2013高考精选专题七解析几何

合集下载

2013年高考新课标全国卷数学考前(文)解析几何样题(18页,Word版,含解析)

2013年高考新课标全国卷数学考前(文)解析几何样题(18页,Word版,含解析)

2013年高考新课标全国卷数学考前(文)解析几何样题适用地区:河南、山西、新疆、宁夏、吉林、黑龙江、内蒙古、河北、云南、青海、西藏、甘肃、贵州. 一、选择题:1.(2012年高考新课标全国卷文科4)设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上一点,12PF F ∆是底角为30 的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34 ()D 452. (2012年高考新课标全国卷文科10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =;则C 的实轴长为( )()A ()B()C 4 ()D 83..(2012年高考全国卷文科10)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )454.(2012年高考新课标全国卷文科20)(本小题满分12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点.(I)若∠BFD=90°,△ABD的面积为42,求p的值及圆F的方程;(II)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.评析:考察直线、抛物线定义及与园的综合知识,考察解析与平面几何的综合,要求准确画出图形,结合图形观察思考,题型新颖,出题巧妙,无模型可套。

但运算量不大。

5.(2011年高考新课标全国卷文科20)(本小题满分12分)在平面直角坐标系xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上 (Ⅰ)求圆C 的方程;(Ⅱ)若圆C 与直线0x y a -+=交与A ,B 两点,且OA OB ⊥,求a 的值。

2013高考数学 解题方法攻略 解析几何 理

2013高考数学 解题方法攻略 解析几何 理

解析几何问题的题型与方法一.复习目标:1. 能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程出发推导出直线方程的其他形式,斜截式、两点式、截距式;能根据已知条件,熟练地选择恰当的方程形式写出直线的方程,熟练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了.2.能正确画出二元一次不等式(组)表示的平面区域,知道线性规划的意义,知道线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念,能正确地利用图解法解决线性规划问题,并用之解决简单的实际问题,了解线性规划方法在数学方面的应用;会用线性规划方法解决一些实际问题.3. 理解“曲线的方程”、“方程的曲线”的意义,了解解析几何的基本思想,掌握求曲线的方程的方法.4.掌握圆的标准方程:222)()(r b y a x =-+-(r >0),明确方程中各字母的几何意义,能根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径,掌握圆的一般方程:022=++++F Ey Dx y x ,知道该方程表示圆的充要条件并正确地进行一般方程和标准方程的互化,能根据条件,用待定系数法求出圆的方程,理解圆的参数方程cos sin x r y r θθ=⎧⎨=⎩(θ为参数),明确各字母的意义,掌握直线与圆的位置关系的判定方法.5.正确理解椭圆、双曲线和抛物线的定义,明确焦点、焦距的概念;能根据椭圆、双曲线和抛物线的定义推导它们的标准方程;记住椭圆、双曲线和抛物线的各种标准方程;能根据条件,求出椭圆、双曲线和抛物线的标准方程;掌握椭圆、双曲线和抛物线的几何性质:范围、对称性、顶点、离心率、准线(双曲线的渐近线)等,从而能迅速、正确地画出椭圆、双曲线和抛物线;掌握a 、b 、c 、p 、e 之间的关系及相应的几何意义;利用椭圆、双曲线和抛物线的几何性质,确定椭圆、双曲线和抛物线的标准方程,并解决简单问题;理解椭圆、双曲线和抛物线的参数方程,并掌握它的应用;掌握直线与椭圆、双曲线和抛物线位置关系的判定方法. 二.考试要求:(一)直线和圆的方程1.理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。

2013年湖南高考—解析几何

2013年湖南高考—解析几何

2013年湖南高考数学必考点题型热点预测与分析命题热点五 解析几何高考对解析几何的考查主要包括以下内容:直线与圆的方程、圆锥曲线等,在高考试卷中一般有1~2个客观题和1个解答题,其中客观题主要考查直线斜率、直线方程、圆的方程、直线与圆的位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,解答题则主要考查直线与椭圆、抛物线等的位置关系问题,经常与平面向量、函数与不等式交汇等,考查一些存在性问题、证明问题、定点与定值、最值与范围问题等,解析几何试题的特点是思维量大、运算量大,所以应加强对解析几何重点题型的训练.预测1. 如果圆22(3)(1)1x y ++-=关于直线:l 410mx y +-=对称,则直线l 的斜率等于————————————.解析:依题意直线410mx y +-=经过点(3,1)-,所以3410m -+-=,1m =,于是直线斜率为14k =-.动向解读:本题考查直线方程与斜率、圆的方程、对称等基本问题,这是解析几何的基础内容,是高考的重点内容,一般以选择题、填空题的形式考查,有时也间接考查,与圆锥曲线的内容综合起来进行考查.预测2. 已知双曲线221916xy-=的左右焦点分别是12,F F ,P 点是双曲线右支上一点,且212||||PF F F =,则三角形12P F F 的面积等于——————————.解析:由已知可得3a =,12||210F F c ==,而12||||26PF PF a -==,所以12||16,||10PF PF ==,又12||10F F =,所以可得三角形12P F F 的面积等于116482S =⨯⨯=.动向解读:本题考查双曲线的定义、三角形面积的计算等问题,是一道综合性的小题.尽管高考对双曲线的考查要求不高,但对于双曲线的定义、离心率、渐近线等知识点的考查却常考常新,经常会命制一些较为新颖的考查基础知识的小题目.解答这类问题要善于运用双曲线的定义,善于运用参数间的关系求解.预测 3.已知椭圆22221(0)x y a b ab+=>>,,M N 是椭圆上关于原点对称的两点,P 是椭圆上任意一点,且直线P M P N 、的斜率分别为12k k 、,若1214k k =,则椭圆的离心率为A.12B.2C.2D .3解析:设0000(,),(,),(,)P x y M x y N x y --,则00120,y y y y k k x x x x -+==-+,依题意有220001222y y y y y y k k x x x x x x -+-=⋅=-+-.又因为,M N 在椭圆上,所以22220022221,1x y x y abab+=+=,两式相减得22220220x x y y ab--+=,即2220222y y b x x a-=--,所以2214b a=,即22214a c a-=,解得2e =故选C.动向解读:本题考查椭圆的离心率问题,这是高考的热点内容,这类问题的特点是:很少直接给出圆锥曲线的方程等数量关系,而是提供一些几何性质与几何位置关系,来求离心率的值或取值范围.解决这类问题时,首先应考虑运用圆锥曲线的定义获得必要的数量关系或参数间的等量关系,其次是根据题目提供的几何位置关系,确定参数,,a b c 满足的等式或不等式,然后根据,,a b c 的关系消去参数b ,从而可得到离心率的值或取值范围.预测4.已知椭圆22)(y c x +-10)(22=+++yc x 的短轴长为b 2,那么直线03=++cy bx 截圆122=+yx 所得的弦长等于____________.解析:由椭圆定义知210a =,所以5a =,于是22225b c a +==,圆122=+y x 的圆心到直线03=++cy bx的距离等于335d ==,故弦长等于85=.动向解读:本题考查椭圆定义、椭圆标准方程、直线与圆的位置关系等问题,是一道多知识点的综合性小题,这正体现了高考数学命题所追求的“在知识交汇点处命题”的原则.值得注意的是:本题中椭圆方程没有直接给出,而是要借助椭圆的定义进行分析求解,才能得到有关的参数值.预测5. (理科)已知椭圆2221(08xy b b+=<<的左、右焦点分别为F 1和F 2 ,以F 1 、F 2为直径的圆经过点M (0,b ).(1)求椭圆的方程;(2)设直线l 与椭圆相交于A ,B 两点,且0MA MB ⋅=.求证:直线l 在y 轴上的截距为定值.解析:(1)由题设知b c =,又a =2b c ==,故椭圆方程为22184xy+=;(2)因为(0,2)M ,所以直线l 与x 轴不垂直.设直线l 的方程为y kx m =+,1122(,),(,)A x y B x y .由22184x yy kx m ⎧+=⎪⎨⎪=+⎩得222(21)4280k x km x m +++-=, 所以2121222428,2121km m x x x x k k -+=-=++,又0MA MB ⋅=,所以1122(,2)(,2)0x y x y -⋅-=,即1212122()40x x y y y y +-++=,121212()()2()40x x kx m kx m kx m kx m +++-++++=,整理得221212(1)(2)()(2)0k x x k m x x m ++-++-=,即22222284(1)(2)()(2)02121m km k k m m k k -++--+-=++,因为2m ≠,所以2222(1)(2)4(21)(2)0k m k m k m ++-++-=, 展开整理得320m +=,即23m =-.直线l 在y 轴上的截距为定值23-.预测6. 已知椭圆12222=+by ax (0>>b a )的右焦点为2(3,0)F ,离心率为e .(Ⅰ)若2e =,求椭圆的方程;(Ⅱ)设直线y kx =与椭圆相交于A ,B 两点,,M N 分别为线段22,AF BF 的中点. 若坐标原点O 在以M N 为直径的圆上,且2322≤<e ,求k 的取值范围.解:(Ⅰ)由题意得32c c a=⎧⎪⎨=⎪⎩a =………………2分结合222a b c =+,解得212a =,23b =. ………………3分所以,椭圆的方程为131222=+yx. ………………4分(Ⅱ)由22221,,x ya b y kx ⎧+=⎪⎨⎪=⎩得222222()0b a k x a b +-=.设1122(,),(,)A x y B x y .所以2212122220,a bx x x x b a k-+==+, ………………6分依题意,O M O N ⊥,易知,四边形2O M F N 为平行四边形,所以22AF BF ⊥, ………………7分 因为211(3,)F A x y =- ,222(3,)F B x y =-,所以222121212(3)(3)(1)90F A F B x x y y k x x ⋅=--+=++=. ………………8分 即222222(9)(1)90(9)a a k a k a --++=+-, ………………9分将其整理为 42224242188********a a k a aa a-+==---+-. ………………10分因为2322≤<e,所以a ≤<21218a ≤<. ………………11分所以218k ≥,即(,]44k ∈-∞-+∞ .预测7. 已知椭圆2222:1(0)x y C a b ab+=>>的离心率为3e =,以原点为圆心,椭圆短半轴长为半径的圆与直线20x y -+=相切,,A B 分别是椭圆的左右两个顶点, P 为椭圆C 上的动点.(Ⅰ)求椭圆的标准方程;(Ⅱ)若P 与,A B 均不重合,设直线P A 与P B 的斜率分别为12,k k ,证明:12k k 为定值;(Ⅲ)M 为过P 且垂直于x 轴的直线上的点,若O P O Mλ=,求点M 的轨迹方程,并说明轨迹是什么曲线.解:(Ⅰ)由题意可得圆的方程为222x y b +=, ∵直线20x y -+=与圆相切,∴d b ==,即b =,又3c e a==,即a =,222a b c =+,解得a =1c =,所以椭圆方程为22132xy+=.(Ⅱ)设000(,)(0)P x y y ≠,(0)A,0)B ,则2200132x y +=,即2200223y x =-,则1k =,2k =即2220012222000222(3)2333333x x yk k x x x --⋅====----,∴12k k 为定值23-.(Ⅲ)设(,)M x y,其中[x ∈.由已知222O P O Mλ=及点P 在椭圆C 上可得2222222222633()x xx x yx y λ+-+==++,整理得2222(31)36x y λλ-+=,其中[x ∈.①当3λ=26y =,所以点M的轨迹方程为y x =≤≤,轨迹是两条平行于x 轴的线段;②当3λ≠2222166313xyλλ+=-,其中[x ∈,当03λ<<时,点M 的轨迹为中心在原点、实轴在y轴上的双曲线满足x ≤≤的部分;当13λ<<时,点M 的轨迹为中心在原点、长轴在x轴上的椭圆满足x ≤≤的部分;当1λ≥时,点M 的轨迹为中心在原点、长轴在x 轴上的椭圆.预测8.已知椭圆(222:13x yE a a+=>的离心率12e =. 直线x t =(0t >)与曲线E 交于 不同的两点,M N ,以线段M N 为直径作圆C ,圆心为C . (1) 求椭圆E 的方程;(2) 若圆C 与y 轴相交于不同的两点,A B ,求A B C ∆的面积的最大值.(1)解:∵椭圆()222:133x yE a a+=>的离心率12e =,∴12a=. …… 2分解得2a =. ∴ 椭圆E 的方程为22143xy+=. …… 4分(2)解法1:依题意,圆心为.由22,1,43x t x y =⎧⎪⎨+=⎪⎩ 得221234t y -=. ∴ 圆C的半径为2r =. …… 6分∵ 圆C 与y 轴相交于不同的两点,A B ,且圆心C 到y 轴的距离d t =,∴02t <<,即07t <<.∴弦长||A B ===. …… 8分∴A B C ∆的面积12S =⋅ …… 9分)1=)221272t +-≤7=. …… 12分=7t =时,等号成立.∴ A B C ∆的面积的最大值为7. …… 13分解法2:依题意,圆心为.由22,1,43x t x y =⎧⎪⎨+=⎪⎩ 得221234t y -=.∴ 圆C的半径为2r =. …… 6分∴ 圆C 的方程为222123()4tx t y --+=.∵ 圆C 与y 轴相交于不同的两点,A B ,且圆心C 到y 轴的距离d t =,∴02t <<,即07t <<.在圆C 的方程222123()4tx t y --+=中,令0x =,得2y =±,∴弦长||AB =∴A B C ∆的面积12S =⋅)=)221272t +-≤7=.=7t =时,等号成立.∴ A B C ∆的面积的最大值为7.预测9. 已知抛物线)0(2:2>=p py xC ,其焦点F 到准线的距离为21。

2013高考数学各省题目分类整理:解析几何基础

2013高考数学各省题目分类整理:解析几何基础

2013高考:解析几何基础【2013高考题组】(一)圆锥曲线基本概念问题1、(2013北京,理6)若双曲线22221x y a b-= )A 、2y x =±B 、y =C 、12y x =± D 、2y x =±2、(2013北京,文7)双曲线221y x m-=的充分必要条件是( )A 、12m > B 、1m ≥ C 、1m > D 、2m >3、(2013北京,文9)若抛物线22y px =的焦点坐标为(1,0),则p = ;准线方程为 。

4、(2013全国大纲,文8)已知1(1,0)F -,2(1,0)F 是椭圆C 的两个焦点,过2F 且垂直于x 轴的直线交C 于A 、B 两点,且3AB =,则C 的方程为( )A 、2212x y += B 、22132x y += C 、22143x y += D 、22154x y +=5、(2013全国课标I ,文理4)已知双曲线2222:1(0,0)x y C a b a b-=>>,则C 的渐近线方程是( ) A 、14y x =± B 、13y x =± C 、12y x =± D 、y x =±6、(2013全国课标I ,理10)已知椭圆2222:1(0)x y E a b a b +=>>的右焦点为(3,0)F ,过F 的直线交E 于A 、B 两点,若AB 的中点坐标为(1,1)-,则E 的方程为( )A 、2214536x y += B 、2213627x y += C 、2212718x y += D 、221189x y +=7、(2013全国课标II ,文5)设椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为1F 、2F ,P 是C 上的点,且212PF F F ⊥,1230PF F ∠=°,则C 的离心率为( )A 、6B 、13C 、12D 、38、(2013全国课标II ,理11)设抛物线2:2(0)C y px p =>的焦点为F ,点M 在C 上,5MF =,若以MF 为直径的圆过点(0,2),则C 的方程为( ) A 、24y x =或28y x = B 、22y x =或28y x = C 、24y x =或216y x = D 、22y x =或216y x =9、(2013江苏,3)双曲线221169x y -=的两条渐近线的方程为 。

2013年高考数学复习专题系列-----《解析几何》部分-推荐下载

2013年高考数学复习专题系列-----《解析几何》部分-推荐下载

所截得弦为 AB ,其中点设为 P ,则该直线的斜率与该弦的中点与原点的斜率之积为常数,
即 kl AkPO
【证明】设
椭圆上,所以满足
两式相减得,


b2 a2
A( x1 ,
;(利用“点差法”证明,过程如下)
y1), B(x2 ,
x12 x22 a2

x12 a2
x22 a2

为 d ,圆的半径为 r ,则 (1) d r 直线与圆相交 直线与圆有两个公共点; (2) d r 直线与圆相离 直线与圆无公共点; (3) d r 直线与圆相切 直线与圆有且只有一个公共点;
【方法二】代数法:把直线的方程圆的方程联立方程组,消去其中一个未知数得到关于另外一 个数的未知数的一元二次方程,则
的直线方程为 (D1 D2 )x (E1 E2 ) y (F1 F2 ) 0 ;
13、 若直线与圆相交,设弦长为 l ,弦心距为 d ,半径为 r ,则 l 2 r2 d 2
14、 直线与圆的位置关系的判断: 【方法一】几何法:根据圆心与直线的距离与半径的大小关系进行判断;设圆心到直线的距离
18、 在椭圆中,如果一个三角形的两个顶点是焦点 F1, F2 ,另一个顶点 P 在椭圆上,称该三角
形为焦点三角形,则三角形 F1PF2
其中 b 是短半轴的长;
b2 a2
的周长为定值等于 2a
19、 在双曲线中,如果一个三角形的两个顶点是焦点 F1, F2 ,另一个顶点 P 在椭圆上,称该三
b2 角形为焦点三角形,则面积等于 tan F1PF2
且切线长为 (x0 a)2 ( y0 b)2 r2
11、 若二元二次方程 Ax2 By2 Cxy Dx Ey F 0( A 0, B 0) 表示圆,则满足

2013年高考解析几何大题的研究

2013年高考解析几何大题的研究

s l n + c os O a ,


1一 c o s 0 ’b 丑 P 一 1一c o s 0 ‘
告 ・ 告 ・
, .
S l n co s f = —

CO S
还 可 证 得 恒 等 式 2 ( 号 专 一

+ 1,
一 l
( 1 I ) 2 m 一 = ÷ .
本文将 给出该题的一般情形 的结论 : 定理 1 点A ( 一a , 0 ) , B ( a , 0 ) , D( O , b ) 是二 次曲
线 厂:





告 0 :1 ( a>0 , b>0 ) 上的 定点, 点P ( ,
a, s i n O— c o s O a , s i n O b 删 一 1一 c 0 s 0 ’b几 丑 尸一 1二c o s
图 1
点 , 设B P的斜率为 k , MN的斜率为 m . 证明: 2 m —k为定值.
还可证得恒等式2 ( 1 一 号 旦 l ) =


丢: 0 1 ( 口 > 6 > 0 ) 经 过 点 P ( 1 , 3 二 ) , 离 心 率 e : 二 1 ,
告= 1 a > 0 , 6 > 0 ) 上, 又 设 定 点A ( 一 口 , 0 ) , B ( a ,

直线 Z 的方程为 =4 .

0 ) , D( O , 一 b ) , 直线 D 尸与 轴交 于点 N, 直线A D与 B P 交 于 点 M, 直 线 MN, 曰 P 的 斜 率 分 别 为 删, I j } 丑 P , 则

Y ) ( x y≠0 ) 是 曲线 F上的动点 , 设直线 D P与 轴交 于 点 N, 直线 A D与 J P交于点 M, 设 直线 MN, P的斜率

2013年高考真题解析分类汇编(文科数学)7:立体几何

2013年高考真题解析分类汇编(文科数学)7:立体几何

2013年高考解析分类汇编7:立体几何一、选择题1 .(2013年高考重庆卷(文8))某几何体的三视图如题(8)所示,则该几何体的表面积为( )A .180B .200C .220D .240【答案】D【解析】本题考查三视图以及空间几何体的表面积公式。

由三视图可知该几何体是个四棱柱。

棱柱的底面为等腰梯形,高为10.等腰梯形的上底为2,下底为8,高为4,腰长为5。

所以梯形的面积为284202+⨯=,梯形的周长为282520++⨯=。

所以四棱柱的表面积为2022010240⨯+⨯=,选D.2 .(2013年高考课标Ⅱ卷(文9))一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )(A)(B)(C)(D)【答案】A【解析】在空间直角坐标系中,先画出四面体O ABC -的直观图,以zOx 平面为投影面,则得到正视图(坐标系中红色部分),所以选A.3 .(2013年高考课标Ⅰ卷(文11))某几何函数的三视图如图所示,则该几何的体积为( )A .168π+B .88π+C .1616π+D .816π+【答案】A【解析】由三视图可知,该几何体的下部分是平放的半个圆柱,圆柱的底面半径为2,圆柱的高为4。

上部分是个长方体,长方体的棱长分别为2,2,4.所以半圆柱的体积为212482ππ⨯⨯⨯=,正方体的体积为22416⨯⨯=,所以该几何体的体积为168π+,选A.4.(2013年高考大纲卷(文11))已知正四棱锥1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于( )A .23BCD .13【答案】A【解析】如图,因为BD ⊥平面ACC 1A 1,所以平面ACC 1A 1⊥平面BDC 1,在Rt △CC 1O 中,过C 作CH ⊥C 1O 于H ,连结DH ,则∠CDH 即为所求,令a AB =,显然2223aCH a ⨯===,所以223sin3aCDHa∠==,故选A.5 .(2013年高考四川卷(文2))一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台【答案】D【解析】由三视图可知,该几何体为圆台.6 .(2013年高考浙江卷(文5))已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3B.100 cm3C.92cm3D.84cm3【答案】B【解析】此图的直观图是一个底面边长为6和3,高为6的长方体截去一个角,对应三棱锥的的三条侧棱上分别为3,4,4.如图。

2013高考真题数学理科分类 解析几何 李远敬整理

2013高考真题数学理科分类  解析几何  李远敬整理

2013高考真题数学理科分类 解析几何 李远敬整理一.求曲线的方程1.(山东9)过点)1,3(作圆1)1(22=+-y x 的两条切线,切点分别为B A ,,则直线AB 的方程为.A 032=+-y x .B 032=--y x .C 034=--y x .D 034=-+y x2.(新课标2,11)设抛物线:C )0(22>=p px y 的焦点为,F 点M 在C 上,5=MF ,若以MF 为直径的圆过点)2,0(,则C 的方程.A x y 42=或x y 82= .B x y 22=或x y 82= .C x y 42=或x y 162= .D x y 22=或x y 162=3.(新课标1,4)已知双曲线:C 12222=-by a x (0,0>>b a )的离心率为25,则双曲线C 的渐近线为.A x y 41±= .B x y 31±= .C x y 21±= .D x y ±=4.(新课标1,10)已知椭圆:E )0(12222>>=+b a by a x 的右焦点为)0,1(F ,过点F 的直线交椭圆于B A ,两点,若AB 的中点坐标为)1,1(-,则E 的方程为.A 1364522=+y xB 1273622=+y xC 1182722=+y xD 191822=+y x 5.(北京6)若双曲线12222=-by a x 的离心率为3,在其渐近线方程为.A x y 2±= .B x y 2±= .C x y 21±= .D x y 22±=6.(广东7)已知中心在原点的双曲线C 的右焦点为)0,3(F 离心率等于23,则C 的方程是( )A .15422=-y xB .15422=-y xC .15222=-y x D .15222=-y x 7.(辽宁20)如图,抛物线y x C 4:21=,)0(2:22>-=p py x C 点),(00y x M 在抛物线2C上,过M 作1C 的切线,切点为B A ,(M 为原点O 时,B A ,重合于O )。

2013高考数学试题分类汇编——解析几何

2013高考数学试题分类汇编——解析几何

(2013上海卷)22.(3分+5分+8分)如图,已知曲线221:12x C y -=,曲线2:||||1C y x =+,P 是平面上一点,若存在过点P 的直线与12,C C 都有公共点,则称P 为“C 1—C 2型点”. (1)在正确证明1C 的左焦点是“C 1—C 2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);(2)设直线y kx =与2C 有公共点,求证||1k >,进而证明原点不是“C 1—C 2型点”; (3)求证:圆2212x y +=内的点都不是“C 1—C 2型点”.(2013四川卷)20.(本小题满分13分) 已知椭圆C :22221,(0)x y a b a b+=>>的两个焦点分别为12(1,0),(1,0)F F -,且椭圆C 经过点41(,)33P .(Ⅰ)求椭圆C 的离心率;(Ⅱ)设过点(0,2)A 的直线l 与椭圆C 交于M 、N 两点,点Q 是线段MN 上的点,且222211||||||AQ AM AN =+,求点Q 的轨迹方程. (2013上海春季卷)28.已知椭圆C 的两个焦点分别为1(10)F -,、2(1 0)F ,,短轴的两个端点分别为12 B B 、 (1)若112F B B ∆为等边三角形,求椭圆C 的方程;(2)若椭圆C 的短轴长为2,过点2F 的直线l 与椭圆C 相交于 P Q 、两点,且11F P F Q ⊥,求直线l 的方程。

(2013上海春季卷)已知抛物线24C y x =:的焦点为F 。

(1)点 A P 、满足2AP FA =- 。

当点A 在抛物线C 上运动时,求动点P 的轨迹方程;(2)在x 轴上是否存在点Q ,使得点Q 关于直线2y x =的对称点在抛物线C 上?如果存在,求所有满足条件的点Q 的坐标;如果不存在,请说明理由。

(2013安徽卷)18.(本小题满分12分) 设椭圆2222:11x y E a a +=-的焦点在x 轴上(Ⅰ)若椭圆E 的焦距为1,求椭圆E 的方程;(Ⅱ)设12,F F 分别是椭圆的左、右焦点,P 为椭圆E 上的第一象限内的点,直线2F P交y 轴与点Q ,并且11F P FQ ⊥,证明:当a 变化时,点p 在某定直线上。

2013年高考数学(理)真题分类解析汇编7.立体几何

2013年高考数学(理)真题分类解析汇编7.立体几何

2013年高考数学(理)真题分类解析汇编7:立体几何一、选择题1 .(2013年高考新课标1(理))如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为() A .35003cm π B .38663cm π C .313723cm πD .320483cm π 【答案】A【天利解析】设正方体上底面所在平面截球得小圆M , 则圆心M 为正方体上底面正方形的中心.如图.设球的半径为R ,根据题意得球心到上底面的距离等于(R ﹣2)cm ,而圆M 的半径为4,由球的截面圆性质,得R 2=(R ﹣2)2+42, 解出R=5,所以根据球的体积公式,该球的体积V===.故选A .2 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥ 【答案】D【天利解析】ABC 是典型错误命题,选D .3 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知正四棱柱1111ABCD A B C D -中12AA AB =,则CD 与平面1BDC 所成角的正弦值等于()A .23B .3C .3D .13【答案】A【天利解析】设AB=1,则AA 1=2,分别以的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系, 如下图所示: 则D (0,0,2),C 1(0,1,0),B (1,1,2),C (0,1,2),=(1,1,0),=(0,1,﹣2),=(0,1,0),设=(x ,y ,z )为平面BDC 1的一个法向量,则,即,取=(﹣2,2,1),设CD 与平面BDC 1所成角为θ,则sin θ=||=,故选A .4 .(2013年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为()A .168π+B .88π+C .1616π+D .816π+ 【答案】A【天利解析】三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4. 所以长方体的体积=4×2×2=16, 半个圆柱的体积=×22×π×4=8π 所以这个几何体的体积是16+8π; 故选A .5 .(2013年高考湖北卷(理))一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( ) A .1243V V V V <<< B .1324V V V V <<<C .2134V V V V <<<D .2314V V V V <<<【答案】C【天利解析】本题考查三视图以及空间几何体的体积。

2013年高考理科数学分章节汇总----解析几何

2013年高考理科数学分章节汇总----解析几何

解析几何1.设y kx z +=,其中实数y x ,满足⎪⎩⎪⎨⎧≤--≥+-≥-+04204202y x y x y x ,若z 的最大值为12,则实数=k __2.在平面直角坐标系xOy 中,M为不等式组:2x y 20x 2y 103x y 80--≥⎧⎪+-≥⎨⎪+-≤⎩,所表示的区域上一动点,则直线OM 斜率的最小值为 C(A )2 (B )1 (C ) 13-(D ) 12-3.已知a >0,x ,y 满足约束条件()133x x y y a x ⎧≥⎪+≤⎨⎪≥-⎩,若z=2x+y 的最小值为1,则a=(A) 14(B) 12(C)1 (D)24.设F 为抛物线x y C 4:2=的焦点,过点)0,1(-P 的直线l 交抛物线C 于两点B A ,,点Q 为线段AB 的中点,若2||=FQ ,则直线的斜率等于______5.如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点。

若四边形21BF AF 为矩形,则2C 的离心率是 A.2 B.3 C.23 D.26 6.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB则p =(A) 1(B)32(C) 2(D) 37.已知圆()()221:231C x y -+-=,圆()()222:349C x y -+-=,,M N 分别是圆12,C C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为( )A 、4 B1 C、6-【答案】:A8.设抛物线y 2=3px(p>0)的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C 的方程为(A )y 2=4x 或y 2=8x (B )y 2=2x 或y 2=8x(C )y 2=4x 或y 2=16x (D )y 2=2x 或y 2=16x9.抛物线24y x =的焦点到双曲线2213y x -=的渐近线的距离是( )(A )12 (B) (C )1 (D10.抛物线C1:y= 12p x2(p >0)的焦点与双曲线C2: 2213x y -=的右焦点的连线交C1于第一象限的点M.若C1在点M 处的切线平行于C2的一条渐近线,则p=D11.过点(3,1)作圆(x-1)2+y2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为 (A )2x+y-3=0 (B )2x-y-3=0 (C )4x-y-3=0 (D )4x+y-3=012.抛物线22(0)x py p =>的焦点为F ,其准线与双曲线22133x y -=相交于,A B 两点,若ABF ∆为等边三角形,则P =13.过点引直线l 与曲线y =A,B 两点,O 为坐标原点,当∆AOB 的面积取最大值时,直线l 的斜率等于A.y EB BC CD=++3 B.3- C.3±14.已知椭圆2222:1(0)x y C a b a b +=>>的左焦点为,F C 与过原点的直线相交于,A B 两点,4,.10,6,cos ABF ,5AF BF AB AF C e ==∠=连接若则的离心率=15.已知双曲线C :22221x y a b -=(0,0a b >>)的离心率为C 的渐近线方程为A .14y x =±B .13y x =±C .12y x =± D .y x =± 16.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A 、B两点。

解析几何高考题及答案

解析几何高考题及答案

3(7619(0,)74F ⨯519(,0)73F ⨯2(1,)74⨯323(0,)74F ⨯3,)7解析几何初步2013年高考题精编一、直线及其方程(一)平面直角坐标系中的基本公式1 .(2013年辽宁(理))已知点()()()30,0,0,,,.ABC ,O A b B a a ∆若为直角三角形则必有( )A .3b a =B .31b a a=+C .()3310b a b a a ⎛⎫---= ⎪⎝⎭D .3310b a b a a-+--= (2012年高考(大纲理))正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC上,37AE BF ==,动点P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为 ( )A .16B .14C .12D .10答案B【命题意图】本试题主要考查了反射原理与三角形相似知识的运用.通过相似三角形,来确定反射后的点的落的位置,结合图像分析反射的次数即可.【解析】如图,易知3(,0)7E .记点F 为1F ,则13(1,)7F 由反射角等于入射角知,44173-⨯,得25(,1)73F ⨯又由531734-⨯⨯得323(0,)74F ⨯,依此类推,42(1,)74F ⨯、519(,0)73F ⨯、619(0,)74F ⨯、73(,1)7F .由对称性知,P点与正方形的边碰撞14次, 可第一次回到E 点.法二:结合已知中的点E,F 的位置,进行作图,推理可知,在反射的过程中,直线是平行的,那么利用平行关系,作图,可以得到回到EA 点时,需要碰撞14次即可. (二)直线的方程1.(2013年新课标Ⅱ卷(理))已知点(1,0),(1,0),(0,1)A B C -,直线(0)y ax b a =+>将△ABC 分割为面积相等的两部分,则b 的取值范围是( )A .(0,1)B .1(1)2 ( C) 1(1]3D . 11[,)32(2012年高考(浙江理))设a ∈R,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】当a =1时,直线l 1:x +2y -1=0与直线l 2:x +2y +4=0显然平行;若直线l 1与直线l 2平行,则有:211a a =+,解之得:a =1 or a =﹣2.所以为充分不必要条件. 二、圆的方程及其应用 (一)圆的方程:(二)点与圆、直线与圆、圆与圆之间的那些事儿1.(2013年山东(理))过点(3,1)作圆22(1)1x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .230x y +-=B .230x y --=C 430x y --=D .430x y +-=2.(2012年高考(天津理))设m ,n R ∈,若直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,则+m n 的取值范围是( )A .[1B .(,1)-∞∞UC .[2-D .(,2)-∞-∞U 【答案】D【命题意图】本试题主要考查了直线与圆的位置关系,点到直线的距离公式,重要不等式,一元二次不等式的解法,并借助于直线与圆相切的几何性质求解的能力.【解析】∵直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,∴圆心(1,1)到直线的距离为d ,所以21()2m n mn m n +=++≤,设=t m n +,则21+14t t ≥,解得(,2)t ∈-∞-∞U . 3.(2012年高考(重庆理))对任意的实数k,直线y=kx+1与圆222=+y x 的位置关系一定是( )A .相离B .相切C .相交但直线不过圆心D .相交且直线过圆心【答案】C【解析】圆心(0,0)C 到直线10kx y -+=的距离为11d r =<<=,且圆心(0,0)C 不在该直线上.法二:直线10kx y -+=恒过定点(0,1),而该点在圆C 内,且圆心不在该直线上,故选C. 【考点定位】此题考查了直线与圆的位置关系,涉及的知识有:两点间接距离公式,点与圆的位置关系,以及恒过定点的直线方程.直线与圆的位置关系利用d 与r 的大小为判断.当0d r ≤<时,直线与圆相交,当d r =时,直线与圆相切,当d r >时,直线与圆相离.4.(2012年高考(陕西理))已知圆22:40C x y x +-=,l 过点(3,0)P 的直线,则 ( )A .l 与C 相交B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能解析: 22304330+-⨯=-<,所以点(3,0)P 在圆C 内部,故选A.(2012年高考(天津理))如图,已知AB 和AC 是圆的两条弦.过点B 作圆的切线与AC 的延长线相交于点D ,过点C 作BD 的平行线与圆相交于点E ,与AB 相交于点F ,=3AF ,=1FB ,3=2EF ,则线段CD 的长为______________. 【答案】43【命题意图】本试题主要考查了平面几何中直线与圆的位置关系,相交弦定理,切割线定理,相似三角形的概念、判定与性质.【解析】∵=3AF ,=1FB ,3=2EF ,由相交弦定理得=AF FB EF FC ⋅⋅,所以=2FC ,又∵BD ∥CE,∴=AF FC AB BD ,4==23AB BD FC AF ⋅⨯=83,设=CD x ,则=4AD x ,再由切割线定理得2=BD CD AD ⋅,即284=()3x x ⋅,解得4=3x ,故4=3CD .5.(2012年高考(浙江理))定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线C 1:y =x 2+a 到直线l :y =x 的距离等于C 2:x 2+(y +4) 2=2到直线l :y =x 的距离,则实数a =______________. 【答案】94【解析】C 2:x 2+(y +4) 2=2,圆心(0,—4),圆心到直线l :y =x 的距离为:d ==,故曲线C 2到直线l :y =x的距离为d d r d '=-==另一方面:曲线C 1:y =x 2+a ,令20y x '==,得:12x =,曲线C 1:y =x 2+a 到直线l :y =x 的距离的点为(12,14a +),94d a '===⇒=6.(2012年高考(江苏))在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上D至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是____. 【答案】43. 【考点】圆与圆的位置关系,点到直线的距离【解析】∵圆C 的方程可化为:()2241x y -+=,∴圆C 的圆心为(4,0),半径为1. ∵由题意,直线2y kx =-上至少存在一点00(,2)A x kx -,以该点为圆心,1为半径的圆与圆C 有公共点;∴存在0x R ∈,使得11AC ≤+成立,即min 2AC ≤. ∵min AC 即为点C 到直线2y kx =-,2≤,解得403k ≤≤. ∴k 的最大值是43. 7 .(2013年江苏卷)如图,在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l ,设圆C的半径为,圆心在上.(1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程;(2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围.。

2013年高考必备解析几何详解

2013年高考必备解析几何详解

(安徽)双曲线x y 222-=8的实轴长是(A )2 (B)(福建)设圆锥曲线r 的两个焦点分别为F 1,F 2,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于 A.1322或B.23或2C.12或2 D.2332或 (湖北)将两个顶点在抛物线22(0)y px p =>上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则A. n=0B. n=1C. n=2D. n ≥3(湖南)设双曲线2221(0)9x y a a -=>的渐近线方程为320x y ±=,则a 的值为( ) A .4 B .3 C .2 D .1(江西)若曲线02221=-+x y x C :与曲线0)(2=--m mx y y C :有四个不同的交点,则实数m 的取值范围是 ( ) A. )33,33(-B. )33,0()0,33(⋃-C. ]33,33[-D. ),33()33,(+∞⋃--∞10.(江西)如右图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M 和N 是小圆的一条固定直径的两个端点.那么,当小圆这 样滚过大圆内壁的一周,点M ,N 在大圆内所绘出的图形大致是( )(辽宁)已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,=3AF BF +,则线段AB 的中点到y 轴的距离为 A .34B .1C .54D .74(全国新)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A,B 两点,AB 为C的实轴长的2倍,则C 的离心率为(A (B )(C )2 (D )3(全国新)由曲线y =,直线2y x =-及y 轴所围成的图形的面积为(A )103 (B )4 (C )163(D )6 (山东)已知双曲线22221x y a b-=(a>0,b>0)的两条渐近线均和圆C :x 2+y 2-6x+5=0相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为(A )22154x y -= (B )22145x y -= (C )221x y 36-= (D )221x y 63-=(全国新)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在 x 。

2013年高考立体几何试题赏析3页

2013年高考立体几何试题赏析3页

2013年高考立体几何试题赏析高中立体几何的核心内容是空间几何体的认识,空间点、线、面位置关系的确定以及空间几何的有关度量(包括表面积、体积、角、距离的计算.综观2013年全国各地的高考数学试卷,多数试题已经突破了传统的考查框架,在命题风格上,正逐步由封闭性向灵活性、开放性转变.盘点2013年高考立体几何试题,提炼其命题特点、亮点,希望对今后立体几何的复习教学有所裨益.1 三视图题——显常规而不拘一格例1 (2013年高考全国新课标卷Ⅱ·理11)某几何体的三视图如图1所示,则该几何体的体积为()A.16 8π+B.8 8π+C.16 16π+D.8 16π+命题意图考查空间想象力,能正确分析图形中基本元素及其相互关系,能够对空间图形进行分解与组合,同时通过对几何体面积或体积的计算,考查推理与计算能力.思路分析该几何体是个组合体,其下面是个半圆柱,上面是个长方体,如图2.点评解题关键是还原几何体,其基本要素是“长对齐、高平齐、宽相等”,能从不同角度去看几何体.体会与感悟此类题型重点考查方向:复原—能识别三视图所表示的主体模型;求积—能根据立体模型求它们的体积或表面积;识图----根据提供的部分三视图画另外的一个三视图.2 求空间角——传统与向量法兼备点评解题关键是恰当地建立空间直角坐标系,正确地写出各点坐标,准确地求出两个半平面的法向量(或直线的方向向量)的坐标,或“找”(“作”)出角,然后熟练地运用公式计算.体会与感悟空间向量在立体几何中起工具性的作用,因其避开了“作”、“找”角的难度,在代数与几何中起了承接作用,使传统法与空间向量法相辅相成.4.2 翻折例5 (2013年高考广东卷·理18)如图7,等腰三角形ABC中,90A∠=d,6BC =,D,E分别是AC,AB上的点,2CDBE==,O为BC的中点,将ADEΔ沿DE折起得到如图7所示的四棱锥ABCDE′?,其中3A D′=.(Ⅰ)证明:A O′⊥平面BCDE;(Ⅱ)求二面角ACDB′??的平面角的余弦值.命题意图考查化归与转化思想,考查空间想象能力、推理论证能力、运算求解能力思路分析(Ⅰ)根据翻折前后线线关系推导出线面垂直的条件.(Ⅱ)作出二面角,通过解三角形求解,或者建立空间直角坐标系后使用法向量求解.点评解题关键是理清折叠前后平面图形与空间几何体间的对应关系.体会与感悟在翻折问题中,要从翻折前后线线位置关系的“变”与“不变”中找到解决问题的切入点,翻折前后位于相同平面中的线线位置关系不变,位于不同平面中的线线位置关系可能发生变化.5 位置关系证明题——立体平面降维转化5.1 平行关系例8 (2013年高考安徽卷·理19)如图9圆锥顶点为P,底面圆心为O,其母线与底面所成的角为22.5d,AB和CD是底面圆O上的两条平行的弦,轴OP与平面PCD所成的角为60d.(Ⅰ)证明:平面PAB与平面PCD的交线平行于底面;(Ⅱ)求cos COD∠.命题意图本题考查空间直线、平面平行关系的性质与判定等基础知识和基本技能,意在考查考生的空间想象能力、逻辑推理能力.点评解题关键是根据题意取AB中点O,进而得到垂直关系.体会与感悟线线垂直、线面垂直、面面垂直三种关系的相互依存与相互转化是解决垂直问题的最基本方法.希望以上资料对你有所帮助,附励志名言3条:1、生命对某些人来说是美丽的,这些人的一生都为某个目标而奋斗。

2013年高考真题理科数学解析分类汇编7-立体几何

2013年高考真题理科数学解析分类汇编7-立体几何

2013年高考真题理科数学解析分类汇编7 立体几何一选择题1。

[湖南]7.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 A .1 B .2 C .2-12 D .2+12【答案】 C 【解析】由题知,正方体的棱长为1,121-2.]2,1[]2,1[1<而上也在区间上,所以正视图的面积,宽在区间正视图的高为。

选C2.陕西12。

某几何体的三视图如图所示, 则其体积为 3π。

【答案】3π 【解析】立体图为半个圆锥体,底面是半径为1的半圆,高为2。

所以体积32121312ππ=⋅⋅⋅⋅=V3。

安徽理(3)在下列命题中,不是公理..的是 (A )平行于同一个平面的两个平面相互平行(B )过不在同一条直线上的三点,有且只有一个平面(C )如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内 (D )如果两个不重合的平面有一个公共点, 那么他们有且只有一条过该点的公共直线【答案】A【解析】B,C ,D 说法均不需证明,也无法证明,是公理;A 选项可以推导证明,故是定理。

所以选A4。

广东5。

某四棱台的三视图如图1所示,则该四棱台的体积是1121图1A. 4B.143 C 。

163D 。

6 解析:显然棱台的上下底的面积分别为1214S S ==、,故其体积为11221114V=()(124)2333S S S S h ++=++⨯= 选B5。

广东6.设m ,n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是 A.若,,m n αβαβ⊥⊂⊂,则m ⊥n ; B 。

若//,,m n αβαβ⊂⊂,则//m n C 。

若,,m n m n αβ⊥⊂⊂,则αβ⊥; D 。

若,//,//m m n n αβ⊥,则αβ⊥ 解析:选D ∵,//,//m m n n αβ⊥,∴平面β内存在直线α⊥,故αβ⊥ 其它选项均错。

6.新课标I ,6、如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为 ( )A 、错误!cm 3B 、错误!cm 3C 、错误!cm 3D 、错误!cm 3【解析】设球的半径为R ,则由题知球被正方体上面截得圆的半径为4,球心到截面圆的距离为R —2,则222(2)4R R =-+,解得R=5,∴球的体积为3453π⨯=错误!3cm ,故选A.7.新课标I,8、某几何体的三视图如图所示,则该几何体的体积为A .168π+B .88π+C 。

专题七:解析几何专题(点差法)及综合应用(学生版)

专题七:解析几何专题(点差法)及综合应用(学生版)

专题七:解析几何专题——点差法一、点差法定义应用问题在处理直线与圆锥曲线相交形成的弦中点的有关问题时,我们经常用到如下解法:设弦的两个端点坐标分别为()()1122,,x y x y 、,代入圆锥曲线得两方程后相减,得到弦中点坐标与弦所在直线斜率的关系,然后加以求解,这即为“点差法”,此法有着不可忽视的作用,其特点是巧代斜率..1 求弦中点的轨迹方程例1、已知椭圆2212x y +=,求斜率为2的平行弦中点的轨迹方程.例2 直线():50l ax y a --+=(a 是参数)与抛物线()2:1f y x =+的相交弦是AB ,则弦AB 的中点轨迹方程是 .2 求曲线方程例4 已知椭圆()222210x y a b a b +=>>的一条准线方程是1x =,有一条倾斜角为4π的直线交椭圆于A B 、两点,若AB 的中点为11,24C ⎛⎫-⎪⎝⎭,求椭圆方程.3 求直线的斜率例5 已知椭圆221259x y +=上不同的三点()()11229,,4,,,5A x y B C x y ⎛⎫ ⎪⎝⎭与焦点()4,0F 的距离成等差数列.(1)求证:128x x +=;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k .4 确定参数的范围例6 若抛物线2:C y x =上存在不同的两点关于直线():3l y m x =-对称,求实数m 的取值范围.5 证明定值问题例7 已知AB 是椭圆()222210x y a b a b+=>>不垂直于x 轴的任意一条弦,P 是AB 的中点,O 为椭圆的中心.求.6处理存在性问题 例8 已知双曲线22112x y -=,过()1,1B 能否作直线l ,使l 与双曲线交于P ,Q 两点,且B 是线段PQ 的中点,这样的直线如果存在,求出它的方程;如果不存在,说明理由..二、用点差法解圆锥曲线的中点弦问题与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题七 解析几何1.(2013·高考新课标全国卷Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C的渐近线方程为( )A .y =±14xB .y =±13xC .y =±12x D .y =±x解析:选C.由e =52,得c a =52,∴c =52a ,b =c 2-a 2=12a .而x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±b ax , ∴所求渐近线方程为y =±12x .2.(2013·高考新课标全国卷Ⅰ)O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( )A .2B .2 2C .2 3D .4解析:选C.设P (x 0,y 0),则|PF |=x 0+2=42, ∴x 0=32, ∴y 20=42x 0=42×32=24, ∴|y 0|=2 6.∵F (2,0),∴S △POF =12|OF |·|y 0|=12×2×26=2 3.3.(2013·高考新课标全国卷Ⅰ)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1B.x 236+y 227=1C.x 227+y 218=1D.x 218+y 29=1 解析:选D.设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21a 2+y 21b 2=1, ①x 22a 2+y 22b 2=1. ②①-②得(x 1+x 2)(x 1-x 2)a 2=-(y 1-y 2)(y 1+y 2)b 2, ∴y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2). ∵x 1+x 2=2,y 1+y 2=-2,∴k AB =b 2a2.而k AB =0-(-1)3-1=12,∴b 2a 2=12,∴a 2=2b 2, ∴c 2=a 2-b 2=b 2=9, ∴b =c =3,a =32,∴E 的方程为x 218+y 29=1.4.(2013·高考新课标全国卷Ⅱ)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点, PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( )A.36B.13C.12D.33 解析:选D.如图,由题意知s in 30°=|PF 2||PF 1|=12, m∴|PF 1|=2|PF 2|.又∵|PF 1|+|PF 2|=2a ,∴|PF 2|=2a3.∴tan 30°=|PF 2||F 1F 2|=2a32c =33.∴c a =33.故选D. 5.(2013·高考新课标全国卷Ⅱ)设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF |=3|BF |,则l 的方程为( )A .y =x -1或y =-x +1B .y =33(x -1)或y =-33(x -1)C .y =3(x -1)或y =-3(x -1)D .y =22(x -1)或y =-22(x -1)解析:选C.设直线AB 的倾斜角为θ,由题意知p =2,F (1,0),|AF ||BF |=3.又1|F A |+1|FB |=2p , ∴13|BF |+1|BF |=1, ∴|BF |=43,|AF |=4,∴|AB |=163.又由抛物线焦点弦公式:|AB |=2psin 2θ,∴163=4sin 2θ, ∴s in 2θ=34,∴s in θ=32,∴k =tan θ=±3.故选C.6.(2013·高考大纲全国卷)椭圆C :x 24+y 23=1的左、右顶点分别为A 1、A 2,点P 在C 上且直线P A 2斜率的取值范围是[-2,-1],那么直线P A 1斜率的取值范围是 ( )A .[12,34]B .[38,34]C .[12,1]D .[34,1]解析:选B.由题意可得A 1(-2,0),A 2(2,0),当P A 2的斜率为-2时,直线P A 2的方程为y=-2(x -2),代入椭圆方程,消去y 化简得19x 2-64x +52=0,解得x =2或x =2619.由点P在椭圆上得点P (2619,2419),此时直线P A 1的斜率k =38.同理,当直线P A 2的斜率为-1时,直线P A 2方程为y =-(x -2),代入椭圆方程,消去y 化简得7x 2-16x +4=0,解得x =2或x =27.由点P 在椭圆上得点P (27,127),此时直线P A 1的斜率k =34.数形结合可知,直线P A 1斜率的取值范围是[38,34].7.(2013·高考大纲全国卷)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为( )A.x 22+y 2=1B.x 23+y 22=1C.x 24+y 23=1D.x 25+y 24=1 解析:选C.由题意知椭圆焦点在x 轴上,且c =1,可设C 的方程为x 2a 2+y 2a 2-1=1(a >1),由过F 2且垂直于x 轴的直线被C 截得的弦长|AB |=3,知点(1,32)必在椭圆上,代入椭圆方程化简得4a 4-17a 2+4=0,所以a 2=4或a 2=14(舍去).故椭圆C 的方程为x 24+y 23=1.8.(2013·高考大纲全国卷)已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A 、B 两点.若MA →·MB →=0,则k =( )A.12B.22C. 2 D .2解析:选D.抛物线C 的焦点为F (2,0),则直线方程为y =k (x -2),与抛物线方程联立,消去y 化简得k 2x 2-(4k 2+8)x +4k 2=0.设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4+8k2,x 1x 2=4.所以y 1+y 2=k (x 1+x 2)-4k =8k,y 1y 2=k 2[x 1x 2-2(x 1+x 2)+4]=-16.因为MA →·MB →=(x 1+2,y 1-2)·(x 2+2,y 2-2)=(x 1+2)(x 2+2)+(y 1-2)(y 2-2)=x 1x 2+2(x 1+x 2)+y 1y 2-2(y 1+y 2)+8=0,将上面各个量代入,化简得k 2-4k +4=0,所以k =2. 9.(2013·高考山东卷)过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为 ( )A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=04解析:选A.设P (3,1),圆心C (1,0),切点为A 、B ,则P 、A 、C 、B 四点共圆,且PC 为圆的直径,∴四边形P ACB 的外接圆方程为(x -2)2+(y -12)2=54①,圆C :(x -1)2+y 2=1②,①-②得2x +y -3=0,此即为直线AB 的方程.10.(2013·高考山东卷)抛物线C 1:y =12p x 2(p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( )A.316B.38C.233 D.433解析:选D.∵双曲线C 2:x23-y 2=1,∴右焦点为F (2,0),渐近线方程为y =±33x .抛物线C 1:y =12p x 2(p >0),焦点为F ′(0,p2).设M (x 0,y 0),则y 0=12p x 20.∵k MF ′=k FF ′,∴12p x 20-p 2x 0=p 2-2.①又∵y ′=1p x ,∴y ′|x =x 0=1p x 0=33.②由①②得p =433.11.(2013·高考浙江卷)如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. 2B. 3C.32D.62解析:选D.由椭圆可知|AF 1|+|AF 2|=4,|F 1F 2|=2 3. 因为四边形AF 1BF 2为矩形, 所以|AF 1|2+|AF 2|2=|F 1F 2|2=12,所以2|AF 1||AF 2|=(|AF 1|+|AF 2|)2-(|AF 1|2+|AF 2|2)=16-12=4,所以(|AF 2|-|AF 1|)2=|AF 1|2+|AF 2|2-2|AF 1||AF 2|=12-4=8,所以|AF 2|-|AF 1|=22, 因此对于双曲线有a =2,c =3,所以C 2的离心率e =c a =62.12.(2013·高考北京卷)直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( )A.43 B .2 C.83D.1623解析:选C.∵抛物线方程为x 2=4y ,∴其焦点坐标为F (0,1),故直线l 的方程为y =1.如图所示,可知l 与C 围成的图形的面积等于矩形OABF 的面积与函数y =14x 2的图象和x 轴正半轴及直线x =2围成的图形的面积的差的2倍(图中阴影部分的2倍),即S =4-2⎠⎛02x 24d x =4-2·x 312⎪⎪⎪20=4-43=83. 13.(2013·高考天津卷)已知双曲线x 2a 2-y 2b2=1(a>0,b>0)的两条渐近线与抛物线y 2=2p x (p>0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =( )A .1 B.32C .2D .3解析:选C.由已知得c a =2,所以a 2+b 2a 2=4,解得ba =3,即渐近线方程为y =±3x .而抛物线准线方程为x =-p 2,于是A ⎝⎛⎭⎫-p 2,-3p 2,B ⎝⎛⎭⎫-p 2,3p 2,从而△AOB 的面积为12·3p·p 2=3,可得p =2.14.(2013·高考北京卷)双曲线x 2-y 2m=1的离心率大于2的充分必要条件是( ) A .m>12 B .m ≥1C .m>1D .m>2解析:选C.∵双曲线x 2-y2m=1的离心率e =1+m ,又∵e>2,∴1+m>2,∴m>1.15.(2013·高考福建卷)双曲线x 24-y 2=1的顶点到其渐近线的距离等于( )A .25 B.45 C .255 D.455解析:选C.双曲线的渐近线为直线y =±12x ,即x ±2y =0,顶点为(±2,0),∴所求距离为d=|±2±0|5=255.16.(2013·高考天津卷)已知过点P(2,2)的直线与圆(x -1)2+y 2=5相切,且与直线a x -y +1=0垂直,则a =( )A .-12B .1C .2 D.12解析:选C.由题意知圆心为(1,0),由圆的切线与直线a x -y +1=0垂直,可设圆的切线方程为x +ay +c =0,由切线x +ay +c =0过点P(2,2),∴c =-2-2a ,∴|1-2-2a|1+a 2=5,解得a =2. 17.(2013·高考福建卷)双曲线x 2-y 2=1的顶点到其渐近线的距离等于( ) A .12 B.22 C .1 D. 2解析:选B.双曲线x 2-y 2=1的顶点坐标为(±1,0),渐近线为y =±x ,∴x ±y =0,∴顶点到渐近线的距离为d =|±1±0|2=22.18.(2013·高考湖南卷)在等腰直角三角形ABC 中,AB =AC =4,点P 是边AB 上异于A ,B 的一点.光线从点P 出发,经BC ,CA 发射后又回到点P(如图).若光线QR 经过△ABC 的重心,则AP 等于( )A .2B .1C .83 D.43 解析:选D.分别以AB ,AC 所在直线为x 轴,y 轴,A 为原点建立如图所示的平面直角坐标系.因为AB =AC =4,故B(4,0),C(0,4).设P(t,0)为线段AB 上的点,点P 关于AC 的对称点P ′(-t,0).点P 关于直线BC 的对称点为M(4,4-t).由光的反射定理知,点P ′,M 一定在直线RQ 上.又△ABC 的重心坐标为G(43,43),由题意知点G 在线段RQ 上,即P ′,G ,M 三点共线.∵P ′G →=(43+t ,43),MP ′→=(-4-t ,t -4),P ′G →∥MP ′→,∴(43+t)(-4+t)-43(-4-t)=0,解得t =43, 即|AP →|=43.19.(2013·高考辽宁卷)已知点O(0,0),A(0,b),B(a ,a 3).若△OAB 为直角三角形,则必有( )A .b =a 3B .b =a 3+1aC .(b -a 3)(b -a 3-1a )=0D .|b -a 3|+|b -a 3-1a|=0解析:选C.若以O 为直角顶点,则B 在x 轴上,则a 必为0,此时O ,B 重合,不符合题意;若∠A =π2,则b =a 3≠0.若∠B =π2,根据斜率关系可知a 2·a 3-b a=-1, 所以a(a 3-b)=-1,即b -a 3-1a=0.以上两种情况皆有可能,故只有C 满足条件. 20.(2013·高考陕西卷)已知点M(a ,b)在圆O :x 2+y 2=1外, 则直线a x +by =1与圆O 的位置关系是( )A .相切B .相交C .相离D .不确定解析:选B.由题意知点在圆外,则a 2+b 2>1,圆心到直线的距离d =1a 2+b2<1,故直线与圆相交.21.(2013·高考江西卷)过点(2,0)引直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( )A .33B .-33C .±33D .- 3解析:选B.由于y =1-x 2,即x 2+y 2=1(y ≥0),直线l 与x 2+y 2=1(y ≥0)交于A ,B 两点,如图所示,S △AOB =12·s in ∠AOB ≤12,且当∠AOB =90°时,S △AOB 取得最大值,此时AB =2,点O 到直线l 的距离为22,则∠OCB =30°,所以直线l 的倾斜角为150°,则斜率为-33.22.(2013·高考湖北卷)已知0<θ<π4,则双曲线C 1:x 2cos 2θ-y 2sin 2θ=1与C 2:y 2sin 2θ-x 2sin 2θtan 2θ=1的( )A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等解析:选D.双曲线C 1的焦点在x 轴上,a =co s θ,b =s in θ,c =1,因此离心率e 1=1cos θ;双曲线C 2的焦点在y 轴上,由于0<θ<π4,所以a =s in θ,b =s in θtan θ,c =sin 2θ+sin 2θtan 2θ,因此离心率e 2=sin 2θ+sin 2θtan 2θsin θ=sin θ1+tan 2θsin θ=1cos θ.故两条双曲线的实轴长、虚轴长、焦距都不相等,离心率相等.23.(2013·高考江西卷)已知点A(2,0),抛物线C :x 2=4y 的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,则|FM|∶|MN|=( )A .2∶ 5B .1∶2C . 1∶ 5D .1∶3 解析:选C.如图所示,由抛物线定义知|MF|=|MH|,所以|MF|∶|MN|=|MH|∶|MN|.由于△MHN ∽△FOA ,则|MH||HN|=|OF||OA|=12,则|MH|∶|MN|=1∶5, 即|MF|∶|MN|=1∶ 5.24.(2013·高考湖北卷)已知0<θ<π4,则双曲线C 1:x 2sin 2θ-y 2cos 2θ=1与C 2:y 2cos 2θ-x 2sin 2θ=1的( )A .实轴长相等B .虚轴长相等C .离心率相等D .焦距相等 解析:选D.双曲线C 1和C 2的实半轴长分别是s in θ和co s θ,虚半轴长分别是co s θ和s in θ,则半焦距c 都等于1,故选D.25.(2013·高考四川卷)抛物线y 2=8x 的焦点到直线x -3y =0的距离是( ) A .2 3 B .2 C . 3 D .1 解析:选D.抛物线y 2=8x 的焦点为F(2,0),则d =|2-3×0|12+(-3)2=1.故选D. 26.(2013·高考四川卷)从椭圆x 2a 2+y 2b2=1(a>b>0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP(O 是坐标原点),则该椭圆的离心率是( )A .24 B.12 C .22 D.32解析:选C.设P(-c ,y 0),代入椭圆方程求得y 0,从而求得k OP ,由k OP =k AB 及e =ca可得离心率e.由题意设P(-c ,y 0),将P(-c ,y 0)代入x 2a 2+y 2b 2=1,得c 2a 2+y 20b 2=1,则y 20=b 2⎝⎛⎭⎫1-c 2a 2=b 2·a 2-c 2a2=b 4a2. ∴y 0=b 2a 或y 0=-b 2a (舍去),∴P ⎝⎛⎭⎫-c ,b 2a ,∴k OP =-b 2ac.∵A(a,0),B(0,b),∴k AB =b -00-a =-ba .又∵AB ∥OP ,∴k AB =k OP ,∴-b a =-b 2ac,∴b =c.∴e =c a =c b 2+c2=c 2c 2=22.故选C. 27.(2013·高考四川卷)抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )A .12 B.32 C .1 D. 3解析:选B.由题意可得抛物线的焦点坐标为(1,0), 双曲线的渐近线方程为3x -y =0或3x +y =0,则焦点到渐近线的距离d 1=|3×1-0|(3)2+(-1)2=32 或d 2=|3×1+0|(3)2+12=32. 28.(2013·高考重庆卷)已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM|+|PN|的最小值为( )A .52-4 B.17-1 C .6-2 2 D.17解析:选A.设P(x ,0),设C 1(2,3)关于x 轴的对称点为C 1′(2,-3),那么|PC 1|+|PC 2|=|PC 1′|+|PC 2|≥|C ′1C 2|=(2-3)2+(-3-4)2=5 2.而|PM|=|PC 1|-1,|PN|=|PC 2|-3, ∴|PM|+|PN|=|PC 1|+|PC 2|-4≥52-4. 29.(2013·高考重庆卷)设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线x =-3上的动点,则|PQ|的最小值为( )A .6B .4C .3D .2 解析:选B.如图,圆心M(3,-1)与定直线x =-3的最短距离为|MQ|=3-(-3)=6,又圆的半径为2,故所求最短距离为6-2=4.30.(2013·高考广东卷)垂直于直线y =x +1且与圆x 2+y 2=1相切于第一象限的直线方程是( )A .x +y -2=0B .x +y +1=0C .x +y -1=0D .x +y +2=0解析:选A.与直线y =x +1垂直的直线方程可设为x +y +b =0,由x +y +b =0与圆x 2+y 2=1相切,可得|b|12+12=1,故b =±2.因为直线与圆相切于第一象限,故结合图形分析知b =-2,故直线方程为x +y -2=0,故选A.31.(2013·高考广东卷)已知中心在原点的双曲线C 的右焦点为F(3,0),离心率等于32,则C 的方程是( )A .x 24-y 25=1 B.x 24-y 25=1 C .x 22-y 25=1 D.x 22-y 25=1 解析:选B.右焦点为F(3,0)说明两层含义:双曲线的焦点在x 轴上;c =3.又离心率为ca=32,故a =2,b 2=c 2-a 2=32-22=5,故C 的方程为x 24-y25=1,故选B. 32.(2013·高考广东卷)已知中心在原点的椭圆C 的右焦点为F(1,0),离心率等于12,则C的方程是( )A .x 23+y 24=1 B.x 24+y 23=1 C .x 24+y 22=1 D.x 24+y 23=1 解析:选D.右焦点为F(1,0)说明两层含义:椭圆的焦点在x 轴上;c =1.又离心率为c a =12,故a =2,b 2=a 2-c 2=4-1=3,故椭圆的方程为x 24+y23=1,故选D.33.(2013·高考安徽卷)直线x +2y -5+5=0被圆x 2+y 2-2x -4y =0截得的弦长为( )A .1B .2C .4D .4 6解析:选C.圆的方程可化为C :(x -1)2+(y -2)2=5,其圆心为C(1,2),半径R = 5.如图所示,取弦AB 的中点P ,连接CP ,则CP ⊥AB ,圆心C 到直线AB 的距离d =|CP|=|1+4-5+5|12+22=1. 在Rt △ACP 中,|AP|=R 2-d 2=2,故直线被圆截得的弦长|AB|=4. 34.(2013·高考山东卷)过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________.解析:设A(3,1),易知圆心C(2,2),半径r =2,当弦过点A(3,1)且与CA 垂直时为最短弦.|CA|=(2-3)2+(2-1)2= 2.∴半弦长=r 2-|CA|2=4-2= 2. ∴最短弦长为2 2. 答案:2 2 35.(2013·高考安徽卷)已知直线y =a 交抛物线y =x 2于A ,B 两点,若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为________.解析:设C(x ,x 2),由题意可取A(-a ,a),B(a ,a), 则CA →=(-a -x ,a -x 2),CB →=(a -x ,a -x 2),由于∠ACB =π2,所以CA →·CB →=(-a -x )(a -x )+(a -x 2)2=0,整理得x 4+(1-2a)x 2+a 2-a =0, 即y 2+(1-2a)y +a 2-a =0,所以⎩⎪⎨⎪⎧-(1-2a )≥0,a 2-a ≥0,(1-2a )2-4(a 2-a )>0,解得a ≥1.答案:[1,+∞)36.(2013·高考江苏卷)双曲线x 216-y 29=1的两条渐近线的方程为________.解析:由双曲线方程可知a =4,b =3,所以两条渐近线方程为y =±34x .答案:y =±34x37.(2013·高考江苏卷)在平面直角坐标系x Oy 中,椭圆C 的标准方程为x 2a 2+y 2b2=1(a>b>0),右焦点为F,右准线为l ,短轴的一个端点为B.设原点到直线BF 的距离为d 1,F 到l 的距离为d 2,若d 2=6d 1,则椭圆C 的离心率为________.解析:依题意,d 2=a 2c -c =b 2c.又BF =c 2+b 2=a ,所以d 1=bca.由已知可得b 2c =6·bca,所以6c 2=ab ,即6c 4=a 2(a 2-c 2),整理可得a 2=3c 2,所以离心率e =c a =33.答案:3338.(2013·高考浙江卷) 直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于________.解析:圆的方程可化为(x -3)2+(y -4)2=25,故圆心为(3,4),半径r =5.又直线方程为2x-y +3=0,所以圆心到直线的距离为d =|2×3-4+3|4+1=5,所以弦长为2r 2-d 2=2×25-5=220=4 5.答案:4 5 39.(2013·高考北京卷)若抛物线y 2=2p x 的焦点坐标为(1,0),则p =________;准线方程为________.解析:∵ 抛物线y 2=2p x 的焦点坐标为(p2,0),∴准线方程为x =-p2.又抛物线焦点坐标为(1,0),故p =2,准线方程为x =-1. 答案:2;x =-1 40.(2013·高考浙江卷)设F 为抛物线C :y 2=4x 的焦点,过点P(-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点.若|FQ|=2,则直线l 的斜率等于________.答案:±141.(2013·高考天津卷)已知抛物线y 2=8x 的准线过双曲线x 2a 2-y 2b2=1(a>0,b>0)的一个焦点,且双曲线的离心率为2,则该双曲线的方程为________.解析:由题意可知抛物线的准线方程为x =-2,∴双曲线的半焦距c =2.又双曲线的离心率为2,∴a =1,b =3,∴双曲线的方程为x 2-y 23=1. 答案:x 2-y23=142.(2013·高考福建卷)椭圆Γ:x 2a 2+y 2b2=1(a>b>0)的左、右焦点分别为F 1,F 2,焦距为2c.若直线y =3(x +c)与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.解析:已知F 1(-c,0),F 2(c,0),直线y =3(x +c)过点F 1,且斜率为3, ∴倾斜角∠MF 1F 2=60°.∵∠MF 2F 1=12∠MF 1F 2=30°,∴∠F 1MF 2=90°,∴|MF 1|=c ,|MF 2|=3c. 由椭圆定义知|MF 1|+|MF 2|=c +3c =2a ,∴离心率e =c a =21+3=3-1.答案:3-143.(2013·高考辽宁卷)已知椭圆C :x 2a 2+y 2b2=1(a>b>0)的左焦点为F ,椭圆C 与过原点的直线相交于A ,B 两点,连接AF ,BF.若|AB|=10,|AF|=6,co s ∠ABF =45,则椭圆C 的离心率e =________.解析:设椭圆的右焦点为F 1,因为直线过原点,所以|AF|=|BF 1|=6,|BO|=|AO|.在△ABF中,设|BF|=x ,由余弦定理得36=100+x 2-2×10x ×45,解得x =8,即|BF|=8.所以∠BFA=90°,所以△ABF 是直角三角形,所以2a =6+8=14,即a =7.又因为在Rt △ABF 中,|BO|=|AO|,所以|OF|=12|AB|=5,即c =5.所以e =57.答案:5744.(2013·高考陕西卷)双曲线x 216-y 2m =1的离心率为54,则m 等于________.解析:x 216-y2m =1中,a =4,b =m ,∴c =16+m.而e =54,∴16+m 4=54,∴m =9.答案:945.(2013·高考福建卷)椭圆Γ:x 2a 2+y 2b2=1(a>b>0)的左、右焦点分别为F 1,F 2,焦距为2c.若直线y =3(x +c)与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.解析:已知F 1(-c,0),F 2(c,0),直线y =3(x +c)过点F 1,且斜率为3, ∴倾斜角∠MF 1F 2=60°.∵∠MF 2F 1=12∠MF 1F 2=30°,∴∠F 1MF 2=90°,∴|MF 1|=c ,|MF 2|=3c. 由椭圆定义知|MF 1|+|MF 2|=c +3c =2a ,∴离心率e =c a =21+3=3-1.答案:3-146.(2013·高考辽宁卷)已知F 为双曲线C :x 29-y 216=1的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A(5,0)在线段PQ 上,则△PQF 的周长为________.解析:由双曲线方程知,b =4,a =3,c =5,则虚轴长为8,则|PQ|=16.由左焦点F(-5,0),且A(5,0)恰为右焦点,知线段PQ 过双曲线的右焦点,则P ,Q 都在双曲线的右支上.由双曲线的定义可知|PF|-|PA|=2a ,|QF|-|QA|=2a ,两式相加得,|PF|+|QF|-(|PA|+|QA|)=4a ,则|PF|+|QF|=4a +|PQ|=4×3+16=28,故△PQF 的周长为28+16=44.答案:4447.(2013·高考陕西卷)双曲线x 216-y 29=1的离心率为________.解析:由题意a 2=16⇒a =4.又b 2=9,则c 2=a 2+b 2=16+9=25⇒c =5,故e =c a =54.答案:5449.(2013·高考湖南卷)设F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a>0,b>0)的两个焦点,P 是C上一点.若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为30°,则C 的离心率为________.解析:设点P 在双曲线右支上,F 1为左焦点,F 2为右焦点,则|PF 1|-|PF 2|=2a. 又|PF 1|+|PF 2|=6a ,∴|PF 1|=4a ,|PF 2|=2a. ∵在双曲线中c>a ,∴在△PF 1F 2中|PF 2|所对的角最小且为30°. 在△PF 1F 2中,由余弦定理得|PF 2|2=|PF 1|2+|F 1F 2|2-2|PF 1||F 1F 2|co s 30°,即4a 2=16a 2+4c 2-83ac ,即3a 2+c 2-23ac =0.∴(3a -c)2=0,∴c =3a ,即ca= 3.∴e = 3.答案: 350.(2013·高考江西卷)抛物线x 2=2py(p>0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________.解析:由于x 2=2py(p>0)的准线为y =-p 2,由⎩⎪⎨⎪⎧y =-p 2,x 2-y 2=3,解得准线与双曲线x 2-y 2=3的交点为A ⎝⎛⎭⎫-3+14p 2,-p 2,B ⎝⎛⎭⎫3+14p 2,-p 2,所以AB =23+14p 2.由△ABF为等边三角形,得32AB =p ,解得p =6. 答案:651.(2013·高考江西卷)椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率e =32,a +b =3.(1)求椭圆C 的方程;(2)如图所示,A ,B ,D 是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意一点,直线DP 交x 轴于点N ,直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m ,证明:2m -k 为定值.解:(1)因为e =32=c a ,所以a =23c ,b =13c.代入a +b =3,得c =3,a =2,b =1.故椭圆C 的方程为x 24+y 2=1.(2)证明:法一:因为B(2,0),点P 不为椭圆顶点,则直线BP 的方程为y =k(x -2)⎝⎛⎭⎫k ≠0,k ≠±12,① ①代入x 24+y 2=1,解得P ⎝ ⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1.直线AD 的方程为y =12x +1.②①与②联立解得M ⎝ ⎛⎭⎪⎫4k +22k -1,4k 2k -1.由D(0,1),P ⎝ ⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1,N(x ,0)三点共线知-4k4k 2+1-18k 2-24k 2+1-0=0-1x -0,解得N ⎝ ⎛⎭⎪⎫4k -22k +1,0. 所以MN 的斜率为m =4k2k -1-04k +22k -1-4k -22k +1=4k (2k +1)2(2k +1)2-2(2k -1)2=2k +14, 则2m -k =2k +12-k =12(定值).法二:设P(x 0,y 0)(x 0≠0,x 0≠±2),则k =y 0x 0-2,直线AD 的方程为y =12(x +2),直线BP 的方程为y =y 0x 0-2(x -2),直线DP 的方程为y -1=y 0-1x 0x ,令y =0,由于y 0≠1可得N ⎝ ⎛⎭⎪⎫-x 0y 0-1,0,联立,得⎩⎨⎧y =12(x +2),y =y0x 0-2(x -2),解得M ⎝⎛⎭⎪⎫4y 0+2x 0-42y 0-x 0+2,4y 02y 0-x 0+2,因此MN 的斜率为m =4y 02y 0-x 0+24y 0+2x 0-42y 0-x 0+2+x 0y 0-1=4y 0(y 0-1)4y 20-8y 0+4x 0y 0-x 20+4=4y 0(y 0-1)4y 20-8y 0+4x 0y 0-(4-4y 20)+4=y 0-12y 0+x 0-2, 所以2m -k =2(y 0-1)2y 0+x 0-2-y 0x 0-2=2(y 0-1)(x 0-2)-y 0(2y 0+x 0-2)(2y 0+x 0-2)(x 0-2)=2(y 0-1)(x 0-2)-2y 20-y 0(x 0-2)(2y 0+x 0-2)(x 0-2)=2(y 0-1)(x 0-2)-12(4-x 20)-y 0(x 0-2)(2y 0+x 0-2)(x 0-2)=12(定值).52.(2013·高考四川卷)在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和最小的点的坐标是________.解析:设平面上任一点M ,因为|MA|+|MC|≥|AC|,当且仅当A ,M ,C 共线时取等号,同理|MB|+|MD|≥|BD|,当且仅当B ,M ,D 共线时取等号,连接AC ,BD 交于一点M ,若|MA|+|MC|+|MB|+|MD|最小,则点M 为所求.又k AC =6-23-1=2,∴直线AC 的方程为y -2=2(x -1),即2x -y =0.①又k BD =5-(-1)1-7=-1,∴直线BD 的方程为y -5=-(x -1),即x +y -6=0.②由①②得⎩⎪⎨⎪⎧2x -y =0,x +y -6=0,∴⎩⎪⎨⎪⎧x =2,y =4,∴M(2,4). 答案:(2,4) 53.(2013·高考新课标全国卷Ⅰ)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C.(1)求C 的方程;(2)l 是与圆P 、圆M 都相切的一条直线,l 与曲线C 交于A 、B 两点,当圆P 的半径最长时,求|AB|.解: 由已知得圆M 的圆心为M(-1,0),半径r 1=1;圆N 的圆心为N(1,0),半径r 2=4.设圆P 的圆心为P(x ,y),半径为R.(1)因为圆P 与圆M 外切并且与圆N 内切, 所以|PM|+|PN|=(R +r 1)+(r 2-R)=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左,右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为x 24+y 23=1(x ≠-2).(2)对于曲线C 上任意一点P(x ,y),由于|PM|-|PN|=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2,所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4.若l 的倾斜角为90°,则l 与y 轴重合,可得|AB|=2 3.若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则|QP||QM|=Rr 1,可求得Q(-4,0),所以可设l :y =k(x +4).由l 与圆M 相切得|3k|1+k 2=1,解得k =±24.当k =24时,将y =24x +2代入x 24+y 23=1,并整理得7x 2+8x -8=0,解得x 1,2=-4±627,所以|AB|=1+k 2|x 2-x 1|=187. 当k =-24时,由图形的对称性可知|AB|=187.综上,|AB|=23或|AB|=187.54.(2013·高考新课标全国卷Ⅱ)在平面直角坐标系x Oy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为22,求圆P 的方程.解:(1)设P(x ,y),圆P 的半径为r.由题设y 2+2=r 2,x 2+3=r 2,从而y 2+2=x 2+3. 故P 点的轨迹方程为y 2-x 2=1.(2)设P(x 0,y 0).由已知得|x 0-y 0|2=22.又P 点在双曲线y 2-x 2=1上,从而得⎩⎪⎨⎪⎧|x 0-y 0|=1,y 20-x 20=1.由⎩⎪⎨⎪⎧ x 0-y 0=1,y 20-x 20=1,得⎩⎪⎨⎪⎧x 0=0,y 0=-1.此时,圆P 的半径r = 3. 由⎩⎪⎨⎪⎧ x 0-y 0=-1,y 20-x 20=1,得⎩⎪⎨⎪⎧x 0=0,y 0=1, 此时,圆P 的半径r = 3.故圆P 的方程为x 2+(y +1)2=3或x 2+(y -1)2=3.55.(2013·高考大纲全国卷)已知双曲线C :x 2a 2-y 2b2=1(a>0,b>0)的左、右焦点分别为F 1、F 2,离心率为3,直线y =2与C 的两个交点间的距离为 6.(1)求a 、b ;(2)设过F 2的直线l 与C 的左、右两支分别交于A 、B 两点,且|AF 1|=|BF 1|,证明:|AF 2|、|AB|、|BF 2|成等比数列.解:(1)由题设知ca =3,即a 2+b 2a2=9,故b 2=8a 2.所以C 的方程为8x 2-y 2=8a 2. 将y =2代入上式,求得x =± a 2+12.由题设知,2a 2+12=6,解得a 2=1.所以a =1,b =2 2.(2)证明:由(1)知,F 1(-3,0),F 2(3,0),C 的方程为8x 2-y 2=8.① 由题意可设l 的方程为y =k(x -3),|k|<22,将其代入①并化简,得(k 2-8)x 2-6k 2x +9k 2+8=0.设A(x 1,y 1),B(x 2,y 2),则x 1≤-1,x 2≥1,x 1+x 2=6k 2k 2-8,x 1x 2=9k 2+8k 2-8.于是|AF 1|=(x 1+3)2+y 21=(x 1+3)2+8x 21-8 =-(3x 1+1),|BF 1|=(x 2+3)2+y 22=(x 2+3)2+8x 22-8=3x 2+1. 由|AF 1|=|BF 1|,得-(3x 1+1)=3x 2+1,即x 1+x 2=-23,故6k 2k 2-8=-23,解得k 2=45,从而x 1x 2=-199.由于|AF 2|=(x 1-3)2+y 21=(x 1-3)2+8x 21-8=1-3x 1,|BF 2|=(x 2-3)2+y 22=(x 2-3)2+8x 22-8=3x 2-1, 故|AB|=|AF 2|-|BF 2|=2-3(x 1+x 2)=4, |AF 2|·|BF 2|=3(x 1+x 2)-9x 1x 2-1=16, 因而|AF 2|·|BF 2|=|AB|2,所以|AF 2|、|AB|、|BF 2|成等比数列.56.(2013·高考山东卷)椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别是F 1、F 2,离心率为32,过F 1且垂直于x 轴的直线被椭圆C 截得的线段长为1. (1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴端点外的任一点,连接PF 1,PF 2,设∠F 1PF 2的角平分线PM 交C 的长轴于点M(m ,0),求m 的取值范围;(3)在(2)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线PF 1,PF 2的斜率分别为k 1,k 2.若k ≠0,试证明1kk 1+1kk 2为定值,并求出这个定值.解:(1)由于c 2=a 2-b 2,将x =-c 代入椭圆方程x 2a 2+y 2b 2=1,得y =±b 2a.由题意知2b2a =1,即a =2b 2.又e =c a =32,所以a =2,b =1.所以椭圆C 的方程为x 24+y 2=1.(2)法一:设P(x 0,y 0)(y 0≠0), 又F 1(-3,0),F 2(3,0), 所以直线PF 1,PF 2的方程分别为 lPF 1:y 0x -(x 0+3)y +3y 0=0, lPF 2:y 0x -(x 0-3)y -3y 0=0.由题意知|my 0+3y 0|y 20+(x 0+3)2=|my 0-3y 0|y 20+(x 0-3)2. 由于点P 在椭圆上,所以x 204+y 20=1. 所以|m +3|(32x 0+2)2=|m -3|(32x 0-2)2.因为-3<m<3,-2<x 0<2, 可得m +332x 0+2=3-m 2-32x 0,所以m =34x 0.因此-32<m<32.法二:设P(x 0,y 0),当0≤x 0<2时,①当x 0=3时,直线PF 2的斜率不存在,易知P(3,12)或P(3,-12).若P(3,12),则直线PF 1的方程为x -43y +3=0.由题意得|m +3|7=3-m ,因为-3<m<3,所以m =334.若P(3,-12),同理可得m =334.②当x 0≠3时,设直线PF 1,PF 2的方程分别为y =k 1(x +3),y =k 2(x -3).由题意知|mk 1+3k 1|1+k 21=|mk 2-3k 2|1+k 22, 所以(m +3)2(m -3)2=1+1k 211+1k 22.因为x 204+y 20=1,且k 1=y 0x 0+3,k 2=y 0x 0-3, 所以(m +3)2(m -3)2=4(x 0+3)2+4-x 204(x 0-3)2+4-x 20=3x 20+83x 0+163x 20-83x 0+16=(3x 0+4)2(3x 0-4)2, 即|m +3||m -3|=|3x 0+4||3x 0-4|. 因为-3<m<3,0≤x 0<2且x 0≠3,所以3+m 3-m =4+3x 04-3x 0,整理得m =3x 04,故0≤m<32且m ≠334.综合①②可得0≤m<32.当-2<x 0<0时,同理可得-32<m<0.综上所述,m 的取值范围是(-32,32).(3)设P(x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k(x -x 0).联立得⎩⎪⎨⎪⎧x 24+y 2=1,y -y 0=k (x -x 0),整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(y 20-2k x 0y 0+k 2x 20-1)=0.由题意Δ=0,即(4-x 20)k 2+2x 0y 0k +1-y 20=0. 又x 204+y 20=1, 所以16y 20k 2+8x 0y 0k +x 20=0,故k =-x 04y 0. 由(2)知1k 1+1k 2=x 0+3y 0+x 0-3y 0=2x 0y 0,所以1kk 1+1kk 2=1k (1k 1+1k 2)=(-4y 0x 0)·2x 0y 0=-8,因此1kk 1+1kk 2为定值,这个定值为-8.57.(2013·高考山东卷)在平面直角坐标系x Oy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上,短轴长为2,离心率为22.(1)求椭圆C 的方程;(2)A ,B 为椭圆C 上满足△AOB 的面积为64的任意两点,E 为线段AB 的中点,射线OE 交椭圆C 于点P.设OP →=tOE →,求实数t 的值.解:(1)设椭圆C 的方程为x 2a 2+y 2b2=1(a>b>0),由题意知⎩⎪⎨⎪⎧a 2=b 2+c 2,c a =22,2b =2,解得⎩⎨⎧a =2,b =1,因此椭圆C 的方程为x 22+y 2=1.(2)(ⅰ)当A ,B 两点关于x 轴对称时,设直线AB 的方程为x =m. 由题意得-2<m<0或0<m< 2.将x =m 代入椭圆方程x 22+y 2=1,得|y|= 2-m 22.所以 S △AOB =|m|·2-m 22=64.解得m 2=32或m 2=12.①因为OP →=tOE →=12t(OA →+OB →)=12t(2m,0)=(mt,0),又P 为椭圆C 上一点,所以(mt )22=1.②由①②,得t 2=4或t 2=43,又t>0,所以t =2或t =233.(ⅱ)当A ,B 两点关于x 轴不对称时,设直线AB 的方程为y =k x +h.将其代入椭圆的方程x 22+y 2=1,得(1+2k 2)x 2+4kh x +2h 2-2=0. 设A(x 1,y 1),B(x 2,y 2).由判别式Δ>0可得1+2k 2>h 2,此时x 1+x 2=-4kh1+2k 2,x 1x 2=2h 2-21+2k 2,y 1+y 2=k(x 1+x 2)+2h =2h1+2k 2,所以|AB|=1+k 2×(x 1+x 2)2-4x 1x 2=22×1+k 2×1+2k 2-h 21+2k 2.因为点O 到直线AB 的距离d =|h|1+k 2,所以S △AOB =12|AB|d =12×22×1+k 2×1+2k 2-h 21+2k 2×|h|1+k 2=2×1+2k 2-h 21+2k 2×|h|.又S △AOB =64,所以2×1+2k 2-h 21+2k2×|h|=64.③ 令n =1+2k 2,代入③整理得3n 2-16h 2n +16h 4=0.解得n =4h 2或n =43h 2,即1+2k 2=4h 2或1+2k 2=43h 2.④因为OP →=tOE →=12t(OA →+OB →)=12t(x 1+x 2,y 1+y 2)=(-2kht 1+2k 2,ht 1+2k 2), 又P 为椭圆C 上一点,所以t 2[12(-2kh 1+2k 2)2+(h 1+2k 2)2]=1,即h 2t 21+2k 2=1.⑤ 将④代入⑤,得t 2=4或t 2=43.又t>0,故t =2或t =233.经检验,适合题意.综合(ⅰ)(ⅱ),得t =2或t =233.58.(2013·高考江苏卷)如图,在平面直角坐标系x Oy 中,点A(0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围.解:(1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C(3,2),于是切线的斜率必存在.设过A(0,3)的圆C 的切线方程为y =k x +3.由题意,得|3k +1|k 2+1=1,解得k =0或k =-34,故所求切线方程为y =3或3x +4y -12=0. (2)因为圆心在直线y =2x -4上,所以圆C 的方程为(x -a)2+[y -2(a -2)]2=1. 设点M(x ,y),因为MA =2MO ,所以x 2+(y -3)2=2x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,所以点M 在以D(0,-1)为圆心,2为半径的圆上.由题意,点M(x ,y)在圆C 上,所以圆C 与圆D 有公共点, 则|2-1|≤CD ≤2+1,即1≤a 2+(2a -3)2≤3. 整理,得-8≤5a 2-12a ≤0. 由5a 2-12a +8≥0,得a ∈R ;由5a 2-12a ≤0,得0≤a ≤125.所以点C 的横坐标a 的取值范围为[0,125].59.(2013·高考浙江卷)已知抛物线C 的顶点为O (0,0),焦点为F (0,1). (1)求抛物线C 的方程;(2)过点F 作直线交抛物线C 于A 、B 两点,若直线AO ,BO 分别交直线l :y =x -2于M ,N 两点, 求|MN |的最小值.解:(1)由题意可设抛物线C 的方程为x 2=2py (p >0),则p2=1,所以抛物线C 的方程为x 2=4y .(2)设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =kx +1. 由⎩⎪⎨⎪⎧y =kx +1,x 2=4y ,消去y ,整理得x 2-4kx -4=0, 所以x 1+x 2=4k ,x 1x 2=-4. 从而|x 1-x 2|=4k 2+1.由⎩⎪⎨⎪⎧y =y 1x 1x ,y =x -2,解得点M 的横坐标x M =2x 1x 1-y 1=2x 1x 1-x 214=84-x 1. 同理,点N 的横坐标x N =84-x 2.所以|MN |=2|x M -x N |=2|84-x 1-84-x 2|=82|x 1-x 2x 1x 2-4(x 1+x 2)+16|=82k 2+1|4k -3|.令4k -3=t ,t ≠0,则k =t +34.当t >0时,|MN |=2 2 25t 2+6t +1>2 2.当t <0时,|MN |=2 2 (5t +35)2+1625≥852.综上所述,当t =-253,即k =-43时,|MN |的最小值是852.60.(2013·高考安徽卷)设椭圆E :x 2a 2+y21-a 2=1的焦点在x 轴上.(1)若椭圆E 的焦距为1,求椭圆E 的方程;(2)设F 1、F 2分别是椭圆E 的左、右焦点,P 为椭圆E 上第一象限内的点,直线F 2P 交y 轴于点Q ,并且F 1P ⊥F 1Q .证明:当a 变化时,点P 在某定直线上.解:(1)因为椭圆的焦点在x 轴上且焦距为1,所以2a 2-1=14,解得a 2=58.故椭圆E 的方程为8x 25+8y23=1.(2)证明:设出点P 的坐标,并求出其横、纵坐标的关系式. 注意点在直线上时,点的坐标满足直线方程.设P (x 0,y 0),F 1(-c,0),F 2(c,0),其中c =2a 2-1.由题设知x 0≠c ,则直线F 1P 的斜率kF 1P =y 0x 0+c,直线F 2P 的斜率kF 2P =y 0x 0-c .故直线F 2P 的方程为y =y 0x 0-c(x -c ).当x =0时,y =cy 0c -y 0,即点Q 坐标为(0,cy 0c -x 0).因此,直线F 1Q 的斜率为kF 1Q =y 0c -x 0.由于F 1P ⊥F 1Q ,所以kF 1P ·kF 1Q =y 0x 0+c ·y 0c -x 0=-1.化简得y 20=x 20-(2a 2-1).①将①代入椭圆E 的方程,由于点P (x 0,y 0)在第一象限,解得x 0=a 2,y 0=1-a 2, 即点P 在定直线x +y =1上.61.(2013·高考北京卷)直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A ,C 两点,O是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形. 解:(1)因为四边形OABC 为菱形, 所以AC 与OB 互相垂直平分.所以可设A (t ,12),代入椭圆方程得t 24+14=1,即t =±3.所以|AC |=2 3.(2)证明:假设四边形OABC 为菱形.因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0. 由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m ,消去y 并整理得 (1+4k 2)x 2+8kmx +4m 2-4=0. 设A (x 1,y 1),C (x 2,y 2),则 x 1+x 22=-4km 1+4k 2,y 1+y 22=k ·x 1+x 22+m =m1+4k 2, 所以AC 的中点为M (-4km 1+4k 2,m1+4k 2).因为M 为AC 和OB 的交点,且m ≠0,k ≠0,所以直线OB 的斜率为-14k.因为k ·(-14k)≠-1,所以AC 与OB 不垂直.所以四边形OABC 不是菱形,与假设矛盾.所以当点B 在W 上且不是W 的顶点时,四边形OABC 不可能是菱形.62.(2013·高考天津卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程; (2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点.若AC →·DB →+AD →·CB →=8,求k 的值.解:(1)设F (-c,0),由c a =33,知a =3c .过点F 且与x 轴垂直的直线为x =-c ,代入椭圆方程有(-c )2a 2+y 2b 2=1,解得y =±6b3,于是26b 3=433,解得b = 2.又a 2-c 2=b 2,从而a =3,c =1,所以椭圆的方程为x 23+y 22=1.(2)设点C (x 1,y 1),D(x 2,y 2),由F (-1,0)得直线C D 的方程为y =k (x +1),由方程组⎩⎪⎨⎪⎧y =k (x +1),x 23+y 22=1,消去y ,整理得(2+3k 2)x 2+6k 2x +3k 2-6=0. 由根与系数的关系可得x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2.因为A (-3,0),B (3,0),所以AC →·DB →+AD →·CB →=(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1)=6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1) =6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2。

相关文档
最新文档