的取值范围在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得,x﹣2>0,解得:x>2,故选:B.8.王杰同学在解决问题“已知A、B两点的坐标为A(3,﹣2)、B(6,﹣5)求直线AB关于x轴的对称直线A′B′的解析式”时,解法如下:先是建立平面直角坐标系(如图),标出A、B两点,并利用轴对称性质求出A′、B′的坐标分别为A′(3,2),B′(6,5);然后设直线A′B′的解析式为y=kx+b(k≠0),并将A′(3,2)、B′(6,5)代入y=kx+b中,得方程组,解得,最后求得直线A′B′的解析式为y=x﹣1.则在解题过程中他运用到的数学思想是()A.分类讨论与转化思想B.分类讨论与方程思想C.数形结合与整体思想D.数形结合与方程思想【考点】一次函数与二元一次方程(组);一次函数图象与几何变换;待定系数法求一次函数解析式.【分析】根据轴对称的性质属于形,点的坐标属于数,可知运用了数形结合的数学思想;根据解方程组,求得未知数的值,可知运用了方程思想.【解答】解:第一步:建立平面直角坐标系,标出A、B两点,并利用轴对称性质求出A′、B′的坐标分别为A′(3,2),B′(6,5),这是依据轴对称的性质求得点的坐标(有序实数对),运用了数形结合的数学思想;第二步:设直线A′B′的解析式为y=kx+b(k≠0),并将A′(3,2)、B′(6,5)代入y=kx+b 中,得方程组,解得,最后求得直线A′B′的解析式为y=x﹣1,这里根据一次函数图象上点的坐标特征,列出方程求得待定系数,运用了方程思想;所以王杰同学在解题过程中,运用到的数学思想是数形结合与方程思想.故选(D)9.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12 B.﹣27 C.﹣32 D.﹣36【考点】菱形的性质;反比例函数图象上点的坐标特征.【分析】根据点C的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k的值即可.【解答】解:∵A(﹣3,4),∴OC==5,∴CB=OC=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B的坐标代入y=得,4=,解得:k=﹣32.故选C.10.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为5cm,则圆心O到弦CD的距离为()A.cm B.3cm C.3cm D.6cm【考点】垂径定理.【分析】根据垂径定理知圆心O到弦CD的距离为OE;由圆周角定理知∠COB=2∠CDB=60°,已知半径OC的长,即可在Rt△OCE中求OE的长度.【解答】解:连接CB.∵AB是⊙O的直径,弦CD⊥AB于点E,∴圆心O到弦CD的距离为OE;∵∠COB=2∠CDB(同弧所对的圆周角是所对的圆心角的一半),∠CDB=30°,∴∠COB=60°;在Rt△OCE中,OC=5cm,OE=OC•cos∠COB,∴OE=cm.故选A.11.y=x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为()A.没有实数根B.有一个实数根C.有两个不相等的实数根 D.有两个相等的实数根【考点】根的判别式;一次函数的定义.【分析】由一次函数的定义可求得k的取值范围,再根据一元二次方程的判别式可求得答案.【解答】解:∵y=x+1是关于x的一次函数,∴≠0,∴k﹣1>0,解得k>1,又一元二次方程kx2+2x+1=0的判别式△=4﹣4k,∴△<0,∴一元二次方程kx2+2x+1=0无实数根,故选A.12.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题目提供的条件可以求出函数的解析式,根据解析式判断函数的图象的形状.【解答】解:①x≤1时,两个三角形重叠面积为小三角形的面积,∴y=×1×=,②当1<x≤2时,重叠三角形的边长为2﹣x,高为,y=(2﹣x)×=x2﹣x+,③当x=2时,两个三角形没有重叠的部分,即重叠面积为0,故选:B.13.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①b<0,c>0;②a+b+c <0;③方程的两根之和大于0;④a﹣b+c<0,其中正确的个数是()A.4个B.3个C.2个D.1个【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线对称轴x>0,且抛物线与y轴交于正半轴,∴b>0,c>0,故①错误;由图象知,当x=1时,y<0,即a+b+c<0,故②正确,令方程ax2+bx+c=0的两根为x1、x2,由对称轴x>0,可知>0,即x1+x2>0,故③正确;由可知抛物线与x轴的左侧交点的横坐标的取值范围为:﹣1<x<0,∴当x=﹣1时,y=a﹣b+c<0,故④正确.故选:B.二、填空题(共6小题,每小题4分,满分24分)14.若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于﹣2.【考点】因式分解-提公因式法.【分析】首先提取公因式ab,进而将已知代入求出即可.【解答】解:∵ab=2,a﹣b=﹣1,∴a2b﹣ab2=ab(a﹣b)=2×(﹣1)=﹣2.故答案为:﹣2.15.计算: +60﹣()﹣1+|﹣2|﹣cos30°=5+.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用二次根式性质,零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=2+6﹣3+2﹣=5+.故答案为:5+16.如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线ED交AB于点E,交BC 于点D,若CD=3,则BD的长为6.【考点】含30度角的直角三角形;线段垂直平分线的性质.【分析】根据线段垂直平分线上的点到线段两端距离相等可得AD=BD,可得∠DAE=30°,易得∠ADC=60°,∠CAD=30°,则AD为∠BAC的角平分线,由角平分线的性质得DE=CD=3,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2DE,得结果.【解答】解:∵DE是AB的垂直平分线,∴AD=BD,∴∠DAE=∠B=30°,∴∠ADC=60°,∴∠CAD=30°,∴AD为∠BAC的角平分线,∵∠C=90°,DE⊥AB,∴DE=CD=3,∵∠B=30°,∴BD=2DE=6,故答案为:6.17.如图,矩形ABCD的对角线AC的中点为O,过点O作OE⊥BC于点E,连接OD,已知AB=6,BC=8,则四边形OECD的周长为18.【考点】矩形的性质;勾股定理;平行线分线段成比例.【分析】先根据勾股定理求得AC长,再根据平行线分线段成比例定理,求得OE、CE的长,最后计算四边形OECD的周长.【解答】解:∵AB=6,BC=8,∴AC==10,∵矩形ABCD的对角线AC的中点为O,∴OD=AC=5,又∵OE⊥BC,∴OE∥AB,∴CE=BC=4,OE=AB=3,∵CD=AB=6,∴四边形OECD的周长为5+3+4+6=18.故答案为:1818.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(﹣a,b);②○(a,b)=(﹣a,﹣b);③Ω(a,b)=(a,﹣b),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于(﹣3,4).【考点】点的坐标.【分析】根据三种变换规律的特点解答即可.【解答】解:○(Ω(3,4))=○(3,﹣4)=(﹣3,4).故答案为:(﹣3,4).19.为解决都匀市停车难的问题,计划在一段长为56米的路段规划处如图所示的停车位,已知每个车位是长为5米,宽为2米的矩形,且矩形的宽与路的边缘成45°角,则该路段最多可以划出19个这样的停车位.(取=1.4,结果保留整数)【考点】解直角三角形的应用;矩形的性质.【分析】如图,根据三角函数可求BC,CE,设至多可划x个车位,依题意可列不等式2×x+(5﹣2)×≤56,解不等式即可求解.【解答】解:如图,CE=2÷sin45°=2×,BC=(5﹣2)×sin45°=(5﹣2)×=,设至多可划x个车位,依题意可列不等式2×x+≤56,将=1.4代入不等式,化简整理得,28x≤539,解得x≤19,因为是正整数,所以x=19,所以这个路段最多可以划出19个这样的停车位.故答案为:19.三、解答题(本大题共8小题,满分74分)20.如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上):①把△ABC沿BA方向平移,请在网格中画出当点A移动到点A1时的△A1B1C1;②把△A1B1C1绕点A1按逆时针方向旋转90°后得到△A2B2C2,如果网格中小正方形的边长为1,求点B1旋转到B2的路径长.【考点】作图-旋转变换;作图-平移变换.【分析】①根据△ABC沿BA方向平移,在网格中画出当点A移动到点A1时的△A1B1C1即可;②画出△A1B1C1绕点A1按逆时针方向旋转90°后得到△A2B2C2,求出点B1旋转到B2的路径长即可.【解答】解:①如图所示,△A1B1C1为所求三角形;②画出图形,如图所示,∵A1B1==,∴点B1旋转到B2的路径长l==.21.解方程:.【考点】解分式方程;解一元二次方程-因式分解法.【分析】观察可得最简公分母是(x﹣2)(x+2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程两边乘(x﹣2)(x+2),得x(x+2)﹣8=x﹣2,x2+x﹣6=0,(x+3)(x﹣2)=0,解得x1=﹣3,x2=2.经检验:x1=﹣3是原方程的根,x2=2是增根.∴原方程的根是x=﹣3.22.“2020国际大数据产业博览会”于5月25日至5月29日在贵阳举行.参展内容为:A﹣经济和社会发展;B﹣产业与应用;C﹣技术与趋势;D﹣安全和隐私保护;E﹣电子商务,共五大板块,为了解观众对五大板块的“关注情况”,某机构进行了随机问卷调查,并将调查结果绘制成如下两幅统计图(均不完整),请根据统计图中提供的信息,解答下列问题:(1)本次随机调查了多少名观众?(2)请补全统计图,并求出扇形统计图中“D﹣安全和隐私保护”所对应的扇形圆心角的度数.(3)据相关报道,本次博览会共吸引力90000名观众前来参观,请估计关注“E﹣电子商务”的人数是多少?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据A﹣经济和社会发展在扇形统计图所占的比例和条形图中的数据,得出结论;(2)根据扇形统计图和条形图统计图的对应数据补全统计图;(3)根据样本估计总体,得出结论.【解答】解:(1)随机调查的人数为80÷8%=1000(名);(2)补全图形如图所示,在扇形统计图中“D﹣安全和隐私保护”所对应的扇形圆心角的度数为×360°=72°.(3)∵×90000=28800,∴关注“E﹣电子商务”的人数是28800名.23.为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或;列表的方法进行说明.【考点】列表法与树状图法;概率公式.【分析】(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.【解答】解:(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=;(2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.24.已知二次函数y=x2+bx+c的图象与y轴交于点C(0,﹣6),与x轴的一个交点坐标是A(﹣2,0).(1)求二次函数的解析式,并写出顶点D的坐标;(2)将二次函数的图象沿x轴向左平移个单位长度,当y<0时,求x的取值范围.【考点】抛物线与x轴的交点;二次函数图象与几何变换.【分析】(1)将点A和点C的坐标代入抛物线的解析式可求得b、c的值,从而得到抛物线的解析式,然后依据配方法可求得抛物线的顶点坐标;(2)依据抛物线的解析式与平移的规划规律,写出平移后抛物线的解析式,然后求得抛物线与x轴的交点坐标,最后依据y<0可求得x的取值范围.【解答】解:(1)∵把C(0,﹣6)代入抛物线的解析式得:C=﹣6,把A(﹣2,0)代入y=x2+bx﹣6得:b=﹣1,∴抛物线的解析式为y=x2﹣x﹣6.∴y=(x﹣)2﹣.∴抛物线的顶点坐标D(,﹣).(2)二次函数的图形沿x轴向左平移个单位长度得:y=(x+2)2﹣.令y=0得:(x+2)2﹣=0,解得:x1=,x2=﹣.∵a>0,∴当y<0时,x的取值范围是﹣<x<.25.如图,AB是⊙O的直径,点D是上一点,且∠BDE=∠CBE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:DE2=DF•DB;(3)在(2)的条件下,延长ED、BA交于点P,若PA=AO,DE=2,求PD的长.【考点】圆的综合题.【分析】(1)利用圆周角定理得到∠AEB=90°,∠EAB=∠BDE,而∠BDE=∠CBE,则∠CBE+∠ABE=90°,则根据切线的判定方法可判断BC是⊙O的切线;(2)证明△DFE∽△DEB,然后利用相似比可得到结论;’(3)连结DE,先证明OD∥BE,则可判断△POD∽△PBE,然后利用相似比可得到关于PD的方程,再解方程求出PD即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠AEB=90°,∴∠EAB+∠ABE=90°,∵∠EAB=∠BDE,∠BDE=∠CBE,∴∠CBE+∠ABE=90°,即∠ABC=90°,∴AB⊥BC,∴BC是⊙O的切线;(2)证明:∵BD平分∠ABE,∴∠1=∠2,而∠2=∠AED,∴∠AED=∠1,∵∠FDE=∠EDB,∴△DFE∽△DEB,∴DE:DF=DB:DE,∴DE2=DF•DB;(3)连结DE,如图,∵OD=OB,∴∠2=∠ODB,而∠1=∠2,∴∠ODB=∠1,∴OD∥BE,∴△POD∽△PBE,∴=,∵PA=AO,∴PA=AO=BO,∴=,即=,∴PD=4.26.都匀某校准备组织学生及家长代表到桂林进行社会实践活动,为便于管理,所有人员必须乘坐同一列高铁,高铁单程票价格如表所示,二等座学生票可打7.5折,已知所有人员都买一等座单程火车票需6175元,都买二等座单程火车票需3150元;如果家长代表与教师的人数之比为2:1.运行区间票价起点站终点站一等座二等座都匀桂林95(元)60(元)(1)参加社会实践活动的老师、家长代表与学生各有多少人?(2)由于各种原因,二等座单程火车票只能买x张(x<参加社会实践的总人数),其余的须买一等座单程火车票,在保证所有人员都有座位的前提下,请你设计最经济的购票方案,并写出购买单程火车票的总费用y与x之间的函数关系式.(3)在(2)的方案下,请求出当x=30时,购买单程火车票的总费用.【考点】一次函数的应用.【分析】(1)设参加社会实践的老师有m人,学生有n人,则学生家长有2m人,若都买二等座单程火车票且花钱最少,则全体学生都需买二等座学生票,根据题意得到方程组,求出方程组的解即可;(2)有两种情况:①当50≤x<65时,学生都买学生票共50张,(x﹣50)名成年人买二等座火车票,(65﹣x)名成年人买一等座火车票,得到解析式:y=60×0.75×50+60(x﹣50)+95(65﹣x);②当0<x<50时,一部分学生买学生票共x张,其余的学生与家长老师一起购买一等座火车票共(65﹣x)张,得到解析式是y=﹣50x+6175;(3)由(2)小题知:当x=30时,y=﹣50x+6175,代入求解即可求得答案.【解答】解:(1)设参加社会实践的老师有m人,学生有n人,则学生家长有2m人,根据题意得:,解得:,则2m=10.答:参加社会实践的老师、家长与学生各有5、10与50人.(2)由(1)知所有参与人员总共有65人,其中学生有50人,①当50≤x<65时,最经济的购票方案为:学生都买学生票共50张,(x﹣50)名成年人买二等座火车票,(65﹣x)名成年人买一等座火车票.∴火车票的总费用(单程)y与x之间的函数关系式为:y=60×0.75×50+60(x﹣50)+95(65﹣x),即y=﹣35x+5425(50≤x<65);②当0<x<50时,最经济的购票方案为:一部分学生买学生票共x张,其余的学生与家长老师一起购买一等座火车票共(65﹣x)张.∴火车票的总费用(单程)y与x之间的函数关系式为:y=60×0.75x+95(65﹣x),即y=﹣50x+6175(0<x<50)∴购买单程火车票的总费用y与x之间的函数关系式为:y=.(3)∵x=30<50,∴y=﹣50x+6175=﹣50×30+6185=4675,答:当x=30时,购买单程火车票的总费用为4675元.27.如图,在四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A 不重合),连接CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M作MN∥AO,交BO于点N,连结ND、BM,设OP=t.(1)求点M的坐标(用含t的代数式表示);(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由.(3)当t为何值时,四边形BNDM的面积最小;(4)在x轴正半轴上存在点Q,使得△QMN是等腰三角形,请直接写出不少于4个符合条件的点Q的坐标(用含t的式子表示).【考点】四边形综合题.【分析】(1)作ME⊥OA于点E,要求点M的坐标只要证明△OPC≌△EM即可,根据题目中的条件可证明两个三角形全等,从而可以得到点M的坐标;(2)首先判断是否变化,然后针对判断结合题目中的条件说明理由即可解答本题;(3)要求t为何值时,四边形BNDM的面积最小,只要用含t的代数式表示出四边形的面积,然后化为顶点式即可解答本题;(4)首先写出符合要求的点Q的坐标,然后根据写出的点的坐标写出推导过程即可解答本题.【解答】解:(1)如图1所示,作ME⊥OA于点E,∴∠MEP=∠POC=90°,∵PM⊥CP,∴∠CPM=90°,∴∠OPC+∠MPE=90°,又∵∠OPC+∠PCO=90°,∴∠MPE=∠PCO,∵PM=CP,∴△MPE≌△PCO(AAS),∴PE=CO=4,ME=PO=t,∴OE=4+t,∴点M的坐标为(4+t,t);(2)线段MN长度不变,理由:∵OA=AB=4,∴点B(4,4),∴直线OB的解析式为:y=x,∵点N在直线OB上,∴点N(t,t),∵MN∥OA,M(4+t,t),∴MN=|(4+t)﹣t|=4,即MN的长度不变;(3)由(1)知,∠MPE=∠PCO,又∵∠DAP=∠POC=90°,∴△DAP∽△POC,∴,∵OP=t,OC=4,∴AP=4﹣t,∴,得AD=,∴BD=4﹣=,∵MN∥OA,AB⊥OA,∴MN⊥BD,∵==,∴当t=2时,四边形BNDM的面积最小,最小值6;(4)在x轴正半轴上存在点Q,使得△QMN是等腰三角形,此时点Q的坐标为:Q1(t+2,0),Q2(4+t﹣,0),Q3(4+t+,0)Q4(t+,0),理由:当(2)可知,OP=t(0<t<4),MN=PE=4,MN∥x轴,第一种情况:当MN为底边时,作MN的垂直平分线,与x轴的交点为Q1,如图2所示=2,∴OQ1=t+2,∴Q1(t+2,0)第二种情况:如图3所示,当MN为腰时,以M为圆心,MN的长为半径画弧交x轴于点Q2、Q3,连接MQ2、MQ3,则MQ2=MQ3=4,∴Q2E=,∴OQ2=OE﹣Q2E=4+t﹣,∴Q2(4+t﹣,0),∵OQ3=OE+Q3E=4+t+,∴Q3(4+t+,0);第三种情况,当MN为腰时,以N为圆心,MN长为半径画圆弧交x轴于点Q4,当0<t<2时,如图4所示,则PQ4==,∴OQ4=OP+PQ4=t+,即Q4(,0).。

2021年贵州省黔南州数学中考真题含答案解析

2021年贵州省黔南州数学中考真题含答案解析

2021年贵州省黔南州中考数学试卷一、单项选择题(共13小题,每小题4分,满分52分)1.(4分)(2015•黔南州)下列说法错误的是( ) A.﹣2的相反数是2 B.3的倒数是 C.(﹣3)﹣(﹣5)=2 D.﹣11,0,4这三个数中最小的数是02.(4分)(2015•黔南州)在“青春脉动•唱响黔南校园青年歌手大赛”总决赛中,7位评委对某位选手评分为(单位:分):9、8、9、7、8、9、7.这组数据的众数和平均数分别是( ) A.9、8B.9、7C.8、7D.8、83.(4分)(2015•黔南州)下列各数表示正确的是( ) A.57000000=57×106 B.0.0158(用四舍五入法精确到0.001)=0.015 C.1.804(用四舍五入法精确到十分位)=1.8 D.0.0000257=2.57×10﹣44.(4分)(2015•黔南州)下列运算正确( ) A.a•a5=a5B.a7÷a5=a3 C.(2a)3=6a3D.10ab3÷(﹣5ab)=﹣2b25.(4分)(2015•黔南州)如图所示,该几何体的左视图是( ) A.B.C.D.6.(4分)(2015•黔南州)如图,下列说法错误的是( ) A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥c C.若∠3=∠2,则b∥c D.若∠3+∠5=180°,则a∥c7.(4分)(2015•黔南州)下列说法正确的是( ) A.为了检测一批电池使用时间的长短,应该采用全面调查的方法 B.方差反映了一组数据的波动大小,方差越大,波动越大 C.打开电视正在播放新闻节目是必然事件 D.为了了解某县初中学生的身体情况,从八年级学生中随机抽取50名学生作为总体的一个样本8.(4分)(2015•黔南州)函数y=+的自变量x的取值范围是( ) A.x≤3B.x≠4C.x≥3且x≠4D.x≤3或x≠49.(4分)(2015•黔南州)如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是( ) A.∠A=∠D B.=C.∠ACB=90°D.∠COB=3∠D10.(4分)(2015•黔南州)同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是( ) A.两正面都朝上 B.两背面都朝上 C.一个正面朝上,另一个背面朝上 D.三种情况发生的概率一样大11.(4分)(2015•黔南州)如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′。

2021年中考数学卷精析版——贵州黔南州卷

2021年中考数学卷精析版——贵州黔南州卷

初中毕业生学业暨升学统一考试试卷数学考生注意:1.考试时间120分钟,满分150分.2.用蓝、黑墨水的钢笔或圆珠笔在答题卡作答,所有试题在试卷上作答均无效.3.选择题在答题卡上用2B铅笔作答.一、单项选择题(每小题4分,共13题,满分52分)1.(2012贵州黔南州,1,4分)计算-(-5)等于()A.5 B.-5 C.15D.-15【答案】A2.(2012贵州黔南州,2,4分)下列多项式中,能用公式法分解因式的是()A.x2-xy B.x2+xy C.x2-y2D.x2+y2【答案】C3.(2012贵州黔南州,3,4分)把不等式x+2>4的解表示在数轴上,正确的是()A.B.C.D.【答案】B4.(2012贵州黔南州,4,4分)如图1,直线AB对应的函数表达式是()A.332y x=-+B.332y x=+C.233y x=-+D.233y x=+【答案】A5.(2012贵州黔南州,5,4分)下列运算正确的是()A.(a+b)2=a2+b2B.a4·a2=a6C.a6÷a3=a2D.2a+3b=5ab【答案】B6.(2012贵州黔南州,6,4分)如图2,已知直线AB∥CD,BE平分∠ABC,交CD于点D,∠CDE=150°,则∠C的度数为()A.150°B.130°C.120°D.100°【答案】C7. (2012贵州黔南州,7,4分)如图3,将正方体的平面展开图重新折成正方体后,“祝”字对面的字是( )A .中B .考C .成D .功【答案】C8. (2012贵州黔南州,8,4分)已知抛物线21y x x =--,与x 轴的一个交点为(m ,0),则代数式22011m m -+的值为( )A .2009B .2012C .2011D .2010【答案】B9. (2012贵州黔南州,9,4分)如图4,四边形ABCD 的对角线互相平分,要使它变为矩形,需要添加的条件是( )A .AB=CDB .AD=BC C .AB=BCD .AC=BD【答案】D10. (2012贵州黔南州,10,4分)已知两圆相外切,连心线的长度是10厘米,其中一圆的半径为6厘米,则另一圆的半径是( )A .16厘米B .10厘米C .6厘米D .4厘米【答案】D11. (2012贵州黔南州,11,4分)如图5,夏季的一天,身高为1.6m 小玲想测量一下屋前大树的高度,她沿着树影BA 由B 到A 走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m ,CA=0.8m ,于是就得出树的高度为( )A .8 mB .6.4 mC .4.8 mD .10 m图4 OA DB C【答案】A12.(2012贵州黔南州,12,4分)如图6,在⊙O中,∠ABC=50°,则∠CAO等于()A.30°B.40°C.50°D.60°【答案】B13.(2012贵州黔南州,13,4分)如图7,为做好“四帮四促”工作,黔南州某局机关积极倡导“挂帮一日捐”活动.切实帮助贫困村民,在一日捐活动中,全局50名职工积极响应,同时将所捐款情况统计并绘制成统计图.根据图7提供的信息捐款金额的众数和中位数分别是()A.20,20 B.30,20 C.30,30 D.20,30【答案】C二、填空题(每小题5分,共25分)14.(2012贵州黔南州,14,5分)若方式11xx-+的值为0,则x的值为___________.【答案】115.(2012贵州黔南州,15,5分)Iphone 4s手机风靡全球,苹果公司估计2012年的净利润超过2011年,并有望冲击400亿美元(1美元约合人民币6.3元),用科学记数法表示400亿美元约合人民币___________元.(保留2位有效数字)【答案】2.5×101116.(2012贵州黔南州,16,5分)都匀市某新修“商场大厦”的一处自动扶梯如图8,已知扶梯长l为10米,该自动扶梯到达的高度h为6米,自动扶梯与地面所成的角为θ,则tanθ的值为___________.【答案】3417. (2012贵州黔南州,17,5分)在扇形AOB 中,若∠AOB =45°,AD =4 cm ,弧CD =3πcm ,则图9中阴影部分的面积是___________.【答案】14πcm 218. (2012贵州黔南州,18,5分)如图10,四边形ABCD 是矩形,A 、B 两点在x 轴的正半轴上,C 、D 两点在抛物线26y x x =-+上,设OA =m (0<m <3),矩形ABCD 的周长为l 则l 与m 的函数解析式为___________.【答案】22812l m m =-++ 三、解答题(本大题共7个小题,满分73分)19. (2012贵州黔南州,19,10分)(本题满分10分、每小题5分)(1)101201043tan 603-⎛⎫-+-︒ ⎪⎝⎭; (2)先化简:224224x x x ⎛⎫-÷ ⎪+-⎝⎭,然后求当x =1时,这个代数式的值. 【答案】(1)原式=3-1+4332+33(2)解:原式=2244(2)(2)2x x x x x +-+-⋅+=24x x-. 当x =1时,原式=-2.20. (2012贵州黔南州,20,9分)(9分)“新华网北京5月9日电,近一个月以来,菲律宾的我国中沙黄岩岛海域不断制造事端:袭扰中国渔船,提出国际仲裁,给黄岩岛改名,欲去除岛上与中国有关的标志……”南海局势紧张,某校针对“黄岩岛事件”在学生中做了一次抽样调查,并把调查结果分为三种类型:A. 不知道“黄岩岛事件”;B. 知道“黄岩岛事件”,但不太清楚原因;C. 知道“黄岩岛事件”,并不清楚事发原因并表示关注.图11是根据调查结果绘制的部分统计图.请根据提供的信息回答问题:(1)已知A类学生占被调查学生人数的30%,则被调查学生有多少人?(2)计算B类学生的人数并根据计算结果补全统计图;(3)如果该校共有学生2000人,试估计该校有多少学生知道黄岩岛事件,并清楚事发原因并表示关注.【答案】(1)60÷30%=200(人);(2)200-60-30=110(人).统计图如上右图.(3)2000×30200=300(人).21.(2012贵州黔南州,21,10分)(10分)市“消费者协会”联合市工商局在某中学分别开展辨别和打击“地沟油”及“瘦肉精”的食品宣传讲座,小青同学不知该如何听课,最后他决定通过掷硬币来决定,掷硬币规则如下:连续抛掷硬币三次,如果三次正面朝上或三次反面朝上,则小青听两堂讲座;如果两次正面朝上一次反面朝上,则小青去听有关“地沟油”的讲座;如果两次反面朝上一次正面朝上,则小青去听有关于“瘦肉精”的讲座.(1)用树状图的方法表示三次抛掷硬币的所有结果;(2)小青听两堂知识讲座的概率有多大?(3)小青用这个游戏规则去选择听“地沟油”或者“瘦肉精”的讲座是否合理?为什么?【答案】(1)根据题意画树状图如图;(2)由树状图可知,共有8种可能的结果:正正正,正正反,正反正,正反反,反正正,反正反,反反正,反反反.其中三次正面朝上或三次反面朝上的共2种,所以,P(听两堂课)=28=14.(3)这个掷硬币规则公平..两次正面朝上一次反面朝上有3种:正正反,正反正,反正正;两次反面朝上一次正面朝上有3种:正反反,反正反,反反正.所以,P(地沟油)=P(瘦肉精)=38.22. (2012贵州黔南州,22,10分)(10分)2012年3月25日央视《每周质量播报》报道“毒胶囊”事件后,全国各大药店的销售部都受到不同程度的影响,4月初某种药品的价格大幅下调,下调后每盒价格是原价的23,原来用60元买到的药品下调后可多买2盒.4月中旬,各部门加大了对胶囊生产监管力度,因此,药品价格4月底开始回升,经过两个月后,药品价格上调为每盒14.4元.(1)问该药品的价格是多少,下调后的价格是多少?(2)问5、6月份药品价格的月平均增长率是多少?【答案】解:(1)设药品的价格为x 元/盒.根据题意,得6060223x x -=. 解得x =15.经检验,x =15是原方程的解.则下调后的价格是215103x ⨯=(元). 答:4月初药品价格是15元,下调后是10元.(2)5、6月份药品价格的月平均增长率为a .根据题意,得210(1)14.4a +=.解得a 1=0.2=20%,a 2=-2.2(舍去).答:5、6月份药品价格的月平均增长率为20%.23. (2012贵州黔南州,23,10分)(10分)已知:如图12,点C 在以AB 为直径的⊙O 上,点D 在AB 的延长线上,∠BCD =∠A .(1)求证:CD 为⊙O 的切线;(2)过点C 作CE ⊥AB 于E .若CE =2,cos D =45,求AD 的长.【答案】(1)证明:连接CO .∵AB 是⊙O 的直径,∴∠A +∠OBC =90°.∵AO =CO ,OB =OC ,∴∠1=∠A,∠OBC=∠OCB.∵∠5=∠A,∴∠5+∠OCB=90°,即∠OCD=90°.∴OC⊥CD.又∵OC是⊙O的半径,∴CD为⊙O的切线.(2)∵OC⊥CD于C,∴∠3+∠D=90°.∵CE⊥AB于E,∴∠3+∠2=90°.∴∠2=∠D.∴cos∠2=cos D.在△OCD中,∠OCD=90°,∴cos∠2=CE CO.∵cos D=45,CE=2,∴2CO=45.∴CO=52.∴⊙O的半径为52.设CD=4x,则OD=5x,OC=3x,3x=52,x=65.∴OD=256,AD=203.24.(2012贵州黔南州,24,12分)(12分)如图13-1,在边长为5的正方形ABCD中,点E、F分别是BC、CD边上的点,且AE⊥EF,BE=2.(1)求EC:CF的值;(2)延长EF交正方形∠BCD的外角平分线CP于点P(如图13-2),试判断AE与EP 的大小关系,并说明理由;(3)在图13-2的AB边上是否存在一点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.【答案】(1)∵AE⊥EF,∴∠2+∠3 =90°.∵四边形ABCD为正方形,∴∠B=∠C=90°.又∵∠1+∠3 =90°,∴∠1=∠2.∴△ABE∽△EFC.∴EC:CF=AB:BE=5:2.(2)给出两种解法:解法一:在AB取一点M,使AM=EC,连接ME.∴BM=BE.∴∠BME=45°,∴∠AME=135°.∵CP是外角平分线,∴∠DCP=45°,∴∠ECP=135°.∴∠AME=∠ECP.∴△AME≌△ECP(ASA).∴AE=EP.解法二:证明:过点P作PG⊥BC交BC的延长线于G.∵DC⊥BC,∴PG∥FC.∴△EPG∽△EFC.∴PGFC=EGEC.∵CP平分∠DCG,∴∠PCG=45°,∴CG=PG.∵CE=5-2=3,CECF=52,∴CF=65.∴65PG=33PG+.∴PG=2.在Rt△POE和Rt△POE中,EP,AE,∴AE=EP.(3)给出两种解法:解法一:在AB上存在一点M,使得四边形DMEP是平行四边形.证明:过点D作DM∥PE,交A于点M,连接ME、DP.∵AE⊥EP,∴AE⊥DM.∴∠4+∠5=90°.∵∠1+∠5=90°.∴∠1=∠4.∴∠DAM=∠ABE=90°,DA=AB.∴△DAM≌△ABE.∴DM=AE.∵AE=EP,∴DM=PE.∴四边形DMEP是平行四边形.解法一:在AB上存在一点M,使得四边形DMEP是平行四边形.证明:在AB边上取一点M,使AM=BE,连接ME、MD、DP.∵AD=BA,∠DAM=∠ABE=90°,∴Rt△DAM≌Rt△ABE.∴DM=AE,∠1 =∠4.∵AE=EP,∴DM=EP.∵∠1+∠5=90°.∴∠4+∠5=90°.∴AE ⊥DM .∵AE ⊥EP ,∴DM ∥EP .∴四边形DMEP 是平行四边形.25. (2012贵州黔南州,25,12分)(12分)如图,对称轴为x =3的抛物线22y ax x=+与x 轴相较于点B 、O .(1)求抛物线的解析式,并求出顶点A 的坐标;(2)连接A 、B ,把AB 所在的直线平移,使它经过原点O ,得到直线l .点P 是l 上一动点.设以点A 、B 、O 、P 为顶点的四边形面积为S ,点P 的横坐标为t ,当0<S ≤18时,求t 的取值范围;(3)在(2)的条件下,当t 取最大值时,抛物线上是否存在点Q ,使△OPQ 为直角三角形且OP 为直角边.若存在,直接写出点Q 的坐标;若不存在,说明理由.(平面几何有个结论:如果两直线垂直,那么它们的斜率的乘积为-1,坐标轴所在直线除外)【答案】(1)∵点B 与O (0,0)关于x =3对称,∴点B 坐标为(6,0).将点B 坐标代入22y ax x =+得:36120a +=,∴13a =-. ∴抛物线的解析式为2123y x x =-+. 当x =3时,2132333y =-⨯+⨯=,∴顶点A 的坐标为(3,3).(2)设直线AB 的解析式为y kx b =+.∵A (3,3),B (6,0),∴603 3.k b k b +=⎧⎨+=⎩, 解得16.k b =-⎧⎨=⎩, ∴6y x =-+. ∵直线l ∥AB 且过点O ,∴直线l 解析式为y =-x .∵点P 是l 上一动点且横坐标为t ,∴点P 坐标为(t ,-t ).当P 在第四象限时(t >0),S =AOB S ∆+OBP S ∆ =1163622t ⨯⨯+⨯⨯- =93t +. ∵0<S ≤18,∴0<9+3t ≤18.∴-3<t ≤3.又∵t >0,∴0<t ≤3.当P 在第二象限时(t <0),S =ANMP S 梯形+ANB S ∆-PMO S ∆ =111[3()](3)33()()222t t t t +--+⨯⨯--- =22191(3)222t t -+- =39t -+. ∵0<S ≤18,∴0<-3t +9≤18.∴-3≤t <3.又∵t <0,∴-3≤t <0.∴t 的取值范围是-3≤t <0或0<t ≤3.(3)存在,点Q 的坐标为(3,3)或(6,0)或(-3,-9). (说明:点Q 坐标答对一个给1分)全部完成录入整理——云南省保山市第七中学郑维连。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贵州省黔南州2014年中考数学真题试题(解析版)本试卷分第Ⅰ卷和第Ⅱ卷,满分120分,考试时间120分钟。

第Ⅰ卷(选择题,共52分)一、单项选择题(每小题4分,共13小题,满分52分) 1.在﹣2,﹣3,0.1四个数中,最小的实数是( ) A . ﹣3 B . ﹣2 C . 0 D .12.计算(﹣1)2+20﹣|﹣3|的值等于( ) A . ﹣1 B . 0 C . 1 D .53.二元一次方程组31x y x y +=⎧⎨-=-⎩的解是( )A . 21x y =⎧⎨=⎩B .12x y =⎧⎨=⎩C .12x y =⎧⎨=-⎩D .21x y =⎧⎨=-⎩ 【答案】B . 【解析】试题分析:方程组利用加减消元法求出解即可.31x y x y +=⎧⎨-=-⎩①②,①+②得:2x=2,即x=1,①﹣②得:2y=4,即y=2,则方程组的解为12 xy=⎧⎨=⎩.故选B.考点:解二元一次方程组.4.下列事件是必然事件的是()A.抛掷一枚硬币四次,有两次正面朝上B.打开电视频道,正在播放《十二在线》C.射击运动员射击一次,命中十环D.方程x2﹣2x﹣1=0必有实数根考点:随机事件.5.下列计算错误的是()A.a•a2=a3B.a2b﹣ab2=ab(a﹣b)C. 2m+3n=5mn D.(x2)3=x6故选C.考点:1.幂的乘方与积的乘方2.合并同类项3.同底数幂的乘法4.因式分解﹣提公因式法.6.下列图形中,∠2大于∠1的是()考点:1.平行四边形的性质2.对顶角3.平行线的性质4.三角形的外角性质.7.正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是()8.形状相同、大小相等的两个小木块放置于桌面,其俯视图如下图所示,则其主视图是()考点:简单组合体的三视图.9.下列说法中,正确的是()x 有意义B.方程x2+x﹣2=0的根是x1=﹣1,x2=2 A.当x<1时,1C.的化简结果是D.a,b,c均为实数,若a>b,b>c,则a>c2考点:1.二次根式有意义的条件2.分母有理化3.解一元二次方程﹣因式分解法.10.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.253520x x=-B.253520x x=-C.2535+20x x=D.2535+20x x=考点:分式方程.11.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于()A.3B. 2cm C. 3cm D. 4cm考点:直角三角形.12.如图,圆锥的侧面积为15π,底面积半径为3,则该圆锥的高AO为()A. 3 B. 4 C. 5 D. 15考点:圆锥的计算.13.如图,把矩形纸片ABCD沿对角线BD折叠,设重叠部分为△EBD,则下列说法错误的是()A.AB=CD B.∠BAE=∠DCE C.EB=ED D.∠ABE一定等于30°故选D.考点:翻折变换(折叠问题).第Ⅱ卷(非选择题,共68分)二、填空题(共6小题,每小题5分,满分30分)14.在全国初中数学竞赛中,都匀市有40名同学进入复赛,把他们的成绩分为六组,第一组一第四组的人数分别为10,5,7,6,第五组的频率是0.2,则第六组的频率是考点:频数与频率.15.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC .若AD =4,DB =2,则DEBC的值为 .考点:相似三角形的判定与性质.16.如图,正比例函数y 1=k 1x 与反比例函数y 2=2k x的图象交于A 、B 两点,根据图象可直接写出当y 1>y 2时,x 的取值范围是 .17.实数a ()21a -+a = .18.已知2332 12C⨯=⨯=3,35543123C⨯⨯=⨯⨯=10,4665431234C⨯⨯⨯=⨯⨯⨯=15,…观察以上计算过程,寻找规律计算58C= .故答案是56.考点:数字的变化规律.19.如图,直径为10的⊙A经过点C(0,6)和点O(0,0),与x轴的正半轴交于点D,B是y轴右侧圆弧上一点,则cos∠OBC的值为.【答案】4 5【解析】∵∠COD =90°, ∴CD 是直径, 即CD =10, ∵点C (0,6), ∴OC =6,∴OD =22106-=8, ∴cos ∠ODC =45OD CD =, ∵∠OBC =∠ODC , ∴cos ∠OBC = 45. 故答案是45. 考点:1.勾股定理2.圆周角定理3.锐角三角函数的定义. 三、解答题(共7小题,满分68分)20.(1)解不等式组1023632x x x -<⎧⎪⎨>-⎪⎩,并把它的解集在数轴上表示出来.(2)先阅读以下材料,然后解答问题,分解因式.mx +nx +my +ny =(mx +nx )+(my +ny )=x (m +n )+y (m +n )=(m +n )(x +y );也可以mx +nx +my +ny =(mx +my )+(nx +ny )=m (x +y )+n (x +y )=(m +n )(x +y ).以上分解因式的方法称为分组分解法,请用分组分解法分解因式:a 3﹣b 3+a 2b ﹣ab 2.解①得:x>1,解②得:x<3,,不等式组的解集是:1<x<3;(2)a3﹣b3+a2b﹣ab2=a3+a2b﹣(b3+ab2)=a2(a+b)﹣b2(a+b)=(a+b)(a2﹣b2)=(a+b)2(a﹣b).考点:1.解一元一次不等式组2.因式分解﹣分组分解法3.在数轴上表示不等式的解集.21.如下是九年级某班学生适应性考试文综成绩(依次A、B、C、D等级划分,且A等为成绩最好)的条形统计图和扇形统计图,请根据图中的信息回答下列问题:(1)补全条形统计图;(2)求C等所对应的扇形统计图的圆心角的度数;(3)求该班学生共有多少人?(4)如果文综成绩是B等及B等以上的学生才能报考示范性高中,请你用该班学生的情况估计该校九年级400名学生中,有多少名学生有资格报考示范性高中?(2)C等所对应的扇形统计图的圆心角的度数是:360°×(1﹣25%﹣40%﹣5%)=108°;(3)该班学生共有60人;(4)400×(25%+40%)=260(人).考点:1.条形统计图2.用样本估计总体3.扇形统计图.22.如图的方格地面上,标有编号A、B、C的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.(1)一只自由飞行的鸟,将随意地落在图中的方格地面上,问小鸟落在草坪上的概率是多少?(2)现从3个小方格空地中任意选取2个种植草坪,则刚好选取A和B的2个小方格空地种植草坪的概率是多少(用树形图或列表法求解)?【答案】(1)P(小鸟落在草坪上)=23;(2)P(编号为A、B的2个小方格空地种植草坪)=13.【解析】试题分析:(1)直接利用概率公式计算即可;(2)列表或树状图后利用概率公式求解即可.试题解析:(1)P(小鸟落在草坪上)=62 =93;(2)用树状图或列表格列出所有问题的可能的结果:A B CA(A,B)(A,C)B(B,A)(B,C)C(C,A)(C,B)由树状图(列表)可知,共有6种等可能结果,编号为A、B的2个小方格空地种植草坪有2种,所以P(编号为A、B的2个小方格空地种植草坪)=21 =63.考点:1.列表法与树状图法2.几何概率.23.两个长为2cm,宽为1cm的长方形,摆放在直线l上(如图①),CE=2cm,将长方形ABCD绕着点C顺时针旋转α角,将长方形EFGH绕着点E逆时针旋转相同的角度.(1)当旋转到顶点D、H重合时,连接AE、CG,求证:△AED≌△GCD(如图②).(2)当α=45°时(如图③),求证:四边形MHND为正方形.∵∠D=∠H=90°,∴四边形MHND是矩形,∵CN=NE,∴DN=NH,∴矩形MHND是正方形.考点:1.旋转的性质2.全等三角形的判定与性质3.矩形的性质4.正方形的判定.24.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足13CFFD,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.(1)求证:△ADF ∽△AED ; (2)求FG 的长; (3)求证:tan ∠E =5.∴△ADF ∽△AED ; (2)∵13CF FD =,CF =2, ∴FD =6, ∴CD =DF +CF =8, ∴CG =DG =4, ∴FG =CG ﹣CF =2; (3)∵AF =3,FG =2,∴AG 225AF FG -tan∠E=54 AGDG.考点:1.相似三角形的判定与性质2.垂径定理3.圆周角定理4.解直角三角形.25.已知某厂现有A种金属70吨,B种金属52吨,现计划用这两种金属生产M、N两种型号的合金产品共80000套,已知做一套M型号的合金产品需要A种金属0.6kg,B种金属0.9kg,可获利润45元;做一套N 型号的合金产品需要A种金属1.1kg,B种金属0.4kg,可获利润50元.若设生产N种型号的合金产品大数为x,用这批金属生产这两种型号的合金产品所获总利润为y元.(1)求y与x的函数关系式,并求出自变量x的取值范围;(2)在生产这批合金产品时,N型号的合金产品应生产多少套,该厂所获利润最大?最大利润是多少?∴y与x的函数关系式是y=5x+360000(40000≤x≤44000);(2)∵k=5>0,∴y随x的增大而增大,∴当x=44000时,y最大=580000,答:生产N型号的时装44000套时,该厂所获利润最大,最大利润是580000元.考点:1.一次函数的应用2.不等式组.26.如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.【答案】(1)抛物线为y=14(x﹣4)2﹣1=14x2﹣2x+3;试题解析:(1)设抛物线为y=a(x﹣4)2﹣1,∴OB =2,AB =2223=13+,BC =4, ∵AB ⊥BD ,∴∠OAB +∠OBA =90°,∠OBA +∠EB C =90°, ∴△AOB ∽△BEC , ∴AB OBBC CE =,即132CE =,解得CE =813, ∵81313>2, ∴抛物线的对称轴l 与⊙C 相交;(3)如图,过点P 作平行于y 轴的直线交AC 于点Q ;1 2x+3;可求出AC的解析式为y=﹣。

相关文档
最新文档