克里格法Kriging——有公式版
克里金插值-Kriging插值-空间统计-空间分析
克里金插值方法-Kriging 插值-空间统计-空间分析1.1 Kriging 插值克里金插值(Kriging 插值)又称为地统计学,是以空间自相关为前提,以区域化变量理论为基础,以变异函数为主要工具的一种空间插值方法。
克里金插值的实质是利用区域化变量的原始数据和变异函数的结构特点,对未采样点的区域化变量的取值进行线性无偏、最优估计。
克里金插值包括普通克里金插值、泛克里金插值、指示克里金插值、简单克里金插值、协同克里金插值等,其中普通克里金插值是最为常用的克里金插值方法。
以下介绍普通克里金插值的原理。
包括普通克里金方法在内的各种克里金插值方法的使用前提是空间数据存在着显著的空间相关性。
判断数据空间相关性是否显著的工具是半变异函数(semi-variogram ),该函数以任意两个样本点之间的距离h 为自变量,在h 给定的条件下,其函数值估计方法如下:2||||1()[()()]2()i j i j s s h h z s z s N h γ-==-∑其中()N h 是距离为h 的样本点对的个数。
()h γ最大值与最小值的差m a x m i n γγ-可以度量空间相关性的强度。
max min γγ-越大,空间相关性越强。
如果()h γ是常数,即max min 0γγ-=,则说明无论样本点之间的距离是多少,样本点之间的差异不变,也就是说样本点上的值与其周围样本点的值无关。
在实际操作中,会取一些离散的h 值,当||s s ||i j -接近某个h 时,即视为||||i j s s h -=。
然后会通过这些离散点拟合成连续的半变异函数。
拟合函数的形式有球状、指数、高斯等。
在数据存在显著的空间相关性的前提下,可以采用普通克里金方法估计未知点上的值。
普通克里金方法的基本公式如下:01ˆ()()()n i ii Z s w s Z s ==∑普通克里金方法的基本思想是:通过调整i s 的权重()i w s ,使未知点的估计值0ˆ()Z s 满足两个要求:1.0ˆ()Z s 是无偏估计,即估计误差的期望值为0,2.估计误差的方差达到最小。
克里金(kriging)插值的原理与公式推导
克里金(kriging)插值的原理与公式推导
克里金插值是一种空间插值方法,用于估计未知区域的数值,其
原理是基于空间数据的空间相关性来进行插值。
具体来说,克里金插
值假设空间数据在不同位置之间具有一定的相关性,即在空间上相邻
的点具有相似的数值。
克里金插值利用这种相关性来进行插值,从而
可以更准确地估计未知位置的数值。
克里金插值的公式推导涉及到半变异函数的定义,通常使用高斯
模型、指数模型或球形模型来描述数据的空间相关性。
在推导过程中,会利用已知数据点的数值和位置信息,以及半变异函数的参数来构建
插值模型,进而估计未知位置的数值。
克里金插值的公式可以表示为:
\[Z(u) = \sum_{i=1}^{n} \lambda_i \cdot Z(u_i)\]
其中,\(Z(u)\)为未知位置的数值,\(Z(u_i)\)为已知数据点的
数值,\(\lambda_i\)为插值权重,通过半变异函数及数据点之间的空
间距离计算得出。
除了基本的克里金插值方法外,还有一些相关的扩展方法,如普通克里金、泛克里金等,这些方法在建模和插值的过程中考虑了更多的因素,如均值趋势、空间方向等,使得插值结果更加准确和可靠。
总的来说,克里金插值是一种常用的空间插值方法,适用于各种地学环境下的数据分析与建模。
在实际应用中,需要根据具体数据的特点选择合适的插值方法和模型参数,以获得准确的插值结果。
第 章克里格法
1、简单克里金法
? 为使估计方差最小,需对上式求λi的偏导数并令其为0
? 整理得简单克里金方程组:
? 用矩阵表示为:
? 将简单克里金方程组表达式带入估计方差表达式得 简单克里金估计方差表达式:
1、简单克里金法
从简单克里金方程组的 n 个方程中便可求得n 个权重系数λi ,则YV(x)的简 单克里金估计量为:
? 设某一区域气温数据满足二阶平稳假设,协方差函数和变异函数存在,拟合的 变异函数模型为球状模型,如下所示。
? 数据如下,点的空间分布如图所示。现用普通克里金方法根据已知五个点的气 温数据估算0点处的气温值。
?令 ?则
Y(x)=Z(x)-m
[ [ [ E Y(x)]=E Z(x)-m]= E Z(x)]-m=0
? 待估块段新待估值
1、简单克里金法
? 设在待估块段V附近有n个样点xi(i=1,2,…n),其观测值为Z(xi) (i=1,2,…n),则观 测值新变量为:Y(xi)=Z(xi)-m
? Y(V)的估计值Yv*是Y(xi) (i=1,2,…n)的线性组合,则
(2)最优估计
[ [ Var Zv* (x) ? Zv (x)] ? E Zv* (x) ? Zv (x)]2 ? min
3、克里金法估值过程
(1)数据检查 (2)模型拟合 (3)模型诊断 (4)模型比较
二、线性克里金法
? 当区域化变量Z(x)的E[Z(x)]=m 为简单克里金法
已知,则称
? 若Z(x)的E[Z(x)]
未知,则称为普通克里金法
1、简单克里金法
? 设区域化变量Z(x)满足二阶平稳假设,其数学期望为常数m,协方差函数
克里金插值法的详细介绍。kriging。
克里金插值法的详细介绍。
kriging。
kriging 插值作为地统计学中的一种插值方法由南非采矿工程师D.G.Krige于1951年首次提出,是一种求最优、线形、无偏的空间内插方法。
在充分考虑观测资料之间的相互关系后,对每一个观测资料赋予一定的权重系数,加权平均得到估计值。
这里介绍普通Kriging插值方法的基本步骤:1.该方法中衡量各点之间空间相关程度的测度是半方差,其计算公式为:h为各点之间距离,n 是由h 分开的成对样本点的数量,z 是点的属性值。
2.在不同距离的半方差值都计算出来后,绘制半方差图,横轴代表距离,纵轴代表半方差。
半方差图中有三个参数nugget(表示距离为零时的半方差),sill(表示基本达到恒定的半方差值),range(表示一个值域范围,在该范围内半方差随距离增加,超过该范围,半方差值趋于恒定)。
利用做出的半方差图找出与之拟合的最好的理论变异函数模型(这是关键所在),可用于拟合的模型包括高斯模型、线性模型、球状模型、指数模型、圆形模型。
----球状模型,球面模型空间相关随距离的增长逐渐衰减,当距离大于球面半径后,空间相关消失。
3.用拟合的模型计算出三个参数。
例如球状模型中nugget为c0,range为a,sill为c。
4.利用拟合的模型估算未知点的属性值,方程为:,z0为估计值,zx是已知点的值,wx为权重,s是用来估算未知点的已知点的数目。
假如用三个点来估算,则有这样权重就可以求出,然后估算未知点。
(上述内容根据《地理信息系统导论》(Kang-tsung Chang著;陈健飞等译,科学出版社,2003)第十三章内容进行总结,除球状模型公式外其余公式皆来自此书)下面是本人自己编写的利用海洋中断面上观测站点的实测温度值来估算未观测处的温度的Fortran程序,利用距离未知点最近的五个观测点来估算未知点的温度,选用模型为球状模型。
do ii=1,nxif(tgrid(ii,1)==0.)thendo i=1,dsite(ii)!首先寻找距离最近的五个已知点位置do j=1,nhif(d(mm(ii),j).ne.0.or.j==1)thenhmie(j)=d(mm(ii),j)-dgrid(i)elsehmie(j)=9999hmid(j)=abs(hmie(j))end dodo j=1,nhdo k=j,nhif(hmid(j)<hmid(k))then< p="">elsem1=hmid(j)hmid(j)=hmid(k)hmid(k)=m1end ifend doend dodo j=1,5do k=1,nhif(abs(hmie(k))==hmid(j))thenlocat(j)=kend ifend doend dodo j=1,4do k=j+1,5if(locat(j)==locat(k))thendo i3=1,nhif(abs(hmie(i3))==abs(hmie(locat(j))).and.i3.ne.locat(j))then locat(j)=i3exitend ifenddoendifenddo!然后求各点间距离,并求半方差do j=1,5do k=1,5hij(j,k)=abs(d(mm(ii),locat(j))-d(mm(ii),locat(k)))/1000.end doend dodo j=1,5hio(j)=sqrt(hmid(j)**2+(abs(latgrid(ii)-lonlat(mm(ii),2))*llat)**2 $ +(abs(longrid(ii)-lonlat(mm(ii),1))*(1.112e5*$ cos(0.017*(latgrid(ii)+lonlat(mm(ii),2))/2)))**2)/1000.end dodo j=1,5do k=1,5if(hij(j,k).eq.0.)thenrleft(j,k)=0.elserleft(j,k)=sill*(1.5*hij(j,k)/range-0.5*hij(j,k)**3/range**3)end ifif(hio(j).eq.0.)thenrrig(1,j)=0.elserrig(1,j)=sill*(1.5*hio(j)/range-0.5*hio(j)**3/range**3)end ifend doend dorrig(1,6)=1.rleft(6,6)=0.rleft(6,j)=1.rleft(j,6)=1.end dotry=rleftcall brinv(rleft,nnn,lll,is,js)ty1=matmul(try,rleft)!求权重wq=matmul(rrig,rleft)!插值所有格点上t,sdo j=1,5tgrid(ii,i)=tgrid(ii,i)+wq(1,j)*t(mm(ii),locat(j)) sgrid(ii,i)=sgrid(ii,i)+wq(1,j)*s(mm(ii),locat(j)) end doenddoendifenddo</hmid(k))then<>。
克里金插值(kriging)
随机场:
P
当随机函数依赖于多个
自变量时,称为随机场。
如具有三个自变量(空间
点的三个直角坐标)的随
机场
随机函数的特征值
协方差(Variance): 二个随机变量ξ,η的协方差为二维随机变量(ξ,
η)的二阶混合中心矩μ11,记为Cov(ξ,η),或σξ,η。
Cov(ξ,η) = σξ,η = E[ξ-E(ξ)][η-E(η)]
块金效应的尺度效应
如果品位完全是典型的随机变量,则不论 观测尺度大小,所得到的实验变差函数曲线总 是接近于纯块金效应模型。
当采样网格过大时,将掩盖小尺度的结构, 而将采样尺度内的变化均视为块金常数。这种 现象即为块金效应的尺度效应。
1
3
3
3
1
2
3
1
1
(h) = C(0) – C(h)
基台值(Sill):代表变量在空间上的总变异性大小。即为变 差函数在h大于变程时的值,为块金值c0和拱高cc之和。 拱高为在取得有效数据的尺度上,可观测得到的变异性幅 度大小。当块金值等于0时,基台值即为拱高。
对于单变量而言:
P
F(u;z)F(uh;z)
可从研究区内所有数据的累积直方图推断而得 (将邻近点当成重复取样点)
太强的假设,不符合实际
二阶平稳
当区域化变量Z(u)满足下列二个条件时,则称其 为二阶平稳或弱平稳:
① 在整个研究区内有Z(u)的数学期望存在, 且等于常数,即: E[Z(u)] = E[Z(u+h)] = m(常数) x h
相当于要求:Z(u)的变差函数存在且平稳。
可出现协方差函数不存在,但变差函数存在的情况。
例:物理学上的著名的布朗运动是一种呈现出无限 离散性的物理现象,其随机函数的理论模型就是维 纳-勒维(Wiener-Levy)过程(或随机游走过程)。
克里金插值(kriging)(推荐完整)
则当级数 xk pk 绝对收敛时,称此级数的 k 1
和为ξ的数学期望,记为E(ξ),或Eξ。
E(ξ) = xk pk k 1
②设连续型随机变量ξ的可能取值区间为(-∞,+∞),
p(x)为其概率密度函数,若无穷积分
xp(x)dx
二、统计推断与平稳要求
•任何统计推断(cdf,数学期望等)均要求重复取样。 •但在储层预测中,一个位置只能有一个样品。 •同一位置重复取样,得到cdf,不现实
P
考虑邻近点,推断待估点
区域化变量: 能用其空间分布来表征一个自然现象的变量。
(将空间位置作为随机函数的自变量)
•空间一点处的观测值可解释为一个随机变量在该点
随机函数在空间上的变化没有明显趋势, 围绕m值上下波动。
② 在整个研究区内,Z(u)的协方差函数存在且平稳 (即只依赖于滞后h,而与u无关), 即
Cov{Z(u),Z(u+h)} = E[Z(u)Z(u+h)]-E[Z(u)]E[Z(u+h)] = E[Z(u)Z(u+h)]-㎡ = C(h)
•协方差不依赖于空间绝对位置,而依赖于相对位置 , 即具有空间的平稳不变性。
H. S. Sichel (1947) D.G. Krige (1951)
应用统计学方法研究金矿品位
Kriging法(克里金法,克立格 法):“根据样品空间位置不同、样 品间相关程度的不同,对每个样品 品位赋予不同的权,进行滑动加权 平均,以估计中心块段平均品位”
G. Materon(1962)
提出了“地质统计学”概念 (法文Geostatistique)
[教程]克里格法插值法
克里格法插值法克里格法又称空间自协方差最佳插值法,它是以南非矿业工程师D.G.Krige的名字命名的一种最优内插法。
其特点是线性,无偏,方差小,适用于空间分析。
所以很适合地质学、气象学、地理学、制图学等。
相对于其他插值方法。
主要缺点:由于他要依次考虑(这也是克里格插值的一般顺序)计算影响范围,考虑各向异性否,选择变异函数模型,计算变异函数值,求解权重系数矩阵,拟合待估计点值,所以计算速度较慢。
而那些趋势面法,样条函数法等。
虽然较快,但是逼近程度和适用范围都大受限制。
克里格插值又分为:简单,普通,块,对数,指示性,泛,折取克里格插值等。
克里格插值的变异函数有球形模型,指数模型,高斯模型,纯块金模型,幂函数模型,迪维生模型等。
克里格法(Kriging)是地统计学的主要内容之一,从统计意义上说,是从变量相关性和变异性出发,在有限区域内对区域化变量的取值进行无偏、最优估计的一种方法;从插值角度讲是对空间分布的数据求线性最优、无偏内插估计一种方法。
克里格法的适用条件是区域化变量存在空间相关性。
克里格法,基本包括普通克里格方法(对点估计的点克里格法和对块估计的块段克里格法)、泛克里格法、协同克里格法、对数正态克里格法、指示克里格法、折取克里格法等等。
随着克里格法与其它学科的渗透,形成了一些边缘学科,发展了一些新的克里格方法。
如与分形的结合,发展了分形克里格法;与三角函数的结合,发展了三角克里格法;与模糊理论的结合,发展了模糊克里格法等等。
应用克里格法首先要明确三个重要的概念。
一是区域化变量;二是协方差函数,三是变异函数。
它首先考虑的是空间属性在空间位置上的变异分布.确定对一个待插点值有影响的距离范围,然后用此范围内的采样点来估计待插点的属性值。
该方法在数学上可对所研究的对象提供一种最佳线性无偏估计(某点处的确定值)的方法。
它是考虑了信息样品的形状、大小及与待估计块段相互间的空间位置等几何特征以及品位的空间结构之后,为达到线性、无偏和最小估计方差的估计,而对每一个样品赋与一定的系数,最后进行加权平均来估计块段品位的方法。
克里金插值方法介绍 武汉大学 高等水文学
(h) C(0) C(h)
(二阶平稳假设条件下边查函数与写防查的关系)
变程(Range) :指区域化变量在空间上具有相关性的 范围。在变程范围之内,数据具有相关性;而在变 程之外,数据之间互不相关,即在变程以外的观测 值不对估计结果产生影响。
具不同变程 的克里金插 值图象
块金值(Nugget) :变差函数如果在原点间断,在地质统计学中称 为“块金效应”,表现为在很短的距离内有较大的空间变异性, 无论h多小,两个随机变量都不相关 。它可以由测量误差引起, 也可以来自矿化现象的微观变异性。在数学上,块金值c0相当于 变量纯随机性的部分。
E[ξ-E(ξ)]2存在,则称它为ξ的方差,记为D(ξ), 或Var(ξ),或σξ2。
D(ξ)= E[ξ-E(ξ)]2 其简算公式为
D(ξ)=E(ξ2) –[E(ξ)]2
方差的平方根为标准差,记为σξ
σξ=
D( ) E[ - E( )]2 E( 2) -[E( )]2
从矩的角度说,方差是ξ的二阶中心矩。
相当于要求:Z(u)的变差函数存在且平稳。
可出现协方差函数不存在,但变差函数存在的情况。
例:物理学上的著名的布朗运动是一种呈现出无限 离散性的物理现象,其随机函数的理论模型就是维 纳-勒维(Wiener-Levy)过程(或随机游走过程)。
布朗运动:
既不能确定验前方差,也不能确定协方差函数。
但是其增量却具有有限的方差: Var[Z(x)-Z(x+h)] = 2 (h)= A·|h| (其中,A是个常数),
如具有三个自变量(空间
点的三个直角坐标)的随
机场
随机函数的特征值
协方差(Covariance): 二个随机变量ξ,η的协方差为二维随机变量(ξ,
克里格方法(Kriging)
精选完整ppt课件
3
克里格法
01 Z(p)为区域Ω上随机过程,p∈Ω; Ω上有n个测点(样本点),
zi z(pi)在 p i处的测值,则 p 0 处的最优线性估计为
n
zˆ0 i zi i1
02 最小化非测点 p 0 处的估值方差 0 2E[z(0zˆ0)2],可推导出克里
2
基本概念
01 变差函数:Z(p)为一随机过程,Z(p)在p,p+h两点处的值之差 的方差之半定义为Z(p)在p方向上的变差函数,记为
(h)1V[az((rp)z(ph)]
2 变差函数描述了区域化变量的空间结构性。 (h)只依赖于h。
02 协方差函数:随机过程Z(p) 在p1、p2处的两个随机变量Z(p1) 和Z(p2)的二阶混合中心矩,即 Cov{Z(p1), Z(p2)}=E[Z(p1)*Z(p2)]-E[Z(p1)]*E[Z(p2)],记 为 C(p1, p2) 整个区域中,Z(p)的协方差函数存在且相同,即只依赖于h Cov{Z(p),Z(p+h)} ≜C(h); 当h=0时,C(0)=Var{Z(x)},x
n
i1
n j1
1 B'(hij)
B'(hij) k
0
精选完整ppt课件
6
优化测点分布的克里格方程组
由(h)=C(0)B(h),可得 C(h)=C(0)(1-B(h))
设 ce(h)1B(h) ,则上式可表示为
c(h)c(0)ce(h)
令 c(0)e 将上述式子代入克里格方程组可得与C(0)无关的克里 格方程组和克里格方差,如下
g(i)
,表明网格节点上的较大估值方差变大了,
克里格法
二、克里格法(Kriging)转载克里格法(Kriging)是地统计学的主要内容之一,从统计意义上说,是从变量相关性和变异性出发,在有限区域内对区域化变量的取值进行无偏、最优估计的一种方法;从插值角度讲是对空间分布的数据求线性最优、无偏内插估计一种方法。
克里格法的适用条件是区域化变量存在空间相关性。
克里格法,基本包括普通克里格方法(对点估计的点克里格法和对块估计的块段克里格法)、泛克里格法、协同克里格法、对数正态克里格法、指示克里格法、折取克里格法等等。
随着克里格法与其它学科的渗透,形成了一些边缘学科,发展了一些新的克里金方法。
如与分形的结合,发展了分形克里金法;与三角函数的结合,发展了三角克里金法;与模糊理论的结合,发展了模糊克里金法等等。
应用克里格法首先要明确三个重要的概念。
一是区域化变量;二是协方差函数,三是变异函数一、区域化变量当一个变量呈空间分布时,就称之为区域化变量。
这种变量反映了空间某种属性的分布特征。
矿产、地质、海洋、土壤、气象、水文、生态、温度、浓度等领域都具有某种空间属性。
区域化变量具有双重性,在观测前区域化变量Z(X)是一个随机场,观测后是一个确定的空间点函数值。
区域化变量具有两个重要的特征。
一是区域化变量Z(X)是一个随机函数,它具有局部的、随机的、异常的特征;其次是区域化变量具有一般的或平均的结构性质,即变量在点X与偏离空间距离为h的点X+h 处的随机量Z(X)与Z(X+h)具有某种程度的自相关,而且这种自相关性依赖于两点间的距离h与变量特征。
在某种意义上说这就是区域化变量的结构性特征。
二、协方差函数协方差又称半方差,是用来描述区域化随机变量之间的差异的参数。
在概率理论中,随机向量X与Y 的协方差被定义为:区域化变量在空间点x和x+h处的两个随机变量Z(x)和Z(x+h)的二阶混合中心矩定义为Z(x)的自协方差函数,即区域化变量Z(x) 的自协方差函数也简称为协方差函数。
kriging(克里金方法-克里金插值)汇总
(h) C(0) C(h)
(二阶平稳假设条件下变差函数与协方差的关系)
变程(Range) :指区域化变量在空间上具有相关性的 范围。在变程范围之内,数据具有相关性;而在变 程之外,数据之间互不相关,即在变程以外的观测 值不对估计结果产生影响。
具不同变程 的克里金插 值图象
块金值(Nugget) :变差函数如果在原点间断,在地质统计学中称 为“块金效应”,表现为在很短的距离内有较大的空间变异性, 无论h多小,两个随机变量都不相关 。它可以由测量误差引起, 也可以来自矿化现象的微观变异性。在数学上,块金值c0相当于 变量纯随机性的部分。
F(u; z) Pr ob{Z(u) z}
P
条件累积分布函数(ccdf)后验 conditional cumulative distribution function
F(u; z | (n)) Pr ob{Z(u) z | (n)}
离散变量(类型变量):
P
F(u;k | (n)) Prob{Z(u) k | (n)}
E[ξ-E(ξ)]2存在,则称它为ξ的方差,记为D(ξ), 或Var(ξ),或σξ2。
D(ξ)= E[ξ-E(ξ)]2 其简算公式为
D(ξ)=E(ξ2) –[E(ξ)]2
方差的平方根为标准差,记为σξ
σξ=
D( ) E[ - E( )]2 E( 2) -[E( )]2
从矩的角度说,方差是ξ的二阶中心矩。
随机函数在空间上的变化没有明显趋势, 围绕m值上下波动。
② 在整个研究区内,Z(u)的协方差函数存在且平稳 (即只依赖于滞后h,而与u无关), 即
Cov{Z(u),Z(u+h)} = E[Z(u)Z(u+h)]-E[Z(u)]E[Z(u+h)] = E[Z(u)Z(u+h)]-㎡ = C(h)
克里格法Kriging——有公式版
克里格法(Kriging)——有公式版二、克里格法(Kriging)克里格法(Kriging)是地统计学的主要内容之一,从统计意义上说,是从变量相关性和变异性出发,在有限区域内对区域化变量的取值进行无偏、最优估计的一种方法;从插值角度讲是对空间分布的数据求线性最优、无偏内插估计一种方法。
克里格法的适用条件是区域化变量存在空间相关性。
克里格法,基本包括普通克里格方法(对点估计的点克里格法和对块估计的块段克里格法)、泛克里格法、协同克里格法、对数正态克里格法、指示克里格法、折取克里格法等等。
随着克里格法与其它学科的渗透,形成了一些边缘学科,发展了一些新的克里金方法。
如与分形的结合,发展了分形克里金法;与三角函数的结合,发展了三角克里金法;与模糊理论的结合,发展了模糊克里金法等等。
应用克里格法首先要明确三个重要的概念。
一是区域化变量;二是协方差函数,三是变异函数一、区域化变量当一个变量呈空间分布时,就称之为区域化变量。
这种变量反映了空间某种属性的分布特征。
矿产、地质、海洋、土壤、气象、水文、生态、温度、浓度等领域都具有某种空间属性。
区域化变量具有双重性,在观测前区域化变量Z(X)是一个随机场,观测后是一个确定的空间点函数值。
区域化变量具有两个重要的特征。
一是区域化变量Z(X)是一个随机函数,它具有局部的、随机的、异常的特征;其次是区域化变量具有一般的或平均的结构性质,即变量在点X 与偏离空间距离为h的点X+h处的随机量Z(X)与Z(X+h)具有某种程度的自相关,而且这种自相关性依赖于两点间的距离h与变量特征。
在某种意义上说这就是区域化变量的结构性特征。
二、协方差函数协方差又称半方差,是用来描述区域化随机变量之间的差异的参数。
在概率理论中,随机向量X与Y的协方差被定义为:区域化变量在空间点x 和x+h处的两个随机变量Z(x) 和Z(x+h) 的二阶混合中心矩定义为Z(x) 的自协方差函数,即区域化变量Z(x) 的自协方差函数也简称为协方差函数。
kriging基础知识
特殊地,当h=0时,上式变为
Var[Z(u)]=C(0),
即方差存在且为常数。
精选课件
u+h u
17
本征假设 intrinsic hypothese
(比二阶平稳更弱的平稳假设)
当区域化变量Z(u)的增量[Z(u)-Z(u+h)]满足下列二 条件时,称其为满足本征假设或内蕴假设。
k 1
精选课件
8
②设连续型随机变量ξ的可能取值区间为(-∞,+∞),
p(x)为其概率密度函数,若无穷积分
xp(x)dx
绝对收敛,则称它为ξ的数学期望,记为E(ξ)。
E(ξ) = xp(x)dx
•数学期望是随机变量的最基本的数字特征,
相当于随机变量以其取值概率为权的加权平均数。
•从矩的角度说,数学期望是ξ的一阶原点矩。
随机场:
P
当随机函数依赖于多个
自变量时,称为随机场。
如具有三个自变量(空间
点的三个直角坐标)的随
机场
精选课件
11
随机函数的特征值
协方差(Variance): 二个随机变量ξ,η的协方差为二维随机变量(ξ,
η)的二阶混合中心矩μ11,记为Cov(ξ,η),或σξ,η。
Cov(ξ,η) = σξ,η = E[ξ-E(ξ)][η-E(η)]
基台值(Sill):代表变量在空间上的总变异性大小。即为变
差函数在h大于变程时的值,为块金值c0和拱高cc之和。 拱高为在取得有效数据的尺度上,可观测得到的变异性幅
度大小。当块金值等于0时,基台值即为拱高。
精选课件
35
地质变量相关性的各向异性
克里金算法
克里金算法克里格法(Kriging)是地统计学的主要内容之一,从统计意义上说,是从变量相关性和变异性出发,在有限区域内对区域化变量的取值进行无偏、最优估计的一种方法;从插值角度讲是对空间分布的数据求线性最优、无偏内插估计一种方法。
克里格法的适用条件是区域化变量存在空间相关性。
克里格法,基本包括普通克里格方法(对点估计的点克里格法和对块估计的块段克里格法)、泛克里格法、协同克里格法、对数正态克里格法、指示克里格法、折取克里格法等等。
随着克里格法与其它学科的渗透,形成了一些边缘学科,发展了一些新的克里金方法。
如与分形的结合,发展了分形克里金法;与三角函数的结合,发展了三角克里金法;与模糊理论的结合,发展了模糊克里金法等等。
应用克里格法首先要明确三个重要的概念。
一是区域化变量;二是协方差函数,三是变异函数一、区域化变量当一个变量呈空间分布时,就称之为区域化变量。
这种变量反映了空间某种属性的分布特征。
矿产、地质、海洋、土壤、气象、水文、生态、温度、浓度等领域都具有某种空间属性。
区域化变量具有双重性,在观测前区域化变量Z(X)是一个随机场,观测后是一个确定的空间点函数值。
区域化变量具有两个重要的特征。
一是区域化变量Z(X)是一个随机函数,它具有局部的、随机的、异常的特征;其次是区域化变量具有一般的或平均的结构性质,即变量在点X与偏离空间距离为h的点X+h处的随机量Z(X)与Z(X+h)具有某种程度的自相关,而且这种自相关性依赖于两点间的距离h与变量特征。
在某种意义上说这就是区域化变量的结构性特征。
二、协方差函数协方差又称半方差,是用来描述区域化随机变量之间的差异的参数。
在概率理论中,随机向量X与Y的协方差被定义为:区域化变量在空间点x和x+h处的两个随机变量Z(x)和Z(x+h)的二阶混合中心矩定义为Z(x)的自协方差函数,即区域化变量Z(x) 的自协方差函数也简称为协方差函数。
一般来说,它是一个依赖于空间点x 和向量h 的函数。
Kriging插值法
Kriging插值法克⾥⾦法是通过⼀组具有 z 值的分散点⽣成估计表⾯的⾼级地统计过程。
与插值⼯具集中的其他插值⽅法不同,选择⽤于⽣成输出表⾯的最佳估算⽅法之前,有效使⽤⼯具涉及 z 值表⽰的现象的空间⾏为的交互研究。
什么是克⾥⾦法?IDW(反距离加权法)和样条函数法插值⼯具被称为确定性插值⽅法,因为这些⽅法直接基于周围的测量值或确定⽣成表⾯的平滑度的指定数学公式。
第⼆类插值⽅法由地统计⽅法(如克⾥⾦法)组成,该⽅法基于包含⾃相关(即,测量点之间的统计关系)的统计模型。
因此,地统计⽅法不仅具有产⽣预测表⾯的功能,⽽且能够对预测的确定性或准确性提供某种度量。
克⾥⾦法假定采样点之间的距离或⽅向可以反映可⽤于说明表⾯变化的空间相关性。
克⾥⾦法⼯具可将数学函数与指定数量的点或指定半径内的所有点进⾏拟合以确定每个位置的输出值。
克⾥⾦法是⼀个多步过程;它包括数据的探索性统计分析、变异函数建模和创建表⾯,还包括研究⽅差表⾯。
当您了解数据中存在空间相关距离或⽅向偏差后,便会认为克⾥⾦法是最适合的⽅法。
该⽅法通常⽤在⼟壤科学和地质中。
克⾥⾦法公式由于克⾥⾦法可对周围的测量值进⾏加权以得出未测量位置的预测,因此它与反距离权重法类似。
这两种插值器的常⽤公式均由数据的加权总和组成:其中:Z(s i) = 第i个位置处的测量值λi = 第i个位置处的测量值的未知权重s0 = 预测位置N = 测量值数在反距离权重法中,权重λi仅取决于预测位置的距离。
但是,使⽤克⾥⾦⽅法时,权重不仅取决于测量点之间的距离、预测位置,还取决于基于测量点的整体空间排列。
要在权重中使⽤空间排列,必须量化空间⾃相关。
因此,在普通克⾥⾦法中,权重λi取决于测量点、预测位置的距离和预测位置周围的测量值之间空间关系的拟合模型。
以下部分将讨论如何使⽤常⽤克⾥⾦法公式创建预测表⾯地图和预测准确性地图。
使⽤克⾥⾦法创建预测表⾯地图要使⽤克⾥⾦法插值⽅法进⾏预测,有两个任务是必需的:找到依存规则。
克里金插值(kriging)PPT
二、统计推断与平稳要求
•任何统计推断(cdf,数学期望等)均要求重复取样。 •但在储层预测中,一个位置只能有一个样品。 •同一位置重复取样,得到cdf,不现实
P
13
考虑邻近点,推断待估点
区域化变量: 能用其空间分布来表征一个自然现象的变量。
(将空间位置作为随机函数的自变量)
•空间一点处的观测值可解释为一个随机变量在该点
可出现E[Z(u)]不存在, 但E[Z(u)-Z(u+h)]存在并为零的情况
E[Z(u)]可以变化,但E[Z(u)-Z(u+h)]=0
18
② 增量[Z(u)-Z(u+h)]的方差函数 (变差函数,Variogram)
存在且平稳 (即不依赖于u),即:
Var[Z(u)-Z(u+h)] = E[Z(u)-Z(u+h)]2-{E[Z(u)-Z(u+h)]}2 = E[Z(u)-Z(u+h)]2 = 2γ(u,h) = 2γ(h),
半变差函数(或半变异函数)
28
在二阶平稳假设,或作本征假设,此时:
E[Z(x)-Z(x+h)] = 0 h
则:
(x,h)
=
1 2
Var[Z(x)-Z(x+h)]
1
=2
E[Z(x)-Z(x+h)]2-{E[Z(x)-Z(x+h)]}2
(x,h)
=
1 2
E[Z(x)-Z(x+h)]2
地质统计学中最常用 的基本公式之一。
E
n i 1
iZ xi
Z x0
n i m m 0
i1
(在搜寻邻域内为 常数,不同邻域可 以有差别)
克里格法ppt课件
行估计。
•
所谓泛克里金法,就是在漂移的形式E[Z(x)]=m(x),和非平稳随机函数Z(x)的
协方差函数C(h)或变异函数γ(h)为已知的条件下,一种考虑到有漂移的无偏线
性估计量的地统计学方法,这种方法属于线性非平稳地统计学范畴。
19
(1)漂移和涨落
• 漂移:非平稳区域化变量Z(x)的数学
期望,在任一点x上的漂移就是该点 上区域化变量Z(x)的数学期望。 • 漂移经常用邻域模型来研究。可表达 为:在给定的以点x为中心的邻域内 的任一点,其漂移m(x)可用如下函数 表示。 •
• 将解出的λi(i =1,2,…,n)带入估计量 公式得到普通克里金估计量: • 普通克里金方程组和普通克里金估 计方差也可用变异函数γ(h)表示。
•
从普通克里金方程组可得:
•
将此式带入估计方差公式得普通克 里金估计方差,记为 :
•
在Z(x)满足二阶平稳条件时,可采 用协方差或变异函数表达的普通克 里金方程组及克里金估计方差计算 式进行求解计算;但在本证假设条 件下,则只可采用变异函数的表达 式进行求解计算。
•
由于估计值Y(x)是对数变换后的数值,因此对估计所得Y*(x)需进行反变换。
28
2、指示克里金法
• 实际研究中常常会需要获取研究区内研究对象大于某一给定阈值的概率分布, 即要获知研究区内任一点x处随机变量Z(x)的概率分布。
•
还会碰到采样数据中存在特异值的问题。(特异值是指那些比全部数值的均值 或中位数高的多的数值,其既非分析误差所致,也非采样方法等人为误差引起 ,而是实际存在于所研究的总体之中)。
简单克里金法的估计精度在很大程度上依赖于m值的准确度,但是通常情 况下很难正确估计m值,从而导致简单克里金估计精度降低。
克里金插值
D(ξ)=E(ξ2) –[E(ξ)]2
方差的平方根为标准差,记为σξ
σξ=
D( ) E[ - E( )]2 E( 2) -[E( )]2
•从矩的角度说,方差是ξ的二阶中心矩。
2. 随机函数
研究范围内的一组随机变量。
{Z(u),u 研究范围} 简记为 Z(u)
P
考虑邻近点,推断待估点
区域化变量: 能用其空间分布来表征一个自然现象的变量。
(将空间位置作为随机函数的自变量)
•空间一点处的观测值可解释为一个随机变量在该点
处的一个随机实现。
• 空间各点处随机变量的集合构成一个随机函数。
(可以应用随机函数理论解决插值和模拟问题)
考虑邻近点,推断待估点 ----空间统计推断要求平稳假设
井眼 地震
第一节 基本原理
一、随机变量与随机函数 1. 随机变量
为一个实值变量,可根据概率分布取不同的值。 每次取值(观测)结果z为一个确定的数值,称为 随机变量Z的一个实现。
P
连续变量:
累积分布函数(cdf)
Z (u)
cumulative distribution function
F(u; z) Pr ob{Z(u) z}
P
条件累积分布函数(ccdf) conditional cumulative distribution function
F(u; z | (n)) Pr ob{Z(u) z | (n)}
离散变量(类型变量):
P
F(u;k | (n)) Prob{Z(u) k | (n)}
不同的取值方式:估计(estimation)
条件累积分布函数(ccdf)
kriging基础知识ppt课件
(应用随机函数理论)
最新版整理ppt
井眼 地震
4
第一节 基本原理
一、随机变量与随机函数 1. 随机变量
为一个实值变量,可根据概率分布取不同的值。 每次取值(观测)结果z为一个确定的数值,称为 随机变量Z的一个实现。
P
最新版整理ppt
5
连续变量:
累积分布函数(cdf)
Z (u)
cumulative distribution function
F (u ;z ) P o{ rZ b (u ) z }
P
条件累积分布函数(ccdf)后验 conditional cumulative distribution function
F ( u ;z |( n ) ) P o { Z r( b u ) z |( n )}
第二讲
克里金插值
克里金方法(Kriging), 是以南非矿业 工程师D.G.Krige (克里格)名字命名的一项 实用空间估计技术,是地质统计学 的重要
组成部分,也是地质统计学的核心。
最新版整理ppt
1
地质统计学
由法国巴黎国立高等矿业学院G.马特隆教授于 1962年所创立。 主要是为解决矿床储量计算和误差估计问题而 发展起来的
(将空间位置作为随机函数的自变量)
•空间一点处的观测值可解释为一个随机变量在该点
处的一个随机实现。
• 空间各点处随机变量的集合构成一个随机函数。
(可以应用随机函数理论解决插值和模拟问题)
最新版整理ppt
14
考虑邻近点,推断待估点 ----空间统计推断要求平稳假设
严格平稳
F ( u 1 , , u K ; z 1 , , z K ) F ( u 1 h , , u K h ; z 1 , , z K )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
克里格法(Kriging)——有公式版
二、克里格法(Kriging)克里格法(Kriging)是地统计学的主要内容之一,从统计意
义上说,是从变量相关性和变异性出发,在有限区域内对区域化变量的取值进行无偏、最优估计的一种方法;从插值角度讲是对空间分布的数据求线性最优、无偏内插估计一种方法。
克里格法的适用条件是区域化变量存在空间相关性。
克里格法,基本包括普通克里格方法(对点估计的点克里格法和对块估计的块段克里格法)、泛克里格法、协同克里格法、对数正态克里格法、指示克里格法、折取克里格法等等。
随着克里格法与其它学科的渗透,形成了一些边缘学科,发展了一些新的克里金方法。
如与分形的结合,发展了分形克里金法;与三角函数的结合,发展了三角克里金法;与模糊理论
的结合,发展了模糊克里金法等等。
应用克里格法首先要明确三个重要的概念。
一是区域化变量;二是协方差函数,三是变异函数
一、区域化变量
当一个变量呈空间分布时,就称之为区域化变量。
这种变量反映了空间某种属性的分布
特征。
矿产、地质、海洋、土壤、气象、水文、生态、温度、浓度等领域都具有某种空间属
性。
区域化变量具有双重性,在观测前区域化变量Z(X)是一个随机场,观测后是一个确定
的空间点函数值。
区域化变量具有两个重要的特征。
一是区域化变量Z(X)是一个随机函数,它具有局部的、随机的、异常的特征;其次是区域化变量具有一般的或平均的结构性质,即变量在点X 与偏离空间距离为h的点X+h处的随机量Z(X)与Z(X+h)具有某种程度的自相关,而且这
种自相关性依赖于两点间的距离h与变量特征。
在某种意义上说这就是区域化变量的结构性
特征。
二、协方差函数
协方差又称半方差,是用来描述区域化随机变量之间的差异的参数。
在概率理论中,随机向量X与Y的协方差被定义为:
区域化变量在空间点x 和x+h处的两个随机变量Z(x) 和Z(x+h) 的二阶混合中心矩定义为Z(x) 的自协方差函数,即
区域化变量Z(x) 的自协方差函数也简称为协方差函数。
一般来说,它是一个依赖于空
间点x 和向量h 的函数。
设Z(x) 为区域化随机变量,并满足二阶平稳假设,即随机函数Z(x) 的空间分布规律
不因位移而改变,h为两样本点空间分隔距离或距离滞后,Z(xi) 为Z(x) 在空间位置xi 处的实测值,Z(xi[size=2]+h[/size]) 是Z(x) 在xi 处距离偏离h 的实测值,根据协方差函数的定义公式,可得到协方差函数的计算公式为:
在上面的公式中,N(h)是分隔距离为h时的样本点对的总数,和分。