初中数学命题与证明的图文答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学命题与证明的图文答案
一、选择题
1.下列命题是真命题的是( )
A .方程23240x x --=的二次项系数为3,一次项系数为-2
B .四个角都是直角的两个四边形一定相似
C .某种彩票中奖的概率是1%,买100张该种彩票一定会中奖
D .对角线相等的四边形是矩形
【答案】A
【解析】
【分析】
根据所学的公理以及定理,一元二次方程的定义,概率等知识,对各小题进行分析判断,然后再计算真命题的个数.
【详解】
A 、正确.
B 、错误,对应边不一定成比例.
C 、错误,不一定中奖.
D 、错误,对角线相等的四边形不一定是矩形.
故选:A .
【点睛】
此题考查命题与定理,熟练掌握基础知识是解题关键.
2.下列命题是真命题的是( )
A .若两个数的平方相等,则这两个数相等
B .同位角相等
C .同一平面内,垂直于同一直线的两条直线平行
D .相等的角是对顶角
【答案】C
【解析】
【分析】
根据平方的意义,同位角的概念,平行线的判定,对顶角的概念逐一进行判断即可得.
【详解】
A . 若两个数的平方相等,则这两个数不一定相等,如22=(-2)2,但2≠-2,故A 选项错误;
B . 只有两直线平行的情况下,才有同位角相等,故B 选项错误;
C . 同一平面内,垂直于同一直线的两条直线平行,真命题,符合题意;
D . 相等的角不一定是对顶角,如图,∠1=∠2,但这两个角不符合对顶角的概念,故D 选项错误,
故选C .
【点睛】
本题考查了命题真假的判定,涉及了乘方、同位角、对顶角、平行线的判定等知识,熟练掌握相关知识是解题的关键.
3.下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合; ③若ABC V 与'''A B C V 成轴对称,则ABC V 一定与'''A B C V 全等;④有一个角是60度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是( )
A .2
B .3
C .4
D .5
【答案】A
【解析】
【分析】
利用轴对称的性质、等腰三角形的性质、等边三角形的判定等知识分别判断后即可确定正确的选项.
【详解】
解:①等腰三角形底边的中点到两腰的距离相等;正确; ②等腰三角形的底边上的高、底边上的中线、顶角的平分线互相重合;不正确: ③若ABC V 与'''A B C V 成轴对称,则ABC V 一定与'''A B C V 全等;正确; ④有一个角是60度的等腰三角形是等边三角形;不正确;
⑤等腰三角形的对称轴是顶角的平分线所在的直线,不正确.
正确命题为:2①③,个;
故选:A
【点睛】
本题考查了命题与定理的知识,解题的关键是了解轴对称的性质、等腰三角形的性质、等边三角形的判定等知识,属于基础知识,难度不大.
4.下列定理中,逆命题是假命题的是( )
A .在一个三角形中,等角对等边
B .全等三角形对应角相等
C.有一个角是60度的等腰三角形是等边三角形
D.等腰三角形两个底角相等
【答案】B
【解析】
【分析】
先把一个命题的条件和结论互换就得到它的逆命题,再进行判断即可.
【详解】
解:A、逆命题为:在一个三角形中等边对等角,逆命题正确,是真命题;
B、逆命题为:对应角相等的三角形是全等三角形,逆命题错误,是假命题;
C、逆命题为:如果一个三角形是等边三角形,那么它是一个等腰三角形而且有一个内角等于60°,逆命题正确,是真命题;
D、逆命题为:两个角相等的三角形是等腰三角形,逆命题正确,是真命题;
故选:B.
【点睛】
本题考查了命题与定理的知识,解题的关键是能够正确的写出原命题的逆命题.
5.下列命题中①等腰三角形底边的中点到两腰的距离相等
②如果两个三角形全等,则它们必是关于直线成轴对称的图形
③如果两个三角形关于某直线成轴对称,那么它们是全等三角形
④等腰三角形是关于底边中线成轴对称的图形
⑤一条线段是关于经过该线段中点的直线成轴对称的图形
正确命题的个数是()
A.2个B.3个C.4个D.5个
【答案】A
【解析】
【分析】
根据等腰三角形的性质、轴对称图形的定义、全等三角形的判定逐个判断即可.
【详解】
根据等腰三角形的三线合一可知,底边中点在顶角角平分线上,再根据角平分线的性质可知,其到两腰的距离相等,则命题①正确
全等的三角形不一定是成轴对称,则命题②错误
成轴对称的两个三角形一定全等,则命题③正确
等腰三角形是以底边中线所在直线为对称轴的轴对称图形,则命题④错误
成轴对称的图形必须是两个,一个图形只能是轴对称图形,则命题⑤错误
综上,正确命题的个数是2个
故选:A.
【点睛】
本题考查了等腰三角形的性质、轴对称图形的定义、全等三角形的判定等知识点,掌握理解各定义与性质是解题关键.
6.下列命题中正确的是().
A.所有等腰三角形都相似B.两边成比例的两个等腰三角形相似C.有一个角相等的两个等腰三角形相似D.有一个角是100°的两个等腰三角形相似【答案】D
【解析】
【分析】
根据相似三角形进行判断即可.
【详解】
解:A、所有等腰三角形不一定都相似,原命题是假命题;
B、两边成比例的两个等腰三角形不一定相似,原命题是假命题;
C、有一个角相等的两个等腰三角形不一定相似,原命题是假命题;
D、有一个角是100°的两个等腰三角形相似,是真命题;
故选:D.
【点睛】
本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.
7.下列命题中是假命题的是()
A.一个锐角的补角大于这个角
B.凡能被2整除的数,末位数字必是偶数
C.两条直线被第三条直线所截,同旁内角互补
D.相反数等于它本身的数是0
【答案】C
【解析】
试题分析:利用锐角的性质、偶数的定义、平行线的性质及相反数的定义分别判断后即可确定正确的选项.
A、一个锐角的补角大于这个角,正确,是真命题,不符合题意;
B、凡能被2整除的数,末尾数字必是偶数,正确,是真命题,不符合题意;
C、两条平行直线被第三条直线所截,同旁内角才互补,故错误,是假命题,符合题意;
D、相反数等于他本身的数是0,正确,是真命题,不符合题意
考点:命题与定理.
8.下列三个命题:①对顶角相等;②全等三角形的对应边相等;③如果两个实数是正数,它们的积是正数.它们的逆命题成立的个数是( )
A.0个 B.1个 C.2个 D.3个
【答案】B
【解析】【分析】把一个命题的条件和结论互换就得到它的逆命题,再把逆命题进行判断即可.
【详解】①对顶角相等的逆命题是相等的角是对顶角,逆命题错误;
②全等三角形的对应边相等的逆命题是对应边相等的两个三角形全等,正确;
③如果两个实数是正数,它们的积是正数的逆命题是如果两个数的积为正数,那么这两个数也是正数,逆命题错误,也可以有都是负数,
所以逆命题成立的只有一个,
故选B.
【点睛】本题考查了互逆命题,真命题与假命题,真命题要运用相关知识进行推导,假命题要通过举反例来进行否定.
9.下列命题是真命题的是()
A.中位数就是一组数据中最中间的一个数
B.一组数据的众数可以不唯一
C.一组数据的标准差就是这组数据的方差的平方根
D.已知a、b、c是Rt△ABC的三条边,则a2+b2=c2
【答案】B
【解析】
【分析】
正确的命题是真命题,根据定义判断即可.
【详解】
解:A、中位数就是一组数据中最中间的一个数或着是中间两个数的平均数,故错误;
B、一组数据的众数可以不唯一,故正确;
C、一组数据的标准差是这组数据的方差的算术平方根,故此选项错误;
D、已知a、b、c是Rt△ABC的三条边,当∠C=90°时,则a2+b2=c2,故此选项错误;
故选:B.
【点睛】
此题考查真命题的定义,掌握定义,准确理解各事件的正确与否是解题的关键.
10.下列命题中,正确的命题是()
A.度数相等的弧是等弧
B.正多边形既是轴对称图形,又是中心对称图形
C.垂直于弦的直径平分弦
D.三角形的外心到三边的距离相等
【答案】C
【解析】
根据等弧或垂径定理,正多边形的性质一一判断即可;
【详解】
A、完全重合的两条弧是等弧,错误;
B、正五边形不是中心对称图形,错误;
C、垂直于弦的直径平分弦,正确;
D、三角形的外心到三个顶点的距离相等,错误;
故选:C.
【点睛】
此题考查命题与定义,正多边形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
11.在下列各原命题中,其逆命题为假命题的是()
A.直角三角形的两个锐角互余
B.直角三角形两条直角边的平方和等于斜边的平方
C.等腰三角形两个底角相等
D.同角的余角相等
【答案】D
【解析】
【分析】
首先写出各个命题的逆命题,然后进行判断即可.
【详解】
A、逆命题是:两个锐角互余的三角形是直角三角形,是真命题,故此选项不符合题意;
B、逆命题是:如果一个三角形有两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形,是真命题,故此选项不符合题意;
C、逆命题是:有两个角相等的三角形是等腰三角形,是真命题,故此选项不符合题意;
D、逆命题是:如果两个角相等,那么它们是同一个角的余角,是假命题,故此选项符合题意.
故选:D.
【点睛】
本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.
12.下列说法正确的是()
A.若a>b,则a2>b2
B.若三条线段的长a、b、c满足a+b>c,则以a、b、c为边一定能组成三角形
C.两直线平行,同旁内角相等
D.三角形的外角和为360°
【答案】D
【分析】
利用特例对A 进行分析,利用三角形三边关系、平行线的性质、三角形外角的性质分别对B 、C 、D 进行分析判断.
【详解】
A 、若a >b ,则不一定有a 2>b 2,比如a =0,b =﹣1,故本选项错误;
B 、若三条线段的长a 、b 、c 满足a +b >c ,则以a 、b 、c 为边不一定能组成三角形,故本选项错误;
C 、两直线平行,同旁内角互补,故本选项错误;
D 、三角形的外角和为360°,故本选项正确;
故选:D
【点睛】
本题考查真假命题的判断,解题的关键是根据相关知识对命题进行分析判断.
13.下列四个命题:①两直线平行,内错角相等;②对顶角相等;③等腰三角形的两个底角相等;④菱形的对角线互相垂直,其中逆命题是真命题的是( )
A .①②③④
B .①③④
C .①③
D .①
【答案】C
【解析】
【分析】
首先写出各个命题的逆命题,然后进行判断即可.
【详解】
①两直线平行,内错角相等;其逆命题:内错角相等,两直线平行,是真命题; ②对顶角相等,其逆命题:相等的角是对顶角,是假命题;
③等腰三角形的两个底角相等,其逆命题:有两个角相等的三角形是等腰三角形,是真命题;
④菱形的对角线互相垂直,其逆命题:对角线互相垂直的四边形是菱形,是假命题; 故选C .
【点睛】
本题考查了写一个命题的逆命题的方法,真假命题的判断,弄清命题的题设与结论,掌握相关的定理是解题的关键.
14.下列命题的逆命题是真命题的是( )
A .若a b =,则a b =
B .AB
C ∆中,若222AC BC AB +=,则ABC ∆是Rt ∆
C .若0a =,则0ab =
D .四边相等的四边形是菱形
【答案】D
【解析】
先根据逆命题的定义分别写出各命题的逆命题,然后根据绝对值的意义和有理数的乘法、菱形的性质及勾股定理进行判断.
【详解】
解:A 、该命题的逆命题为:若|a|=|b|,则a=b ,此命题为假命题;
B 、该命题的逆命题为:若△AB
C 是Rt △,则AC 2+BC 2=AB 2,此命题为假命题;
C 、该命题的逆命题为:若ab=0,则a=0,此命题为假命题;
D 、该命题的逆命题为:菱形的四边相等,此命题为真命题;
故选:D .
【点睛】
本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.
15.下列命题中,假命题是( )
A .同旁内角互补,两直线平行
B .如果a b =,则22a b =
C .对应角相等的两个三角形全等
D .两边及夹角对应相等的两个三角形全等
【答案】C
【解析】
【分析】
根据平行线的判定、等式的性质、三角形的全等的判定判断即可.
【详解】
A 、同旁内角互补,两直线平行,是真命题;
B 、如果a b =,则22a b =,是真命题;
C 、对应角相等的两个三角形不一定全等,原命题是假命题;
D 、两边及夹角对应相等的两个三角形全等,是真命题;
故选:C .
【点睛】
此题考查命题与定理,解题关键在于掌握判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果⋯那么⋯”形式. 2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.
16.下列命题是假命题的是( )
A .有一个角是60°的等腰三角形是等边三角形
B .等边三角形有3条对称轴
C .有两边和一角对应相等的两个三角形全等
D .线段垂直平分线上的点到线段两端的距离相等
【解析】
【分析】
根据等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质一一判断即可.
【详解】
A .正确;有一个角是60°的等腰三角形是等边三角形;
B .正确.等边三角形有3条对称轴;
C .错误,SSA 无法判断两个三角形全等;
D .正确.线段垂直平分线上的点到线段两端的距离相等.
故选:C .
【点睛】
本题考查了命题与定理,等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.
17.下列命题是真命题的是( )
A .同旁内角相等,两直线平行
B .对角线互相平分的四边形是平行四边形
C .相等的两个角是对顶角
D .圆内接四边形对角相等
【答案】B
【解析】
【分析】
由平行线的判定方法得出A 是假命题;由平行四边形的判定定理得出B 是真命题;由对顶角的定义得出C 是假命题;由圆内接四边形的性质得出D 是假命题;综上,即可得出答案.
【详解】
A.同旁内角相等,两直线平行;假命题;
B.对角线互相平分的四边形是平行四边形;真命题;
C.相等的两个角是对顶角;假命题;
D.圆内接四边形对角相等;假命题;
故选:B.
【点睛】
本题考查了命题与定理、平行线的判定、平行四边形的判定、对顶角的定义、圆内接四边形的性质;熟练掌握相关性质和定理、定义是解题关键.
18.已知:在ABC V 中,AB AC ≠,求证:.B C ∠≠∠若用反证法来证明这个结论,可以假设( )
A .A
B ∠=∠ B .AB B
C = C .B C ∠=∠
D .A C ∠=∠
【解析】
【分析】
反证法的步骤:1、假设命题反面成立;2、从假设出发,经过推理得出和反面命题矛盾,或者与定义、公理、定理矛盾;3、得出假设命题不成立是错误的,即所求证命题成立.
【详解】
已知:在ABC V 中,AB AC ≠,求证:.B C ∠≠∠若用反证法来证明这个结论,可以假设B C ∠=∠,由“等角对等边”可得AB=AC,这与已知矛盾,所以.B C ∠≠∠
故选C
【点睛】
本题考核知识点:反证法. 解题关键点:理解反证法的一般步骤.
19.交换下列命题的题设和结论,得到的新命题是假命题的是( )
A .两直线平行,内错角相等;
B .相等的角是对顶角;
C .所有的直角都是相等的;
D .若a =b ,则a -1=b -1.
【答案】C
【解析】
【分析】
【详解】
分析:写出原命题的逆命题,根据相关的性质、定义判断即可.
详解:交换命题A 的题设和结论,得到的新命题是内错角相等,两直线平行,是真命题; 交换命题B 的题设和结论,得到的新命题是对顶角相等,是真命题;
交换命题C 的题设和结论,得到的新命题是所有的相等的角都是直角,是假命题; 交换命题D 的题设和结论,得到的新命题是若a ﹣1=b ﹣1,则a =b ,是真命题. 故选C .
点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
20.下列命题的逆命题不成立的是( )
A .两直线平行,同旁内角互补
B .如果两个实数相等,那么它们的平方相等
C .平行四边形的对角线互相平分
D .全等三角形的对应边相等 【答案】B
【解析】
【分析】
把一个命题的条件和结论互换就得到它的逆命题.分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
【详解】
选项A ,两直线平行,同旁内角互补的逆命题是同旁内角互补,两直线平行,正确,成立;
选项B,如果两个实数相等,那么它们的平方相等的逆命题是平方相等的两个数相等,错误,不成立,如(﹣3)2=32,但﹣3≠3;
选项C,平行四边形的对角线互相平分的逆命题是对角线互相平分的四边形是平行四边形,正确,成立;
选项D,全等三角形的对应边相等的逆命题是对应边相等的三角形全等,正确,成立;
故选B.
【点睛】
本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.。