八年级上册数学习题库

合集下载

八年级上册《数学》三角形专项练习题(含答案)

八年级上册《数学》三角形专项练习题(含答案)

八年级上册《数学》三角形专项练习题11.1.1三角形的边一、能力提升1.如图,在图形中,三角形有()A.4个B.5个C.6个D.7个2.已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为()A.2B.3C.5D.133.若一个三角形的两条边长分别为3和8,而第三条边长为奇数,则第三条边长为()A.5或7B.7C.9D.7或94.在△ABC中,若三条边长均为整数,周长为11,且有一条边长为4,则这个三角形最长边可能取值的最大值是()A.7B.6C.5D.45.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC 为公共边的“共边三角形”有对.6.若等腰三角形的腰长为6,则它的底边长a的取值范围是.7.用7根相同的火柴棒首尾顺次连接摆成一个三角形,能摆成的不同的三角形的个数为.8.已知等腰三角形的两边长分别为3cm和7cm,求这个三角形的周长.9.已知等腰三角形的周长是16cm.(1)若其中一边的长为4cm,求另外两边的长;(2)若其中一边的长为6cm,求另外两边的长.10.若a,b,c是△ABC的三边长,请化简|a-b-c|+|b-c-a|+|c-a-b|.11.已知等腰三角形的周长为20cm,设腰长为xcm.(1)用含x的式子表示底边长.(2)腰长x能否为5cm,为什么?(3)求x的取值范围.二、创新应用12.在平面内,分别用3根、5根、6根、…小棒首尾依次相接,能搭成什么形状的三角形?通过尝试,形状如表所示.小棒数目3 5 6 ……示意图……形状等边三角形等腰三角形等边三角形……(1)4根小棒能搭成三角形吗?(2)8根、12根小棒能搭成几种不同形状的三角形?并画出它们的示意图.答案一、能力提升1.B2.B;由题意知2+x>13,且x<13+2,解得11<x<15,因为x为正整数,所以x 可以是12,13,14.故选B.3.D;由题意知第三条边长大于5小于11.因为第三条边长为奇数,所以它的大小为7或9.4.C由题意知三角形的三条边长分别为2,4,5或3,4,4,所以最长边可能取值的最大值为5.5.3;△BDC与△BEC,△BDC与△BAC,△BEC与△BAC,共3对.6.0<a<12.7.2.8.解:若腰长为3cm,则三边长分别为3cm,3cm,7cm,而3+3<7,此时不能构成三角形;若腰长为7cm,则三边长分别为3cm,7cm,7cm.此时能构成三角形,其周长为3+7+7=17(cm).故这个三角形的周长为17cm. 9.解:(1)若腰长为4cm,则底边长为16-4-4=8(cm).三边长分别为4cm,4cm,8cm,不符合三角形的三边关系,所以应该是底边长为4cm.所以腰长为(16-4)÷2=6(cm).三边长分别为4cm,6cm,6cm,符合三角形的三边关系.所以另外两边的长都为6cm.(2)若腰长为6cm,则底边长为16-6-6=4(cm).三边长分别为4cm,6cm,6cm,符合三角形的三边关系.所以另外两边的长分别为6cm 和4cm.若底边长为6cm,则腰长为(16-6)÷2=5(cm).三边长分别为6cm,5cm,5cm,符合三角形的三边关系.所以另外两边的长都为5cm.10.解:因为a,b,c是△ABC的三边长,所以a<b+c,b<c+a,c<a+b,即a-b-c<0,b-c-a<0,c-a-b<0.所以|a-b-c|+|b-c-a|+|c-a-b|=-(a-b-c)-(b-c-a)-(c-a-b)=a+b+c.11.解:(1)底边长为(20-2x)cm.(2)不能.理由如下:若腰长为5cm,则底边长为20-2×5=10(cm).因为5+5=10,不满足三角形的三边关系.所以腰长不能为5cm.(3)根据题意,得解得0<x<10.由三角形的三边关系,得x+x>20-2x,解得x>5.综上所述,x的取值范围是5<x<10.二、创新应用12.解:(1)4根小棒不能搭成三角形.(2)8根小棒能搭成一种三角形,示意图如图甲;12根小棒能搭成三种不同形状的三角形,示意图如图乙.11.1.2三角形的高、中线与角平分线一、能力提升1.若一个三角形中仅有一条高在三角形的内部,则该三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.直角三角形或钝角三角形2.如图,AE⊥BC于点E,BF⊥AC于点F,CD⊥AB于点D.在△ABC中,边AC上的高是线段()A.AEB.CDC.BFD.AF3.如图,线段AE是△ABC的中线,已知EC=6,DE=2,则线段BD的长为()A.2B.3C.4D.64.如图,在△ABC中,∠C=90°,D,E为AC上的两点,且AE=DE,BD平分∠EBC,则下列说法不正确的是()A.线段BC是△ABE的高B.线段BE是△ABD的中线C.线段BD是△EBC的角平分线D.∠ABE=∠EBD=∠DBC5.如图,在△ABC中,E,F分别是AB,AC的中点,△CEF的面积为2.5,则△ABC的面积为()A.6B.7C.8D.106.如图,BD和CE是△ABC的两条角平分线,且∠DBC=∠ECB=31°,则∠ABC=度,∠ACB=度.7.如图,线段AD,CE分别是△ABC中边BC,AB上的高.若AD=10,CE=9,AB=12,则BC的长是.8.如图,在△ABC中,AB=AC,线段AD是△ABC的中线,△ABC的周长为34cm,△ABD的周长为30cm,求AD的长.9.已知在等腰三角形ABC中,AB=AC,若腰AC上的中线BD将等腰三角形ABC的周长分成15和6两部分,求三角形ABC的腰长及底边长.10.如图,AD是△CAB的角平分线,DE∥AB,DF∥AC,EF交AD于点O.请问:DO是△EDF的角平分线吗?如果是,请给予证明;如果不是,请说明理由.二、创新应用11.有一块三角形优良品种试验基地,如图,由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的划分方案供选择.(画图即可)答案一、能力提升1.D;直角三角形和钝角三角形都只有一条高在三角形的内部.2.C3.C4.D5.D;∵F为AC的中点,∴线段EF为△AEC的中线,∴S△AEC=2S△CEF=5.∵E为AB的中点,∴线段CE为△ABC的中线,∴S△ABC=2S△AEC=10.6.62;62.7.10.8;S△ABC=BC·AD=AB·CE,则BC===10.8.8.解:∵线段AD是△ABC的中线,∴BC=2BD.∵AB=AC,△ABC的周长为34cm,∴2AB+2BD=34cm,即AB+BD=17cm.又△ABD的周长为30cm,即AB+BD+AD=30cm,∴AD=13cm.9.解:设AB=AC=2x,则AD=CD=x.当AB+AD=15,BC+CD=6时,有2x+x=15,所以x=5,AB=AC=2x=10,BC=6-5=1.当BC+CD=15,AB+AD=6时,有2x+x=6,所以x=2,AB=AC=2x=4,BC=13.因为4+4<13,所以不能组成三角形.故三角形ABC的腰长为10,底边长为1.10.解:DO是△EDF的角平分线.证明如下:∵AD是△CAB的角平分线,∴∠EAD=∠FAD.∵DE∥AB,DF∥AC,∴∠EDA=∠FAD,∠FDA=∠EAD.∴∠EDA=∠FDA,即DO是△EDF的角平分线.二、创新应用11.解:如图(答案不唯一).11.1.3三角形的稳定性一、能力提升1.如图,桥梁的斜拉钢索是三角形的结构,主要是为了()A.节省材料,节约成本B.保持对称C.利用三角形的稳定性D.美观漂亮2.下列不是利用三角形稳定性的是()A.伸缩晾衣架B.三角形房架C.自行车的三角形车架D.矩形门框的斜拉条3.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短4.王师傅用四根木条钉成一个四边形木架.如图,要使这个木架不变形,他至少还要再钉上()根木条.A.0B.1C.2D.35.如图,要使四边形木条框架ABCD变“活”(具有不稳定性),应将木条拆除.6.伸缩铁门能自由伸缩,主要是应用了四边形的.7.我们所用的课桌和所坐的凳子,时间长了总是摇摇晃晃的,这是什么原因?要使自己用的桌凳不晃动应该怎么办?如图,如果有六边形木框,要使它不变形,应该怎么办?二、创新应用8.如图,我们知道要使四边形木架不变形,至少要钉一根木条.那么要使五边形木架不变形,至少要钉几根木条?要使七边形木架不变形,至少要钉几根木条?要使n边形木架不变形,又至少要钉多少根木条呢?答案一、能力提升1.C.2.A.3.A;打开的那一扇窗户下边的一部分OB、窗户框下边的一部分OA 及AB组成一个三角形,根据三角形的稳定性,知可用AB固定窗户.4.B.5.AC.6.不稳定性.7.解:这是因为课桌和凳子的四个侧面都是四边形木架,当交接处松动后就具有不稳定性.解决这类问题的方法是在每个侧面加上一根木条(或木板),使之成为三角形.要使六边形木框不变形,至少应加3根木条使其划分为三角形.二、创新应用8.解:要使五边形木架不变形,至少要钉2根木条;要使七边形木架不变形,至少要钉4根木条;要使n边形木架不变形,至少要钉(n-3)根木条.11.2.1三角形的内角一、能力提升1.在△ABC中,∠A=55°,∠B比∠C大25°,则∠B的度数为()A.50°B.75°C.100°D.125°2.如图,CD∥AB,∠1=120°,∠2=80°,则∠E等于()A.40°B.60°C.80°D.120°3.(2020·辽宁锦州中考)如图,在△ABC中,∠A=30°,∠B=50°,CD平分∠ACB,则∠ADC的度数是()A.80°B.90°C.100°D.110°4.在△ABC中,若∠A=∠B+∠C,则∠A的度数是.5.如图,点B,C,D在同一条直线上,CE∥AB,∠ACB=90°.如果∠ECD=36°,那么∠A的度数是.6.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2的度数是.7.在△ABC中,若最大角∠A等于最小角∠C的两倍,最大角又比另一个角大20°,则△ABC的三个角的度数分别是多少?8.如图,E是△ABC中边AC上的一点,过点E作ED⊥AB,垂足为D.若∠1=∠2,则△ABC是直角三角形吗?为什么?9.如图,在△ABC中,D是BC上一点,F是BA延长线上一点,连接DF交AC于点E,且∠B=42°,∠C=59°,∠DEC=47°,求∠F的度数.二、创新应用10.如图,在△ABC中,∠ABC,∠ACB的平分线相交于点D.(1)若∠ABC+∠ACB=110°,则∠BDC=;(2)若∠A=100°,则∠BDC=;(3)若∠A=n°,求∠BDC的度数.答案一、能力提升1.B;设∠C的度数为x°,则∠B的度数为x°+25°,则55°+x°+x°+25°=180°,解得x=50,则∠B=75°.2.A;∵CD∥AB,∠1=120°,∴∠CDB=∠1=120°,∴∠EDC=60°.∵∠2=80°,∴∠E=180°-80°-60°=40°.3.C∵∠A=30°,∠B=50°,∴∠ACB=180°-∠A-∠B=100°.又CD平分∠ACB,∴∠ACD=∠ACB=50°.∴∠ADC=180°-∠A-∠ACD=100°.4.90°.5.54°.6.270°.由三角形三内角之间的关系,得∠3+∠4=90°,所以∠1+∠2=(180°-∠3)+(180°-∠4)=2×180°-(∠3+∠4)=360°-90°=270°.7.解:设∠C=x°,则∠A=2x°,∠B=2x°-20°,根据三角形的内角和定理,有2x+(2x-20)+x=180,解得x=40,即∠C=40°.所以2x=80,∠A=80°,2x-20=60,∠B=60°.故△ABC的三个角的度数分别为∠A=80°,∠B=60°,∠C=40°.8.解:△ABC是直角三角形.理由如下:∵ED⊥AB,∴∠ADE=90°,∴∠1+∠A=90°.又∠1=∠2,∴∠2+∠A=90°.∴△ABC是直角三角形.9.解:在△EDC中,∠EDC=180°-(∠C+∠DEC)=180°-(59°+47°)=74°.∴∠FDB=180°-∠EDC=180°-74°=106°.在△BDF中,∠F=180°-(∠B+∠FDB)=180°-(42°+106°)=32°.二、创新应用10.解:(1)125°.(2)140°.(3)∵∠A=n°,∴∠ABC+∠ACB=180°-n°.∵BD平分∠ABC,CD平分∠ACB,∴∠DBC+∠DCB=∠ABC+∠ACB=(∠ABC+∠ACB)=×(180°-n°)=90°-.∴∠BDC=180°-(∠DBC+∠DCB)=180°-=90°+.11.2.2三角形的外角一、能力提升1.一副三角尺有两个直角三角形,如图叠放在一起,则∠α的度数是()A.165°B.120°C.150°D.135°2.如图,在△ABC中,AD为边BC上的中线,在△ABD中,AE为边BD上的中线,在△ACD中,AF为边DC上的中线,则下列结论错误的是()A.∠1>∠2>∠3>∠CB.BE=ED=DF=FCC.∠1>∠4>∠5>∠CD.∠1=∠3+∠4+∠53.如图,若∠A=32°,∠B=45°,∠C=38°,则∠DFE等于()A.120°B.115°C.110°D.105°4.(2020·湖北中考)将一副三角尺按如图摆放,点E在AC上,点D在BC 的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是()A.15°B.20°C.25°D.30°5.如图,∠ABC的平分线与∠ACD的平分线相交于点P.若∠A=60°,则∠P等于()A.30°B.40°C.50°D.60°6.(2020·湖北黄冈中考)如图,AB∥EF,∠ABC=75°,∠CDF=135°,则∠BCD=.7.如图,已知在△ABC中,D是AB上一点,E是AC上一点,BE与CD相交于点F,∠A=62°,∠ACD=35°,∠ABE=20°,则∠BDC=,∠BFC=.8.如图,D,E,F分别是△ABC三边延长线上的点,求∠D+∠E+∠F+∠1+∠2+∠3的度数.9.如图,在△ABC中,E是AC延长线上的一点,D是BC上的一点.求证:(1)∠BDE=∠E+∠A+∠B.(2)∠BDE>∠A.10.如图,在△ABC中,D是边BC上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.二、创新应用11.如图①,有一个五角形图案ABCDE,你能说明∠A+∠DBE+∠C+∠D+∠E=180°吗?如果点B向下移动到AC上(如图②)或AC的另一侧(如图③),上述结论是否依然成立?请说明理由.答案一、能力提升1.A如图,∵∠2=90°-45°=45°,∴∠1=∠2-30°=15°.∴∠α=180°-∠1=165°.2.C由三角形的一个外角大于与它不相邻的内角,知∠1>∠2>∠3>∠C,故选项A正确;根据三角形中线的定义,知BE=ED=DF=FC,故选项B正确;∠4与∠5的大小不能判定,故选项C错误;根据三角形的一个外角等于与它不相邻两个内角的和,知∠1=∠2+∠4,∠2=∠3+∠5,所以∠1=∠3+∠4+∠5,故选项D正确.3.B4.A5.A利用三角形的外角性质,得∠P=∠PCD-∠PBD=(∠ACD-∠ABC)=∠A=30°.6.30°.7.97°;117°.8.解:∵∠D+∠3=∠CAB,∠E+∠1=∠ABC,∠F+∠2=∠ACB,∴∠D+∠E+∠F+∠1+∠2+∠3=∠CAB+∠ABC+∠ACB=180°.9.证明:(1)∵∠BDE,∠DCE分别是△CDE,△ABC的一个外角,∴∠BDE=∠E+∠DCE,∠DCE=∠A+∠B,∴∠BDE=∠E+∠A+∠B.(2)由(1)得∠BDE=∠E+∠A+∠B,∴∠BDE>∠A.10.解:∵∠3是△ABD的外角,∴∠3=∠1+∠2.∵∠1=∠2,∠3=∠4,∴∠4=2∠2.在△ABC中,∵∠2+∠4=180°-∠BAC=180°-63°=117°,∴∠1=∠2=117°÷(1+2)=39°.∴∠DAC=∠BAC-∠1=63°-39°=24°.二、创新应用11.解:在题图①中,∠A+∠C=∠DNM, ①∠DBE+∠E=∠DMN, ②①+②,得∠A+∠DBE+∠C+∠E=∠DNM+∠DMN.∵∠D+∠DNM+∠DMN=180°,∴∠A+∠DBE+∠C+∠D+∠E=180°.在题图②、题图③中,上述结论仍然成立,理由与题图①完全相同.11.3.1多边形一、能力提升1.在下列关于正多边形的特征说法中,错误的是()A.每一条边都相等B.每一个内角都相等C.每一个外角都相等D.所有对角线都相等2.过多边形的一个顶点可以引2017条对角线,则这个多边形的边数是()A.2017B.2018C.2019D.20203.如果过多边形的一个顶点的对角线把多边形分成8个三角形,那么这个多边形的边数为()A.8B.9C.10D.114.将一个四边形截去一个角后,它不可能是()A.三角形B.四边形C.五边形D.六边形5.在n边形的一边上任取一点(不包含顶点)与各顶点相连,可得三角形的个数是()A.nB.n-2C.n-1D.n+16.过m边形的一个顶点有7条对角线,n边形没有对角线,则m n=.7.已知一个多边形的边数恰好是从这个多边形的一个顶点出发所作的对角线的条数的2倍,求此多边形的边数.二、创新应用8.观察下面图形,解答下列问题:(1)在上面第四个图中画出六边形的所有对角线;(2)观察规律,把下表填写完整.边数 3 4 5 6 7 …n对角线条0 2 5 …数答案一、能力提升1.D2.D3.C4.D一个多边形截去一个角后,可能出现三种情况:少一个角、角的个数不变或多一个角.5.C6.1000;从m边形的一个顶点出发有(m-3)条对角线,由m-3=7,得m=10. n边形没有对角线,所以n=3.所以m n=103=1000.7.解:设这个多边形的边数为n,则从多边形的一个顶点出发所作的对角线的条数为n-3.依题意,得n=2(n-3),解得n=6.二、创新应用8.解:(1)(2)边数 3 4 5 6 7 …n对角线条数0 2 5 9 14 …n(n-3)11.3.2多边形的内角和一、能力提升1.如果一个正多边形的每一个外角都是锐角,那么这个正多边形的边数一定不小于()A.3B.4C.5D.62.(2020·山东济宁中考)一个多边形的内角和是1080°,则这个多边形的边数是()A.9B.8C.7D.63.若一个多边形的边数由5增加到11,则内角和增加的度数是()A.1080°B.720°C.540°D.360°4.如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是()A.110°B.108°C.105°D.100°5.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形6.若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是.7.如图,在四边形ABCD中,∠A+∠B=210°,且∠ADC的平分线与∠DCB的平分线相交于点O,则∠COD的度数是.8.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数和内角和.9.如图,求∠A+∠B+∠OCD+∠ODC+∠E+∠F的度数.二、创新应用10.在一个多边形中,一个内角相邻的外角与其他各内角的和为600°.(1)如果这个多边形是五边形,请求出这个外角的度数;(2)是否存在符合题意的其他多边形?如果存在,请求出边数及这个外角的度数;如果不存在,请说明理由.答案一、能力提升1.C每个外角都是锐角,即小于90°,设边数为n,则这些锐角的和一定小于n×90°.而外角和为360°,所以360°<n×90°,n>4,即n不小于5.2.B设这个多边形的边数是n,则(n-2)×180°=1080°,解得n=8.3.A因为每增加一条边,内角和增加180°,所以增加6条边,内角和增加180°×6=1080°.4.D由题意知∠AED的补角为80°,则∠AED=100°.5.D多边形的外角和是360°,内角和等于外角和的一半,则内角和是180°,可知此多边形为三角形.6.6因为凸n边形的内角和为1260°,所以(n-2)×180°=1260°,得n=9.故从一个顶点出发引的对角线的条数为9-3=6.7.105°∵四边形的内角和为360°,∠A+∠B=210°,∴∠ADC+∠BCD=360°-210°=150°.∵DO,CO分别为∠ADC与∠BCD的平分线,∴∠ODC=∠ADC,∠OCD=∠BCD.∴∠ODC+∠OCD=(∠ADC+∠BCD)=×150°=75°.∴∠COD=180°-75°=105°.8.解:由题意知这个多边形的内角和为3×360°-180°=900°.设这个多边形的边数为n,根据题意,得(n-2)×180°=900°,解得n=7.故这个多边形的边数为7.9.解:如图,连接BE,则在△COD与△BOE中,∠ODC+∠OCD+∠COD=180°,∠OBE+∠OEB+∠BOE=180°.∵∠COD与∠BOE是对顶角,∴∠COD=∠BOE.∵∠ODC+∠OCD=180°-∠COD,∠OBE+∠OEB=180°-∠BOE,∴∠ODC+∠OCD=∠OBE+∠OEB.∴题图中的∠A+∠B+∠OCD+∠ODC+∠E+∠F等于上图中的∠A+∠F+∠ABC+∠DEF+∠OBE+∠OEB=∠A+∠F+∠ABE+∠BEF=360°,即所求六个角的和为360°.二、创新应用10.解:(1)设这个外角的度数是x°,则(5-2)×180-(180-x)+x=600,解得x=120.故这个外角的度数是120°.(2)存在.设边数为n,这个外角的度数是x°,则(n-2)×180-(180-x)+x=600,整理得x=570-90n.因为0<x<180,即0<570-90n<180,并且n为正整数,所以n=5或n=6.故这个多边形的边数是6,这个外角的度数为30°.。

八年级数学上册第十四章整式的乘法与因式分解知识点题库(带答案)

八年级数学上册第十四章整式的乘法与因式分解知识点题库(带答案)

八年级数学上册第十四章整式的乘法与因式分解知识点题库单选题1、要使多项式(x+p)(x−q)不含x的一次项,则p与q的关系是()A.相等B.互为相反数C.互为倒数D.乘积为−1答案:A分析:计算乘积得到多项式,因为不含x的一次项,所以一次项的系数等于0,由此得到p-q=0,所以p与q 相等.解:(x+p)(x−q)=x2+(p−q)x−pq∵乘积的多项式不含x的一次项∴p-q=0∴p=q故选择A.小提示:此题考查整式乘法的运用,注意不含的项即是该项的系数等于0.2、下列分解因式正确的是()A.a3−a=a(a2−1)B.x3+4x2y+4xy2=x(x+2y)2C.−x2+4xy−4y2=−(x+2y)2D.16x2+16x+4=(4x+2)2答案:B分析:根据分解因式的方法进行分解,同时分解到不能再分解为止;A、a3−a=a(a2−1)=a(a+1)(a−1),故该选项错误;B、x3+4x2y+4xy2=x(x2+4xy+4y2)=x(x+2y)2,故该选项正确;C、−x2+4xy−4y2=−(x2−4xy+4y2)=−(x−2y)2,故该选项错误;D、16x2+16x+4=4(4x2+4x+1)=4(2x+1)2,故该选项错误;故选:B.小提示:本题考查了因式分解,解决问题的关键是掌握因式分解的几种方法,注意因式分解要分解到不能再分解为止;3、若x 2+ax =(x +12)2+b ,则a ,b 的值为( ) A .a =1,b =14B .a =1,b =﹣14 C .a =2,b =12D .a =0,b =﹣12答案:B分析:根据完全平方公式把等式右边部分展开,再比较各项系数,即可求解.解:∵x 2+ax =(x +12)2+b =x 2+x +14+b , ∴a =1,14+b =0, ∴a =1,b =﹣14,故选B .小提示:本题主要考查完全平方公式,熟练掌握完全平方公式是解题的关键.4、下列因式分解正确的是( )A .a 4b ﹣6a 3b +9a 2b =a 2b (a 2﹣6a +9)B .x 2﹣x +14=(x ﹣12)2C .x 2﹣2x +4=(x ﹣2)2D .x 2﹣4=(x +4)(x ﹣4)答案:B分析:直接利用提取公因式法以及公式法分解因式进而判断即可.解:A 、a 4b ﹣6a 3b +9a 2b =a 2b (a 2﹣6a +9)=a 2b (a ﹣3)2,故此选项错误;B 、x 2﹣x +14=(x ﹣12)2,故此选项正确;C 、x 2﹣2x +4,无法运用完全平方公式分解因式,故此选项错误;D 、x 2﹣4=(x +2)(x ﹣2),故此选项错误;故选:B .小提示:本题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法进行解题.5、如下列试题,嘉淇的得分是()姓名:嘉淇得分:将下列各式分解因式(每题20分,共计100分)①2xy−4xyz=2xy(1−2z);②−3x−6x2=−3x(1−2x);③a2+2a+1=a(a+2);④m2−4n2= (m−2n)2;⑤−2x2+2y2=−2(x+y)(x−y)A.40分B.60分C.80分D.100分答案:A分析:根据提公因式法及公式法分解即可.①2xy−4xyz=2xy(1−2z),故该项正确;②−3x−6x2=−3x(1+2x),故该项错误;③a2+2a+1=(a+1)2,故该项错误;④m2−4n2=(m+2n)(m−2n),故该项错误;⑤−2x2+2y2=−2(x+y)(x−y),故该项正确;正确的有:①与⑤共2道题,得40分,故选:A.小提示:此题考查分解因式,将多项式写成整式乘积的形式,叫做将多项式分解因式,分解因式的方法:提公因式法、公式法,根据每道题的特点选择恰当的分解方法是解题的关键.6、在下列各式中,一定能用平方差公式因式分解的是().A.−a2−9B.a2−9C.a2−4b D.a2+9答案:B分析:直接利用平方差公式:a2−b2=(a+b)(a−b),进而分解因式判断即可.A、−a2−9,无法分解因式,故此选项不合题意;B、a2−9=(a+3)(a−3),能用平方差公式分解,故此选项符合题意;C、a2−4b,无法分解因式,故此选项不合题意;D、a2+9,无法分解因式,故此选项不合题意.故选B.小提示:此题主要考查了公式法分解因式,正确应用乘法公式是解题关键.7、若2a+3b−3=0,则4a×23b的值为()A.23B.24C.25D.26答案:A分析:先利用已知条件2a+3b−3=0,得2a+3b=3,再利用同底数幂的乘法运算法则和幂的乘方将原式变形得出答案.解:∵2a+3b−3=0,∴2a+3b=3,∵4a×23b=(22)a×23b=22×a×23b=22a+3b,∴原式=4a×23b=(22)a×23b=22×a×23b=22a+3b=23,故选:A.小提示:本题主要考查了同底数幂的乘法运算和幂的乘方,正确将原式变形是解题关键.8、下列因式分解正确的是()A.a2+b2=(a+b)2B.a2+2ab+b2=(a−b)2C.a2−a=a(a+1)D.a2−b2=(a+b)(a−b)答案:D分析:根据因式分解的方法,逐项分解即可.A. a2+b2,不能因式分解,故该选项不正确,不符合题意;B. a2+2ab+b2=(a+b)2故该选项不正确,不符合题意;C. a2−a=a(a−1),故该选项不正确,不符合题意;D. a2−b2=(a+b)(a−b),故该选项正确,符合题意.故选D.小提示:本题考查了因式分解,掌握因式分解的方法是解题的关键.9、计算(x+1)(x+2)的结果为( )A.x2+2B.x2+3x+2C.x2+3x+3D.x2+2x+2答案:B解:原式=x2+2x+x+2=x2+3x+2.故选B.10、已知2n=a,3n=b,12n=c,那么a、b、c之间满足的等量关系是()A.c=ab B.c=ab3C.c=a3b D.c=a2b答案:D分析:直接利用积的乘方、幂的乘方运算法则将原式变形得出答案.A选项:ab=2n⋅3n=6n≠12n,即c≠ab,A错误;B选项:ab3=2n⋅(3n)3=2n⋅33n=2n⋅27n=54n≠12n,即c≠ab3,B错误;C选项:a3b=(2n)3⋅3n=8n⋅3n=24n≠12n,即c≠a3b,C错误;D选项:a2b=(2n)2⋅3n=4n⋅3n=12n=c,D正确.故选:D.小提示:本题主要考查了积的乘方运算,幂的乘方运算,正确将原式变形是解题关键.填空题11、计算:(√5-2)2018(√5+2)2019的结果是_____.答案:√5+2分析:逆用积的乘方运算法则以及平方差公式即可求得答案.(√5-2)2018(√5+2)2019=(√5-2)2018×(√5+2)2018×(√5+2)=[(√5-2)×(√5+2)]2018×(√5+2)=(5-4)2018×(√5+2)=√5+2,故答案为√5+2.小提示:本题考查了积的乘方的逆用,平方差公式,熟练掌握相关的运算法则是解题的关键.12、若|a|=2,且(a−2)0=1,则2a的值为_______.答案:1##0.254分析:根据绝对值的意义得出a=±2,根据(a−2)0=1,得出a−2≠0,求出a的值,即可得出答案.解:∵|a|=2,∴a=±2,∵(a−2)0=1,∴a−2≠0,即a≠2,∴a=−2,∴2a=2−2=1.4.所以答案是:14小提示:本题主要考查了绝对值的意义,零指数幂有意义的条件,根据题意求出a=−2,是解题的关键.13、已知x−y=3,xy=10,则(x+y)2=______.答案:49分析:根据(x+y)2=(x-y)2+4xy即可代入求解.解:(x+y)2=(x-y)2+4xy=9+40=49.所以答案是:49.小提示:本题主要考查完全平方公式,熟记公式的几个变形公式对解题大有帮助.14、分解因式:am+an−bm−bn=_________________答案:(m+n)(a−b)分析:利用分组分解法和提取公因式法进行分解因式即可得.解:原式=(am+an)−(bm+bn)=a(m+n)−b(m+n)=(m+n)(a−b),所以答案是:(m+n)(a−b).小提示:本题考查了因式分解,熟练掌握因式分解的方法是解题关键.15、若x−y−3=0,则代数式x2−y2−6y的值等于______.答案:9分析:先计算x-y的值,再将所求代数式利用平方差公式分解前两项后,将x-y的值代入化简计算,再代入计算即可求解.解:∵x−y−3=0,∴x−y=3,∴x2−y2−6y=(x+y)(x−y)−6y=3(x+y)−6y=3x+3y−6y=3(x−y)=9所以答案是:9.小提示:本题主要考查因式分解的应用,通过平方差公式分解因式后整体代入是解题的关键.解答题16、化简:3(a﹣2)(a+2)﹣(a﹣1)2.答案:2a2+2a-13分析:根据平方差公式和完全平方公式去括号,再计算加减法.解:3(a﹣2)(a+2)﹣(a﹣1)2=3(a2-4)-(a2-2a+1)=3a2-12-a2+2a-1=2a2+2a-13.小提示:此题考查了整式的乘法计算公式,整式的混合运算,正确掌握平方差公式和完全平方公式的计算法则是解题的关键.17、爱动脑筋的小明在学习《幂的运算》时发现:若a m=a n(a>0,且a≠1,m、n都是正整数),则m= n,例如:若5m=54,则m=4.小明将这个发现与老师分享,并得到老师确认是正确的,请您和小明一起用这个正确的发现解决下面的问题:(1)如果2×4x×32x=236,求x的值;(2)如果3x+2+3x+1=108,求x的值.答案:(1)x=5(2)x=2分析:(1)利用幂的乘方的法则及同底数幂的乘法的法则对式子进行整理,从而可求解;(2)利用同底数幂的乘法的法则及幂的乘方的法则对式子进行整理,即可求解.(1)因为2×4x×32x=236,所以2×22x×25x=236,即21+7x=236,所以1+7x=36,解得:x=5;(2)因为3x+2+3x+1=108,所以3×3x+1+3x+1=4×27,4×3x+1=4×33,即3x+1=33,所以x+1=3,解得:x=2.小提示:本题主要考查幂的乘方,同底数幂的乘法,解答的关键是对相应的运算法则的掌握与运用.18、阅读:已知a、b、c为△ABC的三边长,且满足a2c2−b2c2=a4−b4,试判断△ABC的形状.答案:(1)③,忽略了a2−b2=0的情况;(2)见解析分析:(1)根据题意可直接进行求解;(2)由因式分解及勾股定理逆定理可直接进行求解.解:(1)由题意可得:从第③步开始错误,错的原因为:忽略了a2−b2=0的情况;故答案为③;忽略了a2−b2=0的情况;(2)正确的写法为:c2(a2−b2)=(a2+b2)(a2−b2)c2(a2−b2)−(a2+b2)(a2−b2)=0(a2−b2)[c2−(a2+b2)]=0当a2−b2=0时,a=b;当a2−b2≠0时,a2+b2=c2;所以△ABC是直角三角形或等腰三角形或等腰直角三角形.小提示:本题主要考查勾股定理逆定理及因式分解,熟练掌握勾股定理逆定理及因式分解是解题的关键.解析:解:因为a2c2−b2c2=a4−b4,①所以c2(a2−b2)=(a2−b2)(a2+b2)②所以c2=a2+b2③所以△ABC是直角三角形④请据上述解题回答下列问题:(1)上述解题过程,从第______步(该步的序号)开始出现错误,错的原因为______;(2)请你将正确的解答过程写下来.。

(完整版)八年级数学上册同步练习题及答案

(完整版)八年级数学上册同步练习题及答案

12.1.1平方根(第一课时)◆随堂检测1、若x 2=a ,则叫的平方根,如16的平方根是,972的平方根是 2、3±表示的平方根,12-表示12的3、196的平方根有个,它们的和为4、下列说法是否正确?说明理由(1)0没有平方根;(2)—1的平方根是1±;(3)64的平方根是8;(4)5是25的平方根;(5)636±=5、求下列各数的平方根(1)100(2))8()2(-⨯-(3)1.21(4)49151 ◆典例分析例若42-m 与13-m 是同一个数的平方根,试确定m 的值◆课下作业●拓展提高一、选择1、如果一个数的平方根是a+3和2a-15,那么这个数是()A 、49B 、441C 、7或21D 、49或4412、2)2(-的平方根是()A 、4B 、2C 、-2D 、2±二、填空3、若5x+4的平方根为1±,则x=4、若m —4没有平方根,则|m —5|=5、已知12-a 的平方根是4±,3a+b-1的平方根是4±,则a+2b 的平方根是三、解答题6、a 的两个平方根是方程3x+2y=2的一组解(1)求a 的值(2)2a 的平方根7、已知1-x +∣x+y-2∣=0求x-y 的值●体验中考1、(09河南)若实数x ,y 满足2-x +2)3(y -=0,则代数式2x xy -的值为2、(08咸阳)在小于或等于100的非负整数中,其平方根是整数的共有个3、(08荆门)下列说法正确的是()A 、64的平方根是8B 、-1的平方根是1±C 、-8是64的平方根D 、2)1(-没有平方根◆随堂检测1、259_____ 2、一个数的算术平方根是9,则这个数的平方根是3x 的取值范围是,若a ≥04、下列叙述错误的是()A 、-4是16的平方根B 、17是2(17)-的算术平方根C 、164的算术平方根是18D 、0.4的算术平方根是0.02 ◆典例分析例:已知△ABC 的三边分别为a 、b 、c 且a 、b |4|0b -=,求c 的取值范围分析:根据非负数的性质求a 、b 的值,再由三角形三边关系确定c 的范围◆课下作业●拓展提高一、选择12=,则2(2)m +的平方根为()A 、16B 、16±C 、4±D 、2±2A 、4B 、4±C 、2D 、2±二、填空3、如果一个数的算术平方根等于它的平方根,那么这个数是42(4)y +=0,则x y =三、解答题5、若a 是2(2)-的平方根,b 是16的算术平方根,求2a +2b 的值6、已知a 为170的整数部分,b-1是400的算术平方根,求a b +的值●体验中考.(2009年山东潍坊)一个自然数的算术平方根为a ,则和这个自然数相邻的下一个自然数是()A .1a +B .21a +C .21a +D .1a +2、(08年泰安市)88的整数部分是;若a<57<b ,(a 、b 为连续整数),则a=,b=3、(08年广州)如图,实数a 、b 在数轴上的位置,化简222()a b a b ---=4、(08年随州)小明家装修用了大小相同的正方形瓷砖共66块铺成10.56米2的房间,小明想知道每块瓷砖的规格,请你帮助算一算.12.1.2立方根◆随堂检测1、若一个数的立方等于—5,则这个数叫做—5的,用符号表示为,—64的立方根是,125的立方根是;的立方根是—5.2、如果3x =216,则x =.如果3x =64,则x =.3、当x 为时,32x -有意义.4、下列语句正确的是()A 、64的立方根是2B 、3-的立方根是27C 、278的立方根是32±D 、2)1(-立方根是1- 典例分析例若338x 51x 2+-=-,求2x 的值.●拓展提高一、选择1、若22)6(-=a ,33)6(-=b ,则a+b 的所有可能值是()A 、0B 、12-C 、0或12-D 、0或12或12-2、若式子3112a a -+-有意义,则a 的取值范围为() A 、21≥aB 、1≤aC 、121≤≤a D 、以上均不对 二、填空 3、64的立方根的平方根是4、若162=x ,则(—4+x )的立方根为三、解答题5、求下列各式中的x 的值(1)1253)2(-x =343(2)64631)1(3-=-x 6、已知:43=a ,且03)12(2=-++-c c b ,求333c b a ++的值●体验中考1、(09宁波)实数8的立方根是2、(08泰州市)已知0≠a ,a ,b 互为相反数,则下列各组数中,不是互为相反数的一组是()A 、3a 与3bB 、a +2与b +2C 、2a 与2b -D 、3a 与3b3、(08益阳市)一个正方体的水晶砖,体积为100cm 3,它的棱长大约在()A 、4~5cm 之间B 、5~6cm 之间C 、6~7cm 之间D 、7~8cm 之间12.2实数与数轴◆随堂检测1、下列各数:23,722-,327-,414.1,3π-,12122.3,9-,••9641.3中,无理数有个,有理数有个,负数有个,整数有个.2、33-的相反数是,|33-|=57-的相反数是,21-的绝对值=3、设3对应数轴上的点A ,5对应数轴上的点B ,则A 、B 间的距离为4、若实数a<b<0,则|a||b|;大于17小于35的整数是; 比较大小:6334112535、下列说法中,正确的是()A .实数包括有理数,0和无理数B .无限小数是无理数C .有理数是有限小数D .数轴上的点表示实数.◆典例分析例:设a 、b 是有理数,并且a 、b 满足等式2522-=++b b a ,求a+b 的平方根◆课下作业●拓展提高一、选择1、如图,数轴上表示1,2的对应点分别为A 、B ,点B 关于点A 的对称点为C ,则点C 表示的实数为()A .2-1B .1-2C .2-2D .2-22、设a 是实数,则|a|-a 的值()A .可以是负数B .不可能是负数C .必是正数D .可以是整数也可以是负数二、填空3、写出一个3和4之间的无理数4、下列实数1907,3π-,0,49-,21,31-1…(每两个1之间的0的个数逐次加1)中,设有m 个有理数,n 个无理数,则n m =三、解答题5、比较下列实数的大小(1)|8-|和3(2)52-和9.0-(3)215-和87 6、设m 是13的整数部分,n 是13的小数部分,求m-n 的值.●体验中考.(2011年青岛二中模拟)如图,数轴上A B ,两点表示的数分别为1-,点B 关于点A 的对称点为C ,则点C 所表示的数为()A.2-B.1- C.2- D.1+.(2011年湖南长沙)已知实数a在数轴上的位置如图所示,则化简|1|a -的结果为()C A 0B(第46题图)A .1B .1-C .12a -D .21a - 3、(2011年江苏连云港)实数a b ,在数轴上对应点的位置如图所示,则必有()A .0a b +>B .0a b -<C .0ab >D .0a b< 4、(2011年浙江省杭州市模2)如图,数轴上点A 所表示的数的倒数是( )A .2-B .2C .12D .12- §13.1幂的运算1.同底数幂的乘法试一试(1)23×24=()×()=2();(2)53×54=5();(3)a 3·a 4=a ().概括:a m ·a n =()()==a n m +.可得a m ·a n =a n m +这就是说,同底数幂相乘,.例1计算:(1)103×104;(2)a ·a 3;(3)a ·a 3·a 5.练习1.判断下列计算是否正确,并简要说明理由.(1)a ·a 2=a 2;(2)a +a 2=a 3;(3)a 3·a 3=a 9;(4)a 3+a 3=a 6.2.计算:(1)102×105;(2)a 3·a 7;(3)x ·x 5·x 7.3.填空:(1)ma 叫做a 的m 次幂,其中a 叫幂的________,m 叫幂的________;(2)写出一个以幂的形式表示的数,使它的底数为c ,指数为3,这个数为________;(第8题图)(3)4)2(-表示________,42-表示________;(4)根据乘方的意义,3a =________,4a =________,因此43a a ⋅=)()()(+同底数幂的乘法练习题1.计算:(1)=⋅64a a (2)=⋅5b b(3)=⋅⋅32m mm (4)=⋅⋅⋅953c c c c (5)=⋅⋅p n m a a a(6)=-⋅12m t t (7)=⋅+q q n 1(8)=-+⋅⋅112p p n n n 2.计算:(1)=-⋅23b b (2)=-⋅3)(a a(3)=--⋅32)()(y y (4)=--⋅43)()(a a (5)=-⋅2433(6)=--⋅67)5()5((7)=--⋅32)()(q q n (8)=--⋅24)()(m m (9)=-32(10)=--⋅54)2()2((11)=--⋅69)(b b (12)=--⋅)()(33a a3.下面的计算对不对?如果不对,应怎样改正? (1)523632=⨯;(2)633a a a =+;(3)n n n yy y 22=⨯;(4)22m m m =⋅; (5)422)()(a a a =-⋅-;(6)1243a a a=⋅; (7)334)4(=-;(8)6327777=⨯⨯;(9)42-=-a ;(10)32n n n =+.4.选择题:(1)22+m a 可以写成( ).A .12+m a B .22a a m +C .22a a m ⋅D .12+⋅m a a(2)下列式子正确的是( ).A .4334⨯=B .443)3(=-C .4433=-D .3443=(3)下列计算正确的是( ).A .44a a a =⋅B .844a a a =+C .4442a a a =+D .1644a a a =⋅2.幂的乘方根据乘方的意义及同底数幂的乘法填空:(1)(23)2=×=2();(2)(32)3=×=3();(3)(a 3)4=×××=a ().概括(a m )n =(n 个)=(n 个)=a mn可得(a m )n =a mn (m 、n 为正整数).这就是说,幂的乘方,.例2计算:(1) (103)5;(2)(b 3)4.练习1.判断下列计算是否正确,并简要说明理由.(1)(a 3)5=a 8;(2)a 5·a 5=a 15;(3)(a 2)3·a 4=a 9.2.计算:(1)(22)2;(2)(y 2)5;(3)(x 4)3;(4)(y 3)2·(y 2)3.3、计算: (1)x·(x 2)3(2)(x m )n ·(x n )m (3)(y 4)5-(y 5)4(4)(m 3)4+m 10m 2+m·m 3·m 8(5)[(a -b )n ]2[(b -a )n -1]2(6)[(a -b )n ]2[(b -a )n -1]2(7)(m 3)4+m 10m 2+m·m 3·m 8幂的乘方一、基础练习1、幂的乘方,底数_______,指数____.(a m )n =___(其中m 、n 都是正整数)2、计算:(1)(23)2=_____;(2)(-22)3=______;(3)-(-a 3)2=______;(4)(-x 2)3=_______。

新版人教版八年级数学上册全册习题集

新版人教版八年级数学上册全册习题集

新版人教版八年级数学上册全册习题集目录1. 第一章:整数2. 第二章:有理数3. 第三章:代数式4. 第四章:图形的认识5. 第五章:图形的性质6. 第六章:相交线与平行线7. 第七章:三角形8. 第八章:全等三角形9. 第九章:五边形与多边形10. 第十章:集合第一章:整数本章介绍整数的概念、整数之间的大小比较、整数的加减法运算以及整数的乘法运算。

通过题练,加深对整数概念的理解,并掌握整数的运算方法和技巧。

第二章:有理数本章介绍有理数的概念、有理数之间的大小比较、有理数的加减法运算以及有理数的乘除法运算。

通过题练,巩固对有理数概念的掌握,提高有理数运算的能力。

第三章:代数式本章介绍代数式的概念、代数式的计算与化简、代数式的值、代数式的应用等内容。

通过题练,培养代数思维能力,掌握代数式的运算技巧。

第四章:图形的认识本章介绍图形的基本概念和常见图形的性质。

通过题练,加深对图形认识的理解,掌握图形的命名、计算面积和周长的方法。

第五章:图形的性质本章介绍圆和与圆有关的性质,以及相似图形的性质。

通过题练,加深对圆和相似图形性质的理解,提高解决相关问题的能力。

第六章:相交线与平行线本章介绍平行线和相交线的性质,以及平行线与相交线间夹角和对应角的关系。

通过题练,掌握平行线和相交线的性质,提高几何问题的解决能力。

第七章:三角形本章介绍三角形的定义、分类和性质,以及三角形的角平分线和垂线的性质。

通过题练,加深对三角形性质的理解,提高解决相关问题的能力。

第八章:全等三角形本章介绍全等三角形的概念和性质,以及全等三角形的判定方法。

通过题练,掌握全等三角形的判定和应用,提高解决相关问题的能力。

第九章:五边形与多边形本章介绍五边形和多边形的定义、分类和性质,以及多边形的内角和外角的关系。

通过题练,加深对五边形和多边形性质的理解,提高解决相关问题的能力。

第十章:集合本章介绍集合及其表示方法、集合的运算和集合的应用。

通过题练,培养集合思维能力,巩固对集合概念的掌握。

人教版八年级数学上册同步练习题及答案+八年级数学下册同步练习题及答案

人教版八年级数学上册同步练习题及答案+八年级数学下册同步练习题及答案

人教版八年级数学上册同步练习题及答案+八年级数学下册同步练习题及答案人教八年级数学上册同步练习题及答案第十一章全等三角形11.1全等三角形1、已知⊿ABC≌⊿DEF,A与D,B与E分别是对应顶点,∠A=52°,∠B=67 °,BC =15cm,= ,FE = .则F2、∵△ABC≌△DEF∴AB= ,AC= BC= ,(全等三角形的对应边)∠A= ,∠B= ,∠C= ;(全等三角形的对应边)3、下列说法正确的是()A:全等三角形是指形状相同的两个三角形 B:全等三角形的周长和面积分别相等C:全等三角形是指面积相等的两个三角形 D:所有的等边三角形都是全等三角形4、如图1:ΔABE≌ΔACD,AB=8cm,AD=5cm,∠A=60°,∠B=40°,则AE=_____,∠C=____。

C课堂练习1、已知△ABC ≌△CDB ,AB 与CD 是对应边,那么AD= ,∠A= ;2、如图,已知△ABE ≌△DCE ,AE=2cm ,BE=1.5cm ,∠A=25°∠B=48°; 那么DE= cm ,EC= cm ,∠C= 度.3、如图,△ABC ≌△DBC ,∠A=800,∠ABC=300,则∠DCB= 度;(第1小题) (第2小题) (第3小题) (第4小题)4、如图,若△ABC ≌△ADE ,则对应角有 ; 对应边有 (各写一对即可);11.2.1全等三角形的判定(sss )课前练习1、如图1:AB=AC ,BD=CD ,若∠B=28°则∠C= ;2、如图2:△EDF ≌△BAC ,EC=6㎝,则BF= ;3、如图,AB ∥EF ∥DC ,∠ABC =900,AB =DC ,那么图中有全等三角形 对。

第2题图EDCBA(第1小题) (第2小题) (第3小题)课堂练习4、如图,在△ABC 中,∠C =900,BC =40,AD 是∠BAC 的平分线交BC 于D ,且DC ∶DB =3∶5,则点D 到AB 的距离是 。

(完整版)八年级上册数学习题库

(完整版)八年级上册数学习题库

八年级上册数学习题库11.1三角形的边1、若三角形的三边长分别为3,a ,8,则的取值范围是( )A 、115<<aB 、85<<aC 、 113<<aD 、115≤≤a2、若一个三角形的三边长之比为2:3:4,周长为36cm ,则这三角形的三边长分别为 。

3、下列给出的各组线段的长度中,能组成三角形的是( )A 、4,5,6B 、6,8,15C 、5,7,12D 、3,7,134、已知三角形的两边长分别是4和7,则这个三角形的第三边长的可能是( )A 、12B 、11C 、8D 、35、已知三角形的两边长分别是2和5,第三边长是奇数,则第三边长为 cm 。

6、现有四条钢线,长度分别为(单位:cm )7,6,3,2,从中取出三根连成一个三角形,这三根的长度可以为 (写出一种即可)。

7、如图1,为估计池塘边A 、B 两点的距离,小方在池塘的一侧选取一点O ,测得OA=8米,OB=6米,则A 、B 间的距离不可能是( )A 、12米B 、10米C 、15米D 、8米8、如图2,x 的值可能为( )A 、10B 、9C 、7D 、6 9、如图3,是一个直三棱柱的表面展开图,其中AD=10,CD=2,则下列可作为长的是( )A 、5B 、4C 、3D 、210、已知三角形的两边长分别是3cm 和7cm ,第三边长是偶数,则这个三角形的周长为 。

11、已知一个三角形的三边长分别是12-x ,3,8,则的取值范围是 。

12、若c b a ,,为ABC ∆三边的长,化简:b a c c a b c b a +----+--13、用一条长为21cm 的铁丝围成一个等腰三角形。

(1)如果腰长是底边长的3倍,那么底边的长是多少?(2)能围成一个边长为5cm 的等腰三角形吗?为什么?14、如图,清湖边有A ,B 两个村庄,从A 村到B 村有两条路可走,即A→M→B 和A→N→B 。

八年级上册数学试题(含答案)

八年级上册数学试题(含答案)

八年级上册数学试题(含答案)一、选择题1. 下列数中是无理数的是:A. 3B. -5C. √2D. 0.375答案:C2. 两个互为相反数的数,它们的和是:A. 0B. 1C. -1D. 2答案:A3. 下列哪个数是最小的?A. -2B. 1/2C. -1/2D. 0答案:A4. 下列哪个图形是平行四边形?A. 矩形B. 正方形C. 梯形D. 菱形答案:C5. 已知 a = 3, b = 4, 则 a² + b²的值是:A. 25B. 16C. 9D. 20答案:A二、填空题1. 2 × (-3) = _______答案:-62. 5² = _______答案:253. 0.375 表示的分数为 _______ 答案:3/84. 若 a:b = 4:3,则 b:a = _______答案:3:45. 下列哪个数是偶数:_______ 答案:-8三、解答题1. 解方程:2x - 5 = 3答案:x = 42. 已知 a = 3, b = 4,求 a² + b²答案:253. 计算:(-3) × (-2) + 4 - √2答案:6 + 4 - √24. 画出下列图形:一个边长为5的正方形答案:见附图5. 已知一个数的平方根是3,求这个数。

答案:这个数是9。

以上是八年级上册数学试题的答案,希望对您有所帮助。

如果有任何疑问,欢迎随时向我提问。

八年级上册数学练习题

八年级上册数学练习题

C第一章 勾股定理评估试卷(1)一、选择题(每小题3分,共30分)1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ). (A )30 (B )28 (C )56 (D )不能确定2. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长 (A )4 cm (B )8 cm (C )10 cm(D )12 cm3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) (A )25(B )14(C )7(D )7或254. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A )13 (B )8 (C )25 (D )645. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)6. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )(A ) 钝角三角形 (B ) 锐角三角形 (C ) 直角三角形 (D ) 等腰三角形. 7. 如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) (A ) 25 (B ) 12.5 (C ) 9 (D ) 8.58. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( ) (A ) 等边三角形 (B ) 钝角三角形 (C ) 直角三角形 (D ) 锐角三角形.9.△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ).(A )50a 元 (B )600a 元 (C )1200a 元 (D )1500a 元10.如图,AB ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ). (A )12 (B )7 (C )5 (D )135米3米(第10题) (第11题) (第14题)二、填空题(每小题3分,24分)11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米. 12. 在直角三角形ABC 中,斜边AB =2,则222AB AC BC ++=______. 13. 直角三角形的三边长为连续偶数,则其周长为 .14. 如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,则这个半圆的面积是____________.(第15题) (第16题) (第17题)15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米.16. 如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D 若BC =8,AD =5,则AC 等于______________.17. 如图,四边形ABCD 是正方形,AE 垂直于BE ,且AE =3,BE =4,阴影部分的面积是______.18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2.三、解答题(每小题8分,共40分)19. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:EABCDBDE ABCD第18题图7cm“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?20. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.21. 如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?22. 如图所示的一块地,∠ADC=90°,AD=12m,CD=9m,AB=39m,BC=36m,求这块地的面积。

八年级数学上册练习题及答案

八年级数学上册练习题及答案

八年级数学上册练习题及答案
1. 整数运算
题目:
a) 两个整数相加得到0,其中一个整数为-15,求另一个
整数是多少?
b) 三个整数相加得到-16,其中两个整数分别为-9和12,求第三个整数是多少?
答案:
a) 另一个整数为15。

b) 第三个整数为-19。

2. 百分数
把小数转换为百分数:
a) 0.25
b) 0.075
答案:
a) 0.25 转化为百分数为25%。

b) 0.075 转换为百分数为7.5%。

3. 几何图形
题目:
计算正方形的面积和周长,其中一条边长为5 cm。

正方形的面积 = 边长× 边长= 5 cm × 5 cm = 25 平方厘米
正方形的周长= 4 × 边长= 4 × 5 cm = 20 厘米
4. 代数方程
题目:
解方程:2x + 3 = 11
答案:
2x + 3 = 11
将3移到方程右边:
2x = 11 - 3
将2移到方程右边:
x = 8 / 2
x = 4
5. 比例
题目:
已知6个苹果的价格是30元,求10个苹果的价格。

答案:
6个苹果的价格 = 30元
1个苹果的价格 = 30元÷ 6 = 5元
10个苹果的价格 = 5元× 10 = 50元
这样的例子还有很多很多,一本数学练习册包含很多章节和各种类型的问题。

希望以上的例子可以帮助您对八年级数学上册的练习题有一个初步的了解。

如果您需要更详细和全面的练习题及答案,建议您参考课本或向数学老师寻求帮助。

八年级数学上册练习题【五篇】

八年级数学上册练习题【五篇】

八年级数学上册练习题【五篇】【导语:】这篇关于八年级数学上册练习题【五篇】的文章,是特地为大家整理的,希望对大家有所帮助!第二章实数一、选择题1.在下列实数中,是无理数的为()(A)0(B)-3.5(C)(D)2.A为数轴上表示-1的点,将点A沿数轴移动3个单位到点B,则点B所表示的实数为().(A)3(B)2(C)-4(D)2或-43.一个数的平方是4,这个数的立方是()(A)8(B)-8(C)8或-8(D)4或-44.实数m、n在数轴上的位置如图1所示,则下列不等关系正确的是()(A)n<m(B)n2<m2(C)n0<m0(D)|n|<|m|5.下列各数中没有平方根的数是()(A)-(-2)(B)3(C)(D)-(2+1)6.下列语句错误的是()(A)的平方根是±(B)-的平方根是-(C)的算术平方根是(D)有两个平方根,它们互为相反数7.下列计算正确的是().(A)(B)(C)(D)—18.估计56的大小应在().(A)5~6之间(B)6~7之间(C)8~9之间(D)7~8之间9.已知,那么()(A)0(B)0或1(C)0或-1(D)0,-1或110.已知为实数,且,则的值为()(A)3(B)(C)1(D)二、填空题11.的平方根是____________,()2的算术平方根是____________。

12.下列实数:,,,︱-1︱,,,0.1010010001……中无理数的个数有个。

13.写出一个3到4之间的无理数。

14.计算:。

15.的相反数是______,绝对值是______。

三、解答题16.计算:17.某位同学的卧室有25平方米,共用了64块正方形的地板砖,问每块砖的边长是多少?18.如图2,一只蚂蚁沿棱长为的正方体表面从顶点A爬到顶点B,则它走过的最短路程为多少?19.如图3,一架长2.5米的梯子,斜靠在一竖直的墙上,这时,梯底距离墙底端0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯子的低端将滑出多少米?20.学校要在一块长方形的土地上进行绿化,已知这块长方形土地的长=5,宽=4(1)求该长方形土地的面积.(精确到0.01)(2)若绿化该长方形土地每平方米的造价为180元,那么绿化该长方形土地所需资金为多少元?第三章位置与坐标一、选择题1.如图1,小手盖住的点的坐标可能是()(A)(5,2)(B)(-6,3)(C)(―4,―6)(D)(3,-4)2.在平面直角坐标系中,下列各点在第二象限的是()(A)(2,1)(B)(2,-1)(C)(-2,1)(D)(-2,-1)3.点P(—2,3)关于y轴对称的点的坐标是()(A)(—2,—3)(B)(3,—2)(C)(2,3)(D)(2,—3)4.平面直角坐标系内,点A(,)一定不在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限5.如果点P(在轴上,则点P的坐标为()(A)(0,2)(B)(2,0)(C)(4,0)(D)(0,6.已知点P的坐标为(,且点P到两坐标轴的距离相等,则点P的坐标为()(A)(3,3)(B)(3,(C)(6,(D)(3,3)或(6,7.已知点A(2,0)、点B(-,0)、点C(0,1),以A、B、C三点为顶点画平行四边形,则第四个顶点不可能在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限8.若P()在第二象限,则Q()在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限9.如图2是某战役中缴获敌人防御工程的坐标地图碎片,依稀可见:一号暗堡的坐标为(1,2),四号暗堡的坐标为(-3,2).另有情报得知:指挥部坐标为(0,0),你认为敌军指挥部的位置大约是()(A)A处(B)B处(C)C处(D)D处10.以边长为4的正方形的对角线建立平面直角坐标系,其中一个顶点位于轴的负半轴上,则该点坐标为()(A)(2,0)(B)(0,-2)(C)(0,)(D)(0,)二、填空题11.点A在轴上,且与原点的距离为5,则点A的坐标是________.12.如图3,每个小方格都是边长为1个单位长度的正方形,如果用(0,0)表示A点的位置,用(3,4)表示B点的位置,那么用表示C点的位置.13.已知点M,将点M向右平移个单位长度得到N点,则N点的坐标为________.14.第三象限内的点,满足,,则点的坐标是.15.如图4,将AOB绕点O逆时针旋转900,得到。

八年级数学上册习题大全

八年级数学上册习题大全

第一章一、填空题(每小题3分,共27分) 1.如果△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI _一定全等, 如果△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△ABC 和△GHI __全等.(填“一定”或“不一定”或“一定不”) 2.如图1,△ABC ≌△ADE ,∠B =100°,∠BAC =30°,那么∠AED =__.3.△ABC 中,∠BAC ∶∠ACB ∶∠ABC =4∶3∶2,且△ABC ≌△DEF ,则∠DEF =____. 4.如图2,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是“__”.5.如图3,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是 _ . 6.如图4,AC ,BD 相交于点O ,AC =BD ,AB =CD ,写出图中两对相等的角____.7.如图5,△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是______.8.地基在同一水平面上,高度相同的两幢楼上分别住着甲、乙两位同学,有一天,甲对乙说:“从我住的这幢楼的底部到你住的那幢楼的顶部的直线距离,等于从你住的那幢楼的底部到我住的这幢楼的顶部的直线距离."你认为甲的话正确吗?答:____.9.如图6,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △的面积为__. 二、选择题(每小题3分,共24分) 1.如图7,P 是∠BAC 的平分线AD 上一点,PE ⊥AB 于E ,PF ⊥AC 于F ,下列结论中不正确的是( )A .PE PF = B .AE AF = C .△APE ≌△APF D .AP PE PF =+2.下列说法中:①如果两个三角形可以依据“AAS"来判定全等,那么一定也可以依据“ASA ”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是( )A .①和②B .②和③C .①和③D .①②③3.如图8, AD 是ABC △的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE .其中正确的有( )A .1个 B .2个 C .3个 D .4个4.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( ) A .形状相同 B .周长相等 C .面积相等 D .全等 5.如图9,AD AE =,= = =100 =70BD CE ADB AEC BAE ︒︒,,∠∠∠,下列结论错误的是( )A .△ABE ≌△ACD B .△ABD ≌△ACE C .∠DAE =40° D .∠C =30°6.已知:如图10,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于F ,则图中共有全等三角形( ) A .5对 B .4对 C .3对 D .2对A D EC B 图1 AD E C B 图2A D O CB 图3 A DO C B 图4 A D C B 图5ADC B 图6E A D C B 图7E FADCB图8 E F A D OC B 图9A DE C B 图10F G A EC 图11B A ′ E ′D7.将一张长方形纸片按如图11所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为( )A .60°B .75°C .90°D .95° 8.根据下列已知条件,能惟一画出△ABC 的是( )A .AB =3,BC =4,CA =8 B .AB =4,BC =3,∠A =30° C .∠A =60°,∠B =45°,AB =4D .∠C =90°,AB =6 三、解答题 (本大题共69分) 1.(本题8分)请你用三角板、圆规或量角器等工具,画∠POQ =60°,在它的边OP 上截取OA =50mm ,OQ 上截取OB =70mm ,连结AB ,画∠AOB 的平分线与AB 交于点C ,并量出AC 和O C 的长 .(结果精确到1mm ,不要求写画法).2.(本题10分)已知:如图12,AB =CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂足,DE BF =.求证:(1)AF CE =;(2)AB CD ∥.3.(本题11分)如图13,工人师傅要检查人字梁的∠B 和∠C 是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的:①分别在BA 和CA 上取BE CG =;②在BC 上取BD CF =;③量出DE 的长a 米,FG 的长b 米.如果a b =,则说明∠B 和∠C 是相等的.他的这种做法合理吗?为什么?4.(本题12分)填空,完成下列证明过程. 如图14,ABC △中,∠B =∠C ,D,E ,F 分别在AB ,BC ,AC 上,且BD CE =,=DEF B ∠∠ 求证:=ED EF . 证明:∵∠DEC =∠B +∠BDE ( ),又∵∠DEF =∠B (已知), ∴∠______=∠______(等式性质).在△EBD 与△FCE 中,∠______=∠______(已证),______=______(已知),∠B =∠C (已知),∴EBD FCE △≌△( ). ∴ED =EF ( ).5.(本题13分)如图15,O 为码头,A ,B 两个灯塔与码头的距离相等,OA ,OB 为海岸线,一轮船从码头开出,计划沿∠AOB 的平分线航行,航行途中,测得轮船与灯塔A ,B 的距离相等,此时轮船有没有偏离航线?画出图形并说明你的理由.6.(本题15分)如图16,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时, (1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设AED ∠的度数为x ,∠ADE 的度数为y ,那么∠1,∠2 的度数分别是多少?(用含有x 或y 的代数式表示) (3)∠A 与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.A D E CB 图12 F AD E C B图13 F G A D E C B图14 F图15A DEC B图16 A ′ 21ABDEFA轴对称一.选择题1.下列图形中,不是轴对称图形的是( ) A .H B 。

八年级数学上册--全等三角形练习题(含答案)

八年级数学上册--全等三角形练习题(含答案)

八年级数学上册--全等三角形练习题(含答案)八年级数学上册--全等三角形练题(含答案)一、选择题(每题3分,共30分)1.下列判断不正确的是()A。

形状相同的图形是全等图形B。

能够完全重合的两个三角形全等C。

全等图形的形状和大小都相同D。

全等三角形的对应角相等2.如图,△ABC≌△XXX,∠BAC=85°,∠B=65°,则∠CAD度数为()A。

85°B。

65°C。

40°D。

30°3.如图,XXX做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线。

此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE。

则说明这两个三角形全等的依据是()A。

SASB。

ASAC。

AASD。

SSS4.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB,垂足为E。

若AB=10cm,AC=6 cm,则BE的长度为()A。

10 cmB。

6 cmC。

4 cmD。

2 cm5.如图所示,AB=CD,∠ABD=∠CDB,则图中全等三角形共有()A。

5对B。

4对C。

3对D。

2对6.点P在∠AOB的平分线上,点P到OA边的距离等于5,点Q是OB边上的任意一点,则下列选项正确的是()A。

PQ>5B。

PQ≥5C。

PQ<5D。

PQ≤57.在△ABC中,∠B=∠C,与△ABC全等的△DEF中有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A。

∠AB。

∠BC。

∠CD。

∠B或∠C8.如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,则不正确的是()A。

AB=ACB。

∠BAE=∠CADC。

BE=DCD。

AD=DE9.如图,直线a,b,c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A。

初中数学八年级上册 练习题(含答案)

初中数学八年级上册  练习题(含答案)

基础模型: △ABC 中, AD 是BC 边中线思路1: 延长AD 到E ,使DE=AD ,连接BE思路2:间接倍长,延长MD 到N ,使DN=MD ,连接CN思路3, 作CF ⊥AD 于F ,作BE ⊥AD 的延长线于E1.如图,在△ABC 中,AC=5,中线AD=7,则AB 边的取值范围是( )A .1<AB <29 B .4<AB <24C .5<AB <19D .9<AB <192.如图,△ABC 中,AB=AC ,点D 在AB 上,点E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE .D A B C ED A B FE DB A ND BAM3.如图,在△ABC中,AD为中线,求证:AB+AC>2AD.4.小明遇到这样一个问题,如图1,△ABC中,AB=7,AC=5,点D为BC的中点,求AD的取值范围.小明发现老师讲过的“倍长中线法”可以解决这个问题,所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法,他的做法是:如图2,延长AD到E,使DE=AD,连接BE,构造△BED≌△CAD,经过推理和计算使问题得到解决.请回答:(1)小明证明△BED≌△CAD用到的判定定理是:(用字母表示)(2)AD的取值范围是小明还发现:倍长中线法最重要的一点就是延长中线一倍,完成全等三角形模型的构造.参考小明思考问题的方法,解决问题:如图3,在正方形ABCD中,E为AB边的中点,G、F分别为AD,BC边上的点,若AG=2,BF=4,∠GEF=90°,求GF的长.5.已知:在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证:AF=EF.6.已知:如图,△ABC(AB≠AC)中,D、E在BC上,且DE=EC,过D作DF∥BA交AE于点F,DF=AC.求证:AE平分∠BAC.7-10,换汤不换药(多题一解)7.如图,D是△ABC的BC边上一点且CD=AB,∠BDA=∠BAD,AE是△ABD的中线.求证:∠C=∠BAE.8.如图,已知D是△ABC的边BC上的一点,CD=AB,∠BDA=∠BAD,AE是△ABD的中线.(1)若∠B=60°,求∠C的值;(2)求证:AD是∠EAC的平分线.9.如图,已知:CD=AB,∠BAD=∠BDA,AE是△ABD的中线,求证:AC=2AE.10.已知,如图,AB=AC=BE,CD为△ABC中AB边上的中线,求证:CE=2CD.11.已知:如图,△ABC中,∠C=90°,CM⊥AB于M,AT平分∠BAC交CM于D,交BC于T,过D作DE∥AB交BC于E,求证:CT=BE.12.如图①,点O为线段MN的中点,PQ与MN相交于点O,且PM∥NQ,可证△PMO≌△QNO.根据上述结论完成下列探究活动:如图②,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F.试探究线段AB与AF、CF之间的数量关系,并证明你的结论;(图3是原题的第2问)13.如图,在△ABC中,AD交BC于点D,点E是BC的中点,EF∥AD交CA的延长线于点F,交EF与于点G.若BG=CF,求证:AD为△ABC的角平分线.14.如图,已知在△ABC中,∠CAE=∠B,点E是CD的中点,若AD平分∠BAE.(1)求证:AC=BD;(2)若BD=3,AD=5,AE=x,求x的取值范围.15.已知在△ABC中,AD是BC边上的中线,分别以AB边、AC边为直角边各向外作等腰直角三角形,如图,求证:EF=2AD.1.解:如图,延长AD至E,使DE=AD,∵AD是△ABC的中线,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴AB=CE,∵AD=7,∴AE=7+7=14,∵14+5=19,14﹣5=9,∴9<CE<19,2.证明:如图,过点D作DG∥AE,交BC于点G;3.证明:4.解:(1)如图2中,延长AD到E,使DE=AD,连接BE.在△BED和△CAD中,,∴△BED≌△CAD(SAS).(2)∵△BED≌△CAD,∴BE=AC=5,∵AB=7,∴2<AE<12,∴2<2AD<12,∴1<AD<6.解决问题:如图3中,解:延长GE交CB的延长线于M.∵四边形ABCD是正方形,∴AD∥CM,∴∠AGE=∠M,在△AEG和△BEM中,,∴△AEG≌△BEM,∴GE=EM,AG=BM=2,∵EF⊥MG,∴FG=FM,∵BF=4,∴MF=BF+BM=2+4=6,∴GF=FM=6.5.证明:如图,延长AD到点G,使得AD=DG,连接BG.∵AD是BC边上的中线(已知),∴DC=DB,在△ADC和△GDB中,∴△ADC≌△GDB(SAS),∴∠CAD=∠G,BG=AC又∵BE=AC,∴BE=BG,∴∠BED=∠G,∵∠BED=∠AEF,∴∠AEF=∠CAD,即:∠AEF=∠FAE,∴AF=EF.6.证明:如图,延长FE到G,使EG=EF,连接CG.在△DEF和△CEG中,∵,∴△DEF≌△CEG.∴DF=GC,∠DFE=∠G.∵DF∥AB,∴∠DFE=∠BAE.∵DF=AC,∴GC=AC.∴∠G=∠CAE.∴∠BAE=∠CAE.即AE平分∠BAC.7.证明:延长AE到F,使EF=AE,连接DF,∵AE是△ABD的中线∴BE=ED,在△ABE与△FDE中∵,∴△ABE≌△FDE(SAS),∴AB=DF,∠BAE=∠EFD,∵∠ADB是△ADC的外角,∴∠DAC+∠ACD=∠ADB=∠BAD,∴∠BAE+∠EAD=∠BAD,∠BAE=∠EFD,∴∠EFD+∠EAD=∠DAC+∠ACD,∴∠ADF=∠ADC,∵AB=DC,∴DF=DC,在△ADF与△ADC中∵,∴△ADF≌△ADC(SAS)∴∠C=∠AFD=∠BAE.8.(1)解:∵∠B=60°,∠BDA=∠BAD,∴∠BAD=∠BDA=60°,∴AB=AD,∵CD=AB,∴CD=AD,∴∠DAC=∠C,∴∠BDA=∠DAC+∠C=2∠C,∵∠BAD=60°,∴∠C=30°;(2)证明:延长AE到M,使EM=AE,连接DM,在△ABE和△MDE中,,∴△ABE≌△MDE,∴∠B=∠MDE,AB=DM,∵∠ADC=∠B+∠BAD=∠MDE+∠BDA=∠ADM,在△MAD与△CAD,,∴△MAD≌△CAD,∴∠MAD=∠CAD,∴AD是∠EAC的平分线.9.证明:延长AE至F,使AE=EF,连接BF,在△ADE与△BFE中,,∴△AED≌△FEB,∴BF=DA,∠FBE=∠ADE,∵∠ABF=∠ABD+∠FBE,∴∠ABF=∠ABD+∠ADB=∠ABD+∠BAD=∠ADC,在△ABF与△ADC中,,∴△ABF≌△CDA,∴AC=AF,∵AF=2AE,∴AC=2AE.10.证明:取AC的中点F,连接BF;∵B为AE的中点,∴BF为△AEC的中位线,∴EC=2BF;在△ABF与△ACD中,,∴△ABF≌△ACD(SAS),∴CD=BF,∴CE=2CD.11.证明:过T作TF⊥AB于F,∵AT平分∠BAC,∠ACB=90°,∴CT=TF(角平分线上的点到角两边的距离相等),∵∠ACB=90°,CM⊥AB,∴∠ADM+∠DAM=90°,∠ATC+∠CAT=90°,∵AT平分∠BAC,∴∠DAM=∠CAT,∴∠ADM=∠ATC,∴∠CDT=∠CTD,∴CD=CT,又∵CT=TF(已证),∴CD=TF,∵CM⊥AB,DE∥AB,∴∠CDE=90°,∠B=∠DEC,在△CDE和△TFB中,,∴△CDE≌△TFB(AAS),∴CE=TB,∴CE﹣TE=TB﹣TE,即CT=BE.12.解:(1)AB=AF+CF.如图2,分别延长DC、AE,交于G点,根据图①得△ABE≌△GCE,∴AB=CG,又AB∥DC,∴∠BAE=∠G而∠BAE=∠EAF,∴∠G=∠EAF,∴AF=GF,∴AB=CG=GF+CF=AF+CF;13.解:延长FE,截取EH=EG,连接CH,∵E是BC中点,∴BE=CE,∴∠BEG=∠CEH,在△BEG和△CEH中,,∴△BEG≌△CEH(SAS),∴∠BGE=∠H,∴∠BGE=∠FGA=∠H,∴BG=CH,∵CF=BG,∴CH=CF,∴∠F=∠H=∠FGA,∵EF∥AD,∴∠F=∠CAD,∠BAD=∠FGA,∴∠CAD=∠BAD,∴AD平分∠BAC.14.(1)证明:延长AE到F,使EF=EA,连接DF,∵点E是CD的中点,∴EC=ED,在△DEF与△CEA中,,∴△DEF≌△CEA,∴AC=FD,∴∠AFD=∠CAE,∵∠CAE=∠B,∴∠AFD=∠B,∵AD平分∠BAE,∴∠BAD=∠FAD,在△ABD与△AFD中,,∴△ABD≌△AFD,∴BD=FD,∴AC=BD;(2)解:由(1)证得△ABD≌△AFD,△DEF≌△CEA,∴AB=AF,∵AE=x,∴AF=2AE=2x,∴AB=2x,∵BD=3,AD=5,∴在△ABD中,,解得:1<x<4,∴x的取值范围是1<x<4.15证明:延长AD至点G,使得AD=DG,连接BG,CG,∵AD=DG,BD=CD,∴四边形ABGC是平行四边形,∴AC=AF=BG,AB=AE=CG,∠BAC+∠ABG=180°,∵∠EAF+∠BAC=180°,∴∠EAF=∠ABG,在△EAF和△BAG中,,∴△EAF≌△BAG(SAS),∴EF=AG,∵AG=2AD,∴EF=2AD.。

数学人教版八年级上册多边形及其内角和练习题(含答案)

数学人教版八年级上册多边形及其内角和练习题(含答案)

数学人教版八年级上册多边形及其内角和练习题(含答案)11.3 多边形及其内角和基础过关作业1.四边形 ABCD 中,如果∠A + ∠C + ∠D = 280°,则∠B 的度数是()A。

80° B。

90° C。

170° D。

20°2.一个多边形的内角和等于 1080°,这个多边形的边数是()A。

9 B。

8 C。

7 D。

63.内角和等于外角和 2 倍的多边形是()A。

五边形 B。

六边形 C。

七边形 D。

八边形4.六边形的内角和等于 XXX 度。

5.正十边形的每一个内角的度数等于 144°,每一个外角的度数等于 36°。

6.如图,你能数出多少个不同的四边形?7.四边形的四个内角不可能都是锐角,也不可能都是钝角,但可以都是直角。

因为四个直角相加等于 XXX 度。

8.求下列图形中 x 的值:综合创新作业9.(综合题)已知:如图,在四边形 ABCD 中,∠A =∠C = 90°,BE 平分∠ABC,DF 平分∠ADC。

BE 与 DF 交于点 E。

因为∠A = ∠C = 90°,所以 AC 是矩形的一条对角线,即 AC 的中点是矩形的重心。

由于 BE 平分∠ABC,所以∠EBD = ∠EBC,而∠EBC = ∠ABD,所以∠EBD = ∠ABD。

同理可证∠FDC = ∠ACD = ∠ADB。

因此,BE 与 DF 是平行的,且 DE = EF。

10.(应用题)有 10 个城市进行篮球比赛,每个城市均派3 个代表队参加比赛,规定同一城市间代表队不进行比赛,其他代表队都要比赛一场。

按此规定,所有代表队要打 135 场比赛。

11.(创新题)如图,以五边形的每个顶点为圆心,以 1 为半径画圆,求圆与五边形重合的面积。

12.(1)(2005 年,南通)已知一个多边形的内角和为540°,则这个多边形为三角形。

2)(2005 年,福建泉州)五边形的内角和等于 540 度。

八年级上册数学试卷题库

八年级上册数学试卷题库

1. 若a > b,则下列不等式中正确的是()A. a^2 > b^2B. a^3 > b^3C. a - b > 0D. a + b > 02. 下列各组数中,存在有理数a,使等式a^2 + 2a - 3 = 0成立的数是()A. 1B. -2C. 3D. -33. 已知二次函数y = ax^2 + bx + c(a ≠ 0)的图像开口向上,且顶点坐标为(1,-2),则下列选项中正确的是()A. a > 0,b > 0,c > 0B. a > 0,b < 0,c < 0C. a < 0,b > 0,c > 0D. a < 0,b < 0,c > 04. 在等差数列{an}中,若a1 = 3,d = 2,则第10项an的值为()A. 21B. 23C. 25D. 275. 下列函数中,与函数y = 2x^2 - 4x + 1的图像相似的函数是()A. y = x^2 - 4x + 1B. y = -2x^2 + 4x - 1C. y = 2x^2 - 4x - 1D. y = -2x^2 + 4x + 16. 已知等比数列{an}中,a1 = 1,q = 2,则第5项an的值为()A. 32B. 16C. 8D. 47. 在直角坐标系中,点A(2,3)关于直线y = x的对称点为B,则点B的坐标为()A.(3,2)B.(2,3)C.(-3,-2)D.(-2,-3)8. 若x + y = 5,x - y = 1,则x^2 + y^2的值为()A. 10B. 16C. 20D. 259. 已知等差数列{an}中,a1 = 2,d = 3,则前n项和Sn的值为()A. 3n^2 - nB. 3n^2 + nC. 3n^2 - 2nD. 3n^2 + 2n10. 下列函数中,定义域为全体实数的是()A. y = 1/xB. y = √xC. y = x^2D. y = |x|二、填空题(每题5分,共50分)1. 已知等差数列{an}中,a1 = 3,d = 2,则第n项an的通项公式为______。

数学人教版八年级上册课后练习题

数学人教版八年级上册课后练习题

15.3 分式方程第1课时 分式方程及其解法一、选择题1.下列方程是分式方程的是( )(A) (B) (C) (D)2.(2013温州)若分式的值为0,则x 的值是( ) . x =﹣3 D 3.(2013益阳)分式方程的解是( )x =3 x = . x= 4.关于x 的方程的解为x =1,则a 应取值( ) A.1 B.3 C.-1D.-3 5.(2013年黄石)分式方程3121x x =-的解为( ) A.1x = B.2x = C.4x = D.3x =6.(2012浙江丽水)把分式方程转化为一元一次方程时,方程两边需同乘以( ) 2513x x =+-315226y y -+=-212302x x +-=81257x x +-=4332=-+x a ax xx 142=+A.xB.2xC.x+4D.x (x+4)7.要使x x --442与xx --54互为倒数,则x 的值是( ) A 0 B 1 C 1- D21 8.若3x 与61x -互为相反数,则x 的值为( ) A.13 B.-13C.1D.-1 二、填空题9.(2013淮安)方程的解是 . 10.(2013苏州)方程=的解为 . 11.(2010年浙江省金华)分式方程112x =-的解是. 12.(2010山东德州)方程x x 132=-的解为x =___________. 13.方程的解是. 14.(2013绍兴)分式方程=3的解是 . 15.若分式方程2()2(1)5x a a x -=--的解为3x =,则a 的值为__________. 16.若方程212x a x +=--的解是最小的正整数,则a 的值为________. 17.如果424x x --的值与54x x --的值相等,则x =___________. 三、解答题18.解下列分式方程(1) (2)xx 527=-313221x x +=--11222x x x -=---(3); (4). 19.设,当为何值时,与的值相等? 20.(2012江苏泰州市)当x 为何值时,分式的值比分式的值大3?21.已知关于271326x x x +=++xx x --=+-3423123111x A B x x ==+--,x A B x x --2321-x 的取值范围。

人教版数学 八年级上册 八年级上册 课后练习题

人教版数学 八年级上册 八年级上册 课后练习题

一、单选题
1. 下列运算正确的是()
A.4a3b÷2a2=2a B.(a3)4=a12
C.(x﹣y)2=x2﹣2xy﹣y2D.(x+y)(﹣x﹣y)=y2﹣x2
2. 如图所示的“钻石”型网格(由边长都为1个单位长度的等边三角形组成),其中已经涂黑了3个小三角形(阴影部分表示),请你再只涂黑一个小三角形,使它与阴影部分合起来所构成的图形是一个轴对称图形,一共有()种涂法.
A.1 B.2 C.3 D.4
3. 下列多项式是完全平方式的是().
A.﹣4x﹣4
B.
C.
D.
4. 如果一个长方形的面积为,它的一边长为,那么它的另一边长为()
A.B.C.D.
5. 如图,已知,直线l与直线a,b分别交于点A,B,在直线l,b上分别截取
,,使,分别以M,N为圆心、以大于的长为半径作弧,两弧在内交于点P,作射线,交直线a于点C,若,则
的度数是()
A.B.C.D.
二、填空题
6. 计算=___________.=_____________.
7. 已知:如图,AD是△ABC中BC边上的高,∠ABC=42°,AE平分∠BAC,∠ACB=70°,则∠DAE=_________度.
8. 分式有意义,则的取值范围是______
三、解答题
9. 已知m-n=2,求代数式的值.
10. 已知,如图,点,,,在同一直线上,,,

求证:,.11. 分解因式
(1)﹣4a2+4ab﹣b2;(2)a3+a2b﹣ab2﹣b3.。

八年级数学上册练习题【五篇】

八年级数学上册练习题【五篇】

【导语:】这篇关于⼋年级数学上册练习题【五篇】的⽂章,是⽆忧考特地为⼤家整理的,希望对⼤家有所帮助! 第⼆章实数 ⼀、选择题 1.在下列实数中,是⽆理数的为() (A)0(B)-3.5(C)(D) 2.A为数轴上表⽰-1的点,将点A沿数轴移动3个单位到点B,则点B所表⽰的实数为(). (A)3(B)2(C)-4(D)2或-4 3.⼀个数的平⽅是4,这个数的⽴⽅是() (A)8(B)-8(C)8或-8(D)4或-4 4.实数m、n在数轴上的位置如图1所⽰,则下列不等关系正确的是() (A)n<m(B)n2<m2 (C)n0<m0(D)|n|<|m| 5.下列各数中没有平⽅根的数是() (A)-(-2)(B)3(C)(D)-(2+1) 6.下列语句错误的是() (A)的平⽅根是±(B)-的平⽅根是- (C)的算术平⽅根是(D)有两个平⽅根,它们互为相反数 7.下列计算正确的是(). (A)(B) (C)(D)—1 8.估计56的⼤⼩应在(). (A)5~6之间(B)6~7之间(C)8~9之间(D)7~8之间 9.已知,那么() (A)0(B)0或1(C)0或-1(D)0,-1或1 10.已知为实数,且,则的值为() (A)3(B)(C)1(D) ⼆、填空题 11.的平⽅根是____________,()2的算术平⽅根是____________。

12.下列实数:,,,︱-1︱,,,0.1010010001……中⽆理数的个数有个。

13.写出⼀个3到4之间的⽆理数。

14.计算:。

15.的相反数是______,绝对值是______。

三、解答题 16.计算: 17.某位同学的卧室有25平⽅⽶,共⽤了64块正⽅形的地板砖,问每块砖的边长是多少? 18.如图2,⼀只蚂蚁沿棱长为的正⽅体表⾯从顶点A爬到顶点B,则它⾛过的最短路程为多少? 19.如图3,⼀架长2.5⽶的梯⼦,斜靠在⼀竖直的墙上,这时,梯底距离墙底端0.7⽶,如果梯⼦的顶端沿墙下滑0.4⽶,那么梯⼦的低端将滑出多少⽶? 20.学校要在⼀块长⽅形的⼟地上进⾏绿化,已知这块长⽅形⼟地的长=5,宽=4 (1)求该长⽅形⼟地的⾯积.(精确到0.01) (2)若绿化该长⽅形⼟地每平⽅⽶的造价为180元,那么绿化该长⽅形⼟地所需资⾦为多少元? 第三章位置与坐标 ⼀、选择题 1.如图1,⼩⼿盖住的点的坐标可能是() (A)(5,2)(B)(-6,3) (C)(―4,―6)(D)(3,-4) 2.在平⾯直⾓坐标系中,下列各点在第⼆象限的是() (A)(2,1)(B)(2,-1)(C)(-2,1)(D)(-2,-1) 3.点P(—2,3)关于y轴对称的点的坐标是() (A)(—2,—3)(B)(3,—2)(C)(2,3)(D)(2,—3) 4.平⾯直⾓坐标系内,点A(,)⼀定不在() (A)第⼀象限(B)第⼆象限(C)第三象限(D)第四象限 5.如果点P(在轴上,则点P的坐标为() (A)(0,2)(B)(2,0)(C)(4,0)(D)(0, 6.已知点P的坐标为(,且点P到两坐标轴的距离相等,则点P的坐标为() (A)(3,3)(B)(3,(C)(6,(D)(3,3)或(6, 7.已知点A(2,0)、点B(-,0)、点C(0,1),以A、B、C三点为顶点画平⾏四边形,则第四个顶点不可能在() (A)第⼀象限(B)第⼆象限(C)第三象限(D)第四象限 8.若P()在第⼆象限,则Q()在() (A)第⼀象限(B)第⼆象限 (C)第三象限(D)第四象限 9.如图2是某战役中缴获敌⼈防御⼯程的坐标地图碎⽚, 依稀可见:⼀号暗堡的坐标为(1,2),四号暗堡的坐标为 (-3,2).另有情报得知:指挥部坐标为(0,0),你认为敌军指挥部的位置⼤约是() (A)A处(B)B处(C)C处(D)D处 10.以边长为4的正⽅形的对⾓线建⽴平⾯直⾓坐标系,其中⼀个顶点位于轴的负半轴上,则该点坐标为() (A)(2,0)(B)(0,-2)(C)(0,)(D)(0,) ⼆、填空题 11.点A在轴上,且与原点的距离为5,则点A的坐标是________. 12.如图3,每个⼩⽅格都是边长为1个单位 长度的正⽅形,如果⽤(0,0)表⽰A点的 位置,⽤(3,4)表⽰B点的位置,那么 ⽤表⽰C点的位置. 13.已知点M,将点M向右平移个单位长度得到N点,则N点的坐标 为________. 14.第三象限内的点,满⾜,,则点的坐标是. 15.如图4,将AOB绕点O逆时针旋转900, 得到。

人教版数学八年级上册 期末复习专项练习题(选择+填空)(含简单答案)

人教版数学八年级上册 期末复习专项练习题(选择+填空)(含简单答案)

人教版数学八年级上册期末复习专项练习题(选择+填空)一、选择题1.若一个三角形的三边长分别为2、6、a,则a的值可以是()A.8 B.7 C.4 D.32.下列交通标志的图案是轴对称图形的是()A. B. C. D.3.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°有意义,则x的取值范围是()4.若分式1x−3A.x>3B.x<3C.x=3D.x≠35.下列运算正确的是()A.4a−a=3a B.a4⋅a2=a8C.a6÷a3=a2D.(−2a2)3=8a66.如图,∠A=∠D,∠1=∠2,要使△ABC≌△DEF,还应给出的条件是()A.∠E=∠B B.ED=BC C.AB=EF D.AF=CD 7.如图,△ABC≌△ADE,∠B=20°,∠E=110°,∠EAB=30°,则∠BAD的度数为()A.80°B.110°C.70°D.130°8.如图,在△ABC中,AD是△ABC的角平分线, DE⊥AC,若∠B=40°,∠C=60°,则∠ADE的度数为()A.30°B.40°C.50°D.60°9.下列多项式能使用平方差公式进行因式分解的是()A.4x2+1B.−m2+1C.−a2−b2D.2x2−y210.如图,在等边△ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则下列结论不正确的是()A.BD=12AB B.BC=2DE C.∠ABE=15°D.DE=2AE11.计算a2−1a2÷(1a+1)的结果是()A.a+1a B.−a+1aC.a−1aD.−a−1a12.已知多项式ax2+bx+c,其因式分解的结果是(x+1)(x−4),则abc的值为()A.12 B.-12 C.6 D.-6二、填空题13.因式分解:(x−y)2+4xy=.14.如图,在△ABC中,边AC的垂直平分线交AC 于点M,交 BC 于点 N,若AB =3,BC=13,那么△ABN 的周长是.15.如图,BO、CO分别平分∠ABC和∠ACB,∠A=70°,则∠BOC=°.16.如图,Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,点E为AB的中点,若AB=12,CD=3,则△DBE的面积为值为0,x=.17.分式|x|−4x+4参考答案1.B2.B3.C4.D5.A6.D7.A8.C9.B 10.D 11.C 12.A 13.(x+y)2 14.16 15.125 16.9 17.4。

初二数学上册计算题练习题

初二数学上册计算题练习题

初二数学上册计算题练习题一、整数加减法练习1. 计算:(-23) + 12 - (-7) + 9 - 5 + (-15) + (-4)2. 计算:(-18) - 5 - (-9) + 6 - (-3) - 43. 计算:(-43) + (-12) - (-15) + 9 - (-18) + (-3)4. 计算:(-11) - (-4) + 5 - (-6) + 9 - (-7) - 3二、整数乘法和除法练习1. 计算:(-15) × 42. 计算:(-8) × (-2)3. 计算:(-14) × (-6)4. 计算:(-18) ÷ 35. 计算:(-36) ÷ (-9)6. 计算:363 ÷ (-11)三、分数加减法练习1. 计算:(1/2) + (1/4)2. 计算:(3/5) - (1/10)3. 计算:(2/3) + (4/9) - (1/6)4. 计算:(5/8) - (3/16) + (7/32)四、分数乘法和除法练习1. 计算:(2/3) × (4/5)2. 计算:(5/8) ÷ (3/4)3. 计算:(7/10) × (6/7)4. 计算:(3/4) ÷ (5/6)五、小数四则运算练习1. 计算:0.5 + 0.25 - 0.12. 计算:2.5 - 1.3 + 0.63. 计算:3.6 × 2.54. 计算:4.8 ÷ 1.6六、单位换算练习1. 将9分钟换算成秒数。

2. 将3600秒换算成分钟数。

3. 将1.5千克换算成克数。

4. 将400克换算成千克数。

七、代数式计算练习1. 计算:2x + 3x - 5x,其中x = 7。

2. 计算:5y - 3y + 4y,其中y = 2。

3. 计算:4(2s - 3t) + 2s,其中s = 5,t = 2。

4. 计算:3(x + 2y) - 2(x - y),其中x = 4,y = 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学习题库11.1三角形的边1、若三角形的三边长分别为3,a ,8,则的取值范围是( )A 、115<<aB 、85<<aC 、 113<<aD 、115≤≤a2、若一个三角形的三边长之比为2:3:4,周长为36cm ,则这三角形的三边长分别为 。

3、下列给出的各组线段的长度中,能组成三角形的是( )A 、4,5,6B 、6,8,15C 、5,7,12D 、3,7,134、已知三角形的两边长分别是4和7,则这个三角形的第三边长的可能是( )A 、12B 、11C 、8D 、35、已知三角形的两边长分别是2和5,第三边长是奇数,则第三边长为 cm 。

6、现有四条钢线,长度分别为(单位:cm )7,6,3,2,从中取出三根连成一个三角形,这三根的长度可以为 (写出一种即可)。

7、如图1,为估计池塘边A 、B 两点的距离,小方在池塘的一侧选取一点O ,测得OA=8米,OB=6米,则A 、B 间的距离不可能是( )A 、12米B 、10米C 、15米D 、8米8、如图2,x 的值可能为( )A 、10B 、9C 、7D 、6 9、如图3,是一个直三棱柱的表面展开图,其中AD=10,CD=2,则下列可作为长的是( )A 、5B 、4C 、3D 、210、已知三角形的两边长分别是3cm 和7cm ,第三边长是偶数,则这个三角形的周长为 。

11、已知一个三角形的三边长分别是12-x ,3,8,则的取值范围是 。

12、若c b a ,,为ABC ∆三边的长,化简:b a c c a b c b a +----+--13、用一条长为21cm 的铁丝围成一个等腰三角形。

(1)如果腰长是底边长的3倍,那么底边的长是多少?(2)能围成一个边长为5cm 的等腰三角形吗?为什么?14、如图,清湖边有A ,B 两个村庄,从A 村到B 村有两条路可走,即A→M→B 和A→N→B 。

试判断哪条路更短,并说明理由。

15、已知三角形三边长分别为2,x ,13,若x 为正整数,则这样的三角形个数为( )A 、2B 、3C 、5D 、1316、现有四根木棒,长度分别为4,6,8,10,从中任取三根木棒,能组成三角形的个数为( )A 、1个B 、2个C 、3个D 、4个 图1 A B O 图3A H D B C G FE 43 7 11 图2 A BM N A11.1.2三角形的高、中线与角平分线1、以下是四位同学在钝角三角形ABC 中画BC 边上的高,其中画法正确的是( )2、如图1,若H 是△ABC 三条高AD 、BE 、CF 的交点,则△HBC 中BC 边上的高是( )3、如图2,若BD=DE=EC ,则AD 是△ 的中线,AE 是△ 的中线。

4、如图3,已知BD 是△ABC 的中线,AB=5,BC=3,△ABD 和△BCD 的周长的差是( )A 、2B 、3C 、6D 、不能确定5、如图4,在△ABC 中,BD 平分∠ABC,BE 是AC 边上的中线,如果AC=10cm,则AE= ,∠ABD=30°,则∠ABC= .6、如图5,若,下列结论中错误的是( )A 、AD 是△ABC 的角平分线B 、CE 是△ACD 的角平分线C 、△3=21△ACB D 、CE 是△ABC 的角平分线 7、下面不是三角形稳定性的是( )A.三角形的房架 B 、自行车的三角形车架C 、长方形门框的斜位条D 、由四边形组成的伸缩门8、如图6,AD△BC,垂足为D ,△BAC=△CAD,下列说法正确的是( )A.直线AD 是△ABC 的边BC 上的高 B 、线段是的边上的高C 、射线AC 是△ABD 的角平分线 D 、△ABC 与△ACD 的的面积相等9、如图7,在△ABC 中,D 、E 分别为BC ,AD 的中点,且4=∆S ABC ,则S 阴影为( )D B C A A F BE HC D 图1 图2 A C B D E 图3 B C D A 图5 1 2 2 3 A B D C E 图4A D EBC 图8 AD BE C 图7 E A B D C 图6 A B C DA.2 B 、1 C 、21 D 、41 10、如图,在△ABC 中,CD 是△ABC 的角平分线,DE//BC ,交AC 于点E ,若△ACB=60,则△EDC= 。

11、已知一个等腰三角形底边的长为5cm ,一腰上的中线把其周长分成的两部分的差为1cm ,则腰长为 。

12、等腰三角形的两边长分别为4和9,则这个三角形的周长为 。

13、张师傅家有一块三角形的花圃,如图,张师傅准备将它分成面积相等的四部分,分别种上红、黄、白、蓝四种不同颜色的花。

请你设计三种不同的种植方案。

14、如图,在△ABC 中,AD△BC,BE△AC,垂足分别为D 、E ,若BC=10,AC=8,BE=5。

求AD 的长。

15、如图在平面直角坐标系中,A(-1,3),B (-3,-1)C (3,-1)。

(1)在图中画出△ABC 中AC 边上的中线BM ,并写出点M 的坐标;(2)在图中画出△ABC 中边BC 上的高AN ,并写出N 点的坐标。

16、如图所示,小强家有一个由六条钢管连接而成的钢架,为了使这一钢架稳固,他计划在钢架的内部用三根钢管连接使它不变形,请帮助小强解决这个问题(画图说明,用三种不同的方法)。

A B ED C CB A O 1 2 3 —3 —2 —1 1 2 3A B C D E F A B C D EF A B C D E F17、一次数学活动课上,小聪将一副三角板按图1中方式叠放,则∠α等于( ) A 、30° B 、45° C 、60° D 、75°18、将一副常规的三角尺按如图2方式放置,则图中△AOB 的度数为( )A 、75°B 、95°C 、105°D 、120°19、一副三角板,如图3叠放在一起,则图中△α的度数是( ) A 、75° B 、60° C 、65° D 、55°20、如图,已知∠BOC=105°,△B=20°,△C=35°,求△A 的度数。

21、(1)如图△,在△ABC 中,△A=50°,BP 平分△ABC ,CP 平分△ACB 。

求△BPC 的度数;(2)如图△,若BP 、CP 分别为△ABC 的外角△ABC 、△ECB 的平分线,且△A=50°,求△BPC 的度数;(3)如图△,若CP 平分△ACE ,BP 是△ABC 的平分线,△A=50°求△P 。

22、如图,已知射线O x △O y ,点A 、B 为O x 、O y 上两动点,△ABO 中△A 的平分线与△ABO 的外角平分线交于C ,试问:△C 的度数是否随点AB 的运动而发生变化?若变化,请说明理由;若不变化,求出△C 的值。

21、如图,△ABC 中,∠A=80°,延长BC 到D 点,△ABC 与△ACD 的平分线交于点A 1,△A 1BC 与△A 1CD 的平分线相交于点A 2,依次类推,△A 4BC 与△A 4CD 的平分线相A B O 45° 30° (图3) C 45° 30° (图1) (图2)A B O C (第20)题A B C P 图① C E P D B A 图② E C B AP 图③N B O CA M DC A B A1交于点A 5,则△A 5的度数为多少?再画下去,△An 的度数为多少?11.2.1三角形的内角1、在△ABC 中,若∠A=50°,B=70°则∠C 等于( )A.50°B.60°C.70°D.80°2、直角三角形中,一个锐角的度数为30°,则另一个锐角的度数是( )A.70°B.60°C.45°D.30°3、已知∠A=37°,∠B=53°则△ABC 为( )A.锐角三角形 B 、钝角三角形 C 、直角三角形 D 、以上都有可能4、在△ABC 中,若∠A=80°∠B=∠C.则∠C 的度数为( )A.10°B.30°C.50°D.80°5、如图,在△ABC 中,∠A=80°∠B=40°DE 分别是AB ,AC 上的点,且DE//BC ,则 ∠AED 的度数是( )A.40°B.60°C.80°D.120°6、如图,EF ⊥AB ,若∠1=45°,则∠1与∠2的大小关系是( )A .∠1<∠2 B.∠1=∠2 C.∠1>∠2 D.无法确定7、在△ABC 中,∠A 与∠B 互余,则∠C 的大小为( )A.60°B.90°C.120°D.150°8.如图,直线l l 21//,∠1=55°,∠2=65°,则∠3为( ) A.50° B.55° C.60° D.65°9.如图,在△ABC 中,∠B=46,∠ADE=40,AD 平分∠BAC ,交BC 于D ,DE//AB ,交AC 于E ,则∠C 的大小是( )A.46°B.66°C.54°D.80°10.如图,某同学在课桌上无意中将一块三角板叠放在直尺上,则∠1+∠2等于( )A.60°B.75°C.90°D.105° E B G H F A 1 2 (第6题图) 80° A D E B C 40° (第5题)A B E D C (第9题图) 1 2 3 (第8题图) A B C D E(第11题图) A B D E C(第12题图) 1 2 (第10题图)11.如图,BC ⊥AE 垂足为C ,过C 作CD//AB ,若∠ECD=50°,则∠B= 度。

12.如图,在△ABC 中,∠B=36°,∠C=76°,AD 是角平分线,AE 是高,则∠DAE= 。

13.三角形的三个内角的比为1:3:5,那么这个三角形的最大内角的度数为 。

14.如图,在△ABC 中,△A=60°,△B=40°, 点D 、E 分别在BC 、AC 的延长线上,则△1= 。

15.如图是A 、B 、C 三个岛的平面图,C 岛在A 岛的北偏东35°方向,B 岛在A 岛的北偏东65°方向,C 岛在B 岛的北偏西40°方向。

相关文档
最新文档