抽屉原理典型习题知识分享

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抽屉原理典型习题
抽屉原理
规律:用苹果数除以抽屉数,若除数不为零,则“答案”为商加1;
若除数为零,则“答案”为商
抽屉原则一:把n个以上的苹果放到n个抽屉中,无论怎么放,一定能找到一个抽屉,它里面至少有两个苹果。

抽屉原则二:把多于m x n 个苹果放到n个抽屉中,无论怎么放,一定能找到一个抽屉,它里面至少有(m+1)个苹果。

一、基础训练。

1、把98个苹果放到10个抽屉里,无论怎么放,我们一定能找到一个含苹果最多的抽
屉,它里面至少有______个苹果。

98÷10=9 (8)
2、1000只鸽子飞进50个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢,它里面
至少有_______只鸽子。

1000÷50=20
3、从8个抽屉里拿出17个苹果,无论怎么拿,我们一定能拿到苹果最多的那个抽屉,从
它里面至少拿出______个苹果。

17÷8=2 (1)
4、从______个抽屉中(填最大数)拿出25个苹果,才能保证一定能找出一个抽屉,从它
当中至少拿出7个苹果。

25÷(4)=6 (1)
二、拓展训练。

1、六(1)班有49名学生,数学高老师了解到期中考试该班英语成绩除3人外,均在86
分以上后就说:“我可以断定,本班至少有4人成绩相同”。

王老师说的对吗?为什么(49-3)÷15=3 (1)
86,,87,88,89,90,91,92,93,94,95,96,97,98,99,100十五个数
2、从1、2、3……,100这100个数中任意挑出51个数来,证明这51个数中,一定有
(1)2个数互质
任一个奇数都可以和偶数成互质数50个偶数,任意挑出51个数来必会有奇数与偶数(2)有两个数的差是50
(1,51)(2,52)(3,53)……(49,99)(50,100)50组若取51个每组可取1个共50个,另一个任意取一个,就能组成差是50
51÷50=1 (1)
3、圆周上有2000个点,在其上任意地标上0、1、2……、1999(每一点只标一个数,不同
的点标上不同的数),求证:必然存在一点,与它紧相邻的两个数和这点上所标的三个数之和不小于2999.
(0+1999)*2000÷2=1999000
1999000÷2000*3=
4、有一批四种颜色的小旗,任意取出三面排成一行,表示各种信号,证明:在200个信
号中至少有四个信号完全相同。

4*4*4=64
200÷64=3 (8)
在圆周上放着100个筹码,其中有41个红的和59个蓝的,那么总可以找到两个红筹码,在他们之间刚好有19个筹码,为什么?
5、试卷上有4道题,每题有3个可供选择的答案,一群学生参加考试,结果对于其中任何
三人都有一道题目的答案互不相同,问:参加考试的学生最多有多少人?
6、一次数学竞赛,有75人参加,满分为20分,参赛者得分都是整数,75人的总分是980
分,至少有几分得分相同?
7、某校六年级学生有31人是四月份出生的,请证明:至少有两人在同一天出生。

31÷30=1 (1)
8、袋子里有四种不同颜色的小球,每次摸出2个,要保证10次所摸得的结果是一样的,
至少要摸多少次?
(4*3*)÷(2*1)=6
(55)÷6=9 (1)
9、一副扑克牌共有54张,从中取出多少张,才能保证其中必有3种花色。

(9)÷4=2 (1)
9+2=11
10、图书角剩下科技书和文艺书各4本,现在有4个学生来借阅,每人从中借2本,请你
证明,必有两名学生借阅的图书完全相同。

11、在一条长100米的小路一旁种上101棵小树,不管怎么种,至少有两棵树苗之间的距
离不超过1米。

12、六年级有男生57人,证明:至少有两名男生在同一个星期过生日。

57÷52=1 (5)
14、19朵鲜花插入4个花瓶里,证明:至少有一个花瓶里要插入5朵或5朵以上的鲜花。

19÷4=4 (3)
13、某旅行团一行50人,随意游览甲、乙、丙三地,至少要有多少人游览的地方完全相
同?
50÷3=16 (2)
一.图形分割
例1.在边长为1的正方形内任意放13个点.证明:必定存在4点,使得以这4点为顶点的四边形面积不超过.
证:如图,将正方形分成4个面积是的矩形,13个点必有4点落在同一个矩形中,其面积
不超过.
例2.半径为1的圆内任意放7个点,证明:必有2点,它们间的距离不大于1.
证:如图,将圆分成6个相等的扇形,7点中必有2点落在同一个扇形中,易知它们的距离
不大于1.
例3.在3×4的长方形中,任意放6个点. 证明:必有2点,它们间的距离不大于 .
证:如图,将长方形分成5块,6点中必有2点落在同一块中,易知它们的距离不大于 . 二.数的问题
例4.任意给出7个不同整数. 证明:必有2个整数,其和或差是10的倍数.
证:按除以10的余数将整数分成10类,将这10类分成如下6组:{0}(表示除以10余0
的所有整数);{1}、{9};{2}、{8};{3},{7};{4},{6};{5}. 7个数中必有2个来自同一
组,若它们同类,则差是10的倍数;若不同类,则和是10的倍数.
例5.证明:存在一个这样的正整数,其各位数码是0或1,并且是1993的倍数.
证明:考虑如下1993个数:10,110,1110,…, . 若其中有数是1993的倍数,则证
毕;否则它们除以1993的余数只能是1,2,…,1992,必有两数除以1993余数相同,它们的差是1993的倍数,显然此差的各位数码是0或1.
例6.任意写一个数码由1、2、3组成的30位数,从这个30位数中任意截取相邻的3位数字,可组成一个3位数. 证明:按上述方式一定可以得到两个相同的3位数.
证:一共可截取28个3位数,而数码由1、2、3组成的三位数有33=27个,必有两数相同. 例7.任意给定n+1个小于2n的不同正整数,证明:必可从中选出3个数,使其中两个之和
等于第三个.
证:设这n+1个正整数是a0<a1<a2<…<an<2n,令bk=ak−a0(k=1,2,…,n),则
b1<b2<…<bn<2n,考虑a1,a2,…,an,b1,b2,…,bn这2n个正整数,它们都小于
2n,故必有两数相等,设ai=bj(i≠j,否则ai=bi=ai−a0,不可能),则ai=aj−a0,即
三.染色问题
例8.对3×7棋盘的每个方格染红蓝两色之一. 证明:存在一个由若干方格构成的矩形,其4个角上的方格同色.
证法一:每一列中2格同色,用一条相同颜色的线段连结这2格的中心,得到7条线段,必有4条同色,设为红色. 由于连线方式只有3种(3格中选两格),必有两条红色线段连线方式相同,其所对应的4格构成4角都是红色的矩形.
证法二:第一行至少有4格同色,不妨设前4格是红色,若第二行前4格中有两格红色,则找到4角同是红色的矩形;否则至少有3格是蓝色,不妨设是前3格. 此时第三行的前3个必有两格同色,若是红色,则其与第一行相同列的两个红格组成4角同是红色的矩形;若是蓝色,则其与第二行相同列的两个蓝格组成4角同是蓝色的矩形.
例9.平面上有6个点,其中任何3点都不共线,任意两点间连一条红色线段或蓝色线段,证明:一定存在一个同色三角形(三边颜色相同的三角形).
证:由某点A出发的5条线段中必有3条同色,不妨设AB1、AB2、AB3是红色,考虑线段B1B2、B1B3、B2B3,若其中有红色线段BiBj,则△ABiBj是红色三角形;若全是蓝色,则△B1B2B3是蓝色三角形.
评注:如果把点看成元素,染红色看成是元素间有关系A,染蓝色看成是元素间没有关系A,那么本题可表述为:给定6个元素,任意2个元素间或者有关系A或者没有关系A,则一定可以选出3个元素,它们两两间有关系A或者两两间没有关系A.
比如把元素改成人,2个元素间的关系改成彼此认识,则可得到如下有趣命题:
世界上任意选6个人,证明:一定可以从中找出3个人,他们两两认识或两两不认识.
四.“连续”问题
例10.某学生用11个星期做完数学复习题,他每天至少做一道题,每星期至多做12道题. 证明:一定存在连续的若干天,他恰好做了21道题. (教程P295/7)
证:设此学生前i天做xi道题(i=1,2,…,77),则x1<x2<…<x77≤12×11=132,令
yi=xi+21,则y1<y2<…<y77≤132+21=153,于是x1,x2,…,x77,y1,y2,…,y77这154个数都≤153,其中必有两数相同,设xi=yj,则xi=xj+21,xi−xj=21,即从第j+1天到第i天,他恰好做了21道题.
例11.电视机修理部某职工在3月份的31天里,每天至少修理一台,共修56台,证明:他必然在连续的若干天(包括1天)里,恰好了5台电视机. (精讲P167/3)
证:设他前i天修了xi台(i=1,2,…,31),则x1<x2<…<x31=56,令yi=xi+21,则
y1<y2<…<y31≤=56+5=61,于是x1,x2,…,x31,y1,y2,…,y31这62个数都≤61,其中必有两数相同,设xi=yj,则xi=xj+5,xi−xj=5,即从第j+1天到第i天,他恰好修了5台.
五、杂题
例12.有12双筷子,其中红色、白色、黑色筷子各4双(同一双筷子的两只筷子同色),从中取出一些筷子,要求有2双不同颜色的筷子,则至少要取出几只筷子?
解:首先取出10只筷子不能保证,比如8只红色2只白色. 其次取出11只筷子能保证,这是因为11只筷子中必有4只同色,设为红色,已有一双红色筷子,由于红色筷子只有8只,故至少有3只筷子是其它二色,又可找到一双同色筷子.
评注:解此类问题一般先通过“最坏”情况找到不能成立的最大数,然后证明此数+1一定满足要求.
例13.甲班有48个同学,每个同学在班级里都有一些朋友(若甲是乙的朋友,则乙也是甲的朋友). 证明:至少有两名同学,他们在班级里的朋友人数一样多.
证:每个人在班级里的朋友人数只能是0,1,…,47,但0和47不能同时取到,因此必有两人在班级里的朋友人数相同.
例14.围着一张可转动的圆桌,均匀地放8把椅子,在桌上对着椅子放有8人的名片. 8人入座后,发现谁都没有对着自己的名片. 证明:适当地转动桌子,能使至少两人对上自己的名片.
证:每次桌子转动45°,包括开始的位置一共8次,若在这8次中,没有两人或两人以上对着自己的名片,注意到每人在这8次中都有一次对着自己的名片,因此这8次每次恰好只有1人对着自己的名片,但开始时没有人对着自己的名片,矛盾.
袋中有60粒大小相同的弹珠,每15粒是同一种颜色,为保证取出的弹珠中一定有2粒是同色的,至少要取出多少粒才行
16÷15=1 (1)。

相关文档
最新文档