坐标法解决平面向量最值问题

坐标法解决平面向量最值问题

龙源期刊网 https://www.360docs.net/doc/652939959.html,

坐标法解决平面向量最值问题

作者:曾令瑞

来源:《中学生理科应试》2017年第04期

坐标法在平面向量运算中的应用(公开课教案)

坐标法在平面向量运算中的应用(专题复习) 一、教学目标 1.知识与技能: 运用坐标法解决平面向量的数量积、夹角、模、参数等有关的值、范围、最值等高考热点问题。 2.过程与方法: 通过实例讲解,让学生在用坐标法、基向量法及其它方法解决向量问题过程中,体会坐标法的优越性,并掌握用坐标法解决平面向量有关问题。 3.情感、态度与价值观: 通过本节的学习,让学生体验坐标法在平面向量运算中的工具作用,增强学生的积极主动的探究意识,培养创新精神。 二、教学重点难点 重点:运用坐标法解决平面向量有关问题。 难点:恰当建立直角坐标系,将平面向量有关的问题用坐标法解决。 三、教学过程 (一)回归教材 1.向量的坐标表示 在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底. 对于平面内的一个向量a ,由平面基本定理,有且只有一对实数x 、y ,使得x y =+a i j 这样,平面内的任一向量a 都可以由x 、y 唯一确定,我们把有序数对(,)x y 叫做向量a 的 坐标,记作(,)x y =a .显然,i =(1,0),j =(0,1),0 = (0,0) 2.平面向量的坐标运算 (1) 若11(,)x y =a ,22(,)x y =b ,则1212(,)x x y y ±=±±a b , a (2) 若11(,)A x y ,22(,)B x y ,则2121(,)AB x x y y =-- . (3) 若向量11(,)a x y = ,22(,)b x y = ,则1212x x y a y b += (4) 向量的夹角公式:221212221122 cos x x y y a b a b x y x y θ+==+?+ (5)向量的模:22211a a a a x y ==?=+ (6)平面向量的平行与垂直问题:若11(,)a x y = ,22(,)b x y = //a b ,则12210x y x y -= a b ⊥ ,则121200x x y a b y ==+? λ) (21,x x λλ=

平面向量的坐标运算(教案)

平面向量的坐标运算(一)(教案) 教学目标: 知识与技能:(1)理解平面向量的坐标概念;(2)掌握平面向量的坐标运算. 过程与方法:(1)通过对坐标平面内点和向量的类比,培养学生类比推理的能力; (2)通过平面向量坐标表示和坐标运算法则的推导培养学生归纳、猜想、演绎的能力; (3)通过用代数方法处理几何问题,提高学生用数形结合的思想方法解决问题的能力. 情感、态度与价值观:(1)让学生在探索中体验探究的艰辛和成功的乐趣,培养学生锲而不舍的求索精神和合作交流的团队精神,提高学生的数学素养; (2)使学生认识数学运算对于建构数学系统、刻画数学对象的重要性,进而理解数学的本质; (3)让学生体会从特殊到一般,从一般到特殊的认识规律. 教学重点和教学难点: 教学重点:平面向量的坐标运算; 教学难点:平面向量坐标的意义. 教学方法:“引导发现法”、“探究学习”及“合作学习”的模式. 教学手段:利用多媒体动画演示及实物展示平台增加直观性,提高课堂教学效率. 教学过程设计: 一、创设问题情境,引入课题. 同学们,我们知道,向量的概念是从物理中抽象出来的,人们最初对向量的研究是从几何的的角度来进行的,但是随着问题的不断深入,我们发现用图形来研究向量有一些不便之处,那么,有没有一种更简洁的方式可以来表示向量呢? 我国著名数学家华罗庚先生说过:“数无形,少直观;形无数,难入微。”图形关系往往与某些数量关系密切联系在一起,数与形是互相依赖的,所以我们想到了用数来表示向量. 思路一:用一个数能否表示向量?(请学生回答) (不能,因为向量既有大小,又有方向)

思路二:用两个数能否表示向量?(引导学生思考) 在平面直角坐标系内,一个点和一对有序实数对之间有一一对应的关系,那么,向量是否也能找到与之对应的实数呢? 让我们先来探讨这样一个问题: 探究一:如图,为互相垂直的单位向量,请用,i j 表示图中的向量,,,.a b c d 使1122=a e e λλ+ ,其中的1e ,2e 称为平面的一组基底. 强调:基底不唯一,只要不共线,就可作为基底,而一旦基底选定,任一向量在基底方向的分解形式就是唯一的. 二、理解概念,加深认识. 根据平面向量基本定理,我们知道,在选定基底的情况下,所给,,,.a b c d 四 个向量在基底方向的分解形式是唯一的,也就是说,这几个向量用基底、来表示的形式是唯一的,每个向量对应的这对实数对我们就将其称之为向量的坐标. 推广到平面内的任意向量,我们怎样来定义向量的坐标?(引导学生思考,请学生尝试给出定义) 如图,在直角坐标系内,我们分别取与轴、轴方向相同的两个单位向量、作为基底任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得 a xi yj =+ …………○ 1 我们把),(y x 叫做向量的(直角)坐标,记作

向量的坐标表示及其运算

资源信息表

(2)向量的坐标表示及其运算(2) 一、教学内容分析 向量是研究数学的工具,是学习数形结合思想方法的直观而又生动的内容.向量的坐标以及向量运算的坐标形式,则从“数、式”的角度对向量以及向量的运算作了精确的、定量的描述.本节课是向量的坐标及其运算的第二课时,一方面把“形”与“数、式”结合起来思考,以“数”入微,借“形”思考,体会并感悟数形结合的思维方式;另一方面通过例5的演绎推理教学,体会代数证明的严谨性,也为定比分点(三点共线)的教学提供基础. 二、教学目标设计 1.理解并掌握两个非零向量平行的充要条件,巩固加深充

要条件的证明方式; 2.会用平行的充要条件解决点共线问题; 3、定比分点坐标公式. 三、教学重点及难点 课本例5的演绎证明; 分类思想,数形结合思想在解决问题时的运用; 特殊——一般——特殊的探究问题意识. 五、教学过程设计: 复习向量平行的概念: 提问:(1)升么是平行向量方向相同或相反的向量叫做平行向

量。 (2)实数与向量相乘有何几何意义 (3)由此对任意两个向量,a b ,我们可以用怎样的数量关系来刻画平行对任意两个向量,a b ,若存在一个常数λ,使得 a b λ=?成立,则两向量a 与向量b 平行 (4)思考:如果向量,a b 用坐标表示为) ,(),,(2211y x y x ==能否用向量的坐标来刻画这个数量关系12 12 x x y y λλ=??=? 思考:如果向量,a b 用坐标表示为),(),,(2211y x y x ==,则 2 121y y x x =是b a //的( )条件. A 、充要 B 、必要不充分 C 、充分不必要 D 、既不充分也不必要 由此,通过改进引出 课本例5 若,a b 是两个非零向量,且1122(,),(,)a x y b x y ==, 则//a b 的充要条件是1221x y x y =. 分析:代数证明的方法与技巧,严密、严谨. 证明:分两步证明, (Ⅰ)先证必要性://a b 1221x y x y ?= 非零向量//a b ?存在非零实数λ,使得a b λ=,即

高中数学经典解题技巧和方法:平面向量

高中数学经典解题技巧:平面向量【编者按】平面向量是高中数学考试的必考内容,而且是这几年考试解答题的必选,无论是期中、期末还是会考、高考,都是高中数学的必考内容之一。因此,马博士教育网数学频道编辑部特意针对这部分的内容和题型总结归纳了具体的解题技巧和方法,希望能够帮助到高中的同学们,让同学们有更多、更好、更快的方法解决数学问题。好了,下面就请同学们跟我们一起来探讨下平面向量的经典解题技巧。 首先,解答平面向量这方面的问题时,先要搞清楚以下几个方面的基本概念性问题,同学们应该先把基本概念和定理完全的吃透了、弄懂了才能更好的解决问题:1.平面向量的实际背景及基本概念 (1)了解向量的实际背景。 (2)理解平面向量的概念,理解两个向量相等的含义。 (3)理解向量的几何意义。 2.向量的线性运算 (1)掌握向量加法、减法的运算,并理解其几何意义。 (2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义。 (3)了解向量线性运算的性质及其几何意义。 3.平面向量的基本定理及坐标表示 (1)了解平面向量的基本定理及其意义。 (2)掌握平面向量的正交分解及其坐标表示。 (3)会用坐标表示平面向量的加法、减法与数乘运算。 (4)理解用坐标表示的平面向量共线的条件。 4.平面向量的数量积 (1)理解平面向量数量积的含义及其物理意义。 (2)了解平面向量的数量积与向量投影的关系。 (3)掌握数量积的坐标表达式,会进行平面向量数量积的运算。 (4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直 关系。 5. 向量的应用 (1)会用向量方法解决某些简单的平面几何问题。 (2)会用向量方法解决简单的力学问题与其他一些实际问题。

专题10、平面向量中的范围和最值问题

专题十、平面向量中的最值和范围问题 平面向量中的最值和范围问题, 是一个热点问题,也是难点问题,这类试题的基本类型是根 据给出的条件求某个量的最值、范围,如:向量的模、数量积、夹角及向量的系数.解决这类问 题的一般思路是建立求解目标的函数关系, 通过函数的值域解决问题, 同时,平面向量兼具“数” 与“形”的双重身份,解决平面向量最值、范围问题的另一个基本思想是数形结合. 考点1、向量的模的范围 例1、⑴已知直角梯形ABCD 中,AD //BC , ADC 90°,AD 2,BC 1,P 是腰DC 上的 动点,贝U PA 3PB 的最小值为 ______________ . 120 °贝U 的取值范围是 _________________ 变式:已知平面向量a, B 满足| | | | 1,且a 与 的夹角为120 ,则 |(1 t) 2t |(t R)的取值范围是 ______________________ ; 小结1、模的范围或最值常见方法:①通过 |了|2=;2转化为实数问题;②数形结合;③坐标法. 考点2、向量夹角的范围 例 2、已知 O )B = (2,0), OC = (2,2), CA = (Q2cos a,返 in ",贝 UO )A 与 Ofe 夹角的取值范围是( ) n n n 5 n n 5 n 5 n n A.初 3 B. 4 / C. H ,匚 D. 石,2 小结2、夹角范围问题的常见方法:①公式法;②数形结合法;③坐标法. (2) ( 2011辽宁卷理) 若a,b, c 均为单位向量,且a b 0, (a c)(b c) 最大值为( ) (3) ( 2010浙江卷理) A. 2- 1 卜 F B . 1 C. 2 D . 2 )满足 1,且与-的夹角为

(完整版)2019届江苏省高考数学二轮复习微专题3.平面向量问题的“基底法”和“坐标法”

微专题3 平面向量问题的“基底法”与“坐标法” 例1 如图,在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°,动点E 和F 分别在线段BC 和DC 上.若BE →=λBC →,D F →=19λDC →,则 AE →·A F → 的最小值为 ________. (例1) 变式1 在△ABC 中,已知AB =10,AC =15,∠BAC =π 3,点M 是边AB 的中点, 点N 在直线AC 上,且AC →=3AN → ,直线CM 与BN 相交于点P ,则线段AP 的长为________. 变式2若a ,b ,c 均为单位向量,且a ·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为________. 处理平面向量问题一般可以从两个角度进行: 切入点一:“恰当选择基底”.用平面向量基本定理解决问题的一般思路是:先选择一组基底,再用该基底表示向量,其实质就是利用平行四边形法则或三角形法则进行向量的加减运算和数乘运算. 切入点二:“坐标运算”.坐标运算能把学生从复杂的化简中解放出来,快速简捷地达成解题的目标.对于条件中包含向量夹角与长度的问题,都可以考虑建立适当的坐标系,应用坐标法来统一表示向量,达到转化问题,简单求解的目的.

1. 设E ,F 分别是Rt △ABC 的斜边BC 上的两个三等分点,已知AB =3,AC =6,则AE →·A F → =________. 2. 如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在边CD 上,若AB →·A F →=2,则AE →·B F → =________. 3. 如图,在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE → =33 32 ,则AB 的长为________. (第2题) (第3题) (第4题) 4. 如图,在2×4的方格纸中,若a 和b 是起点和终点均在格点上的向量,则向量2a +b 与a -b 夹角的余弦值是________. 5. 已知向量OA →与OB →的夹角为60°,且|OA →|=3,|OB →|=2,若OC →=mOA →+nOB →,且OC → ⊥AB → ,则实数m n =________. 6. 已知△ABC 是边长为3的等边三角形,点P 是以A 为圆心的单位圆上一动点,点Q 满足AQ →=23AP →+13 AC →,则|BQ → |的最小值是________. 7. 如图,在Rt △ABC 中,P 是斜边BC 上一点,且满足BP →=12 PC → ,点M ,N 在过点P 的直线上,若AM →=λAB →,AN →=μAC → ,λ,μ>0,则λ+2μ的最小值为________. (第7题) (第8题) (第9题) 8. 如图,在平行四边形ABCD 中,AC 与BD 相交于点O ,E 为线段AO 的中点.若BE → =λBA →+μBD → (λ,μ∈R ),则λ+μ=________. 9. 如图,在直角梯形ABCD 中,若AB ∥CD ,∠DAB =90°,AD =AB =4,CD =1, 动点P 在边BC 上,且满足AP →=mAB →+nAD → (m ,n 均为正实数),则1m +1n 的最小值为________. 10. 已知三点A(1,-1),B(3,0),C(2,1),P 为平面ABC 上的一点,AP →=λAB →+μAC → 且AP →·AB →=0,AP →·AC → =3. (1) 求AB →·AC → 的值; (2) 求λ+μ的值.

平面向量中的最值问题浅析

平面向量中的最值问题浅析 耿素兰山西平定二中(045200 ) 平面向量中的最值问题多以考查向量的基本概念、 基本运算和性质为主, 解决此类问题 要注意正确运用相关知识,合理转化。 一、利用函数思想方法求解 uuu uuu 例1、给定两个长度为1的平面向量OA 和OB ,它们的夹角为120o .如图所示,点C 在以O uuv uur uuu uuu 为圆心的圆弧 AB 上变动.若OC xOA yOB,其中 y 的最大值是 C 点变化的变量,建立目标 x y 与此变量的函数关系是解决最值问题的 常用途径。 ,以点O 为原点,OA 为x 轴建立直角坐标系,则A(1,0),B(丄,一3), 2 2 C(cos ,sin ) uuur 取最小值时,求 OQ. uuu uuiu uuu 分析:因为点 Q 在射线OP 上,向量OQ 与OP 同向,故可以得到关于 OQ 坐标的一个 uju uuu uur 关系式,再根据QAgQB 取最小值求OQ. 分析:寻求刻画 解:设 AOC umr Q OC uuu xOA uuu yOB, (cos ,sin x 上 2 、3y 2 cos sin 因此,当 cos .3sin 2sin( 評 3) 。 3时,x y 取最大值 uuu UJU 例 2、已知 OA (1,7), OB 2。 uur (5,1),OP (2,1),点Q 为射线OP 上的一个动点,当QAgQB uuu uuu 即 1 心)y( ^,

uur 解:设OQ uuu xOP uuu (2x,x),(x 0),则 QA uuu (1 2x,7 x),QB (5 2x,1 x)

专题二 培优点9 平面向量数量积的最值问题

培优点9 平面向量数量积的最值问题 平面向量部分,数量积是最重要的概念,求解平面向量数量积的最值、范围问题要深刻理解数量积的意义,从不同角度对数量积进行转化. 例 (1)已知AB →⊥AC →,|AB →|=1t ,|AC →|=t ,若点P 是△ABC 所在平面内的一点,且AP →=AB →|AB →|+4AC → |AC →|,则PB →·PC → 的最大值等于( ) A .13 B .15 C .19 D .21 答案 A 解析 建立如图所示的平面直角坐标系,则B ????1t ,0,C (0,t ),AB →=????1t ,0,AC →=(0,t ), AP →=AB →|AB →|+4AC →| AC →|=t ????1t ,0+4t (0,t )=(1,4),∴P (1,4), PB →·PC →=????1t -1,-4· (-1,t -4) =17-????1t +4t ≤17-21t ·4t =13, 当且仅当t =12 时等号成立. ∴PB →·PC →的最大值等于13. (2)如图,已知P 是半径为2,圆心角为π3 的一段圆弧AB 上的一点,若AB →=2BC →,则PC →·P A →的最小值为________. 答案 5-213 解析 以圆心为坐标原点,平行于AB 的直径所在直线为x 轴,AB 的垂直平分线所在的直线为y 轴,建立平面直角坐标系(图略),则A (-1,3),C (2,3),

设P (2cos θ,2sin θ)????π3≤θ≤2π3, 则PC →·P A →=(2-2cos θ,3-2sin θ)·(-1-2cos θ,3-2sin θ)=5-2cos θ-43sin θ=5-213sin(θ+φ), 其中0

平面向量的坐标运算

平面向量的坐标运算 一、知识精讲 1.平面向量的正交分解 把一个向量分解成两个互相垂直的向量,叫做把向量正交分解. 2.平面向量的坐标表示 (1)向量的坐标表示: 在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底,对于平面内的一个向量a ,由平面向量基本定理知,有且只有一对实数x ,y 使得a =xi +yj ,则把有序数对(x ,y )叫做向量a 的坐标.记作a =(x ,y),此式叫做向量的坐标表示. (2)在直角坐标平面中,i =(1,0),j =(0,1),0=(0,0). 3.平面向量的坐标运算 向量的 加、减法 若a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2), a -b =(x 1-x 2,y 1-y 2).即两个向量和(差)的坐标分别等于这两个向量相应坐标的和(差) 实数与向量的积 若a =(x ,y ),λ∈R ,则λa =(λx ,λy ),即实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标 向量的 坐标 已知向量 AB 的起点 A (x 1,y 1),终点 B (x 2,y 2),则 AB =(x 2-x 1,y 2-y 1),即向量的坐标等于表示此向量的有 向线段的终点的坐标减去始点的坐标 4.两个向量共线的坐标表示 设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.则a ∥b ?a =λb ?x 1y 2-x 2y 1=0. [小问题·大思维] 1.与坐标轴平行的向量的坐标有什么特点? 提示:与x 轴平行的向量的纵坐标为0,即a =(x,0);与y 轴平行的向量的横坐标为0,即b =(0,y ). 2.已知向量OM =(-1,-2),M 点的坐标与OM 的坐标有什么关系? 提示:坐标相同但写法不同;OM =(-1,-2),而M (-1,-2).

平面向量中的线性问题专题(附答案)

平面向量中的线性问题 题型一 平面向量的线性运算及应用 例1 (1)(2015·课标全国Ⅰ)设D 为△ABC 所在平面内一点,BC →=3CD → ,则( ) A.AD → =-13AB →+43AC → B.AD →=13AB →-43AC → C.AD →=43AB →+13 AC → D.AD →=43AB →-13 AC → (2)如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC → =b ,试用a ,b 表示向量AO → . (3)OA →=λOB →+μOC → (λ,μ为实数),若A 、B 、C 三点共线,则λ+μ=1. 变式训练1 (1)如图,两块全等的直角边长为1的等腰直角三角形拼在一起,若AD →=λAB → +kAC → ,则λ+k 等于( ) A.1+ 2 B.2- 2 C.2 D.2+2 (2)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN → ,则λ+μ=________.

题型二 平面向量的坐标运算 例2 (1)(2015·江苏)已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________. (2)平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1),请解答下列问题: ①求满足a =m b +n c 的实数m ,n ; ②若(a +k c )∥(2b -a ),求实数k ; ③若d 满足(d -c )∥(a +b ),且|d -c |=5,求d . 变式训练2 (1)(2014·湖南)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD → |的最大值是________. (2)已知向量OA →=(3,-4),OB →=(6,-3),OC → =(5-m ,-3-m ),若点A 、B 、C 能构成三角形,则实数m 满足的条件是________. 高考题型精练 1.(2015·四川)设向量a =(2,4)与向量b =(x,6)共线,则实数x 等于( ) A.2 B.3 C.4 D.6 2.(2015·安徽)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论正确的是( ) A.|b |=1 B.a ⊥b C.a ·b =1 D.(4a +b )⊥BC → 3.已知A (-3,0),B (0,2),O 为坐标原点,点C 在∠AOB 内,|OC |=22,且∠AOC =π4,设OC → = λOA →+OB → (λ∈R ),则λ的值为( ) A.1 B.13 C.12 D.2 3 4.(2014·课标全国Ⅰ)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC → 等于( )

运用坐标法解决平面向量的最值问题

运用坐标法解决平面向量的最值问题 发表时间:2013-04-22T16:02:45.093Z 来源:《中学课程辅导·教学研究》2013年第7期供稿作者:卫保新[导读] 在原题目中没有给出相应的图形,在画出的常规图形也难以使学生联想出到建立直角坐标系。 卫保新 摘要:本文通过对三个数学例题的简要分析,简要谈了应如何运用坐标法解决平面向量的最值问题,并提出了笔者的一些体会。关键词:坐标法;平面向量;最值问题 在平面向量中,解决有关最大、最小值问题是高考命题中一个比较常见的热点问题,题目主要考查平面向量的数量积、向量的模、向量的基本运算等重要知识点。解题的方法除了运用数量积的定义,也可运用数量积的坐标运算。知识综合运用三角、不等式、函数等内容。解题的思想体现了数形结合、等价转换、函数与方程等思想方法。在高考和平时的课堂教学中,学生解题过程时很难联想到引入直角坐标系、运用坐标建立函数模型、不等式模型解决问题。 那么,如何建立适当的直角坐标系呢?一是抓住题中直接或间接的垂直关系;二是抓住题中定量与不定量的关系;三是抓住是否有利于图形写出方程的简单化;四是抓住点的坐标更容易写出;五是所建立的直角坐标系不影响求解的结论。 下面用具体例子说明建立直角坐标系、运用坐标法解决平面向量最值问题(以下的解法仅给出坐标法说明,原标准方法在此不再列出) 说明:在例1中原题中没有给出图形,学生在解决问题时虽然能作出图形,由于点P的不确定性,所以学生不容易联想到建立直角坐标系把问题代数化,在P点的选择技巧上,由于圆外一点均可作出圆的两条切线,并且无论点P位于何处,总可以以PO为x轴或y轴建立适当的直角坐标系。本题运用了重要的知识点——平均值不等式求最值。

高中数学必修4平面向量典型例题及提高题

平面向量 【基本概念与公式】 【任何时候写向量时都要带箭头】 1.向量:既有大小又有方向的量。记作:AB 或a 。 2.向量的模:向量的大小(或长度),记作:||AB 或||a 。 3.单位向量:长度为1的向量。若e 是单位向量,则||1e =。 4.零向量:长度为0的向量。记作:0。【0方向是任意的,且与任意向量平行】 5.平行向量(共线向量):方向相同或相反的向量。 6.相等向量:长度和方向都相同的向量。 7.相反向量:长度相等,方向相反的向量。AB BA =-。 8.三角形法则: AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数) 9.平行四边形法则: 以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。 10.共线定理://a b a b λ=?。当0λ>时,a b 与同向;当0λ<时,a b 与反向。 11.基底:任意不共线的两个向量称为一组基底。 12.向量的模:若(,)a x y =,则2||a x y = +2 2||a a =,2||()a b a b +=+ 13.数量积与夹角公式:||||cos a b a b θ?=?; cos |||| a b a b θ?= ? 14.平行与垂直:1221//a b a b x y x y λ?=?=;121200a b a b x x y y ⊥??=?+= 题型1.基本概念判断正误: (1)若a 与b 共线, b 与c 共线,则a 与c 共线。 (2)若ma mb =,则a b =。 (3)若ma na =,则m n =。 (4)若a 与b 不共线,则a 与b 都不是零向量。 (5)若||||a b a b ?=?,则//a b 。 (6)若||||a b a b +=-,则a b ⊥。 题型2.向量的加减运算

平面向量中的最值问题浅析

平面向量中的最值问题浅析 耿素兰 山西平定二中(045200) 平面向量中的最值问题多以考查向量的基本概念、基本运算和性质为主,解决此类问题要注意正确运用相关知识,合理转化。 一、利用函数思想方法求解 例1、给定两个长度为1的平面向量OA 和OB ,它们的夹角为120o .如图所示,点C 在以O 为圆心的圆弧AB 上变动.若,OC xOA yOB =+ 其中 ,x y R ∈,则x y +的最大值是________. 分析:寻求刻画C 点变化的变量,建立目标x y + 与此变量的函数关系是解决最值问题的常用途径。 解:设AOC θ∠=,以点O 为原点,OA 为x 轴建立直角坐标系,则(1,0)A ,1(, )22 B -,(cos ,sin ) C θθ。 ,OC xOA yOB =+ 1(cos ,sin )(1,0)(2x y θθ∴=+-即 cos 2sin y x θθ?-=?? = cos 2sin()6x y πθθθ∴+=+=+2(0)3 π θ≤≤。 因此,当3 π θ= 时,x y +取最大值2。 例2、已知(1,7),(5,1),(2,1),OA OB OP === 点Q 为射线OP 上的一个动点,当 QA QB 取最小值时,求.OQ 分析:因为点Q 在射线OP 上,向量OQ 与OP 同向,故可以得到关于OQ 坐标的一个 关系式,再根据QA QB 取最小值求.OQ 解:设(2,),(0)OQ xOP x x x ==≥ ,则(12,7),(52,1)QA x x QB x x =--=-- 图 1

2 2 (12)(52)(7)(1) 520125(2)8 QA QB x x x x x x x ∴=--+--=-+=-- ∴当2x =时,QA QB 取最小值-8,此时(4,2).OQ = 二、利用向量的数量积n m n m ?≤?求最值 例3、ABC ?三边长为a 、b 、c ,以A 为圆心,r 为半径作圆,PQ 为直径,试判断P 、Q 在什么位置时,BP CQ 有最大值。 分析:用已知向量表示未知向量,然后用数量积的性质求解。 解:,AB BP AP AC CQ AQ AP +=+==- 2 2 2 ()() () BP CQ AP AB AP AC r AB AC AP AB AC r AB AC AP CB AB AC AP CB r ∴=---=-++-=-++≤+- 当且仅当AP 与CB 同向时,BP CQ 有最大值。 三、利用向量模的性质a b a b a b -≤+≤+ 求解 例4:已知2,(cos ,sin ),a b b θθ-== 求a 的最大值与最小值。 分析:注意到()a a b b =-+ ,考虑用向量模的性质求解。 解:由条件知1b = 。 设a b c -= ,则a =b c + , c b c b c b -≤+≤+ , ∴13a ≤≤ 。 所以当b 与c 同向时,a 取最大值3;当b 与c 反向时,a 取最小值1。 四、利用几何意义,数形结合求解 例5、如图,已知正六边形123456PP P P P P ,下列向量的数量积中最大的是 (A )1213PP PP ? (B )1214PP PP ? (C )1215PP PP ? (D )1216PP PP ? 分析:平面向量数量积121(1,2,3,4,5,6)i PP PP i = 的几何意义为121i PP PP 等于12PP 的长度与 图 2 图3

平面向量坐标运算

ξ10向量的数量积.平移 一.知识精讲 1. 数量积的概念 (1) 向量的夹角:如图,已知两个向量a 和b ,使=a,=b 。则)1800( ≤≤=∠θθAOB 叫做响亮a 与b 的夹角,记为 (2) 数量积的定义:已知两向量a,b 的夹角为θ θcos 叫做 a 与b 的数量积,记为θ=? (3)数量积的集合意义:数量积?等于的模与在 θ 的乘积 2. 数量积的性质:设是单位向量。<θ>=, (1)θ=?=? (2)a 与b 同向时,=?;a 与b 反向的时候=?。0=⊥ (3 )? = (4) = θcos (5 ≤ 3.运算律:(1)?=? (交换律) (2))()()(λλλ?=?=? (与实数的集合律) (3)?+?=+?)( (乘法对加法的分配律) 没有结合律,可见向量的数量积完全遵循多项式运算法则 4. 向量数量积的坐标运算。 设),().,(2211y x y x ==,则: (1)2121y y x x +=? (2 21 2 1y x += (3)21 212 121cos y x y y x x ++= θ (4)02121=+?⊥y y x x b a 5. 两点间的距离公式:设A ),(),,(2211y x B y x ,则221221)()(y y x x AB -+-= 平移公式描述的是平移前的点与平移后的对应点坐标与平移向量的坐标之间的关系。 平移前的点),(y x P 平移后的对应点, P ),(, ,y x ,平移向量的坐标),(k h = 则 { k y y h x x +=+=, , 二.基础知识 1.若)7,4(),3,2(-==,则a 在b 方向的投影为 ( ) A 3 B 5 13 C 5 65 D 65 2 1210==,且36)()3(51-=?,则与的夹角为 ( ) A 60 B 120 C 135 D 150 3.设,,是任意的非零平面向量,互相不共线,则下列命题中是真命题的有( ) ① 0)()(=?-? ② <③ )()(?-?不与垂直 ④ )23()23(=-?+ A ①② B ②③ C ③④ D ②④ 4.已知点A ),2,1(- 与)3,2(= 32=,则点B 的坐标为( ) 5.已知)2,(λ=,)5,3(-=,若向量与的夹角为钝角,则λ的取值范围是 ( ) A 310>λ B310≥λ C 310<λ D 3 10 ≤λ 6. 已知:函数2)2cos(33++-=πx y 按向量平移所的图形解析式为),(x f y = 当)(x f y = 奇函数时,向量可以等于: A )2,(6--π B )2,(12--π C (2,6π) D )2,(12π - 三.典型例题分析: 例1:已知)2,3(),2,1(-==,当k 为何值时,(1))3()k -⊥+ (2)) (k +)3(-,平行时是同向还是反向? 变式1:已知:平面向量),2(),,2(),4,3(y x ==-= ,c a ⊥,求 ?以及与的夹角 例2 60,,46>=<==b a b -

20、平面向量中的最值问题

与平面向量有关的定值最值问题 1、如图,直角梯形ABCD 中,AD ⊥AB, AB//DC , AB=4,AD=DC=2,设点N 是DC 边的中点, 点M 是梯形ABCD 内或边界上的一个动点,则AM AN ? 的最大值是 A 、4 B 、6 C 、8 D 、10 2、如图,点M 为扇形AOB 的弧的四等分点,动点D C ,分别在线段OB OA ,上, 且.BD OC =若1=OA ,120AOB ? ∠=,则||||+的最小是 . 3.在ABC ?中,D 是BC 边上一点,3BD DC =,若P 是线段AD 边上一动点,且2AD =,则)3(PC PB PA +?的最小值为 . 4.已知圆O 的方程为22 2 =+y x ,PA,PB 为该圆的两条切线,A ,B 为两切点,则PB PA ?的最小值为 A .246+- B .246-- C .248+- D .248-- 5 、已知点(P 与椭圆22 13 x y +=,且,A B 是过原点的直线l 与椭圆的交点,记m PA PB =? ,则m 的最小值是 . 6.过圆4)2(22=++y x 上一点P 向圆1)2(2 2=-+y x 引两条切线,切点分别为A .B ,则?的 取值范围 . 7.动点P (x ,y )满足1, 25,3,y x y x y ≥?? +≤??+≥? 点Q 为(1,-1),O 为坐标原点,||OP OP OQ λ=? ,则λ的取 值范围是 A .[55- - B .[]55 C .[]55- D .[55 - 8.已知M ,N 为平面区域360 y 200x y x x --≤?? -+≥??≥? 内的两个动点,向量(1,3)a = ,则?的最大值是____. 9、设点A 在圆122=+y x 内,点)0,(t B ,O 为坐标原点,若集合{ }|C +={ } 9|),(2 2≤+?y x y x , 则实数t 的最大值为 . 10.若点O 和点F 分别为椭圆22 143 x y +=的中心和左焦点,点P 为椭圆上任意一点,则OP FP ? 的最大 值为 . 11、已知两个单位向量b a ,满足:0)()(,0=-?-=?c b c a b a ,则||c 的最大值为 A.1 B.2 C.3 D.2 12、已知点),(y x P 在由不等式组?? ? ??≥-≤--≤-+010103x y x y x 确定的平面区域内,O 为坐标原点,点A (-1,2),则 AOP OP ∠?cos ||的最大值是 A .55- B .553 C .0 D .5 13.平面向量,a b 满足:4=? 3=- 的最大值与最小值的和是 . 14.已知ABC ? 中,4,AB AC BC ===点P 为BC 边所在直线上的一个动点,则()AP AB AC ?+ 满足 A.最大值为16 B.最小值为4 C.为定值8 D.与P 的位置有关

平面向量的坐标表示

7.2.2平面向量的坐标表示 7.2.3共线向量的坐标表示 课 型:新授课 课 时:1课时 一、教材分析 1.前面学习了平面向量的坐标表示,实际是平面向量的代数表示.在引入了平面向量的坐标表示后可使向量完全代数化,将数与形紧密结合起来,这就可以使很多几何问题的解答转化为学生熟知的数量运算. 2.本小节主要是运用向量线性运算的交换律、结合律、分配律,推导两个向量的和的坐标、差的坐标以及数乘的坐标运算.推导的关键是灵活运用向量线性运算的交换律、结合律和分配律. 3.引进向量的坐标表示后,向量的线性运算可以通过坐标运算来实现,一个自然的想法是向量的某些关系,特别是向量的平行、垂直,是否也能通过坐标来研究呢?前面已经找出两个向量共线的条件(如果存在实数λ,使得b a λ=,那么与共线),本节则进一步地把向量共线的条件转化为坐标表示.这种转化是比较容易的,只要将向量用坐标表示出来,再运用向量相等的条件就可以得出平面向量共线的坐标表示.要注意的是,向量的共线与向量的平行是一致的. 二、教学目标 1、知识与技能目标 进一步掌握平面向量正交分解及其坐标表示;会用坐标表示平面向量的加、减及数乘运算;会推导并熟记两向量共线时坐标表示的充要条件. 2、 过程与方法 在平面向量坐标表示的基础上得到平面向量线性运算的坐标表示及向量平行的坐标表示;最后通过讲解例题,巩固知识结论,能利用两向量共线的坐标表示解决有关综合问题,培养学生应用能力. 3、情感态度与价值观 通过学习向量共线的坐标表示,让学生领悟到数形结合的思想;使学生认识事物之间的相互联系,培养学生辨证思维能力;培养学生勇于创新的精神.

平面向量的解题技巧

第四讲平面向量的解题技巧 【命题趋向】由2007年高考题分析可知: 1.这部分内容高考中所占分数一般在10分左右. 2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】“平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为: 1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式. 5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等. 6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题. 【例题解析】 1. 向量的概念,向量的基本运算 (1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法. (3)掌握实数与向量的积,理解两个向量共线的充要条件. (4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算. (5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题, 掌握向量垂直的条件. (6)掌握平面两点间的距离公式. 例1(2007年北京卷理)已知O是ABC △所在平面内一点,D为BC边中点,且2OA OB OC ++=0,那么()A.AO OD =D.2AO OD AO OD = AO OD =B.2 =C.3

平面向量中的最值问题0

平面向量中的最值问题 1.求向量的模的最值或取值范围. 2.求平面向量的夹角的最值或取值范围. 3.求平面向量数量积的最值或取值范围. 【复习指导】 本讲复习时,应结合平面向量数量积的定义及其几何意义,将有关的量表示出来,代数或几何方法求解最值与取值范围. 基础梳理 求最值的方法小结 ㈠.几何方法 ⑴.平面几何方法: 两点之间线段最短、点到直线的距离最短、与圆有关的最值 ⑵.解析几何方法 利用截距、斜率、两点之间的距离等几何意义求最值; 先求轨迹,后求最值 ㈡.代数方法 ⑴.函数方法: 首先分析要求的量的变化和什么因素有关,从而选定变量,建立函数关系式,利用函数有关知识求解最值问题,另外有些问题需结合导数知识求解; ⑵.利用基本不等式求解; ⑶.利用三角函数求解. 双基自测 ㈠.求模的最值或范围

1.平几法求最值 【例1】已知向量OA 和OB 的夹角为3 π ,||4,||1OA OB ==,若点M 在直线OB 上,则||OA OM - 的最小值为________.练习1.⑴.(11全国大纲)设向量,,a b c 满足1||||1,,,602 a b a b a c b c ==?=-<-->=,则||c 的 最大值等于________. 【思路点拨】本题按照题目要求构造出如右图所示的几何图形,然后分析观察不难得到当线段AC 为直径时,||c 最大. 解:如图,构造,,,120AB a AD b AC c BAD ===∠=, 60BCD ∠=,所以,,,A B C D 四点共圆,分析可知当线段AC 为 直径时,||c 最大,最大值为2. ⑵.已知向量,||1a e e ≠=,对任意t R ∈,恒有||||a te a e -≥-,则下列结论正确的是________. ①a e ⊥ ②.()a a e ⊥- ③.()e a e ⊥- ④.()()a e a e +⊥- 解法一:由||||a te a e -≥-知,2 2 ||||a te a e -≥-,即222||2||21a ta e t a a e -?+≥-?+,化简得, 22(1)1t a e t -?≤-,当1t ≤时,即212a e t ?≥+≤恒成立,故1a e ?≥;当1t >时,即212a e t ?≤+>,故1a e ?≤.故1a e ?=,故③成立. 解法二:22(1)1t a e t -?≤-,即2 2210t a et a e -?+?-≥任意t R ∈恒成立,故24()a e ?=?- 840a e ?+≤,即1a e ?=,故③成立. 解法三:由几何意义可知,在所有的向量a te -中,以a e -的模最小,故()e a e ⊥-. 【例2】(08浙江)已知,a b 是平面内两个互相垂直的单位向量,若向量c 满足:()()0a c b c -?-=,则||c 的最大值是___________. 解法一:由()()0a c b c -?-=可得,2||()||||cos c a b c a b c θ=+?=+(其中θ为a b +与c 的夹 角),即||()||cos c a b c a b θθ=+?=+≤,故||c 的最大值是2. 解法二:作四边形OABC ,设,,OA a OB b OC c ===,则由已知得,90,90AOB ACB ∠=∠=,

相关文档
最新文档