第六章:控制系统校正

第六章:控制系统校正
第六章:控制系统校正

第六章系统的性能指标与校正

本章目录

6.1 控制系统设计的基本思路

6.2 串联校正装置的结构与特性

6.3 基于频率法的串联校正设计

6.4 基于根轨迹的串联校正设计

小结

本章简介

在本书第一章,曾指出控制理论学习的两大任务是系统的分析和系统的设计。在第二章到第五章,我们从时域和频域两个角度分析了控制系统的稳定性、相对稳定性和及其性能指标。本章考虑如何根据系统的要求或预定的性能指标对控制系统进行分析。

一个控制系统一般可分解为被控环节、控制器环节和反馈环节三个部分,其中被控部分和反馈部分一般是根据实际对象而建立的模型,不可变的,因此根据要求对控制器进行设计是控制系统设计的主要任务。同时需要指出,由于系统设计的目的也是对系统性能的校正,因此控制器(又称补偿器或调节器)的设计有时又称控制系统的校正。

本章内容包括了无源控制器设计、有源控制器设计(PID控制器)两个内容,重点介绍控制器的结构、校正原理和设计方法。

6.1 控制系统设计的基本思路

一般的控制系统均可表示为如图6-1的形式,

是控制系统的不可变部分,即被控对象,

为反馈环节。未校正前,系统不一定能达到理想的控

制要求,因此有必要根据希望的性能要求进行重新设

计。在进行系统设计时,应考虑如下几个方面的问题:

(1)综合考虑控制系统的经济指标和技术指标,这

是在系统设计中必须要考虑的。

(2)控制系统结构的选择。对单输入、单输出系统,一般有四种结构可供选择:前馈校正、串联校正、反馈校正和复合校正,其框图如图6-2。考虑到串联校正比较经济,易于实现,且设计简单,在实际应用中大多采用此校正方法,因此本章只讨论串联校正,典型的校正装置有超前校正、滞后校正、滞后-超前校正和PID校正等装置。

(3)控制器或校正装置的选择。校正装置的物理器件可以有电气的、机械的、液压的和气动的等形式,选择的一般原则是根据系统本身结构的特点、信号的性质和设计者的经验,并综合经济指标和技术指标进行选择。本书我们以电气校正装置作为控制器,详述有源和无源装置的工作原理和设计方法。其思想方法同样适用于其它类型的校正装置设计。

(4)校正手段或校正方法的选择。究竟采用时域还是频域方法,须根据控制系统性能指标的表达方式选择。控制系统的性能指标通常包括动态和静态两个方面。动态性能指标用于反应控制系统的瞬态响应情况,它一般可用时域性能指标和频域指标两

个方面:1)时域性能指标:调整时间

、上升时间

、峰值时间

和最大超调量

等;2)频域性能指标:开环指标包括相位裕量

、增益裕量

;闭环指标包括谐

振峰值

、谐振频率

和频带宽度

等。

在进行系统设计时,若所使用的指标是时域指标,则一般宜用根轨迹法进行设计,使闭环系统的极点重新配置;若所使用的指标是频域指标,宜用频率法(如伯德图或极坐标)进行设计。

最后需要指出,由于电子技术和计算机技术的发展,目前实际系统中大量采用的控制器是有源校正装置,如典型的PID调节器,但正如下文大家将看到的,无源校正与有源校正尽管组成形式有差别,但它们的工作原理是相同的。

图6-2控制系统校正的几种方式

6.2串连校正装置的结构与特性

前面介绍了校正装置的结构形式。为了满足不同系统的控制性能要求,串联校正装置可设计成相位超前校正、相位迟后校正和和相位迟后-超前校正形式。本节首先介绍此三种装置的无源和有源网络结构,然后在此基础上介绍频率校正原理和MATLAB的设计方法。而关于串联校正装置的根轨迹方法则在下一节介绍。

6.2.1 超前校正

如前所述,为满足控制系统的静态性能要求,最直接的方法是增大控制系统的开环增益,但当增益增大到一定数值时,系统有可能变为不稳定,或即使能稳定,其动态性能一般也不会理想。为此,需在系统的前向通道中加一超前校正装置,以实现在开环增益不变的前提下,

系统的动态性能亦能满足设计的要求。本节先讨论超前校正网络的特性,然后分别介绍基于频率响应法的超前校正装置的设计过程。

(一)超前校正装置

(6-1)

式中,

(6-2)

式中,

图6-3分别为无源和有源超前校正网络。对于无源校正装置(a),忽略该网络的输入阻抗和输出阻抗效应,则其传递函数为:

对于有源校正装置(b),其对应的传递函数为:另一

(6-3)

式中

在式(6-3)中,令,则(6-3)可写成如下形式:

(6-4)

上式即为实际的比例微分控制器(PD)的传递函数的表达式。

(二)超前校正装置的极点及频率特性

超前校正装置的零、极点分布如图6-4所示,由于,故的零点总在其极点的右侧。由式(6-1)和式(6-2)可知,在采用超前校正网络时,系统的开环增益会有(或

)倍的衰减。对此,用放大倍数

或()的附加放大器予以补偿。经补偿后,令,

其传递函数,频率特性为:

(6-5)

与式(6-5)对应的幅频特性的表达式分别为:

(6-6)

(6-7)

其相应的极坐标如图6-5。由图可见,超前校正装置的极坐标是一个位于第一象限的半圆,

圆心坐标,半径为。从坐标原点到半圆作切线,它与正实轴的

夹角即为该校正装置的最大超前角,且有:

(6-8)

此最大超前角对应的频率可由式(6-7)得到。令,则有:

(6—9)对式(6-6)的幅频特性取对数坐标,有:

(6-10)

根据式(6—7)、(6—10),可令,利用如下Matkab语句作出它的伯德图,如图6—6所示。

图6—6

alpha=0.1; T=1;

Gc=tf([T,1],[alpha*T,1]);

[x0,y0,w]=Bode(Gc);[x,y]=bode_asymp(Gc,w);

subplot(211),semilogx(w,20*log10(x0(:)),x,y)

subplot(212),semilogx(w,y0(:))

,因而当时,校正网络的相位总是正值。这明输出

由式(6—7)可知,由于

信号在相位上总超前于输入信号一个角度,因而称该校正网络为超前校正。同时,由于当

;当时,,所以超前校正装置又是

一个高通滤波器。

是零点和极点的几何平均值。理论上,最大相位超前

比较图6-4和图6-5可见,

不大于,但实际上,一般超前校正网络的最大相位超前角不大于。如果要得

到大于

的相位超前角,可用两个超前校正网络相串联来实现,并在串联的两个网络之间

加一隔离放大器,以消除它们之间的负载效应。

6.2.2 迟后校正

与超前校正相反,如果一个控制系统具有良好的动态性能,但其静态性能指标较差(如静态误差较大)时,则一般可采用迟后校正装置,使系统的开环增益有较大幅度的增加,而同时又可使校正后的系统动态指标保持原系统的良好状态。

(一) 迟后校正装置

无源的迟后校正装置可由图6—7(a)构成,其传递函数为

(6—11)

式中,。

有源的迟后校正装置由图6-7(b),其传递函数为

(6-12)

等式右边负号可串联一反相器加以抵消,因而(6-12)可改式中,

写为比例积分控制器PI的形式:

(6-13)

(二)迟后校正装置的极点及频率特性

由式(6-11)可分别得到该迟后校正装置的零、极点分布图(6—8)、极坐标图(6—9)、伯德图(6—10)

图6-10

图中

分别为Φ =arcsin

ω

=

比较超前校正装置和迟后校正装置可以发现,迟后校正装置具有如下特点: 1)输出相位总滞后于输入相位,这是校正中必须要避免的; 2)它是一个低通滤波器,具有高频率衰减的作用;

图6-8 图6-9

),使校正后系统剪切频率前移,从而达到增

3)利用它的高频衰减作用(当

大相位裕量的目的。

6.2.3 迟后-超前校正

(一) 迟后-超前校正装置

上图构成了迟后-超前的无源和有源装置,无源校正装置的传递函数为:

(6-14)

上式中,令,且令。同时,上式也可改写成如下形式:

(6-15)

其中前半部分起超前作用,后半部分起迟后作用。

同理,有源校正装置的传递函数为:

(6-16)

显然,有源迟后-超前校正装置的传递函数同时是一个典型的PID控制器,式中:K P为比例系数,T i积分时间常数,T d为微分时间常数。

(二)迟后-超前校正装置的极点及频率特性

根据迟后-超前装置的传递函数,可得到其频率特性:

(6-17)

其对应的幅频特性和相频特性分别为:

(6-18)

图6-14

(6-19)

根据上面二式可分别画出其零、极点分布图、极坐标图、伯德图。从图中看出,因,迟后部分的零极点更靠近原点,使系统的静态性能得到改善。

从图6-13和6-14可以看出当变化时,迟后-超前校正装置起超前作用,而当

变化时,校正装置起迟后作用。由下列Matlab语句可得到其伯德图:

alpha=[0.1:0.1:0.5]; T1=1;T2=5;

Gc=tf([T1,1],[alpha*T1,1])*tf([alpha*T2,i],[T2,1]);

[x0,y0,w]=bode(Gc);[x,y]=bode_asymp(Gc,w);

subplot(211),semilogx(w,20*log10(x0(:)),x,y)

subplot(212),semilogx(w,y0(:))

为:

同时,容易计算相角为零的频率

(6-20)

可见,迟后-超前校正装置是超前装置和迟后装置的组合。

6.3 基于频率法的串联校正设计

6.3.1 超前校正

用频率法对系统进行超前校正的基本原理是:通过所加的校正装置的相位超前特性来增

大系统的相位裕量,改变系统开环频率特性,并要求校正网络最大的相位超前角

出现在系

统新的剪切频率处,使校正后系统具有如下特点:低频段的增益满足稳态精度的要求,中频

段对数幅频特性的 斜率为

,并具有较宽的频带,使系统具有满意的动态性能,

高频段要求幅值迅速衰减,以减少噪声的影响。

用频率法对系统进行串联超前校正的一般步骤可分为:

1)根据稳态误差的要求,确定系统的开环增益K ,并据此画出未校正系统的伯德图,并测出其相位裕量

2)由期望的相位裕量值

,计算超前校正装置应提供的相位超前量 ,即

式中的ε是用于补偿因超前校正装置的引入,使系统的剪切频率增大而导致未校正系统相角迟后量的增加。ε值可以这样估计的:如果未校正系统的开环对数幅频特性在剪切频率处的

斜率为

,一般取

;如果该频段的斜率为

,则取

3)根据所确定的最大相位超前角

,按式(6—8)算出相应的 值,即

处的幅值(参见图6—5)。由未校正系统的对数幅频特性图,

4)计算校正装置在

处的频率,则该频率就是校正后系统的开环剪切频率,即

求得其幅值为

和。

5)确定校正网络的转折频率

,(6—11)

6)画出校正后系统的伯德图,并验算相位裕量是否满足要求?如果不满足,则需增大值,从步骤3)开始重新进行计算,直到满足要求。

串联超前校正有如下特点;

1)这种校正主要对未校正系统中频段的频率特性进行校正,使校正后中频段幅值的斜率,且有足够大的相位裕量。

2)超前校正会使系统瞬态响应的速度变快。由例6—1可知,校正后系统的剪切频率由未校正前的6.3增大到9。这表示校正后系统的频带变宽,瞬态响应的速度变快;但系统抗高频噪声的能力也变差。

3)虽然超前校正一般能较有效地改善系统的动态性能,但当未校正系统的相频特性曲线在剪附近急剧地下降时,若用单级的超前校正网络去校正,收效不大。因为校正后系统

切频率

的剪切频率向高频段移动。在新的剪切频率处,由于未校正系统的相角迟后量过大,因而用单级的超前校正网络难于获得较大的相位裕量。此时可采用多级串联校正。

6.3.2 迟后校正

根据迟后校正网络具有低通滤波器的特性,因而当它与系统的不可变部分串联时,它

对频率特性的低频段影响甚微,但会使系统开环频率特性的中频和高频段增益降低,剪切频率

减小,从而有可能使系统获得足够大的相位裕量。由此可见,迟后校正在一定的条件下,

也能使系统同时满足动态和静态性能的要求。

会减小,频带变窄,瞬

不难看出,迟后校正的不足之处是:校正后系统的剪切频率

态响应速度变慢;同时,在剪切频率

的两个转折频率、比越小越好,但考

应尽可能地减少迟后角。理论上可选取

虑到物理实现上的可行性,一般取~为宜。

根据上述分析,用频率法对系统进行迟后校正的一般步骤为:

1)根据给定静态误差系数的要求,计算系统的开环增益K。并画出未校正系统的伯德图,求出相应的相位裕量和增益裕量。

2)在已作出的相频曲线上寻找一个频率点,要求在该点处的开环频率特性的相角为:

。上式中,γ为系统所要求的相位裕量,ε是补偿

以这一频率作为校正后系统的剪切频率

因迟后网络的引入而在剪切频率

处的幅值等于20lgβ,据此确定迟后网络的β值。据此可保证在剪切

3)设未校正系统在

频率

处,校正后开环系统的幅值为0。

4)选择迟后校正网络中的一个转折频率~,则另一个转折频率为

5)画出校正后系统的伯德图,并求出校正后系统的相位裕量。校核设计指标,如果不满足要求,则可通过改变T值,重新设计迟后校正网络。

6.3.3 迟后-超前校正

如果未校正系统为不稳定,或对校正后系统的动态和静态性能均有较高的要求时,只采用上述的超前校正或迟后校正,难于达到预期的校正效果。此时,宜对系统采用串联迟后—超前校正。

应用频率法设计迟后-超前校正装置,即利用校正装置的超前部分来增大系统的相位裕量,以改善其动态性能,但因加大了带宽,易受高频噪声的影响,降低了系统的抗干扰能力;利用它的迟后部分来改善系统的静态性能,但会恶化系统的动态性能,对系统的相对稳定性不利。因此采用这种校正方式,应合理应用迟后和超前校正各自的优点,克服它们各自的弱点,经多次试探才能成功。

前面我们介绍了基于频率法的串联控制器的顺向设计方法,即依据指标或设计要求,首先选择三类控制器中的一种方式,然后按设计规则进行设计。事实上,若能根据指标设计出

校正后的期望频率特性,则根据:,由校正前后的幅频特性和相频,亦可得到待定的控制器。此法对于最小相位系统尤其有效。

6.3.4基于频率法的Matlab串联校正设计

根据上面对三类控制器频率法设计思路的介绍,可总结出一般性的设计步骤:

(1)根据静态性能指标,设计开环系统的增益,然后求出校正前系统的幅值裕量和相位裕量,并与设计要求比较;

(2)确定校正后期望的剪切频率

,具体值的选取与选择的校正方式(相位超前、

(3)根据待设计的校正装置的形式和转折频率,计算有关参数,进而确定校正装置;

(4)得出校正后系统,并校验是否满足设计要求。不满足,则从(2)重新开始。

但毕竟,控制系统的设计是一项十分麻烦的工作,并需要大量的经验,为此,可借助飞速发展的计算机仿真技术,简化控制系统的设计工作。

本节介绍频率法的MATLAB设计方法,主要利用伯德(Bode)图进行系统的设计,常用的函数有:

Bode—伯德图作图命令;

Margin—求取系统的幅值裕度和相位裕度;

Bode_asymp—伯德图幅频特性的渐近线(自编函数);

Semilogx—半对数作图函数;

Logspace—用于在某个区域中产生若干频点;

Nicols、Mgrid—用于Nicols曲线和等M圆、等N圆的作图命令;

Nyquist—Nyquist曲线作图命令;

Phase、Abs—求取复数行矢量的相角和幅值函数。

这些函数或命令大部分在第五章或第九章作过说明。

结合例6-4介绍采用Matlab进行设计的具体步骤,设计一个补偿器

6.4 基于根轨迹的串联校正设计

与频域法相似,利用根轨迹法进行系统的设计也有两种方法:1)常规方法;2)Matlab方法。Matlab的根轨迹方法允许进行可视化设计,具有操作简单、界面直观、交互性好、设计效率高等优点。目前常用的Matlab设计方法有:1)直接编程法;2)Matlab控制工具箱提供的强大的Rltool工具;3)第三方提供的应用程序,如CTRLLAB等。本节在给出根轨迹的设计思路的基础上,将重点介绍第一、二种方法。

6.4.1 超前校正

关于超前校正装置的用途,在频率校正法中已进行了较详细的叙述,在此不再重复。

利用根轨迹法对系统进行超前校正的基本前提是:假设校正后的控制系统有一对闭环主导极点,这样系统的动态性能就可以近似地用这对主导极点所描述的二阶系统来表征。因此在设计校正装置之前,必须先把系统时域性能的指标转化为一对希望的闭环主导极点。通过校正装置的引入,使校正后的系统工作在这对希望的闭环主导极点处,而闭环系统的其它极点或靠近某一个闭环零点,或远离s平面的虚轴,使它们对校正后系统动态性能的影响最小。

是否采用超前校正可以按如下方法进行简单判断:若希望的闭环主导极点位于校正前系统根轨迹的左方时,宜用超前校正,即利用超前校正网络产生的相位超前角,使校正前系统的根轨迹向左倾斜,并通过希望的闭环主导极点。

(一)根轨迹超前校正原理

设一个单位反馈系统,为系统的不变部分,为待设计的超前校正装置,为

的根轨迹于图6—19上,设点为系统希望的闭环极点,则

附加放大器的增益。绘制

若为校正后系统根轨迹上的一点,必须满足根轨迹的相角条件,即

于是得超前校

正装置提供的

超前角为:

(6—

21)

显然在

已知

样的是

存在的,但它的零点和极点的组合并不唯一,这相当于张开一定角度的剪刀,以

为中心在摆动。若确定

了的位置,即确定了校正装置的参数。下面介绍三种用于确定超前校正网络零点和极

点的方法。

(二)三种确定超前校正装置参数的方法

零极点抵消法

的零点设置在正对希望闭环极点下方的负实轴上,

在控制工程实践中,通常把

或位于紧靠坐标原点的两个实极点的左方,此法一般可使校正后系统的期望闭环极点成为主导极点。

比值α最大化法

能使超前校正网络零点和极点的比值α为最大的设计方法。按照该法去设计的零点和极点,能使附加放大器的增益尽可能地小。

,以为顶点,线段O为边,向左作角γ,角γ的另一边与

以图6—19上的点O和

,点就是所求的一个零点。再以线段为边,向左作角

负实轴的交点

,该角的另一边与负实轴的交点

,点就是所求的一个极点。

根据正弦定理,由图6—18求得

(6—22)

(6—23)

于是有

(6—24)

将夹角γ作为自变量,式(6—24)对γ求导,并令其等于零,即

由上式解得对应于最大α值时的γ角为

(6—25)

被确定后,式(6—25)中的θ和φ均为已知值,因而由上式

不难看出,当希望的闭环极点

可求得γ角,然后由式(6-22)和式(6-23)求得相应的零极点。

幅值确定法

设系统的开环传递函数:

(6-26)

且令超前校正装置的传递函数:

(6-27)

若要求校正后系统的稳态误差系数

,则由上式可首先确定:

(6-28)

确定后,根据根轨迹原理,若为校正后的闭环极点,则它除必须满足相角条

在开环增益

件外,还应满足幅值条件:

(6-29)

上式中。同样根据平面三角形原理,对于

有:

(6-30)

而对于有:

(6-31)

,并由式(6-29)可得:

由上二式消去

(6-32)

根据三角函数性质,上式可写成如下形式:

(6-33)

进而有:

自动控制系统的校正

第五章自动控制系统的校正 本章要点 在系统性能分析的基础上,主要介绍系统校正的作用和方法,分析串联校正、反馈校正和复合校正对系统动、静态性能的影响。 第一节校正的基本概念 一、校正的概念 当控制系统的稳态、静态性能不能满足实际工程中所要求的性能指标时,首先可以考虑调整系统中可以调整的参数;若通过调整参数仍无法满足要求时,则可以在原有系统中增添一些装置和元件,人为改变系统的结构和性能,使之满足要求的性能指标,我们把这种方法称为校正。增添的装置和元件称为校正装置和校正元件。系统中除校正装置以外的部分,组成了系统的不可变部分,我们称为固有部分。 二、校正的方式 根据校正装置在系统中的不同位置,一般可分为串联校正、反馈校正和顺馈补偿校正。 1.串联校正 校正装置串联在系统固有部分的前向通路中,称为串联校正,如图5-1所示。为减小校正装置的功率等级,降低校正装置的复杂程度,串联校正装置通常安排在前向通道中功率等级最低的点上。 图5-1 串联校正 2.反馈校正 校正装置与系统固有部分按反馈联接,形成局部反馈回路,称为反馈校正,如图5-2所示。 3.顺馈补偿校正

顺馈补偿校正是在反馈控制的基础上,引入输入补偿构成的校正方式,可以分为以下两种:一种是引入给定输入信号补偿,另一种是引入扰动输入信号补偿。校正装 置将直接或间接测出给定输入信号R(s)和扰动输入信号D(s),经过适当变换以后,作为附加校正信号输入系统,使可测扰动对系统的影响得到补偿。从而控制和抵消扰动对输出的影响,提高系统的控制精度。 三、校正装置 根据校正装置本身是否有电源,可分为无源校正装置和有源校正装置。 1.无源校正装置 无源校正装置通常是由电阻和电容组成的二端口网络,图5-3是几种典型的无源校正装置。根据它们对频率特性的影响,又分为相位滞后校正、相位超前校正和相位滞后—相位超前校正。 无源校正装置线路简单、组合方便、无需外供电源,但本身没有增益,只有衰减;且输入阻抗低,输出阻抗高,因此在应用时要增设放大器或隔离放大器。 2.有源校正装置 有源校正装置是由运算放大器组成的调节器。图5-4是几种典型的有源校正装 置。有源校正装置本身有增益,且输入阻抗高,输出阻抗低,所以目前较多采用有源图5-2 反馈校正 图5-3 无源校正装置 a)相位滞后 b)相位超前 c)相位滞后-超前

11规则___轮机自动化_第七章_船舶机舱辅助控制系统考试题库

第七章船能机舱辅助控制系统 第二节燃油供油单元自动控制系统 1.当控制器接通柴油模式DO时,斜坡函数加温期间温度控制捋示LED灯“TT()? A定发亮B,闪烁C.熄灭D?无法判断 2控制器EPC-5OB包括()o ①操作面板②电源③主控制板 A.GXD B.①<2)③ c. dXD D. 3控制系统能否对“柴油一垂油J/转换阀进行自动控制 A.能B,不能 C.无法判断D,视惜况决定 4如果没有故障、错误或警告,数码管用不闪烁的符号抬示程序状态,如电源开用“()”,正在扔始化硬件用“()"等。 A? ?I +? B* > 9 0> C? +? > 0> D. 0? >*? 5粘度传感器的如果发生多个故障,高级别的故障()改写较低级别的故障。 A,可以B.不可以 C.有时可以D?无法判断是否可以 6黏度信号保持在最大值的原因可能是()。 A.电流接头扭坏 B. EVT-20故C?空气夹杂在燃油系统中 D.起动期间燃油温度太低 7控制器内置具有()控制规律的软件,可以对重油的粘度或温度进行定值控制。 A.比例积分微分 B.比例微分 C.比例积分 D.以上都不对 8在燃油粘度或温度自动控制系统中,若采用电加热器EHS,则由2个电加热供电单元分别对2个电加热器的燃油进行加热?原因是:()? A.提供足够的加热量,确保燃油盲6够得到加热 B.可以方便地控制加热速度的快慢,需要快速加热时,两个可同时满额工作. C?两个加热器可互为备用,保障了加热器的安全使用 D.以上都正确 9如果调节过程中出现偏遼过大,燃油黏度控制系统都会给出报警伯号吗()。 A?黏度偏差过大会报警,温度偏差过大不会报警 B?温度偏差过大会报警.黏度偏差过大不会报警 C,黏度.温度偏差过大都不会报警 D,黏度、温度偏筮过大都会报警 10在系统新安装后或工作条件改变时,要对系统运行的()进行重新设定和修改,以适应新的需要.A.系数 B.整数C, 大小D.参数11当控制器接通柴;模式DO时,当燃油温度在达到温度设置PW5的39内后,温升斜坡停止,正常温度控制运行.“TT “ 1^)灯()?A?稳定发亮B?闪烁C.熄灭D.无法判断 12 一旦从D0转换为HFO,则EPC-50的控制器可检测到粘度增加,表明重油已经进入系统,那么重油将被开始加热.当温度已经低于重油温度设置值()?€,控制器自动转到粘度调节控制。 A? 2 B? 3 C, 4 D. 5 1 3在系统投入工作之前,要先()。 A?观察比较测啟值与实际值有无异常情况 B.手动检测各电磁阀或电动切换阀是否正常.灵活 旷检査燃油和加热系统冇没冇漏泄或损坏的情况 D?观察EPC-50主扳和粘度检测电路板指示是否正常 14重油改变时,哪些参数是必须改变的0。 ①密度参数Pr23②重油温度设置点参数Pr30;③HFO低温限制值P”2 A.①<§) B.①②③ C.① D.② 15发生了多个故障后,需要读取历史报警列表,EPO50B中的CPU存储了最后的()次报警。A. 16 B. 32 C. 48 D. 64 16在燃油粘度或温度自动控制系统中,若采用电加热器EHS.则由()电加热供电单元分别对2个电加热器进行加热。 个B?2> 1,<> C?3个D, 4个 17如果调寿过'程出现振断则诂要增加参数F&25或Fa27, Fa26或F~28,这些参数的增加会使得系统反映( 消除静養能力(几 A.变慢,减小B,变慢,加强C.加快,减小D?加陕,加强 第三节燃油净油单元自动控制系统 1如果分油机因故障报警,那么在分油机的EPC-50控制爪元土,相应的警报拆示灯就会发出()并不停的闪烁,机舱内同时伴有警报声. A,黄光 B.绿光c红光D,蓝光 2如果中间发生故障或需要停止分油时,可通过按下“SEPARATION/STOP”按钮;实现停止控制。分离设备停止序列对应的()LE叫吾开始闪烁?启动排渣,排渣完成后,停止序11LED等变为稳定的绿色,而分离系统运行对应的緑色LED将熄灭。显示Stop (停止)“A?绿色 B.红色 c.黄色 D.蓝色 3开启水管的供应阀SV15出现泄漏情况或相应的控制回路故障,造成排渣口打开,应()。A.及时校正该泄漏情况B?检査该阀的控制线路 C.检査补偿水系统D?A或B 4补偿水系统中没有水.应当()“ A.检査补偿水系统B?确保任何供应阀均处于开启状态 C?淸洁濾网D?A + B 5.正常“排渣”后,EPC-50根据有关置换水的参数是否人为修改过,来确定程序是进入水流區枝准Ti59进行参数校正,还是准备再次分油,直接进入分离筒“密封”操作Ti62o至Ti75后,系统完成一个工作循环。 A. Ti59, Ti64, Ti75 B. Ti59, Ti62, Tj73 C. Ti59, Ti62, Ti75 D? Ti59, Ti67 / Ti75 6测童电阻R是测绘电桥的一个桥臂,它是安装在所要检测的管路中,离测绘电桥较远。为补偿环境温度变化所产生日獺逞误差,在实际测量电路中往往()? A.把“两线制”接法改为“四士虽制”

第6章控制系统的设计与校正参考答案.doc

习题六 1. 在题图6.1(a )(b)中,实线分别为两个最小相位系统的开环对数幅频特性曲线,图中虚线部分表示采用串联校正后系统的开环对数幅频特性曲线改变后的部分,试问: 1)串联校正有哪几种形式: 2)试指出图(a )、(b)分别采取了什么串联校正方法? 3)图(a )、(b)所采取的校正方法分别改善了系统的什么性能? L (ωL (ω 题图6.1 习题1图 答案:1)、相位超前校正、相位滞后校正、相位-超前校正 2)、图(a)串联相位滞后校正,图(b)串联相位超前校正。 3)、相位滞后校正提高了低频段的增益,可减少系统的误差。相位超前校正改善了系统的稳定性,使剪切频率变大,提高系统的快速性。 2. 单位反馈系统的开环对数幅频特性曲线)(0ωL 如题图6.2所示,采用串联校正,校正装置 的传递函数)1100 )(13.0() 110)(13()(++++=s s s s s G c 题图6.2 习题2图 (1)写出校正前系统的传递函数)(0s G ; (2)在图中绘制校正后系统的对数幅频特性曲线)(ωL ; (3)求校正后系统的截止频率c ω和γ。 解:(1))1100 )(110(100 )0++=s s s s G (2)20)1100 )(13.0() 13(100))()(+++==s s s s s G s G s G c ,)(ωL 曲线见答案图。

(3)10=c ω,?=?--?-+?=6.63100 10arctan 23.010arctan 90310arctan 180γ 题2解图 3. 已知最小相位系统的开环对数幅频特性)(0ωL 和串联校正装置的对数幅频特性)(ωc L 如题图6.3所示。 (1)写出原系统的开环传递函数)(0s G ,并求其相角裕度; (2)写出校正装置的传递函数)(s G c ; (3)画出校正后系统的开环对数幅频特性曲线)(ωL ,并求其相角裕度。 1 题图6.3 习题3图 解:(1))105.0)(1.0(100 )(0+= s s s s G ?-=4.33γ (2)1 1001 125.3)(++=s s s G c (3)) 1100)(105.0)(11.0() 1125.3(100)()()(0++++==s s s s s s G s G s G c 125.3=c ω ?=9.57γ

自控实验报告-系统校正

西安邮电学院 自动控制原理 实验报告

实验三系统校正 一,实验目的 1.了解和掌握系统校正的一般方法。 2.熟悉掌握典型校正环节的模拟电路构成方法。二.实验原理及电路 1.未校正系统的结构方框图 图1 2.校正前系统的参考模拟方框图 图2 3.校正后系统的结构方框图

图3 4.校正后系统的模拟电路图 图4 三.实验内容及步骤 1.测量未校正系统的性能指标 (1)按图2接线 (2)加入阶跃电压观察阶跃响应曲线,并测出超调量和调节时间,并将曲线和参数记录出来。 2.测量校正系统的性能指标 (1)按图4接线

(2)加入阶跃电压,观察阶跃响应曲线,并测出超调量以及调节时间。 四.实验结果 未校正系统 理论值σ% = 60.4% t s = 3.5s 测量值σ% = 60% t s = 2.8s 校正后系统 理论值σ% = 16.3% t s = 0.35s 测量值σ% = 5% t s = 0.42s

五.心得体会 在课本的第六章,我们学习了线性系统的校正方法,包括串联校正、反馈校正以及复合校正等矫正方法,相对于之前学习的内容,理解起来相对难一些,做起实验来也不容易上手。试验期间,遇到了很多难题,反复调整修改甚至把连接好的电路全都拆了重连,最后终于完成了实验。相对于之前的几次试验,这次实验师最让人头疼的,幸好之前积累了些经验,才使得我们这次实验的时候不至于手忙脚乱,但是也并不轻松。 虽然遇到的困难很多,但是我们却收获的更多,线性系统的校正是自动控制原理中重要的部分,通过理论课的学习,再加上实验课的实践,我终于对这些内容有个系统的理解。

基于Matlab的自动控制系统设计与校正

自动控制原理课程设计 设计题目:基于Matlab的自动控制系统设计与校正

目录 目录 第一章课程设计内容与要求分析 (1) 1.1设计内容 (1) 1.2 设计要求 (1) 1.3 Matlab软件 (2) 1.3.1基本功能 (2) 1.3.2应用 (3) 第二章控制系统程序设计 (4) 2.1 校正装置计算方法 (4) 2.2 课程设计要求计算 (4) 第三章利用Matlab仿真软件进行辅助分析 (6) 3.1校正系统的传递函数 (6) 3.2用Matlab仿真 (6) 3.3利用Matlab/Simulink求系统单位阶跃响应 (10) 3.2.1原系统单位阶跃响应 (10) 3.2.2校正后系统单位阶跃响应 (11) 3.2.3校正前、后系统单位阶跃响应比较 (12) 3.4硬件设计 (13) 3.4.1在计算机上运行出硬件仿真波形图 (14) 课程设计心得体会 (16) 参考文献 (18)

第一章 课程设计内容与要求分析 1.1设计内容 针对二阶系统 )1()(+= s s K s W , 利用有源串联超前校正网络(如图所示)进行系统校正。当开关S 接通时为超前校正装置,其传递函数 11 )(++-=Ts Ts K s W c c α, 其中 132R R R K c += ,1 )(13243 2>++=αR R R R R ,C R T 4=, “-”号表示反向输入端。若Kc=1,且开关S 断开,该装置相当于一个放 大系数为1的放大器(对原系统没有校正作用)。 1.2 设计要求 1)引入该校正装置后,单位斜坡输入信号作用时稳态误差1.0)(≤∞e ,开环截止频率ωc’≥4.4弧度/秒,相位裕量γ’≥45°; 2)根据性能指标要求,确定串联超前校正装置传递函数; 3)利用对数坐标纸手工绘制校正前、后及校正装置对数频率特性曲线; c R R

自动控制原理_线性系统串联校正

或施二佥2罟 W口h;u 】Institute of Technology 线性系统串联校正 专业班级______________________________________ 学号_________________________________________

姓名_________________________________________ 任课老师______________________________________ 学院名称___________ 电气信息学院_____________

、实验目的 1 ?熟练掌握用MATLAB?句绘制频域曲线。 2 ?掌握控制系统频域范围内的分析校正方法。 3 ?掌握用频率特性法进行串联校正设计的思路和步骤 、基础知识 控制系统设计的思路之一就是在原系统特性的基础上,对原特性加以校正, 使之达到要求的性能指标。最常用的经典校正方法有根轨迹法和频域法。而常用 的串联校正装置有超前校正、滞后校正和超前滞后校正装置。本实验主要讨论在 MATLAB^境下进行串联校正设计。 、实验内容 校正装置,使校正后系统的静态速度误差系数 K v 20s 1 ,相位裕量 50°,增 益裕量 20lgK g 10dB 解:(1)根据题意,则校正后系统的增益 K 20, 20 取 GS ) E 求出现系统的相角裕度 num0=20; den 0=[1,1,0]; w=0.1:1000; [gm1,pm1,wcg1,wcp1]=margi n(num 0,de n0); [mag1,phase1]=bode (num 0,de n0 ,w); [gm1,pm1,wcg1,wcp1] margi n(num 0,de n0) 运行结果: ans = Inf 12.7580 Bode 图如下: 1 ?某单位负反馈控制系统的开环传递函数为 G(s) 中,试设计一超前 Inf 4.4165

控制系统的校正

基于MATLAB 控制系统的校正设计 1实验目的 ① 掌握串联校正环节对系统稳定性的影响。 ② 了解使用SISO 系统设计工具(SISO Design Tool )进行系统设计。 2 设计任务 串联校正是指校正元件与系统的原来部分串联,如图1所示。 图1串联校正图 图中,()c G s 表示校正部分的传递函数,()o G s 表示系统原来前向通道的传递函数。()()111c aTs G s a Ts +=>+,为串联超前校正;当()()111o aTs G s a Ts +=<+,为串联迟后校正。 我们可以使用 SISO 系统设计串联校正环节的参数,SISO 系统设计工具(SISO Design Tool )是用于单输入单输出反馈控制系统补偿器设计的图形设计环境。通过该工具,用户可以快速完成以下工作:利用根轨迹方法计算系统的闭环特性、针对开环系统 Bode 图的系统设计、添加补偿器的零极点、设计超前/滞后网络和滤波器、分析闭环系统响应、调整系统幅值或相位裕度等。 (1)打开 SISO 系统设计工具 在 MATLAB 命令窗口中输入 sisotool 命令, 可以打开一个空的 SISO Design Tool , 也可以在 sisotool 命令的输入参数中指定 SISO Design Tool 启动时缺省打开的模型。注意先在 MATLAB 的当前工作空间中定义好该模型。如图 2 所示。

图2 SISO系统的图形设计环境 (2)将模型载入 SISO设计工具 通过file/import命令,可以将所要研究的模型载入SISO设计工具中。点击该菜单项后,将弹出Import System Data对话框,如图3所示。 图3 Import System Data对话框 (3)当前的补偿器(Current Compensator) 图2中当前的补偿器(Current Compensator)一栏显示的是目前设计的系统补偿器的结构。缺省的补偿器增益是一个没有任何动态属性的单位增益,一旦在跟轨迹图和Bode图中添加零极点或移动曲线,该栏将自动显示补偿器结构。(4)反馈结构 SISO Design Tool 在缺省条件下将补偿器放在系统的前向通道中,用户可以通过“+/-”按钮选择正负反馈,通过“FS”按钮在如下图4几种结构之间进行切换。

实验4 控制系统校正

实验4 控制系统的校正 1、主要内容 控制系统的校正及设计上机实验 2、目的与要求 熟悉应用 MATLAB 软件设计系统的基本方法 熟悉应用 SISO Design Tool 进行系统设计的基本方法 通过学习自行设计完成一个二阶系统串联校正设计任务 3、重点与难点: 自行设计完成一个二阶系统串联校正设计任务 自行设计完成一个二阶系统并联校正设计任务 一、实验目的 1、掌握串联校正环节对系统稳定性的影响; 2、了解使用 SISO 系统设计工具(SISO Design Tool )进行系统设计。 二、设计任务 串联校正是指校正元件与系统的原来部分串联,如图 1 所示。 图 中 ,()c G s 表 示 校 正 部 分 的 传 递 函 数 , 0()G s 表 示 系 统 原 来 前 向 通 道 的 传 递 函 数 。 当 1()(1)1c aTs G s a Ts +=>+时,为串联超前校正;当1()(1)1c aTs G s a Ts +=<+时,为串联迟后校正。 我们可以使用 SISO 系统设计串联校正环节的参数,SISO 系统设计工具(SISO Design Tool )是用于单输入单输出反馈控制系统补偿器设计的图形设计环境。通过该工具,用户可以快速完成以下工作:利用根轨迹方法计算系统的闭环特性、针对开环系统 Bode 图的系统设计、添加补偿器的零极点、设计超前/滞后网络和滤波器、分析闭环系统响应、调整系统幅值或相位裕度等。 (1)打开 SISO 系统设计工具 在 MA TLAB 命令窗口中输入 sisotool 命令,可以打开一个空的 SISO Design Tool ,也可以在 sisotool 命令的输入参数中指定 SISO Design Tool 启动时缺省打开的模型。注意先在 MATLAB 的当前工作空间中定义好该模型。如图 2 为一个 DC 电机的设计环境。 (2)将模型载入 SISO 设计工具 通过 file/import 命令,可以将所要研究的模型载入 SISO 设计工具中。点击该菜单项后,将弹出 Import System Data 对话框,如图 3 所示。 (3)当前的补偿器(Current Compensator ) 图 2 中当前的补偿器(Current Compensator )一栏显示的是目前设计的系统补偿器的结构。缺省的补偿器增益是一个没有任何动态属性的单位增益,一旦在跟轨迹图和 Bode 图中添加零极点或移动曲线,该栏将自动显示补偿器结构。

第6章控制系统的设计习题解答共6页

第6章 控制系统的设计 6.1 学习要点 1 控制系统校正的概念,常用的校正方法、方式; 2 各种校正方法、方式的特点和适用性; 3各种校正方法、方式的一般步骤。 6.2 思考与习题祥解 题6.1 校正有哪些方法?各有何特点? 答:控制系统校正有根轨迹方法和频率特性方法。 根轨迹法是一种直观的图解方法,它显示了当系统某一参数(通常为开环放大系数)从零变化到无穷大时,如何根据开环零极点的位置确定全部闭环极点的位置。因此,根轨迹校正方法是根据系统给定的动态性能指标确定主导极点位置,通过适当配置开环零极点,改变根轨迹走向与分布,使其通过期望的主导极点,从而满足系统性能要求。 频率特性是系统或元件对不同频率正弦输入信号的响应特性。频域特性简明地表示出了系统各参数对动态特性的影响以及系统对噪声和参数变化的敏感程度。因此,频率特性校正方法是根据系统性能要求,通过适当增加校正环节改变频率特性形状,使其具有合适的高频、中频、低频特性和稳定裕量,以得到满意的闭环品质。由于波德图能比较直观的表示改变放大系数和其他参数对频率特性的影响,所以,在用频率法进行校正时,常常采用波德图方法。 系统校正要求通常是由使用单位和被控对象的设计单位以性能指标的形式提出。性能指标主要有时域和频域两种提法。针对时域性能指标,通常用根轨迹法比较方便;针对频域性能指标,用频率法更为直接。根轨迹法是一种直接的方法,常以超调量%δ和调节时间s t 作为指标来校正系统。频域法是一种间接的方法,常以相位裕量()c γω和速度误差系数v k 作为指标来校正系统。 题6.2 校正有哪些方式?各有何特点? 答:校正有串联校正方式和反馈校正方式。 校正装置串联在系统前向通道中的连接方式称为串联校正。校正装置接在系统的局部反馈通道中的连接方式称为反馈校正。如图6.1所示。 图6.1 串联校正和反馈校正 串联校正方式因其实现简单而最为常见。反馈校正除能获得串联校正类似的校正效果外,还具有串联校正所不具备的特点:(1)在局部反馈校正中,信号从高能级被引向低能级,因此不需要经过放大;(2)能消除外界扰动或反馈环内部系统参数波动对系统控制性能的影响,提供系统更好的抗干扰能力。 题6.3 串联超前、串联滞后与串联滞后–超前校正各有何适应条件? 答: (1)串联超前校正通常是在满足稳态精度的条件下,用来提高系统动态性能的一种校正方法。从波德图来看,为满足控制系统的稳态精度要求,往往需要增加系统的

温度控制系统校正环节设计

题 目: 温度控制系统校正环节设计 初始条件: 传递函数为) )(s/)(s .(s/K KG(s)121150+++= 的三阶系统描述了一个 典型的温度控制系统。用超前补偿和滞后补偿设计满足给定性能指标的补偿环节。 要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写 等具体要求) (1) 设计一个超前补偿环节,使系统满足9=P K 和相角裕度 25≥PM 的 性能指标; (2) 画出系统在(1)校正前后的奈奎斯特曲线和波特图 (3) 设计滞后补偿环节,使系统满足9=P K 和相角裕度 40≥PM 的性能 指标; (4) 画出系统在(3)校正前后的奈奎斯特曲线和波特图; (5) 用Matlab 画出上述每种情况的阶跃响应曲线,并根据曲线分析系统 的动态性能指标; (6) 对上述任务写出完整的课程设计说明书,说明书中必须写清楚分析 计算的过程,并包含Matlab 源程序或Simulink 仿真模型,说明书的格式按照教务处标准书写

时间安排: 指导教师签名: 年 月 日 系主任(或责任教师)签名: 年 月 日 温度控制系统校正环节设计 1 无源超前校正和无源滞后校正的原理 1.1 无源滞后网络校正的原理 无源滞后网路电路图如下: 1 R 图1-1无源滞后网络电路图 如果信号源的内部阻抗为零,负载阻抗为无穷大,则滞后网络的传递函数为 s T s Ts Ts s U s U s G c 11 1 1)()()(12++ ? =++==ααα

分度系数 时间常数 图1-2无源滞后网络特性图 由图可知,滞后网络在: T 1 <ω时,对信号没有衰减作用; T T a 11<<ω时,对信号有积分作用,呈滞后特性; T 1 >ω时,对信号衰减作用为a lg 20,a 越小,这种衰减作用越强; 最大滞后角,发生在aT T 1 1与几何中心,称为最大滞后角频率,计算公式为: a T w m 1= b b m +-=11arcsin ? 采用无源滞后网络进行串联校正时,主要利用其高频幅值衰减的特性,以降低系统的开环截止频率,提高系统的相角裕度。 在设计中力求避免最大滞后角发生在已校系统开环截止频率''c ω附近。如图1-2所示,选择滞后网络参数时,通常使网络的交接频率1/(a T )远小于''c ω一般取1/(a T )=''c ω/10 10 10 10 10 10 101010 C R R T R R R )(12 1 212 +=<+=α1 ,1.0a ==T

(完整word版)自动控制原理系统校正部分习题

自动控制原理第六章系统校正部分习题 一.选择题 1. 在Bode图中反映系统动态特性的是()。 A.低频段B.中频段C.高频段D.无法反映 2. 开环传递函数,当k增大时,闭环系统()。 A.稳定性变好,快速性变差B.稳定性变差,快速性变好 C.稳定性变好,快速性变好D.稳定性变差,快速性变差 3. 若已知某串联校正装置的传递函数为,则它是一种()。 A.相位滞后校正B.相位滞后超前校正 C.微分控制器D.积分控制器 4. 引入串联滞后校正将使系统()。 A.稳态误差减小B.高频相应加强 C.幅穿频率后移D.相位裕量减小 5. 一个系统的稳态性能取决于()。 A.系统的输入B.系统的输出 C.系统本身的结构与参数D.系统的输入及系统本身的结构参数6. 串联校正环节,是()。 A.相位超前校正B.相位滞后校正 C.增益调整D.相位滞后-超前校正 7. 串联超前校正的作用是()。 A.相位裕量增大B.相位裕量减小 C.降低系统快速性D.不影响系统快速性 8. 串联滞后校正的作用是()。 A.高通滤波B.降低稳态精度 C.降低系统快速性D.使带宽变宽 9. 在对控制系统稳态精度无明确要求时,为提高系统的稳定性,最方便的是()。 A.减小增益B.超前校正

C.滞后校正D.滞后-超前 10. 一般为使系统有较好的稳定性,希望相位裕量为()。 A.0 ~ 15°B.15° ~ 30° C.30° ~ 60°D.60° ~ 90° 选择题答案:1.B 2.B 3.C 4. A 5.D 6.B 7.A 8.C 9.A 10.C 二.是非题 1. PI控制是一种相位超前校正方式。() 2. 串联超前校正可以使系统幅穿频率下降,获得足够的相位裕量。() 3. 相位裕量是开环频率特性幅度穿频率处的相角加90°。() 4. PID校正装置的传递函数为。() 5. 对最小相位系统来说,开环对数幅频特性曲线低频段的形状取决于系统的开环增益和积分环节的个数。() 6. 若已知某串联校正装置的传递函数为,则它是一种滞后-超前校正装置。 ()7. 增大系统开环增益,将使系统控制精度降低。() 8. 若已知某串联校正装置的传递函数为,则它是一种滞后-超前校 正。() 9. 在系统中串联PD调节器,能影响系统开环幅频特性的高频段。() 10. 相位超前校正装置的奈奎斯特曲线是45°弧线。() 是非题答案:1.F 2.F 3. F 4. T 5. T 6. F 7. F 8.T 9. T 10. F 三.填空题 1.串联校正有___________校正、____________校正和________________校正。 2.系统的开环传递函数为,若输入为斜坡函数,要求系统的稳态误差为 ,则K应为________________。 3.进行串联超前校正前的幅穿频率与校正后系统的幅穿频率的关系,通常是 ______________。 4.已知某串联校正装置的传递函数为,则它是一种____________控制器。

控制系统的校正范本

控制系统的校正

基于MATLAB 控制系统的校正设计 1实验目的 ① 掌握串联校正环节对系统稳定性的影响。 ② 了解使用SISO 系统设计工具(SISO Design Tool )进行系统设 计。 2 设计任务 串联校正是指校正元件与系统的原来部分串联,如图1所示。 图1串联校正图 图中,()c G s 表示校正部分的传递函数,()o G s 表示系统原来前向通道的传递函数。()()111c aTs G s a Ts += >+,为串联超前校正;当()()111o aTs G s a Ts +=<+,为串联迟后校正。 我们能够使用 SISO 系统设计串联校正环节的参数,SISO 系统设计工具(SISO Design Tool )是用于单输入单输出反馈控制系统补偿器设计的图形设计环境。经过该工具,用户能够快速完成以下工作:利用根轨迹方法计算系统的闭环特性、针对开环系统 Bode 图的系统设计、添加补偿器的零极点、设计超前/滞后网络和滤波器、分析闭环系统响应、调整系统幅值或相位裕度等。 (1)打开 SISO 系统设计工具

在MATLAB命令窗口中输入sisotool命令,能够打开一个空的SISO Design Tool,也能够在sisotool命令的输入参数中指定SISO Design Tool启动时缺省打开的模型。注意先在MATLAB的当前工作空间中定义好该模型。如图 2 所示。 图2 SISO系统的图形设计环境 (2)将模型载入 SISO设计工具 经过file/import命令,能够将所要研究的模型载入SISO设计工具中。点击该菜单项后,将弹出Import System Data对话框,如图3所示。

自动控制原理校正课程设计4

自动控制原理校正课程设计4

课程名称自动控制原理 院部名称机电工程学院 专业电气工程及其自动化班级 指导教师

金陵科技学院教务处制 目录 设计任务 (3) 设计要求 (3) 设计步骤 (3) 未校正前系统的性能分析 (3) 1.1开环增益 K (3) 1.2校正前系统的各种波形图 (4) 1.3由图可知校正前系统的频域性能指标 (7) 1.4特征根 (8) 1.5判断系统稳定性 (8) 1.6分析三种曲线的关系 (8) 1.7求出系统校正前动态性能指标及稳态误差 (8) 1.8绘制系统校正前的根轨迹图 (9) 1.9绘制系统校正前的Nyquist图 (9) 校正后的系统的性能分析 (10) 2.1滞后超前校正 (10) 2.2校正后系统的各种波形图.. (11) 2.3由图可知校正后系统的频域性能指标 (14) 2.4特征根 (14) 2.5判断系统稳定性 (14) 2.6分析三种曲线的关系 (15) 2.7求出系统校正后动态性能指标及稳态误差 (15)

2.8绘制系统校正后的根轨迹图和Nyquist 图 (15) 心得体会 ..............................................18 主要参考文献. (19) 一、设计任务: 已知单位负反馈系统的开环传递函数0 ()(0.11)(0.011) K G S S S S =++,试用频率 法设计串联滞后——超前校正装置。 (1)使系统的相位裕度045γ> (2)静态速度误差系数250/v K rad s ≥ (3)幅值穿越频率30/C rad s ω≥ 二、设计要求: (1)首先,根据给定的性能指标选择合适的校正方式对原系统进行校正,使其满足工作要求。要求程序执行的结果中有校正装置传递函数和校正后系统开环传递函数,校正装置的参数T ,α等的值。 (2)利用MATLAB 函数求出校正前与校正后系统的特征根,并判断其系统 是否稳定,为什么? (3)利用MATLAB 作出系统校正前与校正后的单位脉冲响应曲线,单位阶跃响应曲线,单位斜坡响应曲线,分析这三种曲线的关系?求出系统校正前与校正后的动态性能指标σ%、tr 、tp 、ts 以及稳态误差的值,并分析其有何变化? (4)绘制系统校正前与校正后的根轨迹图,并求其分离点、汇合点及与虚轴交点的坐标和相应点的增益K * 值,得出系统稳定时增益K * 的变化范围。绘制系统校正前与校正后的Nyquist 图,判断系统的稳定性,并说明理由? (5)绘制系统校正前与校正后的Bode 图,计算系统的幅值裕量,相位裕量,幅值穿越频率和相位穿越频率。判断系统的稳定性,并说明理由? 三、设计步骤: 开环传递函数0 ()(0.11)(0.011) K G S S S S = ++ 1、未校正前系统的性能分析

相关文档
最新文档