直线射线线段和角的练习题

合集下载

人教版数学四年级上册《线段、直线、射线》练习卷(含答案)

人教版数学四年级上册《线段、直线、射线》练习卷(含答案)

人教版四年级上册3.1 线段、直线、射线练习卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.一条_____长200米.()A.直线B.射线C.线段D.垂线2.在4时整的时候,钟面上时针与分针组成的角是()度.A.100°B.120°C.150°3.下面说法正确的有()①线段比射线短,射线比直线短。

①把写有1至9各数的九张卡片打乱后反扣在桌上,从中任意摸出一张,卡片上的数小于5算小强赢,否则算小林赢。

这个游戏规则不公平。

①如果被除数末尾有2个0,那么商的末尾至少有1个0。

①四(1)25名男生平均身高151厘米,那么不可能有男生的身高低于151厘米。

A.1句B.2句C.3句二、填空题4.图中有( )个角,( )个直角,( )个锐角,( )个钝角。

5.下面的图形中哪些是线段?在其下面的()里画“○”。

()()()()()()()()6.下图中有______条线段。

7.线段是直直的,有( )个端点,长度( )(填能或不能)度量.三、判断题8.长方形和正方形的四个角都是直角。

( )9.放风筝时的风筝线可以看成是一条直线。

( )10.把半圆等分成180份,每份所对的角就是1°的角._____ (判断对错)11.小刚画了一条6厘米长的直线。

( )12.两个直角就是一个平角。

()13.将圆平均分成360份,将其中1份所对的角作为度量角的单位,它的大小就是1度,记作1°。

根据这一原理人们制作了度量角的工具——量角器。

( ) 14.一条直线长10米.( )15.线段能测量长短,直线和射线不能测量长短。

( )四、作图题16.下面有五个点,每两点之间画一条线段,可以画多少条线段?先画一画,再填一填.( )条17.我会画。

画一条比1分米短1厘米的线段。

18.画一条比3厘米长15毫米的线段,并标出长度。

【数学】七年级上册直线、射线、线段、角(同步练习题三套含答案)

【数学】七年级上册直线、射线、线段、角(同步练习题三套含答案)

直线、射线、线段、角(同步练习题三套)直线、射线、线段同步练习题(一)一.选择题1.两根木条,一根长18cm,一根长22cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.2cm或20cm 2.延长线AB到C,使得BC=AB,若线段AC=8,点D为线段AC的中点,则线段BD 的长为()A.2B.3C.4D.53.如图,点C是线段BD之间的点,有下列结论①图中共有5条线段;②射线BD和射线DB是同一条射线;③直线BC和直线BD是同一条直线;④射线AB,AC,AD的端点相同,其中正确的结论是()A.②④B.③④C.②③D.①③4.下列说法中,正确的是()A.若线段AC=BC,则点C是线段AB的中点B.任何有理数的绝对值都不是负数C.角的大小与角两边的长度有关,边越长角越大D.两点之间,直线最短5.平面内不同的两点确定一条直线,不同的三点最多确定三条直线,若在平面内的不同的n个点最多可确定36条直线,则n的值为()A.6B.7C.8D.96.如图,工人砌墙时在墙的两端各固定一根木桩,再拉一条线,然后沿线砌砖.用数学知识解释其中道理,正确的是()A.两点之间,线段最短B.射线只有一个端点C.两直线相交只有一个交点D.两点确定一条直线7.下列说法中正确的个数为()(1)如果AC=CB,则点C是线段AB的中点;(2)连结两点的线段叫做这两点间的距离;(3)两点之间所有连线中,线段最短;(4)射线比直线小一半;(5)平面内3条直线至少有一个交点.A.1个B.2个C.3个D.4个8.某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.经过两点有一条直线,并且只有一条直线B.两条直线相交只有一个交点C.两点之间所有连线中,线段最短D.两点之间线段的长度,叫做这两点之间的距离9.下列语句:①不带“﹣”号的数都是正数;②如果a是正数,那么﹣a一定是负数;③射线AB和射线BA是同一条射线;④直线MN和直线NM是同一条直线,其中说法正确的有()A.1个B.2个C.3个D.4个10.如图是北京地铁的路线图,小明家住复兴门,打算趁着放假去建国门游玩,看了路线图后,小明打算乘坐①号线地铁去,认为可以节省时间,他这样做的依据是()A.垂线段最短B.两点之间,直线最短C.两点确定一条直线D.两点之间,线段最短二.填空题11.若两条直线相交,有个交点,三条直线两两相交有个交点.12.在直线上任取一点A,截取AB=16cm,再截取AC=40cm,则AB的中点D与AC的中点E之间的距离为cm.13.已知线段AB,在AB的延长线上取一点C,使AC=2BC,若在AB的反向延长线上取一点D,使DA=2AB,那么线段AC是线段DB的倍.14.已知:如图,B,C两点把线段AD分成2:4:3三部分,M是AD的中点,CD=6cm,则线段MC的长为.15.如图,从学校A到书店B最近的路线是①号路线,其道理用几何知识解释应是.三.解答题16.已知线段AB,在AB的延长线上取一点C,使BC=3AB,在BA的延长线上取一点D,使DA=2AB,E为DB的中点,且EB=30cm,请画出示意图,并求DC的长.17.课间休息时小明拿着两根木棒玩,小华看到后要小明给他玩,小明说:“较短木棒AB 长40cm,较长木棒CD长60cm,将它们的一端重合,放在同一条直线上,此时两根木棒的中点分别是点E和点F,则点E和点F间的距离是多少?你说对了我就给你玩”聪明的你请帮小华求出此时两根木棒的中点E和F间的距离是多少?18.已知直线l依次三点A、B、C,AB=6,BC=m,点M是AC点中点(1)如图,当m=4,求线段BM的长度(写清线段关系)(2)在直线l上一点D,CD=n<m,用m、n表示线段DM的长度.19.已知点C,D在线段AB上(点C,D不与线段AB的端点重合),AC+DB=AB.(1)若AB=6,请画出示意图并求线段CD的长;(2)试问线段CD上是否存在点E,使得CE=AB,请说明理由.参考答案与试题解析一.选择题1.【解答】解:如图,设较长的木条为AB=22cm,较短的木条为BC=18cm,∵M、N分别为AB、BC的中点,∴BM=11cm,BN=9cm,∴①如图1,BC不在AB上时,MN=BM+BN=11+9=20cm,②如图2,BC在AB上时,MN=BM﹣BN=11﹣9=2cm,综上所述,两根木条的中点间的距离是2cm或20cm;故选:D.2.【解答】解:∵BC=AB,AC=8,∴BC=2,∵D为线段AC的中点,∴DC=4,∴BD=DC﹣BC=4﹣2=2;故选:A.3.【解答】解:①图中共有6条线段,错误;②射线BD和射线DB不是同一条射线,错误;③直线BC和直线BD是同一条直线,正确;④射线AB,AC,AD的端点相同,正确,故选:B.4.【解答】解:A、若线段AC=BC,则点C是线段AB的中点,错误,A、B、C三点不一定共线,故本选项错误;B、任何有理数的绝对值都不是负数,正确,故本选项正确;C、应为:角的大小与角两边的长度无关,故本选项错误;D、应为:两点之间,线段最短,故本选项错误.故选:B.5.【解答】解:∵平面内不同的两点确定1条直线,可表示为:=1;平面内不同的三点最多确定3条直线,可表示为:=3;平面内不同的四点确定6条直线,可表示为:=6;以此类推,可得:平面内不同的n点可确定(n≥2)条直线.由已知可得:=36,解得n=﹣8(舍去)或n=9.故选:D.6.【解答】解:工人砌墙时在墙的两端各固定一根木桩,再拉一条线,然后沿线砌砖,则其中的道理是:两点确定一条直线.故选:D.7.【解答】解:(1)如果AC=CB,则点C是线段AB垂直平分线上的点,原来的说法错误;(2)连结两点的线段的长度叫做这两点间的距离,原来的说法错误;(3)两点之间所有连线中,线段最短是正确的;(4)射线与直线都是无限长的,原来的说法错误;(5)平面内互相平行的3条直线没有交点,原来的说法错误.故选:A.8.【解答】解:某同学用剪刀沿直线将一片平整的荷叶剪掉一部分(如图),发现剩下的荷叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是:两点之间所有连线中,线段最短,故选:C.9.【解答】解:①不带“﹣”号的数不一定是正数,错误;②如果a是正数,那么﹣a一定是负数,正确;③射线AB和射线BA不是同一条射线,错误;④直线MN和直线NM是同一条直线,正确;故选:B.10.【解答】解:由图可知,乘坐①号地铁走的是直线,所以节省时间的依据是两点之间线段最短.故选:D.二.填空题(共5小题)11.【解答】解:两条直线相交,有1个交点,三条直线两两相交有1或3个交点.故答案为:1,1或3.12.【解答】解:①如图1,当B在线段AC上时,∵AB=16cm,AC=40cm,D为AB中点,E为AC中点,∴AD=AB=8cm,AE=AC=20cm,∴DE=AE﹣AD=20cm﹣8cm=12cm;②如图2,当B不在线段AC上时,此时DE=AE+AD=28cm;故答案为:12或28.13.【解答】解:如下图所示:设AB=1,则DA=2,AC=2,∴可得:DB=3,AC=2,∴可得线段AC是线段DB的倍.故答案为:.14.【解答】解:∵B,C两点把线段AD分成2:4:3三部分,∴设AB=2x,BC=4x,CD=3x,∵CD=6cm,即3x=6cm,解得x=2cm,∴AD=2x+4x+3x=9x=9×2=18cm,∵M是AD的中点,∴MD=AD=×18=9cm,∴MC=MD﹣CD=9﹣6=3cm.故答案为:3cm.15.【解答】解:根据线段的性质:两点之间线段最短可得,从学校A到书店B最近的路线是①号路线,其道理用几何知识解释应是两点之间线段最短.故答案为:两点之间线段最短.三.解答题(共4小题)16.【解答】解:如图:∵E为DB的中点,EB=30cm,∴BD=2EB=60cm,又∵DA=2AB,∴AB=BD=20cm,AD=BD=40cm,∴BC=3AB=60cm,∴DC=BD+BC=120cm.17.【解答】解:如图1,当AB在CD的左侧且点B和点C重合时,∵点E是AB的中点,∴BE=AB=×40=20cm,∵点F是CD的中点(或点F是BD的中点)∴CF=CD=×60=30cm(或BF=CD=×60=30cm),∴EF=BE+CF=20+30=50cm(或EF=BE+BF=20+30=50cm);如图2.当AB在CD上且点B和点C重合时,∵点E是AB的中点,∴BE=AB=×40=20cm,∵点F是CD的中点(或点F是BD的中点),∴CF=CD=×60=30cm(或BF=CD=×60=30cm),∴EF=CF﹣BE=30﹣20=10cm(或EF=BF﹣BE=30﹣20=10cm).∴此时两根木棒的中点E和F间的距离是50cm或10cm.18.【解答】解:(1)当m=4时,BC=4,又∵AB=6,∴AC=4+6=10,又M为AC中点,∴AM=MC=5,∴BM=AB﹣AM,=6﹣5=1;(2)∵AB=6,BC=m,∴AC=6+m,∵M为AC中点,∴,①当D在线段BC上,M在D的左边时,CD=n,MD=MC﹣CD==;②当D在线段BC上,M在D的右边边时,CD=n,MD=DC﹣MC=n﹣=;③当D在l上且在点C的右侧时,CD=n,MD=MC+CD=+n=.19.【解答】解:(1)如图所示:∵AC+DB=AB,AB=6,∴AC+DB=2,∴CD=AB﹣(AC+DB)=6﹣2=4;(2)线段CD上存在点E,使得CE=AB,理由是:∵AC+DB=AB角同步练习试题一、选择题(本大题共12小题,共36分)1.如图,下面四种表示角的方法,其中正确的是()。

七年级数学培优训练(线段、射线、直线、角)

七年级数学培优训练(线段、射线、直线、角)

七年级数学培优训练(线段、射线、直线、角)专题一 线段、射线、直线一、知识要点1.线段、射线及直线的定义及其表示方法将线段向两个方向无限延长就形成了直线。

直线没有端点 2.直线的性质(1)经过一点可以画无数条直线(2)性质:经过两点有且只有一条直线,其中“有”表示“存在性”,“只有”体现“惟一性” 3.点和直线的位置关系(1)点在直线上,或者说直线经过这个点 (2)点在直线外,也可以说直线不经过这个点 BlA二、例题和练习例1 如图共有 条线段, 条射线, 条直线. lA B C D课堂练习:1、如图,图中共有6个点,共有多少条线段?2、如图,图中共有n 个点,共有多少条线段? 例2、下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A 地到B 地架设电线,总是尽可能沿着线段AB 架设;④把弯曲的公路改直,就能缩短路程,其中可用公理“两点之间,线段最短”来解释的现象有( )A.①② B.①③ C.②④ D.③④ 课堂练习:1.往返于甲、乙两地的客车,中途停靠四个站,问(1)有多少种不同的票价?(2)要准备多少种车票?2.已知平面内的四个点A 、B 、C 、D ,过其中每两个点画直线可以画几条.专题二 比较线段的长短将线段向一个方向无限延长就形成了A 1 • A 2 • ……A 3 • A 4 • A n • A 1 • A 2 • A 5 • A 3 • A 4 • A 6 •一、知识要点1.线段性质(公理):两点之间,线段最短2.两点之间的距离:连结两点之间线段的长度3.线段的大小的比较方法 (1)叠合法A B CDAB CD ABCD (2)度量法AB=CD AB >CD AB <CD图4-2-14.线段的中点: 把一条线段分成两条相等的线段的点,叫做线段的中点. AB M点M 是线段AB 中点 AC=BC=21AB 图4-2-2二、例题和练习例1 如图所示,AB=16cm ,C 是AB 上一点,且AC=10 cm ,D 是AC 中点,E 是BC 中点,求线段DE 的长.AB C DE例2 如图,AB:BC:CD =2:3:4,AB 的中点M 与CD 中点N 的距离是3cm ,求BC 的长ABCD NM例3 已知线段AB=30mm, 直线AB 上画一条线段BC=10mm,点D 是线段AC 的中点,求CD 的长度.课堂练习1.如图,点C 是线段AC 上一点,点N 是线段BC 的中点,M 是AC 中点 (1)若AB=10cm AM=3cm 求NC 的长。

最新苏教版四年级上册线段、直线、射线和角练习题

最新苏教版四年级上册线段、直线、射线和角练习题

苏教版四年级上册线段、直线、射线和角练习题线的认识认识直线、线段与射线,会用字母正确读出直线、线段和射线。

直线:可以向两端无限延伸;没有端点。

读作:直线AB或直线BA。

线段:不能向两端无限延伸;有两个端点。

读作:线段AB或线段BA。

射线:可以向一端无限延伸;有一个端点。

读作:射线AB(只有一种读法,从端点读起。

)补充【知识点】:画直线。

过一点可画无数条直线;过两个能画一条直线;过三点,如果三点在一条线上,经过三点只能画一条直线,如果这三点不在一条线上,那么经过三点不能画出直线。

明确两点之间的距离,线段比曲线、折线要短。

直线、射线可以无限延长。

因为直线没有端点,射线只有一个端点,所以不可以测量,没有具体的长度。

如:直线长4厘米。

是错误的。

只有线段才能有具体的长度。

平移与平行1、感受平移前后的位置关系———平行。

(在同一平面内,永不相交的两条直线叫做平行线。

)2、平行线的画法。

(1)固定三角尺,沿一条直角边先画一条直线。

(2)用直尺紧靠三角尺的另一条直角边,固定直尺,然后平移三角尺。

(3)沿一条直角边在画出另一条直线。

3、能够借助实物,平面图形或立体图形,寻找出图中的平行线。

补充【知识点】:用数学符号表示两条直线的平行关系。

如:AB∥CD。

相交与垂直相交与垂直的概念。

当两条直线相交成直角时,这两条直线互相垂直。

(互相垂直:就是直线OA垂直于直线OB,直线OB垂直于直线OA)这两条直线的交点叫做垂足。

(两条直线互相垂直说明了这两条直线的位置关系:必须相交,相交还要成直角。

)画垂线:(1)过直线上一点画垂线的方法。

把三角尺的一条直角边与这条直线重合,直角顶点是垂足,沿着另一条直角边画直线,这条直线是前一条直线的垂线。

注意,要让三角尺的直角顶点与给定的点重合。

(2)过直线外一点画垂线的方法。

把三角尺的一条直角边与这条直线重合,让三角尺的另一条直角边通过这个已知点,沿着三角尺的另一条直角边画直线,这条直线就是前一条直线的垂线。

直线 射线 线段的练习题

直线 射线 线段的练习题

直线射线线段的练习题直线、射线和线段是解析几何中的基本概念,它们广泛应用于数学和物理领域。

本文将为您提供一系列与直线、射线和线段相关的练习题,以帮助您更好地理解和运用这些概念。

1. 练习题一已知直线AB的斜率为1/2,经过点C(-1, 3),求直线AB的方程。

解析:由直线的斜率与过一点的关系,可以得到直线AB过点C(-1, 3)的方程为:y - 3 = 1/2(x + 1)。

2. 练习题二已知射线OA和射线OB的夹角为60°,OA的长度为2,求射线OB的长度。

解析:根据三角函数的定义,可以得到三角形OAB的边长比关系为:OB = OA * tan(60°) = 2 * tan(60°)。

3. 练习题三已知线段PQ的长度为5,线段PQ的中点为M,求线段PM的长度。

解析:线段PQ的中点M即为线段PQ的中垂线的交点,根据中垂线的性质,可以得到线段PM的长度为PQ的一半,即2.5。

4. 练习题四已知直线L1过点A(2, 4),斜率为2,直线L2过点B(-1, 3),斜率为-1/2,求直线L1和L2的交点坐标。

解析:由两条直线的方程可得:y - 4 = 2(x - 2) 和 y - 3 = -1/2(x + 1),解方程组得到交点坐标为(1, 2)。

5. 练习题五已知直线L与x轴交于点A(-3, 0),L与y轴交于点B(0, 4),求直线L的方程。

解析:由直线与坐标轴的交点可以直接得到直线的截距,进而得到直线L的方程为y = -4/3x + 4。

通过以上的练习题,希望能够加深您对直线、射线和线段的理解,并且对解析几何的运用有更好的掌握。

在解题过程中,注意合理运用直线和点的性质,灵活应用相关的计算公式和几何知识。

在实际应用中,这些基本概念和方法将为您提供有力的工具和思路。

祝您在解析几何学习中取得优异的成绩!。

四年级射线直线和角的试卷

四年级射线直线和角的试卷

四年级射线直线和角的试卷一、填空题(每题2分,共20分)1. 射线有()个端点,直线有()个端点。

2. 经过一点可以画()条直线,经过两点可以画()条直线。

3. 从一点引出两条()所组成的图形叫做角,这个点叫做角的(),这两条射线叫做角的()。

4. 角的大小与()有关,与()无关。

5. 把一个半圆平均分成180等份,每一份所对的角就是()度的角。

二、判断题(每题2分,共10分)1. 一条射线长5厘米。

()2. 直线比射线长。

()3. 角的两边越短,角的度数越小。

()4. 用一个10倍的放大镜看一个10度的角,这个角是100度。

()5. 两个锐角的和一定比直角大。

()三、选择题(每题2分,共20分)1. 下面()是射线。

A. 筷子B. 手电筒的光C. 铅笔。

2. 一个角的两边是()。

A. 直线B. 射线C. 线段。

3. 用一副三角板不能拼出()的角。

A. 15°B. 20°C. 135°.4. 角的两条边是()。

A. 线段B. 直线C. 射线。

5. 直线和射线相比()。

A. 直线长B. 射线长C. 无法比较。

6. 把平角分成两个角,其中一个是钝角,另一个是()。

A. 钝角B. 直角C. 锐角。

7. 3时整,时针和分针所组成的角是()。

A. 直角B. 锐角C. 钝角。

8. 钟面上分针旋转一周,时针旋转的角度是()。

A. 30°B. 60°C. 90°.9. 一个锐角和一个直角可以组成一个()。

A. 钝角B. 平角C. 周角。

10. 下面说法错误的是()。

A. 一条直线长6厘米。

B. 角的两边叉开的越大角越大。

C. 钟面上2时整,分针和时针成60°角。

四、操作题(每题10分,共30分)1. 画一条直线,再在直线上截取一条长3厘米的线段。

2. 用量角器画出一个135°的角。

3. 以A点为顶点,画一个比直角小30°的角。

直线与角(有答案)

直线与角(有答案)

直线与角一、选择题(共10小题)1.如图,C是线段AB的中点,D是线段AC上一点,且DC=,若BC=4,则DC等于()3.从济南开往青岛的列车,途中停靠三个站点,如果任意两站间的票价都不同,不同的票4.如图所示,下列语句不正确的是()5.如图,已知线段AB=8cm,点C是AB上任一点,点M、N分别是AC和CB的中点,则MN的长度为()6.如图,图中共有()条线段.7.如图,线段AB长4cm,C为AB上一点,M为AC中点,N为BC中点,已知AM=1.5cm,则CN的长为()8.若∠A=30°18′,∠B=30°15′30″,∠C=30.25°,则这三个角的大小关系正确的是()9.如图所示,几何体截面的形状是( )B10.如图,点C 为线段AB 上一点,若线段AC=12cm ,AC :CB=3:2,D 、E 两点分别为AC 、AB 的中点,则DE 的长为( )二、填空题(共10小题)(除非特别说明,请填准确值) 11.周角= _________ 平角= _________ 直角.12.如图,点C 、点D 在线段AB 上,E 、F 分别是AC 、DB 的中点,若AB=m ,CD=n ,则线段EF 的长为 _________ (用含m ,n 的式子表示).13.60°角的余角是 _________ ,130°角的补角是 _________ .14.若a+b+c=0,且a >b >c ,以下结论: ①a >0,c >0;②关于x 的方程ax+b+c=0的解为x=1; ③a 2=(b+c )2; ④的值为0或2; ⑤在数轴上点A 、B 、C 表示数a 、b 、c ,若b <0,则线段AB 与线段BC 的大小关系是AB>BC .其中正确的结论是 _________ (填写正确结论的序号).15.已知∠A=21°24′,它的余角为 _________ . 16.如图,点C 、点D 在线段AB 上,E 、F 分别是AC 、DB 的中点,若AB=16cm ,CD=7cm ,则线段EF 的长为 _________ cm .17.如图,是正方体的平面展开图,每个面上标有一个汉字,则在正方体上与“河”字相对的面上的字是_________.18.钟面上从3点到4点,时针与分针夹角成60°角时,此时是3点_________分.19.如图所示,直线AB、EF相交于点D,∠ADC=90°,若∠1与∠2的度数之比为1:4,则∠CDF、∠EDB的度数分别是_________.20.如图,将一根绳子对折以后用线段AB表示,现从P处将绳子剪断,剪断后的各段绳子中最长的一段为30cm,若AP=PB,则这条绳子的原长为_________.三、解答题(共10小题)(选答题,不自动判卷)21.阅读材料:我们知道:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.所以式子|x﹣3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.根据上述材料,解答下列问题:(1)若|x﹣3|=|x+1|,则x=_________;(2)式子|x﹣3|+|x+1|的最小值为_________;(3)若|x﹣3|+|x+1|=7,求x的值.22.指出如图所示的立体图形中的柱体、锥体、球.23.如图①②③④都为平面图形.(1)数一数每个图形各有多少个顶点、多少条边(不重叠)、这些边围成了多少块区域(不24.如图,O是AC的中点,M是AB的中点,N是BC的中点,试判断MN与OC的大小关系.25.两条相等线段AB,CD有三分之一部分重合,M,N分别为AB,CD中点.若MN=12cm,求AB的长.26.在一条直线型的流水线上,依次有A1、A2、A3、A4、A55个机器人在工作,如图所示,现需要设计一个零件供应点,问设在何处与5个机器人距离的和最小.27.如图,线段AB=8cm,C为AB上一点,且AC=3.2cm,又知M是AB的中点,N是AC的中点,求M、N两点间的距离.28.数一数图中每个图形的线段总数:(1)如图①,线段总数是2+1=3条.(2)如图②,线段总数是3+2+1=6条.(3)如图③,线段总数是4+3+2+1=10条.(4)如图④,线段的总数是_________条.根据以上求线段的总数的规律:当线段上共有n个点(包括两个端点)时,线段的总数表示为_________,利用以上规律,当n=22时,线段的总数是_________条.由以上规律,解答:如果10位同学聚会,互相握手致意,一共需要握多少次手?29.把一个正方体截去一个角剩下的几何体最多有几个面?30.建筑工人在砌墙时,总是在墙角的地方立两根标志杆,并要两根杆之间拉一根准线,这样做的道理是什么?【章节训练】第4章直线与角-6参考答案与试题解析一、选择题(共10小题)1.如图,C是线段AB的中点,D是线段AC上一点,且DC=,若BC=4,则DC等于()DC=AC×3.从济南开往青岛的列车,途中停靠三个站点,如果任意两站间的票价都不同,不同的票价有()种.4.如图所示,下列语句不正确的是()5.如图,已知线段AB=8cm,点C是AB上任一点,点M、N分别是AC和CB的中点,则MN的长度为()MC+CN=AM+BN=AC CN=BN=MN=MC+CN=AC+(6.如图,图中共有()条线段.7.如图,线段AB长4cm,C为AB上一点,M为AC中点,N为BC中点,已知AM=1.5cm,则CN的长为()CN=CB=0.5cm9.如图所示,几何体截面的形状是()B10.如图,点C为线段AB上一点,若线段AC=12cm,AC:CB=3:2,D、E两点分别为AC、AB的中点,则DE的长为()AC=6cm AE=AC二、填空题(共10小题)(除非特别说明,请填准确值)11.周角=平角=1直角.周角的度数,根据周角,周角平角故答案为:,12.如图,点C、点D在线段AB上,E、F分别是AC、DB的中点,若AB=m,CD=n,则线段EF的长为(用含m,n的式子表示).CE=AC DB((,故答案为:.13.60°角的余角是30°,130°角的补角是50°.14.若a+b+c=0,且a>b>c,以下结论:①a>0,c>0;②关于x的方程ax+b+c=0的解为x=1;③a2=(b+c)2;④的值为0或2;⑤在数轴上点A、B、C表示数a、b、c,若b<0,则线段AB与线段BC的大小关系是AB >BC.其中正确的结论是②③⑤(填写正确结论的序号).+++时,去掉绝对值符号得出++时,+++时,+++15.已知∠A=21°24′,它的余角为68°36′.16.如图,点C、点D在线段AB上,E、F分别是AC、DB的中点,若AB=16cm,CD=7cm,则线段EF的长为11.5cm cm.CE=AC BD×17.如图,是正方体的平面展开图,每个面上标有一个汉字,则在正方体上与“河”字相对的面上的字是拉.18.钟面上从3点到4点,时针与分针夹角成60°角时,此时是3点分.,即,即分.故答案为:,.19.如图所示,直线AB、EF相交于点D,∠ADC=90°,若∠1与∠2的度数之比为1:4,则∠CDF、∠EDB的度数分别是162°、108°.20.如图,将一根绳子对折以后用线段AB表示,现从P处将绳子剪断,剪断后的各段绳子中最长的一段为30cm,若AP=PB,则这条绳子的原长为75cm或50cm.x=三、解答题(共10小题)(选答题,不自动判卷)21.阅读材料:我们知道:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.所以式子|x﹣3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.根据上述材料,解答下列问题:(1)若|x﹣3|=|x+1|,则x=1;(2)式子|x﹣3|+|x+1|的最小值为4;(3)若|x﹣3|+|x+1|=7,求x的值.;﹣或﹣或.22.指出如图所示的立体图形中的柱体、锥体、球.23.如图①②③④都为平面图形.(1)数一数每个图形各有多少个顶点、多少条边(不重叠)、这些边围成了多少块区域(不24.如图,O是AC的中点,M是AB的中点,N是BC的中点,试判断MN与OC的大小关系.BM=AB BC MN=BM+BN=ACACBM=MN=BM+BN=ACMN=ACAC25.两条相等线段AB,CD有三分之一部分重合,M,N分别为AB,CD中点.若MN=12cm,求AB的长.acm CN=代入得出a+BM=AB=CD=acma a=1226.在一条直线型的流水线上,依次有A1、A2、A3、A4、A55个机器人在工作,如图所示,现需要设计一个零件供应点,问设在何处与5个机器人距离的和最小.27.如图,线段AB=8cm,C为AB上一点,且AC=3.2cm,又知M是AB的中点,N是AC的中点,求M、N两点间的距离.AM=AC=1.6cm28.数一数图中每个图形的线段总数:(1)如图①,线段总数是2+1=3条.(2)如图②,线段总数是3+2+1=6条.(3)如图③,线段总数是4+3+2+1=10条.(4)如图④,线段的总数是15条.根据以上求线段的总数的规律:当线段上共有n个点(包括两个端点)时,线段的总数表示为,利用以上规律,当n=22时,线段的总数是231条.由以上规律,解答:如果10位同学聚会,互相握手致意,一共需要握多少次手?,时,线段的总数是为同学聚会,共握手29.把一个正方体截去一个角剩下的几何体最多有几个面?30.建筑工人在砌墙时,总是在墙角的地方立两根标志杆,并要两根杆之间拉一根准线,这样做的道理是什么?。

直线、射线、线段综合练习题(2)

直线、射线、线段综合练习题(2)

直线、射线、线段综合练习题一.填空题(共6小题)1.一条直线上有n个不同的点,则该直线上共有线段条.2.如图,A,B,C,D,E,P,Q,R,S,T是构成五角星的五条线段的交点,则图中共有线段条.3.表反映了平面内直线条数与它们最多交点个数的对应关系:图形…直线条数234…最多交点个数13=1+26=1+2+3…按此规律,6条直线相交,最多有个交点;n条直线相交,最多有个交点.(n 为正整数)4.如图,C、D、E、F为线段AB上顺次排列的4个动点(不与A、B重合),图中共有条线段.若AB=8.6cm,DE=1cm,图中所有线段长度之和为56cm,则线段CF长为cm.5.如图,能用图中字母表示的射线有条.6.如图,已知A、B、C、D四点在同一直线上,点D是线段BC的中点,且BC=3AB,如果AB=4cm,则线段AD的长度为cm.二.解答题(共7小题)7.如图(1),线段上有3个点时,线段共有3条;如图(2)线段上有4个点时,线段共有6条;如图(3)线段上有5个点时,线段共有10条.(1)当线段上有6个点时,线段共有条;(2)当线段上有n个点时,线段共有条;(用n的代数式表示)(3)当n=100时,线段共有条.8.(1)观察思考如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.9.如图,已知线段AB,延长AB到C,使,D为AC的中点,DC=3cm,求BD的长.10.如图B、C两点把线段AD分成2:3:4三部分,M是AD的中点,CD=8,求MC的长.11.如图,,D为AC的中点,DC=2cm,求AB的长.12.已知A、B、C三点在同一直线上,线段AB=8cm,线段BC=6cm,点M、点N分别是线段AB、线段BC的中点,求线段MN的长度.13.已知线段AB=AC,AB+AC=16cm,求AC和AB的长.直线、射线、线段综合练习题参考答案一.填空题(共6小题)1.一条直线上有n个不同的点,则该直线上共有线段n(n﹣1)条.【分析】直线上有n个不同点,共有线段(n﹣1)+(n﹣2)+…+3+2+1=n(n ﹣1)条.【解答】解:当直线上有三个不同点,共有线段3条,当直线上有四个不同的点,共有线段6条,所以一条直线上有n个不同的点时共有线段n(n﹣1)条,故答案为:n(n﹣1)【点评】此题考查数线段的方法,注意从简单情形考虑,找出规律解决问题.2.如图,A,B,C,D,E,P,Q,R,S,T是构成五角星的五条线段的交点,则图中共有线段30条.【分析】分别求出构成五角星的每条线段上有几条线段,在将其乘以5即可.【解答】解:线段AC,BE,CE,BD,AD上各有另两个点,每条上有6条线段;所以共有6×5=30条线段.【点评】把这个五星分成五条线段,每条上有另两个点来求解.3.表反映了平面内直线条数与它们最多交点个数的对应关系:图形…直线条数234…最多交点个13=1+26=1+2+3…数按此规律,6条直线相交,最多有个交点;n条直线相交,最多有个交点.(n为正整数)【分析】根据观察,可发现规律:n条直线最多的交点是1+2+3+(n﹣1),可得答案.【解答】解:6条直线相交,最多有个交点1+2+3+4+5=15;n条直线相交,最多有个交点,故答案为:15,.【点评】本题考查了直线,每两条直线有一个交点得出n条直线最多的交点是1+2+3+(n﹣1)是解题关键4.如图,C、D、E、F为线段AB上顺次排列的4个动点(不与A、B重合),图中共有15条线段.若AB=8.6cm,DE=1cm,图中所有线段长度之和为56cm,则线段CF长为4cm.【分析】可以设出线段CF的长,再根据图中所有线段的长度之和为56cm,即可列出方程,解方程即可求出答案.【解答】解:5+4+3+2+1=15(条)设线段CF的长为xcm,依题意有8.6×5+3x+1=56,解得x=4.答:图中共有15条线段,线段CF长为4cm.故答案为:15,4.【点评】本题考查了两点间的距离,有一定难度,根据题意列出方程式,并探讨解的合理性是关键.5.如图,能用图中字母表示的射线有5条.【分析】结合图形,根据射线的概念和表示方法进行分析.【解答】解:图中可以表示的射线有AC、CB、CD,DB,BD5条.【点评】此题考查了射线的概念和射线的表示方法.6.如图,已知A、B、C、D四点在同一直线上,点D是线段BC的中点,且BC=3AB,如果AB=4cm,则线段AD的长度为10cm.【分析】由BC=3AB,AB=4cm,得到BC=12cm,由点D是线段BC的中点,得到BD=6cm,于是得到结论.【解答】解:∵BC=3AB,AB=4cm,∴BC=12cm,∵点D是线段BC的中点,∴BD=6cm,∴AD=10cm,故答案为:10.【点评】本题主要考查了两点间的距离,利用线段中点的性质得出BD、DC的长是解题关键.二.解答题(共7小题)7.如图(1),线段上有3个点时,线段共有3条;如图(2)线段上有4个点时,线段共有6条;如图(3)线段上有5个点时,线段共有10条.(1)当线段上有6个点时,线段共有15条;(2)当线段上有n个点时,线段共有条;(用n的代数式表示)(3)当n=100时,线段共有4950条.【分析】根据每一个点与另外的一个点有一条线段,n个点中每一个点可组成(n﹣1)条线段,n个点可组成,可得答案.【解答】解:(1)当线段上有6个点时,线段共有=15条;(2)当线段上有n个点时,线段共有条;(3)当n=100时,线段共有=4950条;故答案为:15,,4950.【点评】本题考查了直线、射线、线段,任意两点有一条线段,根据规律是解题关键.8.(1)观察思考如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.【分析】(1)从左向右依次固定一个端点A,C,D找出线段,最后求和即可;(2)根据数线段的特点列出式子化简即可;(3)将实际问题转化成(2)的模型,借助(2)的结论即可得出结论.【解答】解:(1)∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段;(2),理由:设线段上有m个点,该线段上共有线段x条,则x=(m﹣1)+(m﹣2)+(m﹣3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m﹣3)+(m﹣2)+(m﹣1),∴2x==m(m﹣1),∴x=;(3)把8位同学看作直线上的8个点,每两位同学之间的一场比赛看作为一条线段,直线上8个点所构成的线段条数就等于比赛的场数,因此一共要进行=28场比赛.【点评】此题是线段的计数问题,主要考查了数线段的方法和技巧,解本题的关键是找出规律,此类题目容易数重或遗漏,要特别注意.9.如图,已知线段AB,延长AB到C,使,D为AC的中点,DC=3cm,求BD的长.【分析】由D为AC的中点可得AC的长,进而由BC=AB可得BC占AC的三分之一,求得BC,让DC减去BC长即为BD长.【解答】解:∵D为AC的中点,DC=3cm,∴AC=2DC=6cm,∵BC=AB,∴BC=AC=2cm,∴BD=CD﹣BC=1cm.【点评】考查线段上两点间距离的计算;判断出与所求线段相关的线段CD的长是解决本题的突破点.10.如图B、C两点把线段AD分成2:3:4三部分,M是AD的中点,CD=8,求MC的长.【分析】设AB为2x,则CD=4x=8,得出x=2,再利用MC=MD﹣CD求解.【解答】解:设AB=2x,BC=3x,CD=4x,∴AD=9x,MD=x,则CD=4x=8,x=2,MC=MD﹣CD=﹣4x==×2=1.【点评】本题考查了线段长短的比较,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.11.如图,,D为AC的中点,DC=2cm,求AB的长.【分析】在一条直线或线段上的线段的加减运算和倍数运算,首先明确线段间的相互关系,根据题目中的几何图形,再根据题意进行计算.【解答】解:设AB长为x,BC=AB=,D为AC的中点,DC=2cm,解得:AC=4cm,∵AC=AB+BC,∴4=x+=x,解得:x=,故AB的长为cm.【点评】本题考查了线段的长短比较,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.12.已知A、B、C三点在同一直线上,线段AB=8cm,线段BC=6cm,点M、点N分别是线段AB、线段BC的中点,求线段MN的长度.【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据正确画出的图形解题.【解答】解:第一种情况:B在AC内,则MN=AB+BC=7;第二种情况:B在AC外,则MN=AB﹣BC=1.【点评】由于B的位置有两种情况,所以本题MN的值就有两种情况,做这类题时学生一定要思维细密.13.已知线段AB=AC,AB+AC=16cm,求AC和AB的长.【分析】在一条直线或线段上的线段的加减运算和倍数运算,首先明确线段间的相互关系,最好准确画出几何图形,再根据题意进行计算.【解答】解:①∵AB=AC,AB+AC=16cm∴AC+AC=16,AC=16∴AC=12cm,AB=4cm.②∵AB=AC,AB+AC=16cm,∴AC+AC=16,AC=16∴AC=12cm,AB=4cm.【点评】利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.。

4-2 直线、射线、线段(基础训练)(解析版)

4-2 直线、射线、线段(基础训练)(解析版)

4.2 直线、射线、线段 【基础训练】 一、单选题1.如图,4,7CB cm DB cm ==,点D 为AC 的中点,则AB 的长为( )A .9cmB .10cmC .11cmD .12cm【答案】B 【分析】由图形可知,AB 等于各线段的和,即分别求出AD ,DC .然后相加即可得出AB 的长度. 【详解】解:由题意知,CB =4cm ,DB =7cm ,所以DC =3cm ,又点D 为AC 的中点,所以AD =DC =3cm ,故AB =AD +DB =10cm .故选:B . 【点睛】 本题主要考查学生灵活运用线段的和、差、倍、分转化线段之间的数量关系的能力.2.在开会前,工作人员进行会场布置在主席台上由两人拉着一条绳子然后以“准绳”为基准摆放茶杯这样做的理由是( )A.两点之间线段最短B.两点确定一条直线C.两点之间,直线最短D.过一点可以作无数条直线【答案】B【分析】根据直线的性质:两点确定一条直线可得答案.【详解】解:由两人拉着一条绳子,然后以“准绳”摆放整齐的茶杯,这样做的理由是两点确定一条直线,故选:B.【点睛】此题主要考查了直线的性质,关键是掌握两点确定一条直线.3.A,B两点间的距离是指()A.过A,B两点间的直线B.连接A,B两点间的线段C.直线AB的长D.连接A,B两点间的线段的长度【答案】D【分析】根据两点间的距离定义即可求解.【详解】解:A,B两点间的距离是指连接A,B两点间的线段的长度,故选:D.【点睛】本题考查了两点间的距离的定义.4.日常生活中,手电筒发射出来的光线,类似于几何中的()A.折线B.直线C.射线D.线段【答案】C【分析】根据直线,射线和线段的区别即可得出答案.【详解】手电筒可近似看成一个点,所以手电筒发射出来的光线相当于一个从一个端点出发的一条射线,故选:C.【点睛】本题主要考查射线,掌握直线,射线和线段的区别是关键.5.下列说法中,错误的是()A.射线AB和射线BA是同一条射段B.经过两点只能作一条直线C.经过一点可以作无数条直线D.两点之间,线段最短【答案】A【分析】直接利用线段的性质以及直线的性质分别分析得出答案.【详解】解:A、射线AB和射线BA不是同一条射线,故此选项错误,符合题意;B、经过两点只能作一条直线,正确,不合题意;C、经过一点可以作无数条直线,正确,不合题意;D、两点之间,线段最短,正确,不合题意;故选:A.【点睛】此题主要考查了线段的性质以及直线的性质,正确把握相关性质是解题关键.6.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是()A.两点之间线段最短B.两点之间直线最短C.两点确定一条直线D.以上说法都不对【答案】C【分析】根据题意可知应用的是两点确定一条直线,从而可得出答案.【详解】把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是两点确定一条直线,故选:C.【点睛】本题主要考查数学知识的实际应用,掌握基本的数学事实是解题的关键.7.如图,AB=CD,那么AC与BD的大小关系是()A.AC<BD B.AC=BD C.AC>BD D.不能确定【答案】B【分析】由题意可知AB=CD,根据等式的基本性质,两边都减去BC,等式仍然成立.【详解】根据题意和图示可知AB=CD,而BC为AB和CD共有线段,故AC=BD,故选:B.【点睛】注意根据等式的性质进行变形,读懂题意是解题的关键.8.如图,从A地到B地有四条路线,由上到下依次记为路线①、①、①、①,则从A地到B地的最短路线是路线().A.①B.①C.①D.①【答案】C【分析】结合题意,根据两点之间线段最短的性质分析,即可得到答案.【详解】根据题意得,从A地到B地的最短路线是路线①故选:C.【点睛】本题考查了最短路径的知识;解题的关键是熟练掌握两点之间线段最短的性质,从而完成求解.9.下列说法错误的是()A.0既不是正数也不是负数B.经过两点有一条直线,并且只有一条直线C.两点之间,线段最短D.射线AB与射线BA是同一条射线【答案】D【分析】据有理数的知识和基本图形的相关知识逐一分析,先出符合题意的选项.【详解】对于A,0既不是正数也不是负数,说法正确,不符合题意;对于B,经过两点有一条直线,并且只有一条直线,说法正确,不符合题意;对于C,两点之间,线段最短,说法正确,不符合题意;对于D,射线AB与射线BA的端点不同,延伸方向不同,故“射线AB与射线BA是同一条射线”这一说法错误,符合题意.故选:D.【点睛】此题考查有理数的分类和基本几何图形的相关知识,理解相关知识点是关键.10.下列四个生活,生产现象:①从A地到B地架设电线,总是尽可能沿着线段AB架设;①把弯曲的公路改直,就能缩短路程;①用两个钉子就可以把木条固定在墙上;①植树时,只要定出两棵树的位置,就能确定同一行树所在的直线.其中可用公理“两点之间,线段最短”来解释的现象是()A.①①B.①①C.①①D.①①【答案】A【分析】根据两点确定一条直线,两点之间线段最短的性质对各选项分析判断后利用排除法求解.【详解】①从A地到B地架设电线,总是尽可能沿着线段AB架设,就能缩短路程是利用了“两点之间线段最短”,故正确;①把弯曲的公路改直,就能缩短路程是利用了“两点之间线段最短”,故正确;①用两个钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故错误;①植树时,只要定出两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”.故错误;故选:A.【点睛】本题考查了线段的性质以及直线的性质,熟记性质公理是解题的关键,是基础题.11.下列说法正确的是()A.直线AB与直线BA不是同一条直线B.射线AB与射线BA是同一条射线C.延长线段AB和延长线段BA的含义一样D.经过两点有一条直线,并且只有一条直线【答案】D【分析】根据直线、射线、线段的意义和表示方法进行判断即可.【详解】解:A.直线AB与直线BA是同一条直线,因此A不正确,故A不符合题意;B.射线AB与射线BA不是同一条射线,因此B不正确,故B不符合题意;C.延长线段AB和延长线段BA的含义不一样,因此C不正确,故C不符合题意;D.经过两点有一条直线,并且只有一条直线是正确的,故D符合题意;故选:D.【点睛】本题考查直线、射线、线段的意义,理解直线、射线、线段的意义是正确判断的前提,掌握直线的性质是正确判断的关键.12.在墙上要钉牢一根木条,至少要钉两颗钉子.能解释这一实际应用的数学知识是()A.两点之间线段最短B.两点确定一条直线C.直线比线段长D.两条直线相交,只有一个交点【答案】B【分析】根据直线的性质:两点确定一条直线进行解答即可.【详解】解:在墙上要钉牢一根木条,至少要钉两颗钉子,能解释这一实际应用的数学知识是两点确定一条直线,A C D不符合题意,B符合题意,故,,故选:.B【点睛】本题考查的是直线的性质,掌握两点确定一条直线的实际应用是解题的关键.13.如图,某同学用剪刀治直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长小,能正确解释这现象的数学知识是()A.两点之间,直线最短B.两点之间,线段最短C.两点确定一条直线D.经过一点有无数条直线【答案】B【分析】根据线段的性质,可得答案.【详解】解:由于两点之间线段最短,所以剩下树叶的周长比原树叶的周长小.故选:B.【点睛】本题考查的是线段的性质,利用线段的性质是解题关键.14.下列语句正确的有()(1)线段AB就是A、B两点间的距离;AB=;(2)画射线10cm(3)A,B两点之间的所有连线中,线段AB最短;=,那么B是AC的中点.(4)如果AB BCA.1个B.2个C.3个D.4个【答案】A【分析】根据两点间的距离,射线的定义与性质,线段的中点的定义,对各小题分析判断即可得解.【详解】解:因为线段AB的长度是A、B两点间的距离,所以(1)错误;因为射线没有长度,所以(2)错误;因为两点之间,线段最短.即A,B两点之间的所有连线中,最短的是A,B两点间的距离,所以(3)正确;因为点A、B、C不一定共线,所以(4)错误.综上所述,正确的有1个.故选:A.【点睛】本题考查的是线段、射线的定义与性质,线段的中点,两点间的距离,要求学生准确把握概念与性质是解决本题的关键.15.轩轩同学带领自己的学习小组成员预习了“线段、射线、直线”一节的内容后,对下图展开了讨论,下列说法不正确的是()A.直线MN与直线NM是同一条直线B.射线PM与射线MN是同一条射线C.射线PM与射线PN是同一条射线D.线段MN与线段NM是同一条线段【答案】B【分析】根据直线的表示方法可判定A ,利用射线的表示方法可判定B ,C ,利用线段表示方法可判定D . 【详解】解:A . 根据直线MN 与直线NM 表示方法是同一条直线,故选项A 正确;B . 射线PM 与射线MN 是端点不同,不是同一条射线,故选项B 说法不正确;C . 射线PM 与射线PN 是同一条射线,端点相同,方向相同,故选项C 正确;D . 根据线段MN 与线段NM 表示方法是同一条线段,故选项D 正确.故选择:B . 【点睛】 本题考查直线,射线,线段的定义与表示方法,掌握直线,射线,线段的表示方法是解题关键. 16.下列说法正确的是( )A .两点之间直线最短B .平面内的三点可以在一条直线上C .延长射线AB 到点C ,使得BC AB =D .作直线5OB =厘米【答案】B 【分析】 根据线段的性质和直线的性质,以及射线的定义分别判定可得. 【详解】A. 两点之间线段最短,错误,故A 不合题意;B. 平面内的三点可以在一条直线上,表述正确,故B 符合题意;C. 延长线段AB 到点C ,使得BC =AB ,表述错误,故C 不符合题意;D. 作直线OB =5厘米,错误,直线没有长度,故D 不符合题意.故选:B .【点睛】考查了线段的性质,直线的性质,以及射线的定义,熟记概念内容,理解题意是解题的关键.17.把一条弯曲的道路改成直道,可以减少路程,其理由是()A.过两点有且只有一条直线B.两点之间线段最短C.垂线段最短D.两点间线段的长度叫两点间的距离【答案】B【分析】根据数学常识,连接两点的所有线中,线段最短,即两点之间线段最短.【详解】解:把一条弯曲的道路改成直道,可以减少路程,其理由是两点之间线段最短故选B.【点睛】本题考查了线段的性质,熟记两点之间线段最短是解题的关键.18.下列说法正确的是()A.两点之间的所有连线中,直线最短B.一个角的余角一定比这个角大C.同角(或等角)的补角相等D.经过两点有无数条直线【答案】C【分析】根据“两点之间,线段最短“;互余的两个角的和为90°;补角的性质以及两点确定一条直线逐一判断即可.【详解】A、两点之间的所有连线中,线段最短,故原说法错误,故本选项不合题意;B、一个角的余角不一定比这个角大,如60°角的余角是30°,故原说法错误,故本选项不合题意;C、同角(或等角)的补角相等,说法正确,故本选项符合题意;D、经过两点有且只有一条直线,故原说法错误,故本选项不合题意;故选:C.【点睛】本题主要考查了“两点之间,线段最短“,两点确定一条直线以及补角的定义与性质,熟记相关定义是解答本题的关键.19.下列说法正确的是()A.延长射线AB到CB.若AM=BM,则M是线段AB的中点C.两点确定一条直线D.过三点能作且只能做一条直线【答案】C【分析】根据射线,直线的性质以及线段的性质解答.【详解】解:A、射线本身是向一端无限延伸的,不能延长,故A不合题意;B、若AM=BM,此时点M可能在线段AB的垂直平分线上,故B不合题意;C、两点确定一条直线,说法正确,故C符合题意;D、只有三点共线时才能做一条直线,故D不合题意,故选:C.【点睛】 本题考查直线、射线的性质,是基础考点,难度较易,掌握相关知识是解题关键.20.如图,已知直线上顺次三个点A 、B 、C ,已知10cm AB =,4cm BC =.D 是AC 的中点,M 是AB 的中点,那么MD =( )cm .A .4B .3C .2D .1【答案】C 【分析】由10AB =cm ,4BC =cm .于是得到14AC AB BC =+=cm ,根据线段中点的定义由D 是AC 的中点,得到AD ,根据线段的和差得到MD AD AM =-,于是得到结论. 【详解】解:①10AB =cm ,4BC =cm ,14AC AB BC ∴=+=cm , D 是AC 的中点, 172AD AC ∴==cm ; M 是AB 的中点,152AM AB ∴==cm , 2D M AD AM ∴=-=cm .故选:C .【点睛】此题主要考查了两点之间的距离,线段的和差、线段的中点的定义,利用线段差及中点性质是解题的关键.21.如图所示,下列说法正确的个数是( )①射线AB 和射线BA 是同一条射线;①图中有两条射线;①直线AB 和直线BA 是同一条直线;①线段AB 和线段BA 是同一条线段.A .4B .3C .2D .1【答案】C 【分析】 根据射线、直线、线段的表示方法判断即可. 【详解】解:①射线AB 和射线BA 不是同一条射线,端点不同,故①错误;①图中有四条射线,故①错误;①直线AB 和直线BA 是同一条直线,故①正确;①线段AB 和线段BA 是同一条线段,故①正确;故选:C . 【点睛】 本题考查了射线、直线、线段的表示方法,解题关键是注意它们的联系和区别.22.下列说法,其中正确的个数有( )(1)绝对值越小的数离原点越近;(2)多项式2235x x -+是二次三项式;(3)连接两点之间的线段是两点之间的距离;(4)三条直线两两相交有3个交点.A .4个B .3个C .2个D .1个 【答案】C【分析】 根据绝对值的定义、多项式、两点间的距离、相交线的定义即可得出结论. 【详解】解:(1)绝对值越小的数离原点越近,此说法正确;(2)多项式2235x x -+是二次三项式,此说法正确;(3)连接两点之间的线段的长度是两点之间的距离,此说法错误;(4)三条直线两两相交有1个或3个交点,此说法错误.故选C . 【点睛】 本题考查了两点间的距离、绝对值、多项式、相交线的定义,熟练掌握各定义是解题的关键.23.下列说法正确的是( )A .延长直线AB 到点CB .射线是直线的一部分C .画一条长2cm 的射线D .比较射线、线段、直线的长短,直线最长【答案】B 【分析】利用直线定义可判断A ,利用射线定义判断B ,利用射线的性质判断C ,利用直线与射线性质判断D 即可. 【详解】解:A. 延长直线AB 到点C ,直线向两方无限延伸,不能延长,故A 选项不正确;B. 射线是直线的一部分,故B 选项正确;C. 画一条长2cm 的射线,射线向一方无限延伸,射线不能度量,故C 选项不正确 ;D. 比较射线、线段、直线的长短,直线最长,射线向一方无限延伸,直线向两方无限延伸不能比较长短,故D选项不正确.故选择:B.【点睛】本题考查直线的定义与性质,射线的定义与性质,线段定义,掌握直线的定义与性质,射线的定义与性质,线段定义是解题关键.24.观察图形,下列说法正确的个数是()①直线BA和直线AB是同一条直线;①射线AC和射线AD是同一条射线;①线段AC和线段CA是同一条线段;①三条直线两两相交时,一定有三个交点.A.1B.2C.3D.4【答案】C【分析】根据直线的表示方法对①进行判断;根据射线的表示方法对①进行判断;根据线段的性质对①进行判断;通过分类讨论对①进行判断.【详解】解:①直线没有方向,直线BA和直线AB是同一条直线,故①说法正确;①射线AC和射线AD是同一条射线,故①说法正确;①线段AC 和线段CA 是同一条线段,故①说法正确;①三条直线两两相交时,一定有三个交点,还可能有一个,故①说法不正确.共3个说法正确.故选:C . 【点睛】 本题考查了直线、射线、线段的含义,解题的关键在于结合图形进行分析.25.如图,已知C 为线段AD 上一点,点B 为CD 的中点,且9,2AD BD ==.若点E 在直线AD 上,且1EA =,则BE 的长为( )A .4B .6或8C .6D .8【答案】B 【分析】由于E 在直线AD 上位置不明定,可分E 在线段DA 的延长线和线段AD 上两种情况求解. 【详解】解:若E 在线段DA 的延长线,如图1,①EA =1,AD =9,①ED =EA +AD =1+9=10,①BD =2,①BE =ED -BD =10-2=8;若E 线段AD 上,如图2,EA =1,AD =9,①ED =AD -EA =9-1=8,①BD =2,①BE =ED -BD =8-2=6,综上所述,BE 的长为8或6.故选:B . 【点睛】 本题考查的是线段的中点、线段的和差计算,对题目进行分类讨论是解题的关键.26.已知点P 是CD 中点,则下列等式中:①PC PD =;①12PC CD =;①2CD PD =;①PC PD CD +=;正确的个数是( )A .1个B .2个C .3个D .4个 【答案】D【分析】根据线段中点的性质进行判断即可.【详解】解:①P 是CD 中点,①12PC PD CD ==,2CD PD =,PC PD CD +=, 因此①①①①都正确,故选:D.【点睛】本题考查了与线段中点有关的各线段之间的熟练关系,熟悉线段中点的含义是解题的关键.27.已知点C为线段AB上一点,AC=2BC,若线段AB的长为6cm,则线段AC的长为()A.6cm B.4cm C.3cm D.2cm【答案】B【分析】根据AC=2BC,可知AC=23AB,代入求值即可.【详解】解:①点C为线段AB上一点,AB=6cm,AC=2BC,①AC=23AB=4cm;故选:B.【点睛】本题考查了线段的计算,解题关键是准确理解题意,熟练的进行计算.28.2019年11月1日,隆生大桥正式通车,缓解了东江大桥与中信大桥的交通压力,其特点是“直”,明显缩短了江北与水口的距离,其主要依据是()A.两点确定一条直线B.过一点有且只有一条直线与已知直线垂直C.垂线段最短D.两点之间,线段最短【答案】D【分析】直接利用线段的性质分析得出答案.【详解】解:隆生大桥正式通车,最大的特点是“直”,明显缩短了江北与水口的距离,其主要依据是:两点之间,线段最短.故选:D.【点睛】此题主要考查了线段的性质,正确理解题意是解题关键.29.下列叙述正确的是()A.线段AB可表示为线段BA B.直线可以比较长短C.射线AB可表示为射线BA D.直线a,b相交于点m【答案】A【分析】分别根据直线、射线以及线段的定义判断得出即可.【详解】解:A、线段AB可表示为线段BA,此选项正确;B、直线不可以比较长短,此选项错误;C、射线AB的端点是A,射线BA的端点是B,故不是同一射线,此选项错误;D、点用大写字母表示的,此选项错误,故选:A【点睛】此题主要考查了直线、射线以及线段的定义,正确区分它们的定义是解题关键.30.已知线段AB长为5,点C为线段AB上一点,点D为线段AB延长线上一点,若12BC BD AC==,则线段AC的长为()A.53B.103C.153D.203【答案】B【分析】利用线段的和差和等量关系用AC表示AB,根据5AB=即可得出AC.【详解】解:如图所示:①12BC BD AC==,①1322AB AC BC AC AC AC =+=+=,①5 AB=,①22105333 AC AB==⨯=,故选:B.【点睛】本题考查线段的和差.能结合题意正确构造出线段图是解题关键. 二、填空题31.如图,已知点B 在线段AC 上,9AB =,6BC =,P 、Q 分别为线段AB 、BC 上两点,13BP AB =,13CQ BC =,则线段PQ 的长为_______.【答案】7【分析】根据已知条件算出BP 和CQ ,从而算出BQ ,再利用P A =BP +BQ 得到结果.【详解】解:①AB =9,BP =13AB , ①BP =3,①BC =6,CQ =13BC , ①CQ =2,①BQ =BC -CQ =6-2=4,①PQ =BP +BQ =3+4=7,故答案为:7.【点睛】本题考查了两点间距离,线段的和差,熟练掌握线段上两点间距离的求法,灵活运用线段的和差倍分关系解题是关键.32.如图,线段AB =10,BC =6,点D 上线段AC 的中点,则线段AD 的长为 __.【答案】8【分析】根据线段AB=10,BC=6,可以求得线段AC的长,再根据点D是线段AC的中点,从而可以求得线段AD的长.【详解】解:①线段AB=10,BC=6,①AC=AB+BC=16,①点D是线段AC的中点,①AD=12AC=11682⨯=,故答案为:8.【点睛】本题考查两点间的距离,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.33.如图:点C为线段AB上的一点,M、N分别为AC、BC的中点,AB=40,则MN=_____.【答案】20【分析】由题意易得11,22MC AC CN CB==,进而可得111222MN MC CN AC CB AB=+=+=,进而问题可求解.【详解】解:①M 、N 分别为AC 、BC 的中点, ①11,22MC AC CN CB ==, ①AB =40, ①11120222MN MC CN AC CB AB =+=+==; 故答案为20.【点睛】本题主要考查线段中点的性质,熟练掌握线段中点的性质是解题的关键.34.如图,C 是线段AB 上的一点,且13,5AB CB ==,M 、N 分别是AB 、CB 的中点,则线段MN 的长是_____________.【答案】4【分析】根据中点定义可得到AM =BM =12AB ,CN =BN =12CB ,再根据图形可得NM =BM -BN ,即可得到答案. 【详解】解:①M 是AB 的中点,①AM =BM =12AB =6.5, ①N 是CB 的中点,①CN =BN =12CB =2.5, ①MN =BM -BN =6.5-2.5=4.故答案为:4.【点睛】此题主要考查了求两点间的距离,解题的关键是根据条件理清线段之间的关系.35.如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD的中点,若MN=7cm,BC=3cm,则AD的长为_____cm.【答案】11【分析】由已知条件可知,MN=MB+CN+BC,又因为M是AB的中点,N是CD中点,则AB+CD=2(MB+CN),故AD=AB+CD+BC可求.【详解】解:①MN=MB+BC+CN,MN=7cm,BC=3cm,①MB+CN=7﹣3=4cm,①M是AB的中点,N是CD的中点,①AB=2MB,CD=2CN,①AD=AB+BC+CD=2(MB+CN)+BC=2×4+3=11cm.故答案为:11.【点睛】本题考查了两点间的距离;利用中点性质转化线段间的关系是解题关键.三、解答题36.已知:如图,点,C D在线段AB上,点D是AB中点,1,123AC AB AB==.求线段CD长【答案】2 【分析】根据中点的定义以及题意,分别求出线段AD 与线段AC 的长度,即可得出结论. 【详解】①D 为线段AB 的中点,①AD =12AB =12×12=6, ①AC =13AB , ①AC =13×12=4, ①CD =AD -AC =6-4=2.【点睛】本题考查线段中点相关的计算,理解中点的定义,掌握线段中的计算法则是解题关键.37.如图,已知C 、D 两点将线段AB 分成2①3①4三段,点E 是线段BD 的中点,点F 是线段CD 上一点,且2CF DF =,12cm EF =,求线段AB 的长.【答案】36【分析】设线段AC 、CD 、DB 的长度分别为2x ,3x ,4x ,根据题意可用x 表示出DF 、DE 的长,再根据12EF =,即可求出x ,最后即可求出AB 的长.【详解】解:根据题意可设线段AC 、CD 、DB 的长度分别为2x ,3x ,4x ,①2CF DF =, ①133DF x x =⨯=, ①12DE BD =, ①1422DE x x =⨯=. ①EF DF DE =+,①212x x +=,解得:4x =.①24344436AC D DB A C B =⨯+⨯+⨯==++.【点睛】本题考查线段的n 等分点和中点的有关计算.根据题意找出线段之间的数量关系是解答本题的关键. 38.(1)如图,已知线段AB ,请用尺规按下列要求作图:①延长线段AB 到C ,使BC=AB ;①延长线段BA 到D ,使AD=AC .(2)在(1)所作的图中,若点E 是线段BD 的中点,AB=2cm ,求线段AE 的长.【答案】(1)①见解析;①见解析;(2)1cm【分析】(1)①根据题意画出图形即可;①根据题意画出图形即可;(2)首先根据图形求出AC 的长度,进而得出AD 的长度,然后利用中点求出DE 的长度,最后利用AE AD CE =-求解即可. 【详解】(1)①如图,①如图,(2)如图,2cm,AB BC AB ==,4cm AC AB BC ∴=+=,4cm AD AC ∴==,6cm DB AD AB ∴=+=.①点E 是线段BD 的中点, 13cm 2DE DB ∴==, 1cm AE AD CE ∴=-=.【点睛】本题主要考查线段的和与差,掌握线段之间的关系是关键.39.如图,点C 在线段AB 上,AC =6cm ,MB =10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 的长;(2)求线段MN 的长;【答案】(1)7cm ;(2)6.5cm . 【分析】(1)根据线段中点的性质,可得MC 的长,根据线段的和差,可得BC 的长;(2)根据线段中点的性质,可得MC 、NC 的长,根据线段的和差,可得MN 的长. 【详解】解:(1)①AC=6cm ,点M 是AC 的中点, ①132MC AC cm ==, ①1037BC M B M C cm . (2)①N 是BC 的中点, ①1 3.52CNBC cm ①3 3.5 6.5M N M C CN cm .【点睛】本题考查了两点间的距离,熟悉相关性质是解题的关键.40.如图,线段6cm AC =,线段15cm BC =,点M 是AC 的中点,在线段CB 上取一点N ,使得:1:2CN NB =,求MN 的长.【答案】8cm【分析】因为点M 是AC 的中点,则有12MC AM AC ==,又因为:1:2CN NB =,则有13CN BC =,故MN MC NC =+可求.【详解】解:M 是AC 的中点,6AC =cm ,132MC AC ∴==cm , 又因为:1:2CN NB =,15BC =,153NC BC ∴==cm . 8MN MC NC ∴=+=cm ,MN ∴的长为8cm .【点睛】本题考查了两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键,本题点M 是AC 的中点,则有12MC AM AC ==,还利用了两条线段成比例求解. 41.(1)如图,用没有刻度直尺和圆规画图:①点C 是线段AB 处一点,画射线CB ,画直线AC ;①延长线段AB 到E ,使3AE AB =;(2)在(1)的条件下,如果2AB cm =,O 是线段AE 的中点,求线段OB 的长.【答案】(1)①见解析;①见解析;(2)1cm(1)①根据射线和直线的定义作图即可,①作直线AB ,以AB 为半径作圆,圆与直线AB 交点作圆心,即可得;(2)根据延长线的定义以及线段的和差计算即可得. 【详解】解:(1)①如图所示:①如图所示:(2)由图可知2AB cm =,236AE cm =⨯=, 116322OA AE cm ∴==⨯=, 1OB OA AB cm ∴=-=【点睛】本题考查了无刻度直尺和圆规画图,根据线段中点计算线段的长度;掌握好相关的定义,根据线段中点的特性解题是关键.42.如图,已知线段AB =6,延长AB 至C ,使BC =2AB ,点P 、Q 分别是线段AC 和AB 的中点,求PQ 的长.【答案】PQ 的长为6.结合图形、根据线段中点的定义计算. 【详解】解:①BC =2AB ,AB =6,①BC =2×6=12,①AC =AB +BC =6+12=18,①点P 、Q 分别是线段AC 和AB 的中点,①AP =12AC =12×18=9, AQ =12AB =12×6=3, ①PQ =AP -AQ =9-3=6,故PQ 的长为6.【点睛】本题考查了两点间的距离、线段中点的定义,掌握线段的和差的计算方法、中点的定义是解题的关键. 43.尺规作图,已知:线段(),a b a b >,求作:AB a b =+.(保留作图痕迹,不写作法)【答案】见解析【分析】先在射线AM 上依次截取AC =a ,再截取CB =b ,则线段AB =a +b .【详解】解:如图,线段AB 即为所作.【点睛】本复考查了作图-复杂作图:杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.44.如图,延长线段AB 到点C ,使2BC AB =,取AC 的中点D .已知3cm BD =,求AC 的长.【答案】18 【分析】设cm AB x =,则2cm BC x =,先根据线段的和差可得3cm AC x =,再根据线段的中点的定义可得3cm 2CD x =,然后根据线段的和差可得1cm 2BD x =,结合3cm BD =可求出x 的值,由此即可得出答案. 【详解】设cm AB x =,则2cm BC x =,3cm AC AB BC x ∴=+=,点D 是AC 的中点,13cm 22CD AC x ∴==, 1cm 2BD BC CD x ∴=-=,。

直线、射线、线段练习题及答案

直线、射线、线段练习题及答案

直线、射线、线段练习题及答案(七年级上册数学)(附详细答案解析)(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--直线、射线、线段测试题一、选择题1. 下列说法错误的是()A. 平面内过一点有且只有一条直线与已知直线垂直B. 两点之间的所有连线中,线段最短C.经过两点有且只有一条直线D. 过一点有且只有一条直线与已知直线平行2.平面上的三条直线最多可将平面分成()部分A .3 B.6 C . 7 D.93.如果A BC三点在同一直线上,且线段AB=4CM,BC=2CM,那么AC两点之间的距离为()A .2CM B. 6CM C .2 或6CM D .无法确定4.下列说法正确的是()A.延长直线AB到C; B.延长射线OA到C;C.平角是一条直线; D.延长线段AB 到C5.如果你想将一根细木条固定在墙上,至少需要几个钉子()A.一个 B.两个 C.三个 D.无数个6.点P在线段EF上,现有四个等式①PE=PF;②PE=12EF;③12EF=2PE;④2PE=EF;其中能表示点P是EF中点的有()A.4个 B.3个 C.2个 D.1个7. 如图所示,从A地到达B地,最短的路线是().A.A→C→E→B B.A→F→E→B C.A→D→E→B D.A→C→G→E→B8..如右图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是()A .2()a b B .2a b C .a b D .a b9..在直线l上顺次取A、B、C三点,使得AB=5㎝,BC=3㎝,如果O是线段AC的中点,那么线段OB的长度是()A.2㎝ B.㎝ C.㎝ D.1㎝10.如果AB=8,AC=5,BC=3,则()A.点C在线段AB上 B.点B在线段AB的延长线上C.点C在直线AB外 D .点C可能在直线AB上,也可能在直线AB外二、填空题1.若线段AB=a,C是线段AB上的任意一点,M、N分别是AC和CB的中点,则MN=_______.2.经过1点可作________条直线;如果有3个点,经过其中任意两点作直线,可以作______条直线;经过四点最多能确定条直线。

人教版数学四年级上册《线段 直线 射线和角》同步训练(含答案)

人教版数学四年级上册《线段 直线 射线和角》同步训练(含答案)

三角的度量线段直线射线和角一、我知道1.像手电筒、汽车灯和太阳等射出来的光线,都可以近似地看成是()。

2.直线上两点间的一段叫做(),它有()个端点,它是()的一部分。

3. ()没有端点,可以向两端(),()只有一个端点,可以向一端()。

4.从一点引出两条射线所组成的图形叫做(),这两条射线叫做角的()角通常用符号()来表示。

5.经过一点可以画出()条直线,经过两点能画出()条直线。

6左图中有()条线段。

二、对的在括号里打“”错的打“×”。

1.直线比射线长。

()2.直线和射线都是无限长,它们都没有端点。

()3.一条直线的长度可能是10000米。

()4.一条线段可能长300米。

()5.过一点可以画无数条直线。

()6.射线有一个端点,所以不能无限延伸。

()7.射线比直线短一半。

()8.从一点引出两条线段,所组成的图形叫做角。

()三、给下面的图形填上正确的名称。

()()()四、将正确答案的序号填在括号里。

1.小红画了一条25厘米长的()。

①直线②线段③射线2.过两点可以画()。

①一条射线②两条射线③无数条射线3.下图中一共有()条线段。

① 3② 4③ 54.一条直线上的一点把这条直线分成()条射线。

①2②3③45.角有()个顶点。

①1②2③3五、慧眼识图。

1.下面图形哪些是直线?哪些是射线?哪些是线段?将序号填在相应的括号里。

直线有:()射线有:()线段有:()六、我是小画家。

1.画一条比2厘米长的线段。

2.过A、B两点画一条直线。

七、数一数下图中有多少条线段?答案:一、1.射线 2.线段2直线 3.直线无限延伸射线无限延伸 4.角边∠5.无数 1 6 .5二、1.×2.×3.×4.V5.V6.×7.x8.x三、射线线段直线四、1.②2.③·3.② 4.①5.①6.①五、1.3 8 ①②⑥⑦七 42条。

直线射线线段练习题

直线射线线段练习题

直线射线线段练习题一、选择题(每题2分,共20分)1. 下列关于直线、射线、线段的描述,正确的是:A. 直线没有端点B. 射线有一个端点C. 线段有两个端点D. 所有选项都是正确的2. 线段AB的长度为5cm,线段CD的长度为3cm,若线段AB与线段CD 平行,则:A. AB和CD可能相等B. AB一定比CD长C. AB一定比CD短D. AB和CD长度没有关系3. 如果线段MN和线段PQ相交于点O,那么点O是线段MN的:A. 中点B. 端点C. 任意一点D. 无法确定4. 直线l上的点A和点B确定了一条:A. 直线B. 线段C. 射线D. 无法确定5. 射线OA和射线OB的共同点是:A. 点OB. 点AC. 点BD. 没有共同点二、填空题(每题2分,共20分)6. 线段的两个端点分别记作____和____。

7. 如果线段AB和线段CD相交,那么交点可以记作____。

8. 直线可以无限延伸,因此它的长度是____。

9. 射线从一点出发,向一方无限延伸,这个点称为射线的____。

10. 若线段AB的中点为M,则AM的长度等于____。

11. 直线上的任意两点都可以确定一条____。

12. 线段的延长线是一条____。

13. 如果线段AB和线段CD重合,那么它们的长度____。

14. 线段AB和线段CD平行,且线段AB的长度为10cm,则线段CD的长度也是____。

15. 射线OA和射线OB的端点都是____。

三、简答题(每题10分,共30分)16. 描述如何确定一条线段的中点。

17. 解释直线、射线和线段的区别。

18. 如果线段AB和线段CD相交,且交点为E,说明线段AE和线段BE 的关系。

四、计算题(每题15分,共30分)19. 已知线段AB的长度为8cm,线段BC的长度为6cm,线段AC的长度为10cm。

如果线段AB和线段BC在同一直线上,求线段AC的长度。

20. 射线OA和射线OB从同一点O出发,分别向不同方向延伸。

数学四年级上册《线段射线直线和角》练习题(含答案)

数学四年级上册《线段射线直线和角》练习题(含答案)

第三单元《角的度量》第1课时《线段、射线、直线和角》一、单选题1.(2020四上·西安期末)笑笑画了一条长30厘米的()。

A . 直线B . 射线C . 线段2.(2020四上·即墨期末)下图中,一共有()条线段。

A . 6条B . 8条C . 2条3.(2019四上·微山期中)下图中,共有()个角。

A . 3B . 6C . 54.下图中共有()个角。

A . 8B . 7C . 6D . 55.(2019二上·微山期中)有( )条线段。

A . 1B . 2C . 36.下面错误的是()A . 正方形相邻的两条边互相垂直。

B . 两条直线互相平行,这两条直线相等。

C . 长方形是特殊的平行四边形。

D . 任意一个四边形的四个内角的和都是360度。

二、判断题7.(2020二上·汇川期末)画一条5厘米长的线段,可以从尺子上的刻度1画到刻度7。

()8.(2020二上·汕头期末)左图中一共有4条线段。

()9.(2019四上·微山期中)用10倍的放大镜看一个30°的角,结果看到300°的角。

()10.图中有3个角。

()11.把一个15°角放在10倍的放大镜下,看到的是150°的角.()三、填空题12.(2020二上·石碣镇期末)在右图中数一数。

________条线段,________个锐角;________个直角,________个钝角。

13.(2020四上·西安期末)下图中一共有________条线段,________条射线。

14.(2019四上·成武期中)如图,有________条直线,________条射线,________个钝角。

15.(2020二上·长沙期末)有三个点(如下图),连接每两个点画线段,一共可以画出________条线段。

16.画一画,数一数。

直线射线线段练习的题目

直线射线线段练习的题目

直线 射线 线段 角大小比较 角平分线 互余互补一 解答题1. 1. 如图所示,指出图中的直线、射线和线段.如图所示,指出图中的直线、射线和线段.A B C D EF2. 2. 往返于甲、乙两地的客车,中途停靠三站,问:往返于甲、乙两地的客车,中途停靠三站,问: (1)要有多少种不同的票价?(2)要准备多少种车票?3. 3. 如图所示,如图所示,如图所示,C C 是线段AB 的中点,的中点,D D 是线段CB 的中点,的中点,BD BD BD==2cm 2cm,求,求AD 的长.A B C D4. 4. 已知线段已知线段AB AB,反向延长,反向延长AB 至C ,使AC AC==13BC BC,点,点D 为AC 的中点,若CD CD==3cm 3cm,求,求AB 的长.5. 5. 已知线段已知线段AB AB==12cm 12cm,直线,直线AB 上有一点C ,且BC BC==6cm 6cm,,M 是线段AC 的中点,求线段AM 的长.6. 6. 在直线在直线l 上取上取 A A A,,B 两点,使AB=10厘米,再在l 上取一点C ,使AC=2厘米,厘米,M M ,N 分别是AB AB,,AC 中点.求MN 的长度。

7. 7. 已知已知A 、B 、C 、D 四点,如图所示,若过其中的任意两点画直线,能画几条?分别用字母表示每条直线.ABCD8. 8. 如图所示,这是某村的平面示意图,阴影部分是该村的道路,如图所示,这是某村的平面示意图,阴影部分是该村的道路,如图所示,这是某村的平面示意图,阴影部分是该村的道路,A A 处是住宅区,处是住宅区,B B 处是村小学,其他部分都是麦田,每年一到冬季,小学生们就在麦田里走出一条小路AB AB,请你用数,请你用数学原理解释这一现象.A B小学住宅区二、选择题.1、下面几种表示直线的写法中,错误的是(、下面几种表示直线的写法中,错误的是( ))A. A. 直线直线aB. B. 直线直线MaC. C. 直线直线MND. D. 直线直线MOMB==AB AB;④AB AB-BD D. CD==AB A B CD E O P R5、如下图,、如下图,AC AC AC==CD CD==点的线段是点的线段是______________________________.A C D6、画线段AB AB==50mm 50mm,,使得AB AB==10BD 10BD,那么,那么CD CD=,问:43210-2-156-3-4-5-6)数轴上表示不小于-,且不大于个角的另一边都在这一条边的同侧,可看到:∠可看到:∠CGH CGH CGH ∠∠AOB AOB,, 或 ∠AOB AOB ∠∠CGH.2.2.法法2. 2. 度量法:可以用量角器分别量出角的度数,然后加以比较度量法:可以用量角器分别量出角的度数,然后加以比较度量法:可以用量角器分别量出角的度数,然后加以比较. .3. 3. 用三角板拼出用三角板拼出7575°、°、°、151515°、°、°、105105105°的角°的角°的角, , , 并描画出来并描画出来角的和差4. 4. ①① ∠2在∠在∠11内部时,如右图内部时,如右图, , , ∠∠ABD 是∠是∠11与∠与∠22的差,记作:∠记作:∠ABD ABD ABD== -- ;;② ∠2在∠在∠11外部时,如右图∠外部时,如右图∠DEF DEF 是∠是∠11与∠与∠22的和,记作:∠记作:∠DEF DEF DEF== + + ..角平分线5. 5. 角平分线角平分线角平分线: : : 从角的顶点引出的一条射线,可以把这个角分成两个从角的顶点引出的一条射线,可以把这个角分成两个从角的顶点引出的一条射线,可以把这个角分成两个 , , , 这条射这条射线叫做这个角的平分线线叫做这个角的平分线. . . 若若OC 平分∠平分∠AOB AOB AOB,,(如右图如右图))则 有(1) ∠1 1 ∠∠2;(2) ∠1=∠=∠22= ∠∠AOB AOB;;(3) ∠AOB AOB== ∠∠1= ∠∠2.6. 6. 上图中上图中上图中,,若OC 是角平分线是角平分线, , , ∠∠1 = 351 = 35°°,则 ∠AOB AOB ==若OC OC 是∠是∠是∠AOB AOB 的角平分线的角平分线,,则_________ = 2_________ = 2∠∠AOC.7.7.下列说法错误的是下列说法错误的是下列说法错误的是( ) ( )A. A.角的大小与角的边画出部分的长短没有关系;角的大小与角的边画出部分的长短没有关系;B.B.角的大小与它们的度数大小是一致的;角的大小与它们的度数大小是一致的;C. C.角的和差倍分的度数等于它们的度数的和差倍分;角的和差倍分的度数等于它们的度数的和差倍分;D.D.若∠若∠若∠A+A+A+∠∠B>B>∠∠C,C,那么∠那么∠那么∠A A 一定大于∠一定大于∠C C 。

直线、射线、线段练习40题

直线、射线、线段练习40题

直线、射线、线段练习1、已知线段AB=8cm,在直线AB上画线段BC,使BC=3cm,则线段AC= .2、在锯木料时,一般先在木板上画出两点,然后过这两点弹出一条墨线,这是因为.3、往返于A、B两地的客车,中途停靠四个站,共有种不同的票价,要准备种车票.4、如果A、B、C三点在同一直线上,线段AB=3cm,BC=2cm,那么A、C两点之间的距离为___________cm.5、平面内不同的两点确定一条直线,不同的三点最多确定三条直线.若平面内的不同的16个点最多可确定条直线.6、已知A、B、C三点在一条直线上,且线段AB=15cm,BC=5cm.则线段AC= cm.7、点A、B、C在同一条直线上,AB=6,BC=10,D、E分别是AB、BC的中点,DE的长8、已知线段AB=10cm,直线AB上有一点C,且BC=4cm,M是线段BC的中点,则AM的长是cm.9、如图,点A、B、C在直线l上,则图中共有________条线段,有________条射线.10、如图,AB=9,点C、D分别为线段AB(端点A、B除外)上的两个不同的动点,点D始终在点C右侧,图中所有线段的和等于30cm,且AD=3CD,则CD= cm.11、如图所示,点A,B,C,D在同一条直线上,则这条直线上共有线段条.12、两条直线相交有个交点,三条直线相交最多有个交点,最少有个交点.13、点A,B,C在同一条直线上,AB=6cm,BC=2cm,则AC= .14、如图,平面内有公共端点的四条射线OA,OB,OC,OD,从射线OA开始按逆时针方向依次在射线上写出数字2,﹣4,6,﹣8,10,﹣12,….则第16个数应是;“﹣2016”在射线上.15、已知线段AB=6cm,AB所在直线上有一点C, 若AC=2BC,则线段AC的长为cm.16、如图,点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,则线段MN= .17、如图,AB:BC:CD=2:3:4,AB的中点M与CD的中点N的距离是3 cm,则BC=18、已知线段AB,延长AB到C,使BC=AB,D为AC的中点,若AB=9cm,则DC的长为.19、如图,已知线段AB=4,延长线段AB到C,使BC =2AB,点D是AC的中点,则DC的长等于 .20、如图,在自来水株管道AB的两旁有两个住宅小区C,D,现要在住管道上开一个接口P往C,D两小区铺设水管,为节约材料,接口P应开在主管AB的什么位置可以用学过的数学知识来解决这个问题。

【分层作业】3.1 线段直线射线(同步练习) 四年级上册数学同步课时练 (人教版,含答案)

【分层作业】3.1 线段直线射线(同步练习) 四年级上册数学同步课时练 (人教版,含答案)

第三单元角的度量3.1 线段直线射线【基础巩固】一、选择题1.经过一点画射线,可以画()射线。

A.1条B.2条C.无数条2.下列线中,()是直线。

A.B.C.D.3.小丽画了一条12厘米长的()。

A.直线B.线段C.射线4.关于直线、射线、线段,下面说法错误的是()。

A.线段有两个端点,可以测量长度B.过平面上一点可以画无数条射线C.它们的长度从大到小排列是:直线>射线>线段D.过平面上任意两点只能画一条直线5.如图,点1、2、3、4、5在同一条直线上,从探照灯(2点)射出一条光线,当光线穿过3点后,一定不能穿过()点。

A.1 B.4 C.5二、填空题6.在直线、线段和射线中,可以测量长度的是______。

7.通过一个端点,可以画( )条直线,而通过两个端点,可以画( )条直线。

8.上面的图形中,( )是直线,( )是线段,( )是射线。

9.我知道:把线段向一端无限延伸,就得到一条( ).射线只有一个端点.可以用( )表示.手电筒发出的光线就可以看作( ).10.连接两点可以画出很多条线,其中________最短,线段的长度就是这两点间的________.试着体验一下.【能力提升】三、作图题11.请你画出从动物园到笑笑家最近的路。

12.画一画。

(1)画一条直线,使它经过点A。

(2)画出射线AB。

(3)画出线段BC。

四、解答题13.把一根木条用钉子固定在木板上,要求用尽可能少的钉子,至少要用几颗钉子?画出钉子的位置。

14.下图中有几条线段?几条射线?几条直线?【拓展实践】15.涛涛要从艺术楼到教学楼,再到操场。

(1)请你画出涛涛从艺术楼去教学楼,再到操场最近的路。

(2)从艺术楼去教学楼,再到操场最近的距离是186米。

如果涛涛平均每分走62米,从艺术楼沿最近的路先到教学楼再到操场要多少分钟?16.在方队的表演过程中,穿插了丝带造型。

请动手画一画,猜猜是什么图形。

(1)画出直线DG,并从另外三个点中找出与D点的距离与线段DG相同的一个点并连接起来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图1图2直线、射线、线段练习(1)一、填 空1.我们在用玩具枪瞄准时,总是用一只眼对准准星和目标,用数学知识解释为__________________.2. 三条直线两两相交,则交点有_______________个. 3.如图1,AC=DB ,写出图中另外两条相等的线段__________.4.如图2所示,线段AB 的长为8cm ,点C 为线段AB 上任意一点,若M 为线段AC 的中点,N 为线段CB 的中点,则线段MN 的长是_______________.5.已知线段AB 及一点P ,若AP+PB>AB,则点P 在 .6.已知线段AB=10,直线AB 上有一点C,且BC=4,M 是线段AC 的中点,则AM 的长为 .7.下列说法中不正确的有①一条直线上只有两个点;②射线没有端点;③如图,点A 是直线a 的中点; ④射线OA 与射线AO 是同一条射线;⑤延长线段AB 到C ,使AB BC =;⑥延长直线CD 到E ,使DE CD =.8. 如图给出的分别有射线,直线,线段,其中能相交的图形有 个.二、选 择1.下列说法中错误的是( ).A .A 、B 两点之间的距离为3cm B .A 、B 两点之间的距离为线段AB 的长度C .线段AB 的中点C 到A 、B 两点的距离相等D .A 、B 两点之间的距离是线段AB 2.下列说法中,正确的个数有( ).(1)射线AB 和射线BA 是同一条射线 (2)延长射线MN 到C(3)延长线段MN 到A 使NA==2MN (4)连结两点的线段叫做两点间的距离 A .1 B .2 C .3 D .4Aa AB3.同一平面有四点,过每两点画一条直线,则直线的条数是 ( )(A)1条 (B)4条 (C)6条 (D)1条或4条或6条4.如图4,C 是线段AB 的中点,D 是CB 上一点,下列说法中错误的是( ). A .CD=AC-BD B .CD=21BC C .CD=21AB-BD D .CD=AD-BC 5.如果线段AB=13cm,MA+MB=17 cm,那么下面说法中正确的是 ( ).A .M 点在线段AB 上 B .M 点在直线AB 上C .M 点在直线AB 外D .M 点可能在直线AB 上,也可能在直线AB 外 6.如图5,小华的家在A 处,书店在B 处,星期日小明到书店去买书, 他想尽快的赶到书店,请你帮助他选择一条最近的路线( ) ). A .A →C →D →B B .A →C →F →B C .A →C →E →F →B D .A →C →M →B7. 某公司员工分别住在A ,B ,C 三个住宅区,A 区有30人,B 区有15人,C 区有10人,三个区在同一条直线上,如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在( )A.A 区 B.B 区 C.C 区 D.A ,B 两区之间8.已知点A 、B 、C 都是直线l 上的点,且AB=5cm ,BC=3cm ,那么点A 与点C 之间的距离是( ).A .8cmB .2cmC .8cm 或2cmD .4cm 三、想一想1.如图6,四点A 、B 、C 、D ,按照下列语句画出图形: (1)连结A ,D ,并以cm 为单位,度量其长度; (2)线段AC 和线段DB 相交于点O ; (3)反向延长线段BC 至E ,使BE=BC .2.动手操作题:点和线段在生活中有着广泛的应用. 如图7,用7根火柴棒可以摆成图中的“8”.你能去掉其中的若干根火柴棒,摆出其他的9个数字吗?请画出其中的4个来.图5图6图4A B C 100米 200米3.(10分)如图8,C为线段AB的中点,N为线段CB的中点,CN=1cm.求图中所有线段的长度的和.图84.(本题12分)在同一条公路旁,住着五个人,他们在同一家公司上班,如图9,不妨设这五个人的家分别住在点ABDEF位置,公司在C点,若AB=4km,BC=2km,CD=3km,DE=3km,EF=1km,他们全部乘出租车上班,车费单位报销.出租车收费标准是:起步价3元(3km以,包括3km),以后每千米1.5元(不足1km,以1km计算),每辆车能容纳3人.(1)若他们分别乘出租车去上班,公司在支付车费多少元?(2)如果你是公司经理,你对他们有没有什么建议?图96. 如图,在正方形两个相距最远的顶点处逗留着一只苍蝇和一只蜘蛛.①蜘蛛可以从哪条最短的路径爬到苍蝇处?请你画图并说明你的理由?②如果蜘蛛要沿着棱爬到苍蝇处,最短的路线有几条?苍蝇蜘蛛7.图10为中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走,例如:图中“马”所在的位置可以直接走到点A.B等处.若“马”的位置在C处,为了到达D点,请按“马”走的规则,在图10的棋盘上用虚线画出一种你认为合理的行走路线.直线、射线、线段练习(2)一.选择题:1.下列说法中,错误的是().A.经过一点的直线可以有无数条 B.经过两点的直线只有一条C.一条直线只能用一个字母表示 D.线段CD和线段DC是同一条线段2. 已知线段2AC=,3BC=,则线段AB的长度是()A.5 B.1 C.5或1 D.非以上答案3.下列图形中,能够相交的是( ).4. 下列叙述正确的是()①线段AB可表示为线段BA;②射线AB可表示为射线BA;③直线AB可表示为直线BA.A.①②B.①③C.②③D.①②③5. 平面上有三点A,B,C,如果8AB=,5AC=,3BC=,则()A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外6. 如图,13AC AB=,14BD AB=,AE CD=,则CE与AB之比为()A.16B.18C.112D.1167.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程,其中可用公理“两点之间,线段最短”来解释的现象有A.①②B.①③C.②④D.③④二.填空题:8. 直线有个端点,射线有个端点,线段有个端点.9. 经过两点可以作条线段,条射线,条直线.10根据图,填空:⑴线段AD交射线BC于E;线段BA至F;反向延长射线.A C E D B⑵延长线段DC 交 的 于点F ,线段CF 是线段DC 的 线.11 三点A ,B ,C m =,则____AC =. 12. 在一直线上有A ,BC 的中点,若AB m =,BC n =,则用含m ,n MN . 13. 三.解答题:14. 读句子,画图形:⑴直线l 与两条射线OA ,OB 分别交于点C ,点D . ⑵作射线OA ,在OA 上截取点D ,E ,使OD DE =.15. 如图:4AB =cm ,3BC=cm ,如果O 是线段AC 的中点. 求线段OB 的长度.(括号注理由)解:∵ AC= + =7 (cm ), 又∵ O 为AC 的中点,( )∴OC= AC= (㎝),( )∴0.5OB OC BC =-=(cm ).16. 图中A ,B ,C ,D 是四个居民小区,现在为了使居民生活方便,想在四个小区之间建一个超市,最好能使超市距四个小区的距离之和最小.请你来设计,能找到这样的位置P 点吗?如果能,请画出点P .17.(118.如图,23AB BC CD =:::CD 的中点N 的距离是3cm ,则____BC =.A OB CAD CDEF19. 已知线段10AB⑴是否存在一点C,使它到A,B两点的距离之和等于8cm?并试述理由.⑵是否存在一点C,使它到A,B两点的距离之和等于10cm?若存在,它的位置惟一吗?⑶当点C到A,B两点的距离之和等于20cm时,点C一定在直线AB外吗?举例说明.20. 如图8,一圆柱体的底面周长为24cm,高AB为4cm,BC是直径,一只蚂蚁从点A出发沿着圆柱体的表面爬行到点C的最短路程大约是多少?.(图8)AB CA MB N D一、选择题1、如图,△ABC ≌△AEF ,AB =AE ,∠B =∠E ,则对于结论①AC =AF .②∠FAB =∠EAB ,③EF =BC ,④∠EAB =∠FAC ,其中正确结论的个数是( ) A.1个 B.2个 C.3个 D.4个(第1题图) (第3题图) (第4题图) (第5题图) 2、已知MN 是线段AB 的垂直平分线,C 、D 是MN 上任意两点,则∠CAD 与∠CBD 的大小关系是( ) A.∠CAD>∠CBD B.∠CAD=∠CBD C.∠CAD<∠CBD D.与C 、D 无关3、如图,在Rt △ABC 中,∠C=90°,BD 是∠ABC 的平分线,交AC 于点D ,若CD=n ,AB=m ,则△ABD 的面积是( ) A.mn B.21mn C.2mn D.31mn 4、如图,已知AC 平分∠PAQ ,点B ,B ′分别在边AP ,AQ 上,如果添加一个条件,即可推出AB=AB ′,那么该条件可以是( )A 、BB ′⊥AC B 、BC=B ′C C 、∠ACB=∠ACB ′D 、∠ABC=∠AB ′C5、如图,FD ⊥AO 于D ,FE ⊥BO 于E ,下列条件:①OF 是∠AOB 的平分线;②DF=EF ;③DO=EO ;④∠OFD=∠OFE 。

其中能够证明△DOF ≌△EOF 的条件的个数有( ) A.1个 B.2个 C.3个 D.4个 二、填空题6、如图,在△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于F ,若BF=AC ,则∠ABC 的度数是 .7、在△ABC 中,AB=AC ,∠A=50°,AB 的垂直平分线DE 交AC 于点D ,垂足为E ,则∠DBC 的度数是 .8如图,已知点C 是∠AOB 的平分线上一点,点P 、P’分别在边OA 、OB 上。

如果要得到OP=OP’,需要添加以下条件中的某一个即可,请你写出所有可能的结果的序号为____________: ①∠OCP=∠OCP’②∠OPC=∠OP′C;③PC=P′C ; ④PP′⊥OC(第6题图) (第8题图)9如图,在ΔABC 中,BC =5 cm ,BP 、CP 分别是∠ABC 和∠ACB 的角平分线,且PD ∥AB ,PE ∥AC ,则ΔPDE 的周长是___________ cm.A BCPP’APBDECEBAC(第9题图) (第10题图)10、△ABC中,∠C=90°,AD平分∠BAC,交BC于点D。

若DC=7,则D到AB的距离是.三、11、如图,已知方格纸中每个小方格都是相同的正方形,∠AOB画在方格纸上,请在小方格的顶点上标出点P,使点P落在∠AOB的平分线上.(要求:标出至少两个满足条件的点).、12、如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高.求证:AD垂直平分EF.13 已知:如图,CE⊥AB于点E,BD⊥AC于点D,BD、CE交于点O,且BO=CO.求证:O在∠BAC的角平分线上.。

相关文档
最新文档