高考理科数学二轮复习专题强化训练(十五)函数与导数理
(2021年整理)高考数学二轮复习函数与导数专题函数与导数测试(教师版)新人教版
高考数学二轮复习函数与导数专题函数与导数测试(教师版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高考数学二轮复习函数与导数专题函数与导数测试(教师版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高考数学二轮复习函数与导数专题函数与导数测试(教师版)新人教版的全部内容。
函数与导数测试一.选择题(共60分)1、已知222{|,,},{|2,,},M y y x x y R N x x y x y R M N ==∈=+=∈⋂则= ( D ) A .{(1,1),(1,1)}- B .∅ C .[0,1]D .[0,2] 2.设函数f (x)=log 2x 的反函数为y=g (x ),若41)11(=-a g ,则a 等于 ( C )A .-2B .21-C .21D .23。
设f (x )为定义在R 上的奇函数.当x ≥0时,f (x )=2x+2x +b (b 为常数),则f (-1)= ( D )A .3B .1C .-1D .-34。
若函数()y f x =的导函数...在区间[,]a b 上是增函数,则函数()y f x =在区间[,]a b 上的图象可能是 ( A )A .B .C .D . 5.下列说法正确的是 ( D )A .命题:“已知函数(),(1)(1)f x f x f x +-若与均为奇函数,则()f x 为奇函数,”为真命题B .“1x >”是“||1x >"的必要不充分条件。
C .若“p q 且”为假命题,则,p q 均为假命题。
D .命题2:",10"p x R x x ∃∈++<使得,则2:",10".p x R x x ⌝∀∈++≥均有6.设函数()()f x g x 、在[],a b 上可导,且()()''f x g x >,则当a x b <<时有(A ) A .()()()()f x g a g x f a +>+B .()()f x g x <C .()()f x g x >D .()()()()f xg b g x f b +>+7。
河南省安阳市二轮专题复习试题之 函数,导数,数列,极限,数学归纳法(理科)
安阳市教研室专用试题(理科)(函数、导数、数列、数列极限)命题人 杨焕庆一.选择题//(12560)⨯=1. 曲线)1(42≤--=x x y 的长度是: A.34π B.π2 C.38π D.π42. 已知函数⎩⎨⎧≤>=)0(3)0(log )(2x x x x f x ,则1[()]4f f 的值为:A .9B .91C .9-D .91-3.映射B A f →:,如果满足集合B 中的任意一个元素在A 中都有原象,则称为“满射”.已知集合A 中有4个元素,集合B 中有3个元素,那么从A 到B 的不同满射的个数为:A .24B .6C .36D .724.函数xx y ||lg =的图象大致是:A .B .C .D .5.定义在R 上的函数()f x 对任意x R ∈都有1)()(=-+x f x f ,则()f x 的图象必关于:A .原点对称B .y 轴对称C .点⎪⎭⎫ ⎝⎛210,对称 D .点(0,1)对称6.若1sin lim 0=→x xn ,则xx x x x x x 2cos cos sin cos sin lim 330-→等于:A.1- B .0 C.1 D.27.等差数列{}n a 与 {}n b 的前n 项的和分别是,.n n S T 且2,31n n S nT n =+则lim n n na b →∞=A.49B. 94C. 23D.328.若0>>b a ,则函数)0()(>++=x xa xb x f 的值域是:A. ()1,∞-B. ()+∞,1C. ⎪⎭⎫ ⎝⎛1,a b D. ⎪⎭⎫ ⎝⎛a b ,19.如图,函数)(x f y =的图象在点P 处的切线方程是8+-=x y , 则)5()5(f f '+=.A.1B.2C.3D.410.已知,x y R ∈,且x y y x --+≥+5353,则x 与y 一定满足:A.0x y +≥B. 0x y +≤C. 0x y -≥D. 0x y -≤11.已知定义在R 上的函数)(x f 同时满足条件:(1)2)0(=f ;(2)(1)1,f >且lim ()1x f x →-∞=;(3)当R x ∈时,0)('>x f 。
冲刺2024高考数学二轮复习核心考点特色突破专题05函数与导数的综合应用含解析
冲刺2024高考数学二轮复习核心考点特色突破专题05函数与导数的综合应用含解析函数与导数的综合应用是高考数学二轮复习中的一个重点考点,也是数学应用题中常见的类型。
在这一考点中,考查学生对函数与导数的基本概念、性质以及应用解题能力。
下面将分析函数与导数的综合应用题的特色,并给出应对策略。
函数与导数的综合应用题的特色主要有以下几个方面:1.综合运用:这类题目往往会将函数与导数的知识与其他数学知识点结合起来,要求学生综合运用所学知识解决实际问题。
例如,可以与几何问题、最值问题、优化问题等相结合。
2.推理证明:有些题目会要求学生根据函数与导数的性质来进行推理证明,例如证明函数的单调性、极值点等。
这类题目需要学生对函数与导数的定义和性质有深刻的理解,能够运用它们进行推理和证明。
3.实际问题:函数与导数的综合应用题通常涉及到实际问题,从生活和实际背景中抽象出数学模型,并通过函数与导数的分析解决问题。
这类题目考察学生的实际问题解决能力,要求学生能够将数学知识应用到实际生活中去。
对于函数与导数的综合应用题,学生可以采取以下策略进行复习备考:1.熟悉函数与导数的基本概念与性质:复习时要重点掌握函数的定义、导数的定义与求法以及导数的性质。
掌握函数与导数的基本概念与性质是解决应用题的基础。
2.多做综合应用题:通过做大量的综合应用题,熟悉各种不同类型的题目,并掌握解题的思路和方法。
可以从历年高考真题和模拟题中选择一些经典的函数与导数的综合应用题进行练习。
3.掌握分析建模的能力:函数与导数的综合应用题往往需要将实际问题抽象成数学模型,然后通过函数与导数的分析得出解答。
因此,学生在解题过程中需要具备良好的分析建模能力,学会如何将问题抽象成数学模型,然后运用函数与导数的知识进行求解。
4.注重理解与推理证明:在复习过程中,要注重提高对函数与导数的理解程度,掌握其定义和性质,并能够运用它们进行推理和证明。
这有助于解决一些推理证明题,同时也有助于提高解决实际问题的能力。
高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第二讲 函数的图象与性质教案 理-
第二讲函数的图象与性质年份卷别考查角度及命题位置命题分析2018Ⅱ卷函数图象的识别·T3 1.高考对此部分内容的命题多集中于函数的概念、函数的性质及分段函数等方面,多以选择、填空题形式考查,一般出现在第5~10或第13~15题的位置上,难度一般.主要考查函数的定义域,分段函数求值或分段函数中参数的求解及函数图象的判断.2.此部分内容有时出现在选择、填空题压轴题的位置,多与导数、不等式、创新性问题结合命题,难度较大.函数奇偶性、周期性的应用·T11Ⅲ卷函数图象的识别·T72017Ⅰ卷函数单调性、奇偶性与不等式解法·T5Ⅲ卷分段函数与不等式解法·T152016Ⅰ卷函数的图象判断·T7Ⅱ卷函数图象的对称性·T12函数及其表示授课提示:对应学生用书第5页[悟通——方法结论]求解函数的定义域时要注意三式——分式、根式、对数式,分式中的分母不为零,偶次方根中的被开方数非负,对数的真数大于零.底数大于零且不大于1.解决此类问题的关键在于准确列出不等式(或不等式组),求解即可.确定条件时应先看整体,后看部分,约束条件一个也不能少.[全练——快速解答]1.(2016·高考全国卷Ⅱ)以下函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( )A.y=x B.y=lg xC .y =2xD .y =1x解析:函数y =10lg x的定义域与值域均为(0,+∞).结合选项知,只有函数y =1x的定义域与值域均为(0,+∞).应选D.答案:D2.(2018·某某名校联考)函数f (x )=⎩⎪⎨⎪⎧f (x -4),x >2,e x,-2≤x ≤2,f (-x ),x <-2,那么f (-2 017)=( )A .1B .eC .1eD .e 2解析:由题意f (-2 017)=f (2 017),当x >2时,4是函数f (x )的周期,所以f (2 017)=f (1+4×504)=f (1)=e.答案:B3.函数f (x )=x -1ln (1-ln x )的定义域为________.解析:由函数解析式可知,x 需满足⎩⎪⎨⎪⎧x -1≥01-ln x >0x >01-ln x ≠1,解得1<xf (x )=x -1ln (1-ln x )的定义域为(1,e).答案:(1,e)4.(2017·高考全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,那么满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值X 围是__________.解析: 当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x+x +12>1,显然成立.当x >12时,原不等式为2x+2x -12>1,显然成立.综上可知,x 的取值X 围是⎝ ⎛⎭⎪⎫-14,+∞.答案:⎝ ⎛⎭⎪⎫-14,+∞求函数的定义域,其实质就是以函数解析式所含运算有意义为准那么,列出不等式或不等式组,然后求出解集即可.2.分段函数问题的5种常见类型及解题策略 常见类型 解题策略求函数值弄清自变量所在区间,然后代入对应的解析式,求“层层套〞的函数值,要从最内层逐层往外计算求函数最值 分别求出每个区间上的最值,然后比较大小解不等式根据分段函数中自变量取值X 围的界定,代入相应的解析式求解,但要注意取值X 围的大前提求参数 “分段处理〞,采用代入法列出各区间上的方程利用函数性质求值必须依据条件找到函数满足的性质,利用该性质求解函数图象及应用授课提示:对应学生用书第5页[悟通——方法结论]1.作函数图象有两种基本方法:一是描点法、二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换等.2.利用函数图象可以判断函数的单调性、奇偶性,作图时要准确画出图象的特点.(1)(2017·高考全国卷Ⅰ)函数y =sin 2x1-cos x的部分图象大致为( )解析:令函数f (x )=sin 2x 1-cos x ,其定义域为{x |x ≠2k π,k ∈Z },又f (-x )=sin (-2x )1-cos (-x )=-sin 2x 1-cos x =-f (x ),所以f (x )=sin 2x1-cos x 为奇函数,其图象关于原点对称,故排除B ;因为f (1)=sin 2 1-cos 1>0,f (π)=sin 2π1-cos π=0,故排除A 、D ,选C.答案:C(2)(2017·高考全国卷Ⅲ)函数y =1+x +sin xx2的部分图象大致为( )解析:法一:易知函数g (x )=x +sin xx2是奇函数,其函数图象关于原点对称,所以函数y =1+x +sin xx2的图象只需把g (x )的图象向上平移一个单位长度,结合选项知选D.法二:当x →+∞时,sin x x 2→0,1+x →+∞,y =1+x +sin xx2→+∞,故排除选项B.当0<x <π2时,y =1+x +sin xx2>0,故排除选项A 、C.选D.答案:D由函数解析式识别函数图象的策略[练通——即学即用]1.(2018·高考全国卷Ⅲ)函数y =-x 4+x 2+2的图象大致为( )解析:法一:ƒ′(x )=-4x 3+2x ,那么ƒ′(x )>0的解集为⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫0,22,ƒ(x )单调递增;ƒ′(x )<0的解集为⎝ ⎛⎭⎪⎫-22,0∪⎝ ⎛⎭⎪⎫22,+∞,ƒ(x )单调递减. 应选D.法二:当x =1时,y =2,所以排除A ,B 选项.当x =0时,y =2,而当x =12时,y =-116+14+2=2316>2,所以排除C 选项.应选D. 答案:D 2.函数f (x )=⎝⎛⎭⎪⎫21+e x -1cos x 的图象的大致形状是( )解析:∵f (x )=⎝⎛⎭⎪⎫21+e x -1cos x ,∴f (-x )=⎝ ⎛⎭⎪⎫21+e -x -1cos(-x )=-⎝ ⎛⎭⎪⎫21+e x -1cosx =-f (x ),∴函数f (x )为奇函数,其图象关于原点对称,可排除选项A ,C ,又当x ∈⎝⎛⎭⎪⎫0,π2时,e x >e 0=1,21+ex -1<0,cos x >0,∴f (x )<0,可排除选项D ,应选B.答案:B3.(2018·某某调研)函数f (x )的图象如下图,那么f (x )的解析式可以是( )A .f (x )=ln|x |xB .f (x )=e xxC .f (x )=1x2-1D .f (x )=x -1x解析:由函数图象可知,函数f (xf (x )=x -1x,那么当x →+∞时,f (x )→+∞,排除D ,应选A.答案:A函数的性质及应用授课提示:对应学生用书第6页[悟通——方法结论]1.判断函数单调性的一般规律对于选择、填空题,假设能画出图象,一般用数形结合法;而对于由基本初等函数通过加、减运算或复合运算而成的函数常转化为基本初等函数单调性的判断问题;对于解析式为分式、指数函数式、对数函数式等较复杂的函数,用导数法;对于抽象函数,一般用定义法.2.函数的奇偶性(1)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称.(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称.3.记住几个周期性结论(1)假设函数f(x)满足f(x+a)=-f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(2)假设函数f(x)满足f(x+a)=1f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(1)(2017·高考全国卷Ⅱ)函数f(x)=ln(x2-2x-8)的单调递增区间是( )A.(-∞,-2) B.(-∞,1)C.(1,+∞)D.(4,+∞)解析:由x2-2x-8>0,得x>4或x<-2.因此,函数f(x)=ln(x2-2x-8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y=x2-2x-8在(4,+∞)上单调递增,由复合函数的单调性知,f(x)=ln(x2-2x-8)的单调递增区间是(4,+∞).答案:D(2)(2017·高考全国卷Ⅰ)函数f(x)在(-∞,+∞)单调递减,且为奇函数.假设f(1)=-1,那么满足-1≤f(x-2)≤1的x的取值X围是( )A.[-2,2] B.[-1,1]C.[0,4] D.[1,3]解析:∵f(x)为奇函数,∴f(-x)=-f(x).∵f(1)=-1,∴f(-1)=-f(1)=1.故由-1≤f(x-2)≤1,得f(1)≤f(x-2)≤f(-1).又f(x)在(-∞,+∞)单调递减,∴-1≤x-2≤1,∴1≤x≤3.答案:D(3)(2018·高考全国卷Ⅲ)函数ƒ(x )=ln(1+x 2-x )+1,ƒ(a )=4,那么ƒ(-a )=________.解析:∵ƒ(x )+ƒ(-x )=ln(1+x 2-x )+1+ln(1+x 2+x )+1=ln(1+x 2-x 2)+2=2,∴ƒ(a )+ƒ(-a )=2,∴ƒ(-a )=-2. 答案:-21.掌握判断函数单调性的常用方法数形结合法、结论法(“增+增〞得增、“减+减〞得减及复合函数的“同增异减〞)、定义法和导数法.2.熟知函数奇偶性的3个特点(1)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (2)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称. (3)对于偶函数而言,有f (-x )=f (x )=f (|x |).3.周期性:利用周期性可以转化函数的解析式、图象和性质,把不在区间上的问题,转化到区间上求解.4.注意数形结合思想的应用.[练通——即学即用]1.(2018·某某模拟)以下函数中,既是奇函数又在(0,+∞)上单调递增的是( ) A .y =e x+e -xB .y =ln(|x |+1)C .y =sin x |x |D .y =x -1x解析:选项A 、B 显然是偶函数,排除;选项C 是奇函数,但在(0,+∞)上不是单调递增函数,不符合题意;选项D 中,y =x -1x 是奇函数,且y =x 和y =-1x在(0,+∞)上均为增函数,故y =x -1x在(0,+∞)上为增函数,所以选项D 正确.答案:D2.(2018·某某八中摸底)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,那么以下结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1)D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72 解析:因为函数f (x +2)是偶函数, 所以f (x +2)=f (-x +2), 即函数f (x )的图象关于x =2对称. 又因为函数y =f (x )在[0,2]上单调递增, 所以函数y =f (x )在区间[2,4]上单调递减. 因为f (1)=f (3),72>3>52,所以f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52, 即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52. 答案:B授课提示:对应学生用书第116页一、选择题1.以下四个函数: ①y =3-x ;②y =2x -1(x >0);③y =x 2+2x -10;④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0).其中定义域与值域相同的函数的个数为( )A .1B .2C .3D .4解析:①y =3-x 的定义域和值域均为R ,②y =2x -1(x >0)的定义域为(0,+∞),值域为⎝ ⎛⎭⎪⎫12,+∞,③y =x 2+2x -10的定义域为R ,值域为[-11,+∞),④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0)的定义域和值域均为R ,所以定义域与值域相同的函数是①④,共有2个,应选B.答案:B2.设定义在R 上的奇函数y =f (x )满足对任意的x ∈R ,都有f (x )=f (1-x ),且当x ∈[0,12]时,f (x )=(x +1),那么f (3)+f (-32)的值为( )A .0B .1C .-1D .2解析:由于函数f (x )是奇函数,所以f (x )=f (1-x )⇒f (x )=-f (x +1)⇒f (x +1)=-f (x )⇒f (x +2)=f (x ),所以f (3)=f (1)=f (1-1)=f (0)=0,f (-32)=f (12)=32f (3)+f (-32)=-1.答案:C3.函数f (x )=1+ln ()x 2+2的图象大致是( )解析:因为f (0)=1+ln 2>0,即函数f (x )的图象过点(0,ln 2),所以排除A 、B 、C ,选D.答案:D4.(2017·高考某某卷)奇函数f (x )在R 上是增函数,g (x )=xf (x ).假设a =g (-log 2 5.1),b =g (2),c =g (3),那么a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:奇函数f (x )在R 上是增函数,当x >0时,f (x )>f (0)=0,当x 1>x 2>0时,f (x 1)>f (x 2)>0,∴x 1f (x 1)>x 2f (x 2),∴g (x )在(0,+∞)上单调递增,且g (x )=xf (x )是偶函数,∴a =g (-log 2 5.1)=g (log 2 5.1).易知2<log 2 5.1<3,1<2<2,由g (x )在(0,+∞)上单调递增,得g (2)<g (log 2 5.1)<g (3),∴b <a <c ,应选C.答案:C5.(2018·某某模拟)函数f (x )=e xx 的图象大致为( )解析:由f (x )=e x x ,可得f ′(x )=x e x -e x x 2=(x -1)e x x2, 那么当x ∈(-∞,0)和x ∈(0,1)时,f ′(x )<0,f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.又当x <0时,f (x )<0,应选B.答案:B6.定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,那么( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,那么f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).答案:D7.(2018·某某模拟)函数f (x )=ex -1+4x -4,g (x )=ln x -1x ,假设f (x 1)=g (x 2)=0,那么( )A .0<g (x 1)<f (x 2)B .f (x 2)<g (x 1)<0C .f (x 2)<0<g (x 1)D .g (x 1)<0<f (x 2) 解析:易知f (x )=e x -1+4x -4,g (x )=ln x -1x在各自的定义域内是增函数,而f (0)=e -1+0-4=1e -4<0,f (1)=e 0+4×1-4=1>0,g (1)=ln 1-11=-1<0,g (2)=ln 2-12=ln 2e f (x 1)=g (x 2)=0,所以0<x 1<1,1<x 2<2,所以f (x 2)>f (1)>0,g (x 1)<g (1)<0,故g (x 1)<0<f (x 2).答案:D8.函数f (x )=(x 2-2x )·sin(x -1)+x +1在[-1,3]上的最大值为M ,最小值为m ,那么M +m =( )A .4B .2C .1D .0 解析:f (x )=[(x -1)2-1]sin(x -1)+x -1+2,令t =x -1,g (t)=(t 2-1)sin t +t ,那么y =f (x )=g (t)+2,t ∈[-2,2].显然M =g (t)max +2,m =g (t)min +2.又g (t)为奇函数,那么g (t)max +g (t)min =0,所以M +m =4,应选A.答案:A9.g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,g (x ),x >0,假设f (2-x 2)>f (x ),那么x 的取值X 围是( ) A .(-∞,-2)∪(1,+∞)B .(-∞,1)∪(2,+∞)C .(-2,1)D .(1,2)解析:因为g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),所以当x >0时,-x <0,g (-x )=-ln(1+x ),即当x >0时,g (x )=ln(1+x ),那么函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0,作出函数f (x )的图象,如图:由图象可知f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0在(-∞,+∞)上单调递增. 因为f (2-x 2)>f (x ),所以2-x 2>x ,解得-2<x <1,应选C.答案:C10.(2018·高考全国卷Ⅱ)ƒ(x )是定义域为(-∞,+∞)的奇函数,满足ƒ(1-x )=ƒ(1+x ).假设ƒ(1)=2,那么ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(50)=( )A .-50B .0C .2D .50解析:∵ƒ(x )是奇函数,∴ƒ(-x )=-ƒ(x ),∴ƒ(1-x )=-ƒ(x -1).由ƒ(1-x )=ƒ(1+x ),∴-ƒ(x -1)=ƒ(x +1),∴ƒ(x +2)=-ƒ(x ),∴ƒ(x +4)=-ƒ(x +2)=-[-ƒ(x )]=ƒ(x ),∴函数ƒ(x )是周期为4的周期函数.由ƒ(x )为奇函数得ƒ(0)=0.又∵ƒ(1-x )=ƒ(1+x ),∴ƒ(x )的图象关于直线x =1对称,∴ƒ(2)=ƒ(0)=0,∴ƒ(-2)=0.又ƒ(1)=2,∴ƒ(-1)=-2,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)=ƒ(1)+ƒ(2)+ƒ(-1)+ƒ(0)=2+0-2+0=0,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)+…+ƒ(49)+ƒ(50)=0×12+ƒ(49)+ƒ(50)=ƒ(1)+ƒ(2)=2+0=2.应选C.答案:C11.定义在R 上的函数f (x )对任意0<x 2<x 1都有f (x 1)-f (x 2)x 1-x 2<1,且函数y =f (x )的图象关于原点对称,假设f (2)=2,那么不等式f (x )-x >0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2)∪(0,2)D .(-2,0)∪(2,+∞) 解析:由f (x 1)-f (x 2)x 1-x 2<1, 可得[f (x 1)-x 1]-[f (x 2)-x 2]x 1-x 2<0.令F (x )=f (x )-x ,由题意知F (x )在(-∞,0),(0,+∞)上是减函数,又是奇函数,且F (2)=0,F (-2)=0,所以结合图象,令F (x )>0,得x <-2或0<x <2,应选C.答案:C12.(2018·某某三市联考)函数f (x )=e |x |,函数g (x )=⎩⎪⎨⎪⎧ e x ,x ≤4,4e 5-x ,x >4对任意的x ∈[1,m ](m >1),都有f (x -2)≤g (x ),那么m 的取值X 围是( )A .(1,2+ln 2) B.⎝ ⎛⎭⎪⎫2,72+ln 2 C .(ln 2,2] D.⎝ ⎛⎦⎥⎤1,72+ln 2 解析:作出函数y 1=e |x -2|和y =g (x )的图象,如下图,由图可知当x=1时,y 1=g (1),又当x =4时,y 1=e 2<g (4)=4e ,当x >4时,由ex -2≤4e 5-x ,得e 2x -7≤4,即2x -7≤ln 4,解得x ≤72+ln 2,又m >1,∴1<m ≤72+ln 2.答案:D二、填空题13.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),那么f ⎝ ⎛⎭⎪⎫-52=________.解析:由题意得f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫2-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-12. 答案:-1214.假设函数f (x )=x (x -1)(x +a )为奇函数,那么a =________.解析:法一:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-x )=-f (x )对x ∈R 恒成立,所以-x ·(-x -1)(-x +a )=-x (x -1)(x +a )对x ∈R 恒成立,所以x (a -1)=0对x ∈R 恒成立,所以a =1.法二:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-1)=-f (1),所以-1×(-1-1)×(-1+a )=-1×(1-1)×(1+a ),解得a =1.答案:115.函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,那么实数a 的取值X 围是________.解析: 当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,那么⎩⎪⎨⎪⎧ 1-2a >0,1-2a +3a ≥1,解得0≤a <12. 答案:⎣⎢⎡⎭⎪⎫0,12 16.如图放置的边长为1的正方形PABC 沿x 轴滚动,点B 恰好经过原点,设顶点P (x ,y )的轨迹方程是y =f (x ),那么对函数y =f (x )有以下判断:①函数y =f (x )是偶函数;②对任意的x ∈R ,都有f (x +2)=f (x -2);③函数y =f (x )在区间[2,3]上单调递减;④函数y =f (x )在区间[4,6]上是减函数.其中判断正确的序号是________.解析:如图,从函数y =f (x )的图象可以判断出,图象关于y 轴对称,每4个单位图象重复出现一次,在区间[2,3]上,随x 增大,图象是往上的,在区间[4,6]上图象是往下的,所以①②④正确,③错误.答案:①②④。
高三理科数学二轮复习专题能力提升训练:函数、导数、不等式的综合问题(含答案解析).pdf
训练 函数、导数、不等式的综合问题 一、选择题(每小题5分,共25分) 1.下面四个图象中,有一个是函数f(x)=x3+ax2+(a2-1)x+1(aR)的导函数y=f′(x)的图象,则f(-1)等于( ). A. B.- C. D.-或 2.设直线x=t与函数f(x)=x2,g(x)=ln x的图象分别交于点M,N,则当|MN|达到最小时t的值为( ). A.1 B. C. D. 3.已知函数f(x)=x4-2x3+3m,xR,若f(x)+9≥0恒成立,则实数m的取值范围是( ). A. B. C. D. 4.已知函数f(x)=x2-ax+3在(0,1)上为减函数,函数g(x)=x2-aln x在(1,2)上为增函数,则a的值等于( ). A.1 B.2 C.0 D. 5.设aR,若函数y=eax+3x,xR有大于零的极值点,则( ). A.a>-3 B. a<-3 C.a>- D.a<- 二、填空题(每小题5分,共15分) 6.若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于________. 7.函数f(x)=x3-x2+ax-5在区间[-1,2]上不单调,则实数a的范围是________. 8.关于x的方程x3-3x2-a=0有三个不同的实数解,则实数a的取值范围是________. 三、解答题(本题共3小题,共35分) 9.(11分)已知函数f(x)=x3-x2+bx+a.(a,bR)的导函数f′(x)的图象过原点. (1)当a=1时,求函数f(x)的图象在x=3处的切线方程; (2)若存在x<0,使得f′(x)=-9,求a的最大值. 10.(12分)已知a,b为常数,且a≠0,函数f(x)=-ax+b+axln x,f(e)=2(e=2.718 28…是自然对数的底数). (1)求实数b的值; (2)求函数f(x)的单调区间; (3)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t[m, M],直线y=t与曲线y=f(x)都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由. 11.(12分)已知f(x)=xln x,g(x)=-x2+ax-3. (1)求函数f(x)在[t,t+2](t>0)上的最小值; (2)对一切的x(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围; (3)证明:对一切x(0,+∞),都有ln x>-.参考答案 1.D [f′(x)=x2+2ax+a2-1,f′(x)的图象开口向上,若图象不过原点,则a=0时,f(-1)=,若图象过原点,则a2-1=0,又对称轴x=-a>0,a=-1,f(-1)=-.] 2.D [|MN|的最小值,即函数h(x)=x2-ln x的最小值,h′(x)=2x-=,显然x=是函数h(x)在其定义域内唯一的极小值点,也是最小值点,故t=.] 3.A [因为函数f(x)=x4-2x3+3m,所以f′(x)=2x3-6x2,令f′(x)=0,得x=0或x=3,经检验知x=3是函数的一个最小值点,所以函数的最小值为f(3)=3m-,不等式f(x)+9≥0恒成立,即f(x)≥-9恒成立,所以3m-≥-9,解得m≥.] 4.B [函数f(x)=x2-ax+3在(0,1)上为减函数,≥1,得a≥2.又g′(x)=2x-,依题意g′(x)≥0在x(1,2)上恒成立,得2x2≥a在x(1, 2)上恒成立,有a≤2,a=2.] 5.B [令f(x)=eax+3x,可求得f′(x)=3+aeax,若函数在xR上有大于零的极值点,即f′(x)=3+aeax=0有正根.当f′(x)=3+aeax=0成立时,显然有a<0,此时x=ln.由x>0,解得a<-3,a的取值范围为(-∞,-3).] 6.解析 由题得f′ (x)=12x2-2ax-2b=0,f′(1)=12-2a-2b=0,a+b=6.a+b≥2,6≥2,ab≤9,当且仅当a=b=3时取到最大值. 答案 9 7.解析 f(x)=x3-x2+ax-5,f′(x)=x2-2x+a=(x-1)2+a-1,如果函数f(x)=x3-x2+ax-5在区间[-1,2]上单调,那么a-1≥0或f′(-1)=3+a≤0且f′(2)=a≤0,a≥1或a≤-3.于是满足条件的a(-3,1). 答案 (-3,1) 8.解析 由题意知使函数f(x)=x3-3x2-a的极大值大于0且极小值小于0即可,又f′(x)=3x2-6x=3x(x-2),令f′(x)=0得,x1=0,x2=2,当x<0时,f′(x)>0;当0<x<2时,f′(x)<0;当x>2时,f′(x)>0,所以当x=0时,f(x)取得极大值,即f(x)极大值=f(0)=-a;当x=2时,f(x)取得极小值,即f(x)极小值=f(2)=-4-a,所以,解得-4<a<0. 答案 (-4,0) 9.解 由已知,得f′(x)=x2-(a+1)x+b. 由f′(0)=0,得b=0,f′(x)=x(x-a-1). (1)当a=1时,f(x)=x3-x2+1,f′(x)=x(x-2),f(3)=1, f′(3)=3. 所以函数f(x)的图象在x=3处的切线方程为y-1=3(x-3), 即3x-y-8=0. (2)存在x<0,使得f′(x)=x(x-a-1)=-9,-a-1=-x-=(-x)+≥2=6,a≤-7,当且仅当x=-3时,a=-7. 所以a的最大值为-7. 10.解 (1)由f(e)=2,得b=2. (2)由 (1)可得f(x)=-ax+2+axln x. 从而f′(x)=aln x. 因为a≠0,故 当a>0时,由f′(x)>0,得x>1,由f′(x)<0得, 0<x<1; 当a<0时,由f′(x)>0,得0<x<1,由f′(x)<0得,x>1. 综上,当a>0时,函数f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1);当a<0时,函数f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞). (3)当a=1时,f(x)=-x+2+xln x,f′(x)=ln x. 由(2)可得,当x在区间内变化时,f′(x),f(x)的变化情况如下表: x1(1,e)ef′(x) -0 +f(x)2-单调递减极小值1单调递增2又2-<2, 所以函数f(x)的值域为[1,2]. 据此可得,若则对每一个t[m,M],直线y=t与曲线y=f(x)都有公共点; 并且对每一个t(-∞,m)(M,+∞),直线y=t与曲线y=f(x)都没有公共点. 综上,当a=1时,存在最小的实数m=1,最大的实数M=2,使得对每一个t[m,M],直线y=t与曲线y=f(x)都有公共点. 11.(1)解 f′(x)=ln x+1. 当x时,f′(x)<0,f(x)单调递减; 当x时,f′(x)>0,f(x)单调递增. 则当0<t<t+2<时,t无解; 当0<t<<t+2,即0<t<时, [f(x)]min=f=-; 当≤t<t+2,即t≥时, f(x)在[t,t+2]上单调递增. 所以[f(x)]min=f(t)=tln t.所以[f(x)]min= (2)解 2f(x)≥g(x),即2xln x≥-x2+ax-3, 则a≤2ln x+x+.设h(x)=2ln x+x+(x>0), h′(x)=. 当x(0,1)时,h′(x)<0,h(x)单调递减; 当x(1,+∞)时,h′(x)>0,h(x)单调递增. 所以[h(x)]min=h(1)=4.因为对一切x(0,+∞),2f(x)≥g(x)恒成立, 所以a≤[h(x)] min=4.故实数a的取值范围是(-∞,4]. (3)证明 问题等价于证明xln x>-,x(0,+∞). 由(1)可知f(x)=xln x,x(0,+∞)的最小值为-, 当且仅当x=时取得.设m(x)=-,x(0,+∞),则m′(x)=,易得[m(x)]max=m(1)=-. 从而对一切x(0,+∞),都有ln x>-成立.。
高三理科数学二轮函数与导数复习
函数与导数一、高考动向:函数与导数是高考数学的重点内容之一,函数的观点和思想方法贯穿整个高中数学的全过程,在近几年的高考中, 函数类试题在试题中所占分值一般为22---35分.一般为2个选择题或2个填空题,1个解答题 ,而且常考常新.在选择题和填空题中通常考查反函数、函数的定义域、值域、函数的单调性、奇偶性、周期性、函数的图象、导数的概念、导数的应用以及从函数的性质研究抽象函数。
在解答题中通常考查函数与导数、不等式的综合运用。
其主要表现在:1.通过选择题和填空题,全面考查函数的基本概念,性质和图象. 2.在解答题的考查中,与函数有关的试题常常是以综合题的形式出现. 3.从数学具有高度抽象性的特点出发,没有忽视对抽象函数的考查. 4.一些省市对函数应用题的考查是与导数的应用结合起来考查的. 5.涌现了一些函数新题型.6.函数与方程的思想的作用不仅涉及与函数有关的试题,而且对于数列,不等式,解析几何等也需要用函数与方程思想作指导.7.多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题.8.求极值, 函数单调性,应用题,与三角函数或向量结合. 复习中关注:1.在选择题中会继续考查比较大小,可能与函数、方程、三角等知识结合出题. 2.在选择题与填空题中注意不等式的解法,建立不等式求参数的取值范围,以及求最大值和最小值应用题.3.解题中注意不等式与函数、方程、数列、应用题、解几的综合、突出渗透数学思想和方法.二、知识再现:1.求函数)(x f y =反函数的步骤:○1确定)(x f 的值域,也即是确定反函数的 ;○2由)(x f y =求出=x ;○3将 对换,得到反函数)(1x f y -= 2.函数奇偶性:如果对于函数)(x f 定义域内的任意x 都有 ,则称)(x f 为奇函数;如果对于函数)(x f 定义域内的任意x 都有 ,则称)(x f 为偶函数。
3.函数的单调性:设函数)(x f y =的定义域为I ,如果对于定义域I 内的任意两个自变量1x 、2x ,当1x <2x 时,都有 ( ),则称)(x f 在区间D 上是增函数(减函数)。
2021届高考数学二轮复习函数与导数专题练之幂函数
2021届高考数学二轮复习函数与导数专题练之幂函数1.已知幂函数()()21m f x m m x =--在(0,)+∞上单调递减,则实数m =( ) A.1-B.2C.1-或2D.122.已知幂函数()y f x =的图象过22,⎛⎫⎪ ⎪⎝⎭,则下列求解正确的是( )A .()12f x x =B .()2f x x =C .()32f x x =D .()12f x x -=3.若幂函数()f x 的图像过点(16,8),则2()()f x f x <的解集为( ) A. (,0)(1,)-∞⋃+∞B. (0,1)C. (,0)-∞D. (1,)+∞4.函数()1a f x x =+,若()f x 在区间[],(0)a b a b <<内的值域为[]3,6,则()f x 在[],b a --内的最大值与最小值之和为( ) A.-9B.-7C.-5D.9或-55.已知幂函数()y f x =的图像过点()3,3,则()4log 2f 的值为( ) A . 2B .14-C .14D .2-6.在同一坐标系内,函数(0)a y x a =≠和1y ax a=-的图像可能是图中的( ) A.B.C.D.7.幂函数()223()1m m f x m m x +-=--在()0,+∞时是减函数,则实数m 的值为( )A. 2或-1B. -1C. 2D. -2或18.设11132a ⎧⎫∈-⎨⎬⎩⎭,,,,则使函数a y x =的定义域为R 且为奇函数的所有a 值为( ) A.1,3 B.1-,1 C.1-,3 D.1-,1,39.若幂函数()f x 的图象经过点12,4⎛⎫⎪⎝⎭,则()3f =_________.10.已知幂函数223()mm f x x -++= (Z m ∈)为偶函数,且在区间()0,+∞上单调递增,则函数()f x 的解析式为 ___________.11.已知幂函数()f x k x α=⋅的图象过点122⎛ ⎝⎭,则k α+=____________12.若幂函数2223(33)mm y m m x +-=++的图像不过原点,且关于原点对称,则m =___________.答案以及解析1.答案:A解析:由于函数()f x 是幂函数,所以211m m --=,解得2m =或1m =-.当2m =时,2()f x x =在(0,)+∞上单调递增,舍去;当1m =-时,1()f x x -=在(0,)+∞上单调递减.故选A. 2.答案:D解析:设幂函数的解析式为a y x =,∵幂函数()y f x =的图象过点222a =, 解得12a =-,∴12()f x x -=,故选D.3.答案:D解析:设幂函数()a f x x =, 图像过点()16,8,所以168a =,即4322a =,所以43a =,解得34a =.所以()3344f x x x =()0,+∞,且()f x 为增函数.由()()2f x f x <得20{ x x x ><,解得1x >.故选D4.答案:D解析:当21(Z)k k α=-∈时,函数()a g x x =是奇函数,()a g x x =在[],a b 上的值域是[]2,5,则()a g x x =在[],b a --上的值域是[]5,2--,所以()f x 在[],b a --上的值域是[]4,1--,()f x 在[],b a --上的最大值与最小值之和等于-5;当2(Z)k k α=∈时,函数()f x 是偶函数,则()f x 在[],b a --上的值域是[]3,6,()f x 在[],b a --上的最大值与最小值之和等于9,故选D. 5.答案:C解析:设幂函数()y f x x α==,图像过点(3,33α=∴,12α=∴, ()12()0f x xx =≥∴,()1224441111log 2log 2log 2224f ===⨯=∴.故选C 6.答案:C解析:当0a <时,函数1y ax a =-是减函数,当0x =时,10y a =->,即函数1y ax a=-的图像与y 轴的交点在正半轴上,a y x =在(0,)+∞上是减函数,所以A ,D 均错误.对于B ,C ,若0a >,则1y ax a=-是增函数,故B 错误,C 正确. 7.答案:B解析:由于幂函数()223()1mm f x m m x+-=--在()0,+∞时是减函数,故有221130m m m m ⎧--=⎨+-<⎩,解得1m =-,故选B .8.答案:A解析:由于定义域为R ,排除1-和12,函数3y x y x ==,是奇函数且定义域为R. 9.答案:19解析:设幂函数()y x R αα=∈其函数图象经过点12,4⎛⎫ ⎪⎝⎭124α=∴解得2α=-2()y f x x -==∴ 1(3)9f =∴故答案为:1910.答案:4()f x x = 解析:因为幂函数223()m m f x x -++= (Z m ∈)为偶函 数,所以223m m -++为偶数.又()f x 在区间()0,+∞上单调递增,所以2230m m -++>,所以13m -<<. 又Z m ∈,223m m -++ 为偶数,所以1m =,所以4()f x x =.11.答案:32解析:由幂函数的定义得1k =,再将点122⎛ ⎝⎭212α⎛⎫= ⎪⎝⎭,从而12α=,故32k α+=. 故答案为:32. 12.答案:-2解析:根据幂函数的定义得2331m m ++=,解得1m =-或2m =-,所以41y x =或31y x=.又因为函数图像关于原点对称,所以2m =-.。
高三数学二轮复习建议——专题五:函数与导数
曲线的切线、单调性、化与化归的思想和分类存在定理及利用 性最值问题;考查转化、数 调性最值问题;考查转化
极值问题;考查用导 讨论的方法.
导数研究函数单 形结合思想和分类讨论的方 的思想、数形结合思想和
数求单调区间和极值
调性最值问题; 法.
分类讨论的方法.
的常规方法.
考查转化的思想.
近五年全国Ⅰ卷考查情况分析
12—难 13—易 21—难
7—中 8—中 21—难
5—中 11—中难 21—难
总分 值
22分
27分
22分
22分
22分
11.涉及分段函数及 3.考查函数奇偶性. 12.涉及函数不 7.涉及函数图象问 5.涉及函数单调性、
一次函数、二次函数、对 6.考查建立函数 等式存在成立求参数题;考查利用导数判断 奇偶性、函数不等式问
11.涉及三次函 数形结合方法和运算题;考查不等式基本性 题;考查指对互化和对
知识 16.涉及函数的对称 数、函数零点;考查 求解能力.
质及函数单调性比较大 数运算能力;考查作差
性和利用导数求函数最值 用导数解决函数单调 13.考查函数奇 小的方法;考查作差或 或作商法比较大小;考 方法 问题;考查化归思想和利 性、极值、函数图像 偶性和对数运算. 作商法比较大小;考查 查分析问题、解决问题
文科 理科
切线
2013 2014 2013 2014 2015
单调性 与极值
恒成立 求参数
范围
存在成 立求参 数范围
不等式 证明
讨论零 点个数
由零点个 数求参数
范围
极值 点偏 移问
题
2013
2016 2017 2014 2015 2015 2016
高考数学二轮复习 专题五 函数与导数 第15讲 曲线的切
-2),则
e
x0
2 2x0 ex0 2,
b, 解得x0=ln
2,b=-2ln
2.
(2)y'=ln x+1,则曲线y=xln x在x=1与x=t处的切线斜率切线互相垂直得ln t+1=-1,则正数t的值为e-2.
【方法归纳】 (1)直线与曲线相切时,与切点坐标有关,若题中没有切点,则 需要设出切点坐标,利用切点在曲线上、切点在切线上和在切点处的导数值 等于切线的斜率三个性质建立方程组求解.(2)若两条直线的斜率都存在,且 互相垂直,则斜率乘积为-1.
x0
题型三 两曲线的公切线
例3 设t≠0,点P(t,0)是函数f(x)=x3+ax与g(x)=bx2+c的图象的一个公共点,两函 数的图象在点P处有相同的切线.试用t表示a,b,c.
解析 因为函数f(x),g(x)的图象都经过点P(t,0), 所以f(t)=0,g(t)=0,即t3+at=0,bt2+c=0. 因为t≠0,所以a=-t2,c=ab. 又因为f(x),g(x)的图象在点P(t,0)处有相同的切线, 所以f '(t)=g'(t). 由题意知f '(x)=3x2+a,g'(x)=2bx, 所以3t2+a=2bt. 将a=-t2代入上式得b=t,则c=ab=-t3. 故a=-t2,b=t,c=-t3.
所以-1≤
ex
4
1 ex
2
<0,则α∈ 34
,
.
2.已知P是曲线y= 1 x2- 1 ln x上的动点,Q是直线y= 3 x-1上的动点,则PQ的最小
42
2021新高考数学二轮总复习专题二函数与导数学案含解析打包6套
专题二函数与导数考情分析函数与导数是高中数学的主干知识,是高考考查的重点内容,近几年高考命题的趋势是稳中求变、变中求新、新中求活,纵观近几年的高考题,对函数与导数的考查多数为“三小一大”或“四小一大”,题型遍布选择、填空与解答,难度上分层考查;基础题考查考生对必备知识和基本方法的掌握;中档题考查的是“数学抽象”“逻辑推理”和“数学运算”三大核心素养;导数与函数解答题综合考查多个核心素养以及综合应用能力,近两年的难度有所降低,题目所在试卷的位置有所提前,不再固定在最后压轴位置上,预计这一趋势会保持下去.2.1函数概念、性质、图象专项练必备知识精要梳理1.函数的概念(1)求函数的定义域的方法是依据含自变量x的代数式有意义来列出相应的不等式(组)求解.(2)求函数值域要优先考虑定义域,常用方法:配方法、分离常数法(分式函数)、换元法、单调性法、基本不等式法、数形结合法、有界函数法(含有指、对数函数或正、余弦函数的式子).2.函数的性质(1)函数奇偶性:①定义:若函数的定义域关于原点对称,则有:f(x)是偶函数⇔f(-x)=f(x)=f(|x|);f(x)是奇函数⇔f(-x)=-f(x).②判断方法:定义法、图象法、奇偶函数性质法(如奇函数×奇函数是偶函数).(2)函数单调性判断方法:定义法、图象法、导数法.(3)函数周期性的常用结论:若f(x+a)=-f(x)或f(x+a)=±(a≠0),则T=2a;若f(x+a)=f(x-b),则T=a+b;若f(x)的图象有两条对称轴x=a和x=b(a≠b),则T=2|b-a|;若f(x)的图象有两个对称中心(a,0)和(b,0),则T=2|b-a|(类比正、余弦函数).3.函数的图象(1)函数图象的判断方法:①找特殊点;②看性质:根据函数性质判断图象的位置,对称性,变化趋势等;③看变换:看函数是由基本初等函数经过怎样的变换得到.(2)若y=f(x)的图象关于直线x=a对称,则有f(a+x)=f(a-x)或f(2a-x)=f(x)或f(x+2a)=f(-x);若y=f(x)对∀x∈R,都有f(a-x)=f(b+x),则f(x)的图象关于直线x=对称;若y=f(x)对∀x∈R都有f(a-x)=b-f(x),即f(a-x)+f(x)=b,则f(x)的图象关于点对称.(3)函数y=f(x)与y=f(-x)的图象关于y轴对称,函数y=f(a-x)和y=f(b+x)的图象关于直线x=对称;y=f(x)与y=-f(x)的图象关于x轴对称;y=f(x)与y=-f(-x)的图象关于原点对称.(4)利用图象可解决函数的最值、方程与不等式的解以及求参数范围问题.考向训练限时通关考向一函数及其相关概念1.(2020安徽合肥一中模拟,理1)设集合A={x|y=lg(x-3)},B={y|y=2x,x∈R},则A∩B等于()A.⌀B.RC.{x|x>3}D.{x|x>0}2.(多选)符号[x]表示不超过x的最大整数,如[3.14]=3,[-1.6]=-2,定义函数:f(x)=x-[x],则下列命题正确的是()A.f(-0.8)=0.2B.当1≤x<2时,f(x)=x-1C.函数f(x)的定义域为R,值域为[0,1)D.函数f(x)是增函数、奇函数3.(2020北京,11)函数f(x)=+ln x的定义域是.4.设函数f(x)=则f=,f(f(x))=1的解集为.考向二函数的性质5.(2020天津,6)设a=30.7,b=,c=log0.70.8,则a,b,c的大小关系为()A.a<b<cB.b<a<cC.b<c<aD.c<a<b6.(2020全国Ⅱ,理9)设函数f(x)=ln|2x+1|-ln|2x-1|,则f(x)()A.是偶函数,且在单调递增B.是奇函数,且在单调递减C.是偶函数,且在单调递增D.是奇函数,且在单调递减7.(2020全国Ⅲ,理12)已知55<84,134<85.设a=log53,b=log85,c=log138,则()A.a<b<cB.b<a<cC.b<c<aD.c<a<b8.(2020江西名校大联考,理13)已知函数f(x)=则f(5+log26)的值为.考向三函数的图象9.(2020天津,3)函数y=的图象大致为()10.(2020山西太原二模,理6)函数f(x)=的图象大致为()11.(2020山东济宁6月模拟,5)函数f(x)=cos x·sin的图象大致为()考向四函数的概念、性质、图象的综合12.(多选)(2020山东淄博4月模拟,12)函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有f[f(x1)+f(x2)],则称f(x)在[a,b]上具有性质P.设f(x)在[1,3]上具有性质P,则下列说法错误的是()A.f(x)在[1,3]上的图象是连续不断的B.f(x2)在[1,]上具有性质PC.若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3]D.对任意x1,x2,x3,x4∈[1,3],有f[f(x1)+f(x2)+f(x3)+f(x4)]13.(2020北京海淀一模,15)如图,在等边三角形ABC中,AB=6.动点P从点A出发,沿着此三角形三边逆时针运动回到A点,记点P运动的路程为x,点P到此三角形中心O距离的平方为f(x),给出下列三个结论:①函数f(x)的最大值为12;②函数f(x)的图象的对称轴方程为x=9;③关于x的方程f(x)=kx+3最多有5个实数根.其中,所有正确结论的序号是.专题二函数与导数2.1函数概念、性质、图象专项练考向训练·限时通关1.C解析A={x|y=lg(x-3)}={x|x-3>0}={x|x>3},B={y|y=2x,x∈R}={y|y>0}.∴A∩B={x|x>3},故选C.2.ABC解析f(x)=x-[x]表示数x的小数部分,则f(-0.8)=f(-1+0.2)=0.2,故A正确;当1≤x<2时,f(x)=x-[x]=x-1,故B正确;函数f(x)的定义域为R,值域为[0,1),故C正确;当0≤x<1时,f(x)=x-[x]=x.当1≤x<2时,f(x)=x-1.当x=0.5时,f(0.5)=0.5,当x=1.5时,f(1.5)=0.5,则f(0.5)=f(1.5),即f(x)不为增函数,由f(-1.5)=0.5,f(1.5)=0.5,可得f(-1.5)=f(1.5),即f(x)不为奇函数,故D不正确.故选ABC.3.(0,+∞)解析由题意得∴x>0,故答案为(0,+∞).4{1,e e}解析∵f=ln<0,∴f=fx<0时,0<e x<1,x=0时,e x=1,方程f(f(x))=1,可得f(x)=0,ln x=0,解得x=1,f(x)>0时,方程f(f(x))=1,可得ln[f(x)]=1,f(x)=e,即ln x=e,解得x=e e.5.D解析∵b==30.8>30.7=a>30=1,c=log0.70.8<log0.70.7=1,∴c<a<b.故选D.6.D解析由题意可知,f(x)的定义域为,关于原点对称.∵f(x)=ln|2x+1|-ln|2x-1|,∴f(-x)=ln|-2x+1|-ln|-2x-1|=ln|2x-1|-ln|2x+1|=-f(x),∴f(x)为奇函数.当x时,f(x)=ln(2x+1)-ln(1-2x),∴f'(x)=>0,∴f(x)在区间内单调递增.同理,f(x)在区间内单调递减.故选D.7.A解析a=log53=lo34=log12581<1,∴a<b=log85=lo54=log512625>1,∴b>,∵55<84,b=log85=lo55<1,∴b<,∵134<85,c=log138=lo85>1,∴c>综上,a<b<c.8.12解析由题意当x>4时,函数f(x)=f(x-1),所以f(x)在(4,+∞)时,周期为1,因为2<log26<3,所以5+log26∈(7,10),1+log26∈(3,4),所以f(5+log26)=f(1+log26)==2×6=12.9.A解析∵函数y=为奇函数,∴排除C,D.再把x=1代入得y==2>0,排除B.故选A.10.A解析f(1)=>0,排除选项C,D;由f(x)==0,则方程无解,即函数没有零点,排除B,故选A.11.C解析显然函数f(x)的定义域是R,由f(x)=cos x·sin,得f(-x)=cos(-x)sin=cos x·sin=-f(x),即f(x)为奇函数,其图象关于原点对称,排除选项A,B;又f(1)=cos1·sin>0,可排除选项D,故选C.12.ABD解析对于A,函数f(x)=在[1,3]上具有性质P,但f(x)在[1,3]上的图象不连续,故选项A错;对于B,f(x)=-x在[1,3]上具有性质P,但f(x2)=-x2在[1,]上不满足性质P,故选项B 错;对于C,因f(x)在x=2处取得最大值1,所以f(x)≤1,设x∈[1,2],则4-x∈[2,3].由性质P可得1=f(2)[f(x)+f(4-x)],所以f(x)+f(4-x)≥2,因为f(x)≤1,f(4-x)≤1,所以f(x)+f(4-x)≤2,所以f(x)+f(4-x)=2,又f(x)≤1,f(4-x)≤1,所以f(x)=1,x∈[1,3],故选项C正确;对于D,有f=ff+f[f(x1)+f(x2)+f(x3)+f(x4)],故选项D错.故选ABD.13.①②解析由题可得函数f(x)=作出图象如图.则当点P与△ABC顶点重合时,即x的值分别是0,6,12,18时,f(x)取得最大值12,故①正确;又f(x)=f(18-x),所以函数f(x)的对称轴为x=9,故②正确;由图象可得,函数f(x)图象与y=kx+3的交点个数为6个,故方程有6个实根,故③错误.2.4.3利用导数证明问题及讨论零点个数必备知识精要梳理1.与e x、ln x有关的常用不等式的结论(1)由f(x)=e x图象上任一点(m,f(m))的切线方程为y-e m=e m(x-m),得e x≥e m(x+1)-m e m,当且仅当x=m时,等号成立.当m=0时,有e x≥x+1;当m=1时,有e x>e x.(2)由过函数f(x)=ln x图象上任一点(n,f(n))的切线方程为y-ln n=(x-n),得ln x≤x-1+ln n,当且仅当x=n时,等号成立.当n=1时,有ln x≤x-1;当n=e时,有ln x≤x.2.证明含参数的函数不等式,其关键在于将所给的不等式进行“改造”,得到“一平一曲”,然后运用导数求出“曲”的最值,将其与“平”进行比较即可.3.求解导数应用题宏观上的解题思想(1)借助导函数(正负)研究原函数(单调性);重点是把导函数先“弄熟悉”;(2)为了把导函数先“弄熟悉”采取的措施:①通分;②二次求导或三次求导;③能画出导函数草图是最好的!关键能力学案突破热点一利用导数证明不等式(多维探究)类型一单未知数函数不等式的证明【例1】已知函数f(x)=e x-ln(x+m).(1)略;(2)当m≤2时,证明f(x)>0.解题心得1.对于含有参数的一个未知数的函数不等式,其证明方法与不含参数的一个未知数的函数不等式证明大体一致.可以直接证明,也可以放缩后再证明,也可以分离参数后,利用导数求最值来证明.2.证法1与证法2中出现的x0的具体数值是无法求解的,只能求出其范围,我们把这种零点称为“隐性零点”.证法2比证法1简单,这是因为利用了函数单调性将命题e x-ln(x+m)>0加强为e x-ln(x+2)>0,转化为研究一个特例函数的问题,从而大大降低了题目的难度.证法2中,因为φ(x0)的表达式涉及、ln(x0+2),都是超越式,所以φ(x0)的值不好计算,由此,需要对“隐性零点”满足的式子=0进行变形,得到两个式子和ln(x0+2)=-x0,然后进行反代,从而将超越式转化为初等式.“反代”是处理“隐性零点”问题的常用策略.【对点训练1】已知函数f(x)=.(1)求曲线y=f(x)在点(0,-1)处的切线方程;(2)求证:当a≥1时,f(x)+e≥0.【例2】已知函数f(x)=x+.(1)略;(2)设函数g(x)=ln x+1,证明:当x∈(0,+∞)且a>0时,f(x)>g(x).解题心得欲证函数不等式f(x)>g(x)(x∈I,I是区间),设h(x)=f(x)-g(x)(x∈I),即证h(x)>0,为此研究h(x)的单调性,先求h'(x)的零点,根据零点确定h(x)在给定区间I的正负,若h(x)在区间I内递增或递减或先递减后递增,只须h(x)min>0(x∈I)(若h(x)min不存在,则须求函数h(x)的下确界),若h(x)在区间I内先递增后递减,只须区间I的端点的函数值大于或等于0;若h'(x)的零点不好求,可设出零点x0,然后确定零点的范围,进而确定h(x)的单调区间,求出h(x)的最小值h(x0),再研究h(x0)的正负.【对点训练2】(2020全国Ⅱ,理21)已知函数f(x)=sin2x sin 2x.(1)讨论f(x)在区间(0,π)的单调性;(2)证明:|f(x)|≤;(3)设n∈N*,证明:sin2x sin22x sin24x…sin22n x≤.类型二双未知数函数不等式的证明【例3】已知函数f(x)=-x+a ln x(a∈R).(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:<a-2.解题心得对于两个未知数的函数不等式问题,其关键在于将两个未知数化归为一个未知数,常见的证明方法有以下4种:方法1:利用换元法,化归为一个未知数;方法2:利用未知数之间的关系消元,化归为一个未知数;方法3:分离未知数后构造函数,利用函数的单调性证明;方法4:利用主元法,构造函数证明.【对点训练3】(2020山东德州二模,21)已知函数f(x)=x2-ax+a ln 2x(a≠0).(1)若a<0时f(x)在[1,e]上的最小值是-ln 2,求a;(2)若a≥e,且x1,x2是f(x)的两个极值点,证明:f(x1)+f(x2)<)-2e(其中e为自然对数的底数).热点二判断、证明或讨论函数零点个数【例4】设函数f(x)=(x-1)e x-x2(其中k∈R).(1)略;(2)当k>0时,讨论函数f(x)的零点个数.解题心得有关函数的零点问题的解决方法主要是借助数形结合思想,利用导数研究函数的单调性和极值,利用函数的单调性模拟函数的图象,根据函数零点的个数的要求,控制极值点函数值的正负,从而解不等式求出参数的范围.【对点训练4】(2020湖南湘潭三模,理21)设函数f(x)=ln x,g(x)=.(1)当m=-1时,求函数F(x)=f(x)+g(x)的零点个数;(2)若∃x0∈[1,+∞),使得f(x0)<g(x0),求实数m的取值范围.热点三与函数零点有关的证明问题【例5】(2019全国Ⅰ,理20)已知函数f(x)=sin x-ln(1+x),f'(x)为f(x)的导数.证明:(1)f'(x)在区间存在唯一极大值点;(2)f(x)有且仅有2个零点.解题心得1.如果函数中没有参数,一阶导数求出函数的极值点,判断极值点大于0小于0的情况,进而判断函数零点的个数.2.如果函数中含有参数,往往一阶导数的正负不好判断,这时先对参数进行分类,再判断导数的符号,如果分类也不好判断,那么需要对一阶导函数进行求导,在判断二阶导数的正负时,也可能需要分类.【对点训练5】(2020安徽合肥二模,文21)已知函数f(x)=e x sin x.(e是自然对数的底数) (1)求f(x)的单调递减区间;(2)若函数g(x)=f(x)-2x,证明g(x)在(0,π)上只有两个零点.(参考数据:≈4.8)热点四利用导数解决存在性问题【例6】(2019全国Ⅲ,理20)已知函数f(x)=2x3-ax2+b.(1)讨论f(x)的单调性;(2)是否存在a,b,使得f(x)在区间[0,1]的最小值为-1且最大值为1?若存在,求出a,b的所有值;若不存在,说明理由.解题心得依据已知条件,判别某种数学对象是否存在的问题,由解答者去探索和确定,它的解法是:假设存在,直接推断,通过推理或计算,若推出合理的结果,则先前假设成立,对象存在;若推出矛盾,则否定先前假设,对象不存在.【对点训练6】(2020湖北名师联盟一模,文21)已知函数f(x)=ln x-ax2-x.(1)若函数f(x)在[1,+∞)上单调递增,求实数a的取值范围;(2)若函数f(x)在x=1处的切线平行于x轴,是否存在整数k,使不等式x[f(x)+x-1]>k(x-2)在x>1时恒成立?若存在,求出k的最大值;若不存在,请说明理由.2.4.3利用导数证明问题及讨论零点个数关键能力·学案突破【例1】解(1)略.(2)证法1:f(x)定义域为(-m,+∞),f'(x)=e x-,f″(x)=e x+>0,其中f″(x)是f'(x)的导函数,则f'(x)在(-m,+∞)上单调递增.又因为当x→-m+时,f'(x)→-∞,当x→+∞时,f'(x)→+∞,所以f'(x)=0在(-m,+∞)上有唯一的实根x0,当-m<x<x0时,f'(x)<0,当x>x0时,f'(x)>0,所以f(x)在(-m,x0)上单调递减,在(x0,+∞)上单调递增,所以当x=x0时,f(x)取得最小值.由f'(x0)=0可得=0,即ln(x0+m)=-x0,于是f(x0)=-ln(x0+m)=+x0=+x0+m-m≥2-m.当x<2时,f(x0)>0;当m=2时,等号成立的条件是x0=-1,但显然f(-1)=e-1-ln(-1+2)=-0≠0.所以等号不成立,即f(x0)>0.综上所述,当m≤2时,f(x)≥f(x0)>0.证法2:当m≤2,x∈(-m,+∞)时,ln(x+m)≤ln(x+2),于是f(x)≥e x-ln(x+2),所以只要证明φ(x)=e x-ln(x+2)>0,x∈(-2,+∞).φ'(x)=e x-,φ″(x)=e x+>0,其中φ″(x)是φ'(x)的导函数.于是φ'(x)在(-2,+∞)上单调递增.又因为φ'(-1)=-1<0,φ'(0)=1->0,所以φ'(x)=0在(-2,+∞)上有唯一的实根x0,且x0∈(-1,0).当-2<x<x0时,φ'(x)<0,当x>x0时,φ'(x)>0,所以φ(x)在(-2,x0)上单调递减,在(x0,+∞)上单调递增,所以当x=x0时,φ(x)取得最小值.由φ'(x0)=0可得=0,即ln(x0+2)=-x0,于是φ(x0)=-ln(x0+2)=+x0=>0,于是φ(x)≥φ(x0)>0.综上所述,当m≤2时,f(x)>0.证法3:当m≤2,x∈(-m,+∞)时,ln(x+m)≤ln(x+2),于是f(x)≥e x-ln(x+2),所以只要证明e x-ln(x+2)>0(x>-2),就能证明当m≤2时,f(x)>0.由ln x≤x-1(x>0)可得ln(x+2)≤x+1(x>-2).又因为e x≥x+1(x∈R),且两个不等号不能同时成立,所以e x>ln(x+2),即e x-ln(x+2)>0(x>-2),所以当m≤2时,f(x)>0.对点训练1解(1)f'(x)=,因为(0,-1)在曲线y=f(x)上,且f'(0)=2,所以切线方程为y-(-1)=2(x-0),即2x-y-1=0.(2)f(x)+e≥0+e≥0⇔ax2+x-1+e x+1≥0.当a≥1时,ax2+x-1+e x+1≥x2+x-1+e x+1,因为e x≥1+x(x∈R),所以e x+1≥2+x,所以x2+x-1+e x+1≥x2+x-1+(2+x)=(x+1)2≥0.所以当a≥1时,f(x)+e≥0.【例2】解(1)略.(2)令h(x)=f(x)-g(x)=x+-ln x-1(x>0),h'(x)=1-,设p(x)=x2-x-a=0,函数p(x)的图象的对称轴为x=∵p(1)=1-1-a=-a<0,设p(x)=0的正根为x0,∴x0>1,由对称性知,p(x)=0的另一根小于0,h(x)在(0,x0)上为减函数,在(x0,+∞)上为增函数,h(x)min=h(x0)=x0+-ln x0-1=x0+-ln x0-1=2x0-ln x0-2,令F(x)=2x-ln x-2(x>1),F'(x)=2->0恒成立,所以F(x)在(1,+∞)上为增函数.又∵F(1)=2-0-2=0,∴F(x)>0,即h(x)min>0,故当x∈(0,+∞)时,f(x)>g(x).对点训练2(1)解f'(x)=cos x(sin x sin2x)+sin x(sin x sin2x)'=2sin x cos x sin2x+2sin2x cos2x=2sin x sin3x.当x时,f'(x)>0;当x时,f'(x)<0.所以f(x)在区间单调递增,在区间单调递减.(2)证明因为f(0)=f(π)=0,由(1)知,f(x)在区间[0,π]的最大值为f,最小值为f=-而f(x)是周期为π的周期函数,故|f(x)|(3)证明由于(sin2x sin22x…sin22n x=|sin3x sin32x…sin32n x|=|sin x||sin2x sin32x…sin32n-1x sin2n x||sin22n x|=|sin x||f(x)f(2x)…f(2n-1x)||sin22n x|≤|f(x)f(2x)…f(2n-1x)|,所以sin2x sin22x…sin22n x【例3】解(1)函数f(x)的定义域为(0,+∞),f'(x)=--1+=-①若a≤0,则f'(x)<0,f(x)在(0,+∞)上单调递减.②若Δ=a2-4≤0,即0<a≤2时,f'(x)≤0,f(x)在(0,+∞)上单调递减.③若Δ=a2-4>0,即a>2时,由f'(x)>0,可得<x<,由f'(x)<0,可得0<x<或x>,所以f(x)在上单调递减,在上单调递增.综上所述,当a≤2时,f(x)在(0,+∞)上单调递减;当a>2时,f(x)在0,,,+∞上单调递减,在上单调递增.(2)证法1:由(1)知,f(x)存在两个极值点,则a>2.因为x1,x2是f(x)的两个极值点,所以x1,x2满足x2-ax+1=0,所以x1+x2=a,x1x2=1,不妨设0<x1<1<x2.==--1+=-2+, 于是<a-2⇔-2+<a-2<1<1⇔2ln x2+-x2 <0.构造函数g(x)=2ln x+-x,x>1,由(1)知,g(x)在(1,+∞)上单调递减,所以g(x)<g(1)=0,所以原不等式获证.证法2:由(1)知,f(x)存在两个极值点,则a>2.因为x1,x2是f(x)的两个极值点,所以x1,x2满足x2-ax+1=0,不妨设0<x1<1<x2,则x2-x1=,x1x2=1.==--1+=-2-,于是<a-2⇔-2-<a-2⇔ln lnln设t=,则a=,构造函数φ(t)=t-ln(+t),t>0,则φ'(t)=1-=1->0,所以φ(t)在(0,+∞)上单调递增,于是φ(t)>φ(0)=0,原不等式获证.证法3:仿照证法1,可得<a-2<1,设0<x1<1<x2,因为x1x2=1, 所以<1ln x1-ln x2>ln,令t=(0,1),构造函数h(t)=2ln t+-t,由(1)知,h(t)在(0,1)上单调递减,所以h(t)>h(1)=0,原不等式获证.对点训练3解(1)f(x)定义域是(0,+∞),f'(x)=-a+令g(x)=x2-2ax+2a,对称轴x0=a<0,因为1>a,g(1)=1>0,所以当x∈[1,e]时,g(x)>0,即f'(x)=>0.所以f(x)在[1,e]上单调递增.f(x)min=f(1)=-a+a ln2=-ln2,解得a=-1.(2)由f(x)有两个极值点x1,x2,则f'(x)=0在(0,+∞)有2个不相等的实根,即x2-2ax+2a=0在(0,+∞)有2个不相等的实根, 则解得a>2.x1+x2=2a,x1x2=2a,=(x1+x2)2-2x1x2=4a2-4a.当a≥e时,f(x1)+f(x2)-)+2e=a ln(4x1x2)-a(x1+x2)-)+2e=a ln8a-2a2-(4a2-4a)+2e=a ln8a-3a2+a+2e(a≥e).令g(a)=a ln8a-3a2+a+2e(a≥e),g'(a)=ln8a-6a+2(a≥e),令h(a)=g'(a)=ln8a-6a+2,h'(a)=-6=,当a≥e时,h'(a)<0,所以h(a)在[e,+∞)单调递减.所以h(a)≤h(e).即g'(a)≤g'(e)=ln8e-6e+2=(1+3ln2)-6e+2=3ln2-6e+3<3-6e+3=6-6e<0,所以g(a)在[e,+∞)单调递减,g(a)≤g(e)=eln8e-3e2+3e=e(1+3ln2)-3e2+3e=e(3ln2-3e+4)<e(3-3e+4)=e(7-3e)<0,所以g(a)<0,所以原不等式成立.【例4】解(1)略.(2)函数f(x)的定义域为R,f'(x)=e x+(x-1)e x-kx=x e x-kx=x(e x-k),当0<k≤1时,令f'(x)>0,解得x<ln k或x>0.∴f(x)在(-∞,ln k)和(0,+∞)上单调递增,在[ln k,0]上单调递减.由f(0)=-1,当x∈(-∞,0)时,f(x)≤f(x)max=f(ln k)=(ln k-1)k-ln2k=-[(ln k-1)2+1]<0,此时f(x)无零点,当x∈[0,+∞)时,f(2)=e2-2k≥e2-2>0.又f(x)在[0,+∞)上单调递增,∴f(x)在[0,+∞)上有唯一的零点,∴函数f(x)在定义域(-∞,+∞)上有唯一的零点.②当k>1时,令f'(x)>0,解得x<0或x>ln k,∴f(x)在(-∞,0)和(ln k,+∞)上单调递增,在[0,ln k]上单调递减.当x∈(-∞,ln k)时,f(x)≤f(x)max=f(0)=-1<0,此时f(x)无零点.当x∈[ln k,+∞)时,f(ln k)<f(0)=-1<0,f(k+1)=k e k+1-=k e k+1-.令g(t)=e t-t2,t=k+1>2,则g'(t)=e t-t,g″(t)=e t-1,∵t>2,g″(t)>0,g'(t)在(2,+∞)上单调递增,g'(t)>g'(2)=e2-2>0,∴g(t)在(2,+∞)上单调递增,得g(t)>g(2)=e2-2>0,即f(k+1)>0.∴f(x)在[ln k,+∞]上有唯一的零点,故函数f(x)在定义域(-∞,+∞)上有唯一的零点.综合①②可知,当k>0时,函数f(x)在定义域(-∞,+∞)上有且只有一个零点.对点训练4解(1)F(x)=ln x-,即F(x)=ln x+(x>0),则F'(x)=,令F'(x)=0,解得x=当x,F'(x)<0,F(x)在上单调递减;当x∈,+∞,F'(x)>0,F(x)在上单调递增.所以当x=时,F(x)min=F-ln2.因为-ln2=ln-ln2<0,所以F(x)min<0.又F=-2+>0,F(e)=1+>0,所以F F<0,F(e)·F<0,所以F(x)分别在区间上各存在一个零点,函数F(x)存在两个零点.(2)假设f(x)≥g(x)对任意x∈[1,+∞)恒成立,即ln x-0对任意x∈[1,+∞)恒成立.令h(x)=ln x-(x≥1),则h'(x)=①当m≤2,即2x-m≥0时,则h'(x)≥0且h'(x)不恒为0,所以函数h(x)=ln x-在区间[1,+∞)上单调递增.又h(1)=ln1-=0,所以h(x)≥0对任意x∈[1,+∞)恒成立.故m≤2不符合题意;②当m>2时,令h'(x)=<0,得1≤x<;令h'(x)=>0,得x>所以函数h(x)=ln x-在区间上单调递减,在区间上单调递增,所以h<h(1)=0,即当m>2时,存在x0≥1,使h(x0)<0,即f(x0)<g(x0).故m>2符合题意.综上可知,实数m的取值范围是(2,+∞).【例5】解(1)设g(x)=f'(x),则g(x)=cos x-,g'(x)=-sin x+当x时,g'(x)单调递减,而g'(0)>0,g'<0,可得g'(x)在区间内有唯一零点,设为α.则当x∈(-1,α)时,g'(x)>0;当x时,g'(x)<0.所以g(x)在区间(-1,α)内单调递增,在区间内单调递减,故g(x)在区间内存在唯一极大值点,即f'(x)在区间内存在唯一极大值点.(2)f(x)的定义域为(-1,+∞).(ⅰ)当x∈(-1,0]时,由(1)知,f'(x)在区间(-1,0)内单调递增,而f'(0)=0,所以当x∈(-1,0)时,f'(x)<0,故f(x)在区间(-1,0)内单调递减.又f(0)=0,从而x=0是f(x)在区间(-1,0]上的唯一零点.(ⅱ)当x时,由(1)知,f'(x)在区间(0,α)内单调递增,在区间内单调递减,而f'(0)=0,f'<0,所以存在,使得f'(β)=0,且当x∈(0,β)时,f'(x)>0;当x时,f'(x)<0.故f(x)在区间(0,β)内单调递增,在区间内单调递减.又f(0)=0,f=1-ln1+>0,所以当x时,f(x)>0.从而,f(x)在区间上没有零点.(ⅲ)当x时,f'(x)<0,所以f(x)在区间内单调递减.而f>0,f(π)<0,所以f(x)在区间上有唯一零点.(ⅳ)当x∈(π,+∞)时,ln(x+1)>1,所以f(x)<0,从而f(x)在区间(π,+∞)内没有零点.综上,f(x)有且仅有2个零点.对点训练5解(1)f(x)=e x sin x,定义域为R.f'(x)=e x(sin x+cos x)=e x sin x+.由f'(x)<0得sin<0,解得2kπ+<x<2kπ+(k∈Z).∴f(x)的单调递减区间为2kπ+,2kπ+(k∈Z).(2)∵g'(x)=e x(sin x+cos x)-2,∴g″(x)=2e x cos x,g″(x)是g'(x)的导函数.∵x∈(0,π),∴当x时,g″(x)>0;当x ∈,π时,g″(x)<0.∴g'(x)在上单调递增,在上单调递减,又∵g'(0)=1-2<0,g'-2>0,g'(π)=-eπ-2<0,∴g'(x)在(0,π)上图象大致如图.∴∃x1,x2,使得g'(x1)=0,g'(x2)=0,且当x∈(0,x1)或x∈(x2,π)时,g'(x)<0;当x∈(x1,x2)时,g'(x)>0.∴g(x)在(0,x1)和(x2,π)上单调递减,在(x1,x2)上单调递增.∵g(0)=0,∴g(x1)<0.∵g-π>0,∴g(x2)>0.又∵g(π)=-2π<0,由零点存在性定理得,g(x)在(x1,x2)和(x2,π)内各有一个零点,∴函数g(x)在(0,π)上有两个零点.【例6】解(1)f'(x)=6x2-2ax=2x(3x-a).令f'(x)=0,得x=0或x=若a>0,则当x∈(-∞,0)时,f'(x)>0;当x时,f'(x)<0.故f(x)在(-∞,0),单调递增,在单调递减;若a=0,f(x)在(-∞,+∞)单调递增;若a<0,则当x(0,+∞)时,f'(x)>0;当x时,f'(x)<0.故f(x)在,(0,+∞)单调递增,在单调递减.(2)满足题设条件的a,b存在.(ⅰ)当a≤0时,由(1)知,f(x)在[0,1]单调递增,所以f(x)在区间[0,1]的最小值为f(0)=b,最大值为f(1)=2-a+b.此时a,b满足题设条件当且仅当b=-1,2-a+b=1,即a=0,b=-1.(ⅱ)当a≥3时,由(1)知,f(x)在[0,1]单调递减,所以f(x)在区间[0,1]的最大值为f(0)=b,最小值为f(1)=2-a+b.此时a,b满足题设条件当且仅当2-a+b=-1,b=1,即a=4,b=1.(ⅲ)当0<a<3时,由(1)知,f(x)在[0,1]的最小值为f=-+b,最大值为b或2-a+b.若-+b=-1,b=1,则a=3,与0<a<3矛盾.若-+b=-1,2-a+b=1,则a=3或a=-3或a=0,与0<a<3矛盾.综上,当且仅当a=0,b=-1或a=4,b=1时,f(x)在[0,1]的最小值为-1,最大值为1.对点训练6解(1)∵函数f(x)在[1,+∞)上单调递增,∴f'(x)=-ax-1≥0在[1,+∞)上恒成立.∴a,∴当x=2时,有最小值-,∴a≤-(2)∵f'(x)=-ax-1,∴f'(1)=1-a-1=-a.∵函数f(x)在x=1处的切线平行于x轴,∴a=0,∴f(x)=ln x-x.∵不等式x[f(x)+x-1]>k(x-2)在x>1时恒成立,∴x ln x-x>k(x-2)在x>1时恒成立,即x ln x-(k+1)x+2k>0在x>1时恒成立,令g(x)=x ln x-(k+1)x+2k,x>1,∴g'(x)=ln x-k,当k≤0时,g'(x)>0在(1,+∞)上恒成立, 即g(x)在(1,+∞)上单调递增,g(x)>g(1)=k-1>0,则k>1,矛盾,当k>0时,令g'(x)>0,解得x>e k,令g'(x)<0,解得1<x<e k, ∴g(x)在(1,e k)单调递减,在(e k,+∞)单调递增.∴g(x)min=g(e k)=k e k-(k+1)e k+2k=2k-e k>0,令h(k)=2k-e k,k>0,则h'(k)=2-e k,∵当k<ln2时,h'(k)>0,函数h(k)单调递增,当k>ln2时,h'(k)<0,函数h(k)单调递减,∴h(k)max=h(ln2)=2ln2-2=2(ln2-1)<0,∴不存在整数k使得2k-e k>0恒成立.综上所述不存在满足条件的整数k.。
(2021年整理)2013届高考数学二轮复习函数与导数(教师版)
(完整)2013届高考数学二轮复习函数与导数(教师版)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2013届高考数学二轮复习函数与导数(教师版))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2013届高考数学二轮复习函数与导数(教师版)的全部内容。
专题一函数与导数【知识络构建】【高频考点突破】考点一、函数及其表示函数的三要素:定义域、值域、对应关系.两个函数当且仅当它们的三要素完全相同时才表示同一个函数,定义域和对应关系相同的两个函数是同一函数.1.求函数定义域的类型和相应方法(1)若已知函数的解析式,则这时函数的定义域是使解析式有意义的自变量的取值范围,只需构建并解不等式(组)即可.(2)对于复合函数求定义域问题,若已知f(x)的定义域[a,b],其复合函数f(g(x))的定义域应由不等式a≤g(x)≤b解出.(3)实际问题或几何问题除要考虑解析式有意义外,还应使实际问题有意义.2.求f(g(x))类型的函数值应遵循先内后外的原则;而对于分段函数的求值、图像、解不等式等问题,必须依据条件准确地找出利用哪一段求解;特别地对具有周期性的函数求值要用好其周期性.例1、函数f(x)=错误!+lg(1+x)的定义域是( C )A.(-∞,-1)B.(1,+∞) C.(-1,1)∪(1,+∞) D.(-∞,+∞)考点二、函数的图像作函数图像有两种基本方法:一是描点法;二是图像变换法,其中图像变换有平移变换、伸缩变换、对称变换.例2、函数y=错误!-2sin x的图像大致是 ( C )【变式探究】函数y=x ln(-x)与y=x ln x的图像关于 ( D )A.直线y=x对称B.x轴对称C.y轴对称D.原点对称考点三、函数的性质1.单调性是函数的一个局部性质,一个函数在不同的区间上可以有不同的单调性.判定函数的单调性常用定义法、图像法及导数法.对于选择题和填空题,也可用一些命题,如两个增(减)函数的和函数仍为增(减)函数等.2.函数的奇偶性反映了函数图像的对称性,是函数的整体特性.利用函数的奇偶性可以把研究整个函数具有的性质问题转化到只研究部分(一半)区间上,是简化问题的一种途径.例3、对于函数f(x)=asinx+bx+c(其中,a,b∈R,c∈Z),选取a,b,c的一组值计算f(1)和f(-1),所得出的正确结果一定不可能是( D ) A.4和6 B.3和1 C.2和4 D.1和2考点四二次函数的图像与性质:(1)二次函数y=ax2+bx+c(a≠0)的图像是抛物线①过定点(0,c);②对称轴为x=-错误!,顶点坐标为(-错误!,错误!).(2)当a>0时,图像开口向上,在(-∞,-错误!]上单调递减,在[-错误!,+∞)上单调递增,有最小值错误!;例 4、已知函数f(x)=x2+2ax+2,x∈[-5,5].(1)当a=-1时,求函数f(x)的最大值和最小值;(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.解:(1)当a=-1时,f(x)=x2-2x+2=(x-1)2+1,x∈[-5,5],∴x=1时,f(x)取得最小值1;x=-5时,f(x)取得最大值37。
高中数学 理科数学函数与导数二轮复习
sin 1+1
∵f(1)=
,且 sin 1>cos 1,∴f(1)>1,∴排除 B,故选 D.
cos 1+1
2.(2019·全国Ⅲ,理,11)设 f(x)是定义域为 R 的偶函数,且在(0,+∞)上单调递减,则( )
A.f
log341>
f
3 2 2
பைடு நூலகம்
>
f
2 2 3
A.(-e2,-e)
B.-∞,-2eC.-∞,-12
D.(-∞,-e-1)
答案 D
m+1 解析 由题可得 f′(x)=ex- x +2(m+1),x>0, 因为函数 f(x)=ex-(m+1)ln x+2(m+1)x-1 恰有两个极值点,
m+1 所以函数 f′(x)=ex- x +2(m+1)(x>0)有两个不同的变号零点.
年份
2019 年
2018 年
2017 年
2016 年
Ⅰ卷(乙卷、江西用)
Ⅱ卷(甲卷)
题号
知识点
分值 题号
知识点
5
函数图像的辨析
59
函数单调性考查
11 函数单调性、奇偶性、零点等。 5 12
初等函数的性质
13
求曲线的切线方程
5
利用导数讨论函数的单调性,函数零
20
点的证明
12
5
导数的几何意义、奇偶性
5
14
当 x<0 时,由 3x+3=-3 得 x=-2,所以-2<x1<0,故 x1+x2+x3∈(4,6).故选 B.
练 3(1)已知 f(x)是定义在 R 上的奇函数,且 x>0 时,f(x)=ln x-x+1,则函数 g(x)=f(x)-ex(e 为
导数与函数的单调性、极值、最值问题(分层训练)2021年新高考数学二轮复习讲义+分层训练(原卷版)
解密15 导数与函数的单调性、极值、最值问题A 组 考点专练一、选择题1.函数f (x )=ln x -ax 在x =2处的切线与直线ax -y -1=0平行,则实数a =( )A.-1B.14C.12D.12.函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )3.已知函数f (x )=2e f ′(e)ln x -x e,则f (x )的极大值点为( ) A.1e B.1 C.e D.2e4.已知函数f (x )=13x 3+mx 2+nx +2,其导函数f ′(x )为偶函数,f (1)=-23,则函数g (x )=f ′(x )e x 在区间[0,2]上的最小值为( )A.-3eB.-2eC.eD.2e5.(多选题)已知定义在⎣⎡⎭⎫0,π2上的函数f (x )的导函数为f ′(x ),且f (0)=0,f ′(x )cos x +f (x )sin x <0,则下列判断中正确的是( )A.f ⎝⎛⎭⎫π6<62f ⎝⎛⎭⎫π4B.f ⎝⎛⎭⎫ln π3>0C.f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π3 D.f ⎝⎛⎭⎫π4>2f ⎝⎛⎭⎫π3二、填空题6.若曲线y =e x 在x =0处的切线也是曲线y =ln x +b 的切线,则b =________.7.已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (0)=12,则不等式f (x )-12e x <0的解集为________.8.若函数f (x )与g (x )满足:存在实数t ,使得f (t )=g ′(t ),则称函数g (x )为f (x )的“友导”函数.已知函数g (x )=12kx 2-x +3为函数f (x )=x 2ln x +x 的“友导”函数,则k 的取值范围是________. 三、解答题9.已知函数f (x )=(x -1)ln x -x -1.证明:(1)f (x )存在唯一的极值点;(2)f (x )=0有且仅有两个实根,且两个实根互为倒数.10.已知函数f (x )=ax -1-ln x (a ∈R ).(1)讨论函数f (x )在定义域内的极值点的个数;(2)若函数f (x )在x =1处取得极值,∀x ∈(0,+∞),f (x )≥bx -2恒成立,求实数b 的最大值.B组专题综合练11.(多选题)已知函数f(x)=e x+a ln x,其中正确的结论是()A.当a=0时,函数f(x)有最大值B.对于任意的a<0,函数f(x)一定存在最小值C.对于任意的a>0,函数f(x)在(0,+∞)上单调递增D.对于任意的a>0,都有函数f(x)>012.已知函数f(x)=ln x-x e x+ax,其中a∈R.(1)若函数f(x)在[1,+∞)上单调递减,求实数a的取值范围;(2)若a=1,求f(x)的最大值.。
高三数学二轮复习建议专题五函数与导数
21.涉与用导 大小;考查特殊值法、 21.涉与用导数讨
思想 求极值、最值的基本方 21.涉与用导数 数求曲线的切线问 排除法.
论单调性和根据零点个
法.
求曲线的切线问题 题和函数零点个数 21.涉与根据零点数求参数范围问题;考
能力 21.涉与用导数求 和证明函数不等式 问题;考查零点存 个数求参数范围与极 查考查考查零点存在定
(一)近五年高考题的统计与分析——文科
年份
2013年
2014年
2015年
2016年
2017年
题目 与难
度
9—中 12—难 20—中难
5—易 12—难 15—中难 21—难
10—中 12—难 21—难
8—中 9—中 12—难 21—难
8—中 9—中难 14—易 21—难
总分 值
22分
27分
22分
27分
论函数零点个数 和证明函数不等
题;考查转化能力、数形 结合思想.
力.
21.涉与用导数讨
20.涉与用导数 存在成立求参数范围 式问题;考查零 21.涉与用导数讨论 论单调性和不等式恒成
求曲线的切线、单调 问题;考查利用导数 点存在定理与利 函数单调性和由零点个数 立求参数范围问题;考
性、极值问题;考查 求函数最值的基本方 用导数研究函数 求参数范围问题;考查零 查考查考查利用导数研
除法. 12.涉与由函数单调
法. 14.考查用导数求
思想
式恒成立求参数范围 问题;考查转化与化
考查运算能力和分类 讨论思想数范围、三角函数 与二次函数交汇恒成立问
曲线切线的问题;考查 转化能力和运算求解能
能力
归思想、数形结合思 想解决问题的能力.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题强化训练(十五) 函数与导数一、选择题1.[2019·全国卷Ⅱ]若a >b ,则( ) A .ln(a -b )>0 B .3a <3bC .a 3-b 3>0D .|a |>|b |解析:通解:由函数y =ln x 的图象(图略)知,当0<a -b <1时,ln(a -b )<0,故A 不正确;因为函数y =3x在R 上单调递增,所以当a >b 时,3a>3b,故B 不正确;因为函数y =x 3在R 上单调递增,所以当a >b 时,a 3>b 3,即a 3-b 3>0,故C 正确;当b <a <0时,|a |<|b |,故D 不正确.故选C.优解:当a =0.3,b =-0.4时,ln(a -b )<0,3a >3b,|a |<|b |,故排除A ,B ,D ,故选C.答案:C2.[2019·唐山模拟]设函数f (x )=x (e x +e -x),则f (x )( ) A .是奇函数,且在(0,+∞)上是增函数 B .是偶函数,且在(0,+∞)上是增函数 C .是奇函数,且在(0,+∞)上是减函数 D .是偶函数,且在(0,+∞)上是减函数解析:通解:由条件可知,f (-x )=(-x )(e -x+e x )=-x (e x +e -x)=-f (x ),故f (x )为奇函数.f ′(x )=e x +e -x +x (e x -e -x ),当x >0时,e x >e -x ,所以x (e x -e -x )>0,又e x+e-x>0,所以f ′(x )>0,所以f (x )在(0,+∞)上是增函数,故选A.优解:根据题意知f (-1)=-f (1),所以函数f (x )为奇函数.又f (1)<f (2),所以f (x )在(0,+∞)上是增函数,故选A.答案:A3.[2019·武昌调研]函数f (x )=x 2e x|x |的图象大致为( )解析:因为f (x )=x 2e x |x |(x ≠0),所以f (-x )=(-x )2e -x|-x |=x 2e -x|x |,所以f (x )是非奇非偶函数,因为x <0时,f (x )=x 2e x -x =-x e x >0,所以排除选项C ,D.因为x >0时,f (x )=x 2e x x=x e x,所以f ′(x )=e x+x e x=e x(x +1)>0,所以f (x )在(0,+∞)上单调递增,排除选项B.故选A.答案:A4.[2019·江西五校联考]函数f (x )=ax +b(x +c )2的大致图象如图所示,则下列结论正确的是( )A .a >0,b >0,c >0B .a <0,b >0,c <0C .a <0,b <0,c >0D .a >0,b >0,c <0解析:函数f (x )的定义域为{x |x ≠-c },从题图可知-c <0,∴c >0,排除B ,D ;由题图可知f (0)=bc2>0,∴b >0,再排除C ,故选A.答案:A5.[2019·洛阳统考]已知定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x +1)=f (1-x ),且当x ∈[0,1]时,f (x )=log 2(x +1),则f (31)=( )A .0B .1C .-1D .2解析:由f (x +1)=f (1-x )及f (-x )=-f (x ),得f (x +2)=f [(x +1)+1]=f [1-(x +1)]=f (-x )=-f (x ),则f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ),∴函数f (x )是以4为周期的周期函数,∴f (31)=f (4×8-1)=f (-1)=-f (1)=-log 2(1+1)=-1,故选C.答案:C6.[2019·河北九校联考]函数y =x +3x+2ln x 的单调递减区间是( )A .(-3,1)B .(0,1)C .(-1,3)D .(0,3)解析:解法一:令y ′=1-3x 2+2x<0,得-3<x <1,又x >0,故所求函数的单调递减区间为(0,1).故选B.解法二:由题意知x >0,故排除A 、C 选项;又f (1)=4<f (2)=72+2ln2,故排除D 选项.故选B.答案:B7.[2019·广州调研]已知实数a =2ln2,b =2+2ln2,c =(ln2)2,则a ,b ,c 的大小关系是( )A .c <b <aB .c <a <bC .b <a <cD .a <c <b解析:因为0<ln2<1,所以a =2ln2∈(1,2),c =(ln2)2∈(0,1).又b =2+2ln2=2+ln4∈(3,4),故c <a <b .故选B.答案:B8.[2019·安徽五校联考]函数y =x 2+12x的图象大致为( )解析:因为函数y =x 2+12x 为奇函数,所以其图象关于原点对称,当x >0时,y =12x 2+1x 2=121+1x 2,所以函数y =x 2+12x在(0,+∞)上单调递减,所以排除选项B ,D ;又当x =1时,y =22<1,所以排除选项A ,故选C. 答案:C9.[2019·长沙四校一模]已知函数f (x )=⎩⎪⎨⎪⎧|log 2x -1|,0<x ≤4,x2,x >4,,则使不等式f (x )<f ⎝ ⎛⎭⎪⎫14成立的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,14B.⎝ ⎛⎭⎪⎫14,36C.⎝ ⎛⎭⎪⎫14,16 D.⎝ ⎛⎭⎪⎫14,4 解析:f ⎝ ⎛⎭⎪⎫14=|log 214-1=3,当x 2=3时,x =36.又f (x )在(0,2)上是减函数,在(2,+∞)上是增函数,所以使f (x )<f ⎝ ⎛⎭⎪⎫14成立的x 的取值范围是⎝ ⎛⎭⎪⎫14,36.故选B.答案:B10.[2019·福州质量抽测]如图,函数f (x )的图象为两条射线CA ,CB 组成的折线,如果不等式f (x )≥x 2-x -a 的解集中有且仅有1个整数,则实数a 的取值范围是( )A .{a |-2<a <-1}B .{a |-2≤a <-1}C .{a |-2≤a <2}D .{a |a ≥-2}解析:根据题意可知f (x )=⎩⎪⎨⎪⎧2x +2,x ≤0,-x +2,x >0,不等式f (x )≥x 2-x -a 等价于a ≥x2-x -f (x ),令g(x)=x2-x-f(x)=⎩⎪⎨⎪⎧x2-3x-2,x≤0,x2-2,x>0可得g(x)的大致图象,如图所示,又g(0)=-2,g(1)=-1,g(-1)=2,所以要使不等式的解集中有且仅有1个整数,则-2≤a<-1,即a的取值范围是{a|-2≤a<-1}.故选B.答案:B11.[2019·合肥质检]已知函数f(x)=ax2-2x+ln x有两个不同的极值点x1,x2,若不等式λ>f(x1)+f(x2)恒成立,则实数λ的取值范围是( )A.[-3,+∞)B.(3,+∞)C.[-e,+∞)D.(e,+∞)解析:函数f(x)的定义域为(0,+∞),且f′(x)=2ax-2+1x=2ax2-2x+1x,由题意知,2ax2-2x+1=0有两个不同的正实数根,则⎩⎪⎨⎪⎧Δ=4-8a>0,x1+x2=1a>0,x1x2=12a>0,解得0<a<12.f(x1)+f(x2)=ax21-2x1+ln x1+ax22-2x2+ln x2=a[(x1+x2)2-2x1x2]-2(x1+x2)+ln(x1x2)=a⎝⎛⎭⎪⎫1a2-2·12a-2·1a+ln12a=-ln(2a)-1a-1.令g(a)=-ln(2a)-1a-1,则g′(a)=-1a+1a2=1a⎝⎛⎭⎪⎫1a-1>0,所以g(a)在⎝⎛⎭⎪⎫0,12上单调递增,所以g(a)<g⎝⎛⎭⎪⎫12=-3,即f(x1)+f(x2)<-3.因为不等式λ>f(x1)+f(x2)恒成立,所以λ≥-3,即实数λ的取值范围是[-3,+∞),故选A.答案:A12.[2019·福建五校联考]设函数f′(x)是奇函数f(x)(x∈R)的导函数,当x>0时,f′(x)ln x<-1xf(x),则使得(x2-4)f(x)>0成立的x的取值范围是( ) A.(-2,0)∪(0,2)C .(-2,0)∪(2,+∞)D .(-∞,-2)∪(0,2)解析:设函数g (x )=f (x )ln x ,则g ′(x )=f ′(x )ln x +1xf (x ).于是,当x >0时,由f ′(x )ln x <-1xf (x )可得g ′(x )<0,所以函数g (x )在(0,+∞)上单调递减.从而,当x >1时,有g (x )<g (1)=0,即f (x )ln x <0,又ln x >0,所以此时f (x )<0;当0<x <1时,有g (x )>g (1)=0,即f (x )ln x >0,又ln x <0,所以此时f (x )<0.在题设不等式中取x =1可得f ′(1)ln1<-11f (1),化简得f (1)<0,即当x =1时,f (x )<0.于是,由上述讨论可知:当x >0时,f (x )<0,故由(x 2-4)f (x )>0得x 2-4<0,结合x >0,解得0<x <2.当x <0时,由f (x )为奇函数及“当x >0时,f (x )<0”可得f (x )>0,故由(x 2-4)f (x )>0得x 2-4>0,结合x <0,解得x <-2.易知f (0)=0,所以x =0不满足(x 2-4)f (x )>0.综上,x 的取值范围是(-∞,-2)∪(0,2).故选D.答案:D13.[2019·湖南四校调研]已知函数f (x )=a -x 2(1e≤x ≤e,e 为自然对数的底数)与g (x )=2ln x 的图象上存在关于x 轴对称的点,则实数a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤1,1e 2+2 B.[]1,e 2-2C.⎣⎢⎡⎦⎥⎤1e 2+2,e 2-2 D.[)e 2-2,+∞解析:由条件知,方程a -x 2=-2ln x ,即a =x 2-2ln x 在⎣⎢⎡⎦⎥⎤1e ,e 上有解.设h (x )=x2-2ln x ,则h ′(x )=2x -2x =2(x -1)(1+x )x .因为当x ∈⎝ ⎛⎭⎪⎫1e ,1时,h ′(x )<0,当x ∈(1,e)时,h ′(x )>0,所以函数h (x )在⎝ ⎛⎭⎪⎫1e ,1上单调递减,在(1,e)上单调递增,所以h (x )min =h (1)=1.因为h ⎝ ⎛⎭⎪⎫1e =1e 2+2,h (e)=e 2-2,所以h (e)>h ⎝ ⎛⎭⎪⎫1e ,所以方程a =x 2-2ln x 在⎣⎢⎡⎦⎥⎤1e,e 上有解等价于1≤a ≤e 2-2,所以a 的取值范围为[1,e 2-2],故选B.答案:B14.[2019·广州调研]已知过点A (a,0)作曲线C :y =x ·e x的切线有且仅有两条,则实数a 的取值范围是( )A .(-∞,-4)∪(0,+∞)B .(0,+∞)D .(-∞,-1)解析:对函数y =x ·e x求导得y ′=e x+x ·e x=(1+x )e x.设切点坐标为,则过点A (a,0)的切线斜率,化简得x 20-ax 0-a =0.依题意知,上述关于x 0的二次方程有两个不相等的实数根,所以Δ=(-a )2-4×1×(-a )>0,解得a <-4或a >0.故选A.答案:A15.[2019·江西五校联考]已知函数f (x )=a ln x -bx 2,a ,b ∈R .若不等式f (x )≥x 对所有的b ∈(-∞,0],x ∈(e ,e 2]都成立,则a 的取值范围是( )A .[e ,+∞)B.⎣⎢⎡⎭⎪⎫e 22,+∞C.⎣⎢⎡⎭⎪⎫e22,e 2 D .[e 2,+∞)解析:f (x )≥x 对所有的b ∈(-∞,0],x ∈(e ,e 2]都成立,即a ln x -bx 2≥x ,a ln x -x ≥bx 2对所有的b ∈(-∞,0],x ∈(e ,e 2]都成立,因为b ∈(-∞,0],x ∈(e ,e 2],所以bx 2的最大值为0,所以a ln x -x ≥0在x ∈(e ,e 2]时恒成立,所以a ≥xln x在x ∈(e ,e 2]时恒成立,令g (x )=x ln x ,x ∈(e ,e 2],则g ′(x )=ln x -1ln 2x >0恒成立,所以g (x )=x ln x单调递增,所以当x =e 2时,g (x )取得最大值e 22,所以a ≥e22,故选B.答案:B16.[2019·洛阳统考]已知函数f (x )的图象在点(x 0,f (x 0))处的切线为l :y =g (x ),若函数f (x )满足∀x ∈I (其中I 为函数f (x )的定义域),当x ≠x 0时,[f (x )-g (x )](x -x 0)>0恒成立,则称x 0为函数f (x )的“转折点”.已知函数f (x )=ln x -ax 2-x 在(0,e]上存在一个“转折点”,则a 的取值范围为( )A.⎣⎢⎡⎭⎪⎫12e 2,+∞B.⎝ ⎛⎦⎥⎤-1,12e 2C.⎣⎢⎡⎭⎪⎫-12e 2,1D.⎝⎛⎦⎥⎤-∞,-12e 2 解析:解法一:f ′(x )=1x-2ax -1,则f (x )的图象在x =x 0处的切线的斜率k =f ′(x 0)=1x 0-2ax 0-1,所以切线的方程为y =g (x )=⎝ ⎛⎭⎪⎫1x 0-2ax 0-1(x -x 0)+ln x 0-ax 20-x 0.记h (x )=f (x )-g (x )=ln x -ax 2-x -⎝ ⎛⎭⎪⎫1x 0-2ax 0-1(x -x 0)-ln x 0+ax 20+x 0,显然h (x 0)=0,h ′(x )=1x -2ax -1-⎝ ⎛⎭⎪⎫1x 0-2ax 0-1=-2a x (x -x 0)⎝ ⎛⎭⎪⎫x +12ax 0.当a >0时,h (x )在(0,x 0)上单调递增,在(x 0,+∞)上单调递减,所以h (x )<h (x 0)=0,因此当x ∈(0,x 0)时,[f (x )-g (x )](x -x 0)>0,当x ∈(x 0,+∞)时,[f (x )-g (x )](x -x 0)<0,因此当a >0时,f (x )在(0,+∞)上不存在“转折点”,排除A ,B ,C ,故选D.解法二:由题意知,当x >x 0时,f (x )的图象在g (x )图象的上方,当x <x 0时,f (x )的图象在g (x )图象的下方.当a =0时,f (x )=ln x -x ,f ′(x )=1x -1=1-x x,当x ∈(0,1)时,f ′(x )>0,f (x )单调递增,当x ∈(1,e]时,f ′(x )<0,f (x )单调递减.又f (1)=-1,f (e)=1-e ,所以f (x )在(0,e]上的大致图象如图(1),由图(1)可知f (x )在(0,e]上不存在“转折点”,排除B ,C.当a =1时,f (x )=ln x -x 2-x ,f ′(x )=1x -2x -1=(-2x +1)(x +1)x,当x ∈⎝ ⎛⎭⎪⎫0,12时,f ′(x )>0,f (x )单调递增,当x ∈⎝ ⎛⎦⎥⎤12,e 时,f ′(x )<0,f (x )单调递减.又f ⎝ ⎛⎭⎪⎫12=-ln2-34,f (e)=1-e 2-e ,所以f (x )在(0,e]上的大致图象如图(2),由图(2)可知f (x )在(0,e]上不存在“转折点”,排除A.故选D.图(1)图(2)答案:D 二、填空题17.[2019·北京卷]设函数f (x )=e x +a e -x(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是________.解析:∵f (x )为奇函数,∴f (-x )=-f (x ),e -x+a e x =-e x -a e -x ,∴(1+a )e -x+(1+a )e x=0,∴a =-1;∵f (x )是单调递增,∴f ′(x )=e x-a e -x=e 2x-aex ≥0,∴e 2x-a ≥0,a ≤0,故a 的取值范围是(-∞,0]. 答案:-1 (-∞,0]18.[2019·江苏卷]在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是________.解析:设A (x 0,ln x 0),又y ′=1x ,则曲线y =ln x 在点A 处的切线方程为y -ln x 0=1x 0(x-x 0),将(-e ,-1)代入得,-1-ln x 0=1x 0(-e -x 0),化简得ln x 0=ex 0,解得x 0=e ,则点A 的坐标是(e,1).答案:(e,1)19.[2019·武昌调研]已知f (x )是定义域为R 的奇函数,且函数y =f (x -1)为偶函数,当0≤x ≤1时,f (x )=x 3,则f ⎝ ⎛⎭⎪⎫52=________.解析:解法一:因为f (x )是R 上的奇函数,y =f (x -1)为偶函数,所以f (x -1)=f (-x -1)=-f (x +1),所以f (x +2)=-f (x ),f (x +4)=f (x ),即f (x )的周期T =4,因为0≤x ≤1时,f (x )=x 3,所以f ⎝ ⎛⎭⎪⎫52=f ⎝ ⎛⎭⎪⎫52-4=f ⎝ ⎛⎭⎪⎫-32=-f ⎝ ⎛⎭⎪⎫32=-f ⎝ ⎛⎭⎪⎫1+12=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-18.解法二:因为f (x )是R 上的奇函数,y =f (x -1)为偶函数,所以f (x -1)=f (-x -1)=-f (x +1),所以f (x +2)=-f (x ),由题意知,当-1≤x <0时,f (x )=x 3,故当-1≤x ≤1时,f (x )=x 3,当1<x ≤3时,-1<x -2≤1,f (x )=-(x -2)3,所以f ⎝ ⎛⎭⎪⎫52=-⎝ ⎛⎭⎪⎫52-23=-18. 答案:-1820.[2019·长沙四校一模]若定义域为R 的奇函数f (x )满足f (2-x )=f (x ),且当0≤x ≤1时,f (x )=x ,则函数g (x )=e xf (x )在区间[-1,5]上的最小值为________.解析:根据f (x )为奇函数,且当0≤x ≤1时,f (x )=x ,得-1≤x ≤1时,f (x )=x .由f (2-x )=f (x ),得f (x )的图象关于直线x =1对称,故由-1≤x ≤1时,f (x )=x ,得1<x ≤3时,f (x )=2-x .根据f (-x )=-f (x ),f (2-x )=f (x ),得f (x +4)=f (2-x -4)=f (-x -2)=-f (x +2)=-f (2-x -2)=-f (-x )=f (x ),所以f (x )的周期为4,所以当3<x ≤5时,f (x )=x -4.于是,当-1≤x ≤1时,g (x )=x e x ,g ′(x )=(x +1)e x,g (x )在[-1,1]上是增函数,-1e≤g (x )≤e; 当1<x ≤3时,g (x )=(2-x )e x ,g ′(x )=(1-x )e x,g (x )在(1,3]上是减函数,-e 3≤g (x )≤e;当3<x ≤5时,g (x )=(x -4)e x ,g ′(x )=(x -3)e x,g (x )在(3,5]上是增函数,-e 3<g (x )≤e 5.综上,g (x )在[-1,5]上的最小值为-e 3. 答案:-e 3。