数列与不等式的综合问题
数列与不等式的综合问题突破策略1
数列与不等式的综合问题突破策略【题1】 等比数列{a n }的公比q >1,第17项的平方等于第24项,求使a 1+a 2+…+a n >1231111na a a a ++++……恒成立的正整数n 的范围.【题2】设数列{a n }的前n 项和为S n .已知a 1=a ,a n +1=S n +3n ,n ∈N *.(1)设b n =S n -3n ,求数列{b n }的通项公式;(2)若a n +1≥a n ,n ∈N *,求a 的取值范围.【题3】 数列{a n }是等差数列,其前n 项和为S n ,a 3=7,S 4=24.(1)求数列{a n }的通项公式; (2)设p 、q 都是正整数,且p ≠q ,证明:S p +q <12(S 2p +S 2q ).【题4】已知数列{}n a 中,113,21(1)n n a a a n +==-≥(1)设1(1,2,3)n n b a n =-= ,求证:数列{}n b 是等比数列; (2)求数列{}n a 的通项公式(3)设12n n n n c a a +=⋅,求证:数列{}n c 的前n 项和13n S <.【题5】已知数列{}n a 满足11111,,224nn n a a a n N ++⎛⎫==∈ ⎪⎝⎭.(1)求数列{}n a 的通项公式;(2)若数列{}n b 的前n 项和2n s n =,112233n n n T a b a b a b a b =++++ ,求证:3n T <.【题6】已知α为锐角,且12tan -=α,函数)42sin(2tan )(2παα+⋅+=x x x f ,数列{a n }的首项)(,2111n n a f a a ==+. ⑴ 求函数)(x f 的表达式; ⑵ 求证:n n a a >+1; ⑶ 求证:),2(21111111*21N n n a a a n∈≥<++++++<【题7】已知数列{}n a 满足()111,21n n a a a n N*+==+∈(1)求数列{}n a 的通项公式; (2)若数列{}n b 满足n n b n b b b b a )1(44441111321+=---- ,证明:{}n a 是等差数列;(3)证明:()23111123n n N a a a *++++<∈【题8】数列{}n a 满足411=a ,()),2(2111N n n a a a n nn n ∈≥--=--. (1)求数列{}n a 的通项公式n a ; (2)设21nn a b =,求数列{}n b 的前n 项和n S ;(3)设2)12(sinπ-=n a c n n ,数列{}n c 的前n 项和为n T . 求证:对任意的*∈N n ,74<n T .【题9】已知数列{}n a 的前n 项和为n S ,且对于任意的*n N ∈,恒有2n n S a n =-,设2log (1)n n b a =+.(1)求证:数列{1}n a +是等比数列; (2)求数列{}{},n n a b 的通项公式n a 和n b ;(3)若12n b n n n c a a +=⋅,证明:1243n c c c +++< .【题10】 等比数列{a n }的首项为a 1=2002,公比q =-12.(1)设f (n )表示该数列的前n 项的积,求f (n )的表达式; (2)当n 取何值时,f (n )有最大值.【题11】 已知{a n }的前n 项和为S n ,且a n +S n =4. (1)求证:数列{a n }是等比数列;(2)是否存在正整数k ,使S k+1-2S k -2>2成立.【题12】设数列{}{}n n b a ,满足3,4,6332211======b a b a b a , 且数列{}()++∈-Nn a a n n 1是等差数列,数列{}()+∈-N n bn2是等比数列.(1)求数列{}n a 和{}n b 的通项公式;(2)是否存在+∈N k ,使⎪⎭⎫ ⎝⎛∈-21,0k k b a ,若存在,求出k ,若不存在,说明理由.数列与不等式综合解答与评析类型1:求有数列参与的不等式恒成立条件下参数问题求数列与不等式相结合恒成立条件下的参数问题主要两种策略:(1)若函数f (x )在定义域为D ,则当x ∈D 时,有f (x )≥M 恒成立⇔f (x )min ≥M ;f (x )≤M 恒成立⇔f (x )max ≤M ;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得.【题1】 利用条件中两项间的关系,寻求数列首项a 1与公比q 之间的关系,再利用等比数列前n 项公式和及所得的关系化简不等式,进而通过估算求得正整数n 的取值范围. 【解】 由题意得:(a 1q 16)2=a 1q 23,∴a 1q 9=1. 由等比数列的性质知数列{1n a }是以11a 为首项,以1q为公比的等比数列,要使不等式成立, 则须1(1)1n a q q -->111(1)11n a q q--,把a 21=q -18代入上式并整理,得q -18(q n -1)>q (1-1n q ),q n >q 19,∵q >1,∴n >19,故所求正整数n 的取值范围是n ≥20.【点评】 本题解答数列与不等式两方面的知识都用到了,主要体现为用数列知识化简,用不等式知识求得最后的结果.本题解答体现了转化思想、方程思想及估算思想的应用.【题2】 第(1)小题利用S n 与a n 的关系可求得数列的通项公式;第(Ⅱ)小题将条件a n +1≥a n 转化为关于n 与a 的关系,再利用a ≤f (n )恒成立等价于a ≤f (n )min 求解. 【解】 (1)依题意,S n +1-S n =a n +1=S n +3n ,即S n +1=2S n +3n ,由此得S n +1-3 n +1=2(S n -3n ).因此,所求通项公式为b n =S n -3n =(a -3)2 n -1,n ∈N *, ① (2)由①知S n =3n +(a -3)2 n -1,n ∈N *,于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2 n -1-3n -1-(a -3)2 n -2=2×3n -1+(a -3)2 n -2,a n +1-a n =4×3 n -1+(a -3)2 n -2=2 n -2·[12·(32)n -2+a -3],当n ≥2时,a n +1≥a n ,即2 n -2·[12·(32)n -2+a -3]≥0,12·(32)n -2+a -3≥0,∴a ≥-9,综上,所求的a 的取值范围是[-9,+∞)【点评】 一般地,如果求条件与前n 项和相关的数列的通项公式,则可考虑S n 与a n 的关系求解.本题求参数取值范围的方法也一种常用的方法,应当引起重视.类型2:数列参与的不等式的证明问题此类不等式的证明常用的方法:(1)比较法,特别是差值比较法是最根本的方法;(2)分析法与综合法,一般是利用分析法分析,再利用综合法分析;(3)放缩法,主要是通过分母分子的扩大或缩小、项数的增加与减少等手段达到证明的目的.【题3】 根据条件首先利用等差数列的通项公式及前n 项公式和建立方程组即可解决第(1)小题;第(2)小题利用差值比较法就可顺利解决.【解】 (1)设等差数列{a n }的公差是d ,依题意得,⎩⎨⎧ a 1+2d =74a 1+6d =24,解得⎩⎨⎧ a 1=3d =2,∴数列{a n }的通项公式为a n =a 1+(n -1)d =2n +1. (2)证明:∵a n =2n +1,∴S n =1()2n n a a +=n 2+2n . 2S p +q -(S 2p +S 2q )=2[(p +q )2+2(p +q )]-(4p 2+4p )-(4q 2+4q )=-2(p -q )2, ∵p ≠q ,∴2S p +q -(S 2p +S 2q )<0,∴S p +q <12(S 2p +S 2q ).【点评】 利用差值比较法比较大小的关键是对作差后的式子进行变形,途径主要有:(1)因式分解;(2)化平方和的形式;(3)如果涉及分式,则利用通分;(4)如果涉及根式,则利用分子或分母有理化.【题4】(1)由121n n a a +=-得到112(1)n n a a +-=-,即1121n n a a +-=-……2分【点评】关于数列求和与不等式相结合的问题,常结合裂项相消或错位相减法放缩求和.【题5】(1)1122111124,41124n n n n nn n na a a a a a +++++⎛⎫ ⎪⎝⎭=∴=⎛⎫ ⎪⎝⎭, 又11221111,,2244a a a a ==⋅∴= , {}n a ∴是公比为12的等比数列,12nn a ⎛⎫∴= ⎪⎝⎭(2)21n b n =-,231135232122222n n n n n T ---=++++ ……①, 234111352321222222n n n n n T +--=+++++ ②, ①-②得: 2311112222132322222222n n n n n n T ++-+=++++-=- , 2332n n n T +∴=- 3n T ∴<【题6】⑴1)12(1)12(2tan 1tan 22tan 22=---=-=ααα 又∵α为锐角 ∴42πα=∴1)42sin(=+πα x x x f +=2)(⑵ n n n a a a +=+21 ∵211=a ∴n a a a ,,32都大于0 ∴02>n a ∴n n a a >+1 ⑶nn n n n n n a a a a a a a +-=+=+=+111)1(11121∴11111+-=+n n n a a a ∴1322121111111111111+-++-+-=++++++n n n a a a a a a a a a 1111211++-=-=n n a a a ∵4321)21(22=+=a , 143)43(23>+=a , 又∵n n a a n >≥+12 ∴131>≥+a a n ∴21211<-<+n a∴2111111121<++++++<na a a【题7】(1)121+=+n n a a ,)1(211+=+∴+n n a a ……………………2分 故数列}1{+n a 是首项为2,公比为2的等比数列。
第2讲 数列求和与数列不等式
(2)设
b1=a1,bbn+n 1=an+1,cn=
易错 提醒
(1)利用裂项相消法求和时,应注意抵消后并不一定只剩下第一 项和最后一项,也有可能前面剩两项,后面也剩两项. (2)将通项公式裂项时,有时候需要调整前面的系数,才能使裂 项前后的式子相等.
跟踪演练2 已知数列{an}是公比q≠1的等比数列,且a4=27,3a1,2a2, a3成等差数列. (1)求数列{an}的通项公式;
解 Sn=-nn- 2 1,Tn=2n-1, 代入可得,t·2n-nn2-1-nn+ 2 1>0,即 t>n22nmax, 令 cn=n22n, 则 cn+1-cn=n2+n+112-n22n=-n2+2n+21n+1>0⇒n≤2,
所以n≤2时,cn+1>cn;n≥3时cn+1<cn.
因此,(cn)max=c3=98⇒t>98. 即实数 t 的取值范围是98,+∞.
(2)已知数列{bn}满足bn=6n-8,其前n项和为Tn,若Sn≥(-1)n·λ·Tn对 任意n∈N*恒成立,求实数λ的取值范围.
解 因为bn=6n-8, 所以 Tn=n-2+26n-8=n(3n-5), 由(1)得 Sn=n2+n1·an=n·2n+1, 所以2n+1≥(-1)n·λ·(3n-5)恒成立, 当n为偶数时,2n+1≥λ·(3n-5)恒成立, 所以 λ≤32nn-+15min, 设 cn=32nn-+15,
2 考点二 裂项相消法
数列与不等式复习题
数列与不等式复习题(一)1.数列 ,8,5,2,1-的一个通项公式为 ( ) A .43-=n a n B .43+-=n a n C .()43)1(--=n a nn D .()43)1(1--=-n a n n2、在数列{}n a 中,122,211=-=+n n a a a ,则101a 的值为( )A .49B .50C .51D .523、已知等比数列{a n }的公比为2, 前4项的和是1, 则前8项的和为( ) A .15. B .17. C .19. D .21 4.不等式01312>+-x x 的解集是 ( )A .}2131|{>-<x x x 或B .}2131|{<<-x xC .}21|{>x xD .}31|{->x x5.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( )A.5B.4C. 3D. 2 6.数列 ,1614,813,412,211前n 项的和为( ) A .2212nn n ++B .12212+++-nn nC .2212nn n ++-D . 22121nn n -+-+7.f x ax ax ()=+-21在R 上满足f x ()<0,则a 的取值范围是( )A .a ≤0B .a <-4C .-<<40aD .-<≤40a8.在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于( )(A)122n +- (B) 3n (C) 2n (D)31n -9.已知在等比数列{}n a 中,各项均为正数,且,7,13211=++=a a a a 则数列{}n a 的通项公式是_________=n a .10.若方程x x a a 22220-+-=lg()有一个正根和一个负根,则实数a 的取值范围是__________________.11.设n S 为等差数列{}n a 的前n 项和,若5,10105-==S S ,则公差为 (用数字作答). 12.已知实数a ,b ,c 成等差数列,和为15,且a +1,b +1,c +4成等比数列,求a ,b ,c .13.已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15,求S n =f (1)+f (2)+…+f (n )的表达式.14. 数列{a n }的前n 项和为S n ,且a 1=1,113n n a S +=,n =1,2,3,……,求 (I )a 2,a 3,a 4的值及数列{a n }的通项公式; (II )2462n a a a a ++++ 的值.数列与不等式复习题(一)答案9.12n - 10.11,0,122⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭11.-1 12.解:由题意,得215 (1)2(2)(1)(4)(1)(3)a b c a c b a c b ⎧++=⎪+=⎨⎪++=+⎩………………由(1)(2)两式,解得5b =将10c a =-代入(3),整理得213220a a -+=,解得 2a =或11a =故2a =,5,8b c ==或11,5,1a b c ===- 经验算,上述两组数符合题意。
数列与不等式结合典型题.doc
数列与不等式结合典型题1.已知数列}{n a 中,),3,2,1(0 =>n a n ,其前n 项和为n S ,满足*,)1(N n a p S p n n ∈-=-,10≠>p p 且. 数列}{n b 满足.log 1n p n a b -=(Ⅰ)求数列}{n a 、}{n b 的通项n n b a 与;(Ⅱ)若n n n n T a b c p ,,21==记为数列}{n c 的前n 项和,求证:.40<<n T2.已知定义在(-1,1)上的函数)1,1(,,1)21()(-∈=y x f x f 且对满足时,有).1()()(xyy x f y f x f --=- (I )判断)1,1()(-在x f 的奇偶性,并证明之; (II )令)}({,12,21211n nn n x f x x x x 求数列+==+的通项公式; (III )设T n 为数列})(1{n x f 的前n 项和,问是否存在正整数m ,使得对任意的34,-<∈*m T N n n 有成立?若存在,求出m 的最小值;若不存在,则说明理由.3.设函数)0()(22>-+=a a x x x f 1)求)()(1x f x f -的反函数及定义域;2)若数列}{,),(,3}{111n n n n n n n b a a a a b a f a a a a 求设满足+-===-+的通项公式,3)S n 表示{b n }的前n 项和,试比较S n 与87的大小. 4.已知数列.)11(2,2:}{211n n n a na a a +==+满足(1)求数列}{n a 的通项公式;(2)设n n C Bn Anb 2)(2⋅++=,试推断是否存在常数A ,B ,C ,使对一切*∈N n 都有n n n b b a -=+1成立?说明你的理由;(3)求证:.2)22(2221+⋅+-≥+++n n n n a a a5. 设函数f (x )=22-ax x (a ∈N*), 又存在非零自然数m, 使得f (m )= m , f (– m )< –m1成立. (1) 求函数f (x )的表达式;(2) 设{a n }是各项非零的数列, 若)...(41)1(21n n a a a a f +++=对任意n ∈N*成立, 求数 列{a n }的一个通项公式;(3) 在(2)的条件下, 数列{a n }是否惟一确定? 请给出判断, 并予以证明6. 已知函数)3(1)(b ax f x -=的图象过点A (1,2)和B (2,5). (1)求函数)(x f 的反函数)(1x f-的解析式; (2)记*)(,3)(1N n a n f n ∈=-,试推断是否存在正数k ,使得 12)11()11)(11(21+≥+++n k a a a n对一切*N n ∈均成立?若存在,求出k 的 最大值;若不存在,说明理由.答案1.解:(I )1=n 时,.10.0)1()1(1111=⇒>=-⇒-=-a p a p a p a p 由 1分当,)1(2n n a p S p n -=-≥ ①,)1(11++-=-n n a p S p ② 由②-①,有,)1(11++-=-n n n a a a p 2分从而,.111pa a a pa n n n n =⇒=++ ∴数列}{n a 是以1为首项,p1为公比的等比数列. ∴1)1(-=n n p a .∴.)1(1)1(log 1log 11n n p a b n p n p n =--=-=-=-(II )当21=p 时,.21-==n n n n n a b c 1分 ∵.0.0>∴>n n T c12102232221-++++=n n n T , ③n n n n n T 221222121121+-+++=∴- . ④ 由③-④,得n n n n T 221212121211210-++++=- .22222122211)21(11n n n n nn n n +-=--=---=-.2241-+-=∴n n n T 1分 .40.4,0221<<∴<∴>+∴-n n n T T n 1分 2.解:(I )令0)0(,0===f y x 得。
数列与不等式30大题(有答案)
S1 S2
Sn
第 1页(共 23页)
10. 在等比数列 an 和等差数列 bn 中,a1 = b1 > 0,a3 = b3 > 0,a1 ≠ a3,试比较 a5 和 b5 的大 小.
11. 设数列 an 的前 n 项和为 Sn,且 a1 = 1,an+1 = 1 + Sn n ∈ ∗ .
(1) 求数列 an 的通项公式;
∗ 成立,
18. 已知常数 p 满足 0 < p < 1,数列 xn 满足 x1 = p + 1p,xn+1 = xn2 − 2.
(1) 求 x2,x3,x4;
(2) 猜想 xn 的通项公式(不用给出证明); (3) 求证:xn+1 > xn 对 n ∈ ∗ 成立.
19. 设 b > 0 ,数列
an
大值.
7. 已知 an 是正整数组成的数列,a1 = 1 ,且点( an,an+1 )( n ∈ ∗ )在函数 y = x2 + 1 的图象上;
(1) 求数列 an 的通项公式;
(2) 若数列 bn 满足 b1 = 1,bn+1 = bn + 2an ,求证:bn ⋅ bn+2 < bn2+1
8. x,y ∈
∈
+ 都成立
的最大正整数 k 的值.
6. 已知数列 an 是等比数列,首项 a1 = 1,公比 q > 0,其前 n 项和为 Sn,且 S1 + a1,S3 + a3,
S2 + a2 成等差数列.
(1) 求数列 an 的通项公式;
(2) 若数列
bn
满足 an+1 =
数列与不等式30大题(有答案)
数列与不等式综合问题30道1. 已知数列是等差数列,().证明:数列是等差数列.2. 已知曲线,过上的点作斜率为的直线交曲线于另一点,点列的横坐标构成数列,其中.(1) 求与的关系式;(2) 令,求证:数列是等比数列;(3) 若(为非零整数,),试确定的值,使得对任意,都有成立.3. 设,是曲线在点处的切线与轴交点的横坐标,(1) 求数列的通项公式;(2) 记,证明:.4. 已知数列满足,.(1) 求数列的通项公式;(2) 证明:.5. 已知数列的前项和为,点在直线上.数列满足,,且其前项和为.(1) 求数列,的通项公式.(2) 设,数列的前项和为,求使不等式对一切都成立的最大正整数的值.6. 已知数列是等比数列,首项,公比,其前项和为,且,,成等差数列.(1) 求数列的通项公式;(2) 若数列满足,为数列的前项和,若恒成立,求的最大值.7. 已知是正整数组成的数列, ,且点( )( )在函数的图象上;(1) 求数列的通项公式;(2) 若数列满足, ,求证:8. ,且,若依次成等差数列,依次成等差数列,试比较与的大小.9. 已知数列的各项为正数,其前项和满足.(1) 求与之间的关系式,并求的通项公式;(2) 求证:.10. 在等比数列和等差数列中,,,,试比较和的大小.11. 设数列的前项和为,且,.(1) 求数列的通项公式;(2) 若数列为等差数列,且,公差为.当时,比较与的大小.12. 已知数列中,,.(1) 求证:是等比数列,并求的通项公式;(2) 设,记其前项和为,若不等式对一切恒成立,求的取值范围.13. 已知数列的前项和为,,,数列的前项和为,点在函数图象上.(1) 求数列的通项公式;(2) 求;(3) 试比较和的大小,并证明.14. 已知等差数列的前项和为,非常数等比数列的公比是,且满足:,,,.(1) 求与;(2) 设,若数列是递减数列,求实数的取值范围.15. 某种汽车的购车费用是万元,每年使用的保险费、养路费、汽油费约为万元,年维修费用第一年是万元,以后逐年递增万元,问这种汽车使用多少年时,它的年平均费用最小?最小值是多少?16. 是否存在一个等差数列,使是一个与无关的常数?若存在,求此常数;若不存在,请说明理由.17. 函数,数列满足,,(1) 求证:数列是等差数列;(2) 令,,,若对一切成立,求最小正整数.18. 已知常数满足,数列满足,.(1) 求,,;(2) 猜想的通项公式(不用给出证明);(3) 求证:对成立.19. 设,数列满足,.(1) 求数列的通项公式;(2) 证明:对于一切正整数,.20. 已知常数满足,数列满足,.(1) 求,,;(2) 猜想的通项公式,并给出证明;(3) 求证:对成立.21. 设,,,若将适当排序后可构成公差为的等差数列的前三项.(1) 求的值及的通项公式;(2) 记函数的图象在轴上截得的线段长为,设,求.22. 已知数列的首项,,(1) 求证:是等比数列,并求出的通项公式;(2) 证明:对任意的,,(3) 证明:.23. 在数列中,,.(1) 证明数列是等差数列;(2) 求数列的通项;(3) 若对任意的整数恒成立,求实数的取值范围.24. 在数列中,,().(1) 证明:数列是等差数列;(2) 求数列的通项;(3) 若对任意的整数恒成立,求实数的取值范围.25. 已知数列中,,,且.(1) 求数列的通项公式;(2) 求证:对一切,有.26. 已知数列满足,.(1) 证明:数列为单调递减数列;(2) 记为数列的前项和,证明:.27. 已知,函数.记为的从小到大的第个极值点.(1) 证明:数列是等比数列;(2) 若对一切,恒成立,求的取值范围.28. 设数列的前项和满足,其中.(1) 求证:是首项为的等比数列;(2) 若,求证:,并给出等号成立的充要条件.29. 设数列定义为,,.(1) 证明:存在正实数,使得,,成等差数列;(2) 求实数的取值范围,使得当时,.30. 已知数列满足,().(1) 证明:数列是等比数列;(2) 令,数列的前项和为,(ⅰ)证明:;(ⅱ)求证:当时,.数列与不等式30大题答案1. 设公差为,则所以,,根据等差数列的定义,得是首项为,公差为的等差数列.2. (1) 依题意得:.又和在曲线上,所以.所以,即.(2) .所以.将(1)中的结论代入整理得.所以数列是首项为,公比的等比数列.(3) 由(2)知,要使恒成立,即恒成立,所以恒成立,当为奇数时,恒成立,所以.当为偶数时,恒成立,所以.所以,因为为非零整数,所以.3. (1) ,曲线在点处的切线斜率为.从而切线方程为.令,解得切线与轴交点的横坐标.所以数列的通项公式.(2) 由题设和(1)中的计算结果知当时,.当时,因为,所以综上可得,对任意的,均有.4. (1) 由已知可得,所以,即,所以,又,所以,所以数列是以为首项,为公比的等比数列,所以,所以.(2) 证明:因为所以,因为是正整数,所以,所以,所以,所以.5. (1) 由已知得,所以.当时,有当时,也符合上式,所以由知是等差数列,由的前项和为,可得,得又,所以的公差.因为,所以,所以.(2) ,所以因为增大时,增大,所以是递增数列,所以所以对一切都成立,只要即可,解得,所以.6. (1) 由题意可知:,所以,即,于是,因为,所以;因为,所以.(2) 因为,所以,所以,所以,所以,所以得:,所以,因为恒成立,只需,因为,所以为递增数列,所以当时,,所以,所以的最大值为.7. (1) 由已知得 ,又 ,所以数列是以为首项,公差为的等差数列.故.(2) 证法一:由(1)知,从而.因为所以 .证法二:因为, ,所以.8. 由题意知,所以因为且,所以.所以,所以.9. (1)由得,.是公差的等差数列.而,. (2) 由(1)知,.,10. 设等比数列的公比是,等差数列的公差时.由及,得;由,从而..所以.11. (1) 因为所以当时,由两式相减,得,即,因为当时,,所以,所以.所以数列是首项为,公比为的等比数列,所以.(2) 因为,所以,,因为,由,得,所以当时,.12. (1) 证明:因为数列中,,,所以,又,所以是以为首项,为公比的等比数列,所以,所以.(2) 因为,所以①-②,得所以,因为不等式对一切恒成立,所以对一切恒成立,所以对一切恒成立,设,则是递增函数,所以.所以.13. (1) 当时,,所以;当时,由,得,两式作差,得即所以数列从第二项起是等比数列,所以(2) 因为点在直线上,所以时,;时,因为所以由得所以时,,经检验,时也成立.综上,.(3) ,所以时,,所以;时,,所以;时,,所以.14. (1) 设等差数列的公差为,则,且,即有,解得或(舍去),即有,,则;.(2) ,由题意可得对恒成立,即有,即,即对恒成立,由为递减数列,即有的最大值为,则有,解得,故实数的取值范围为.15. 设这种汽车使用年时,它的年平均费用为万元,则当且仅当,即时.因此,使用年时,年平均费用最小,最小值是万元.16. 假设存在一个等差数列,使,且为首项,为公差.由,得整理,得式是关于的一元一次方程,且对都成立.只需即或(i)当时,;(ii)当时,.17. (1) 证明:由已知得,两边取倒数得,又,所以是首项为,公差为的等差数列;(2) 由(1)得,所以,所以.所以显然当时,单调递增且,又,,所以.若对一切成立,则,解得最小正整数18. (1) ,,.(2) 猜想:.(3) 因为,,所以,而由(2)知道,,所以的符号与的符号相同,依次类推,我们只需要证明.因为,而,所以,所以,,所以,所以,即.19. (1) 因为,所以所以① 当时,则是以为首项,为公差的等差数列,所以即② 当且时,当时,所以是以为首项,为公比的等比数列,所以所以所以综上所述,且(2) ① 当时,② 当且时,要证,只需证,即证即证即证即证因为所以原不等式成立,所以对于一切正整数,20. (1) ,,.(2) 猜想:.下面用数学归纳法证明:当时,,结论成立,假设当时,结论成立,即;当时,因为,所以,即时,结论成立,所以对成立.(3) 因为,,所以,而由(2)知道,,所以的符号与的符号相同,依次类推,我们只需要证明.因为,而,所以,所以,,所以,所以,即.21. (1) 依题意有,可得所以最大.又.当时,,,解得,满足.当时,,,解得,不满足.所以的前三项为,,,此时.因此.(2) 因为,所以时,,即.所以.又因为,所以所以所以22. (1) ,,即,又,是以为首项,为公比的等比数列.,.(2)(3) 由,知,当时等号成立..由(2)知,对于任意,有,取,则.故.23. (1) 由得,,所以数列是以为首项,为公差的等差数列.(2) 由(1)可得, .所以.(3) 由对的整数恒成立,即对 ( )恒成立.整理得 ( , ),令,因为,所以,所以为单调递增数列,最小,且,故的取值范围为 .24. (1) 将()整理得().所以数列是以为首项、为公差的等差数列.(2) 由(1)可得,,所以.(3) 对任意的整数恒成立,即对任意的整数恒成立,整理得,令,则.因为,所以,所以数列为单调递增数列,所以最小,.所以的取值范围为.25. (1) 由已知,对有,两边同除以,得,即于是即所以所以又时也成立,故.(2) 当,有所以时,有又时,,故对一切,有.26. (1) 证明:由题意知,故,所以数列为单调递减数列.(2) 证明:因为,,所以,当时,,得,故.因为,故.所以.27. (1) .令,由,得,即.而对于,当时,若,即,则;若,即,则;因此,在区间与上,的符号总相反.于是,当时,取得极值,所以.此时,,易知,而是常数,故数列是首项为,公比为的等比数列.(2) 对一切,恒成立,即恒成立,亦即恒成立(因为).设,则,由得.当时,,所以在上单调递减;当时,,所以在上单调递增.因为,且当时,,,所以.因此,恒成立,当且仅当,解得,故的取值范围是.28. (1) 证法一:由,得即,因,故,得又由题设条件知两式相减得即由,知,因此综上,对所有成立.从而是首项为,公比为的等比数列.证法二:用数学归纳法证明.当时,由,得即,再由,得,所以结论成立.假设时,结论成立,即,那么这就是说,当时,结论也成立.综上可得,对任意.因此是首项为,公比为的等比数列.(2) 证法一:当或时,显然等号成立.设,且.由(1)知,,所以要证的不等式化为即证当时,上面不等式的等号成立.当时,与同为负;当时,与同为正.因此当且时,总有,即上面不等式对从到求和得由此得综上,当且时,有,当且仅当或时等号成立.证法二:当或时,显然,等号成立.当时,,等号也成立.当时,由(1)知,.下证:且当时,上面不等式化为令当时,,故即所要证的不等式成立.当时,求导得其中则即是上的减函数,故,从而进而是上的增函数,因此所要证的不等式成立.当时,令,则,由已证的结论知两边同乘以得所要证的不等式.综上,当且时,有当且仅当或时等号成立.-29. (1) ,,.当,,成等差数列时,,即,当时,有,则.设,则,,在上有零点.所以存在正实数,使得,,成等差数列.(2) 由题意,有,则,显然.所以,.当时,,因为当时,,所以,解得.下面证明当时,对任意整数,有.所以,故当时,数列递减.因此,即当时,对任意整数,有.30. (1) 因为(),所以,两边同除以得,即,也即.又,所以,所以数列是以为首项,为公比的等比数列.(2) 由(1)得,,所以,所以.(ⅰ)原不等式即为:.先用数学归纳法证明不等式:当时,.证明过程如下:当时,左边,不等式成立.假设时,不等式成立,即;则时,左边所以当时,不等式也成立.因此,当时,.显然,当时,,所以当时,.又当时,左边,不等式成立,故原不等式成立.(ⅱ)由(i)可得,.方法一:当时,将上面式子累加得,因为所以即故原不等式成立.方法二:且所以当时,令,则因为,所以因为所以当时,.。
2023年新高考数学一轮复习7-5 数列的综合应用(知识点讲解)含详解
专题7.5 数列的综合应用(知识点讲解)【知识框架】【核心素养】1.数列与传统数学文化、实际问题相结合,考查等差、等比数列的基本运算,凸显数学建模的核心素养. 2.数列与新定义问题相结合,考查转化、迁移能力,凸显数学抽象的核心素养.3.数列与函数、不等式、解析几何等相结合,考查学生综合分析解决问题的能力,凸显逻辑推理的核心素养.【知识点展示】(一)数列与函数数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.(二)数列与不等式1.数列型不等式的证明常用到“放缩法”,一是在求和中将通项“放缩”为“可求和数列”;二是求和后再“放缩”.放缩法常见的放缩技巧有: (1)1k 2<1k 2-1=12⎝ ⎛⎭⎪⎫1k -1-1k +1.(2)1k -1k +1<1k 2<1k -1-1k . (3)2(n +1-n )<1n<2(n -n -1).2.数列中不等式恒成立的问题数列中有关项或前n 项和的恒成立问题,往往转化为数列的最值问题;求项或前n 项和的不等关系可以利用不等式的性质或基本不等式求解.(三)解答数列实际应用问题的步骤(1)确定模型类型:理解题意,看是哪类数列模型,一般有等差数列模型、等比数列模型、简单递推数列模型.基本特征如下:等差数列模型:均匀增加或者减少等比数列模型:指数增长或减少,常见的是增产率问题、存款复利问题简单递推数列模型:指数增长的同时又均匀减少.如年收入增长率为20%,每年年底要拿出a(常数)作为下年度的开销,即数列{}1 1.2n n n a a a a +满足=-(2)准确解决模型:解模就是根据数列的知识,求数列的通项、数列的和、解方程(组)或者不等式(组)等,在解模时要注意运算准确.(3)给出问题的回答:实际应用问题最后要把求解的数学结果化为对实际问题的答案,在解题中不要忽视了这点.【常考题型剖析】题型一:数列与函数的综合例1.(2021·河南·睢县高级中学高三阶段练习(理))已知数列{}n a 的首项11a =,函数()()41cos221n n f x x a x a +=+-+有唯一零点,则通项n a =( ) A .13n -B .12n -C .21n -D .32n -例2.(2023·全国·高三专题练习)设函数()12ln x f x x -=+,11a =,()*21N 1,23n n a f f n f f n n n n n -⎛⎫=+++⋅ ⎪⋅⋅+∈≥ ⎪⎝⎛⎫⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭⎝⎭⎭.则数列{}n a 的前n 项和n S =______. 例3.(2017·上海·高考真题)根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤=⎨-+≥⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?【温馨提醒】解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到数列的求和、和的最值,利用函数性质或不等式性质求解较为常规. 题型二:数列与不等式的综合例4.(2021·浙江·高考真题)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.例5.(2021·天津·高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=. (I )求{}n a 和{}n b 的通项公式;(II )记2*1,n n nc b b n N =+∈,(i )证明{}22nn c c -是等比数列;(ii )证明)*nk n N =∈ 例6.(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【温馨提醒】数列与不等式的结合,除应熟练掌握数列的通项公式、求和公式,关于不等式证明、不等式恒成立问题的处理方法亦应灵活运用. 题型三:数列与实际应用问题例7.【多选题】(2022·全国·高三专题练习)参加工作5年的小郭,因工作需要向银行贷款A 万元购买一台小汽车,与银行约定:这A 万元银行贷款分10年还清,贷款的年利率为r ,每年还款数为X 万元,则( )A .()1011ArX r =+- B .小郭第3年还款的现值为()31Xr +万元C .小郭选择的还款方式为“等额本金还款法”D .小郭选择的还款方式为“等额本息还款法”例8.(2021·全国·高三专题练习)某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( ) A .22800a t =- B .175n n a a t +=-C .1n n a a +>D .当400t =时,33800a >【总结提升】1.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.2.等比数列最值有关问题的解题思路:求解此类问题的常用思路是根据题目所给条件建立关于变量n 的函数关系进行求解.有时也注意基本不等式的应用.题型四:数列的“新定义”问题例9.(2022·全国·高三专题练习)对于数列{}n a ,定义11222-=+++n n n A a a a 为数列{}n a 的“加权和”,已知某数列{}n a 的“加权和”12n n A n +=⋅,记数列{}+n a pn 的前n 项和为n T ,若5≤n T T 对任意的N n *∈恒成立,则实数p 的取值范围为( ) A .127,53⎡⎤--⎢⎥⎣⎦B .167,73⎡⎤--⎢⎥⎣⎦C .512,25⎡⎤--⎢⎥⎣⎦D .169,74⎡⎤--⎢⎥⎣⎦例10.(2022·江西抚州·高二阶段练习(理))对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:3325⎧⎨⎩,3739,11⎧⎪⎨⎪⎩,3131541719⎧⎪⎪⎨⎪⎪⎩,…仿此,若3m 的“分裂数”中有一个是1111,则m 的值为( ) A .32 B .33 C .34 D .35例11.(2022·河南开封·高二期末(理))若数列{}n a 中不超过()f m 的项数恰为()*,m b n m ∈N ,则称数列{}m b 是数列{}n a 的生成数列,称相应的函数()f m 是数列{}n a 生成{}m b 的控制函数.已知2n n a =,()f m m =,记数列{}m b 的前m 项和为m S ,则63S =( ) A .258B .264C .642D .636例12.(2022·全国·高三专题练习)定义:对于任意一个有穷数列,第一次在其每相邻的两项间都插人这两项的和,得到的新数列称之为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和称之为二阶和数列,以此类推可以得到n 阶和数列,如{1,5}的一阶和数列是{1,6,5},设它的n 阶和数列各项和为n S .(1)试求{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想n S 的通项公式(无需证明); (2)若()()311log 3log 33n n n c S S +=--⋅-,求{}n c 的前n 项和n T ,并证明:1126n T -<≤-.【温馨提醒】立足于“转化”,将新定义问题转化成等差数列、等比数列问题求解. 题型五:数列与解析几何例12.(2021·浙江·高考真题)已知,R,0a b ab ∈>,函数()2R ()f x ax b x =+∈.若(),(),()f s t f s f s t -+成等比数列,则平面上点(),s t 的轨迹是( ) A .直线和圆B .直线和椭圆C .直线和双曲线D .直线和抛物线例13.(2017山东,理19)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2 (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y=0,11n x x x x +==,所围成的区域的面积.题型六:数列与传统文化例14.(2022·云南师大附中模拟预测(理))《九章算术》是我国秦汉时期一部杰出的数学著作,书中第三章“衰分”有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共出百钱.欲令高爵出少,以次渐多,问各几何?”意思是:“有大夫、不更、簪裏、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成递增等差数列,这5个人各出多少钱?”在这个问题中,若不更出17钱,则公士出的钱数为( ) A .10B .14C .23D .26例15.(2022·山东青岛·一模)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金n T几何?”其意思为“今有人持金出五关,第1关收税金为持金的12,第2关收税金为剩余金的13,第3关收税金为剩余金的14,第4关收税金为剩余金的15,第5关收税金为剩余金的16,5关所收税金之和恰好重1斤.问原来持金多少?”.记这个人原来持金为a 斤,设()101,115,01x x f x x x +>⎧=⎨-<≤⎩,则()f a =( )A .5-B .7C .13D .26例16.(2017·全国·高考真题(理))我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A .1盏 B .3盏 C .5盏 D .9盏【总结提升】理解题意,构造数列,应用数列模型解题.专题7.5 数列的综合应用(知识点讲解)【知识框架】【核心素养】1.数列与传统数学文化、实际问题相结合,考查等差、等比数列的基本运算,凸显数学建模的核心素养. 2.数列与新定义问题相结合,考查转化、迁移能力,凸显数学抽象的核心素养.3.数列与函数、不等式、解析几何等相结合,考查学生综合分析解决问题的能力,凸显逻辑推理的核心素养.【知识点展示】(一)数列与函数数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.(二)数列与不等式1.数列型不等式的证明常用到“放缩法”,一是在求和中将通项“放缩”为“可求和数列”;二是求和后再“放缩”.放缩法常见的放缩技巧有: (1)1k 2<1k 2-1=12⎝ ⎛⎭⎪⎫1k -1-1k +1.(2)1k -1k +1<1k 2<1k -1-1k . (3)2(n +1-n )<1n<2(n -n -1).2.数列中不等式恒成立的问题数列中有关项或前n 项和的恒成立问题,往往转化为数列的最值问题;求项或前n 项和的不等关系可以利用不等式的性质或基本不等式求解.(三)解答数列实际应用问题的步骤(1)确定模型类型:理解题意,看是哪类数列模型,一般有等差数列模型、等比数列模型、简单递推数列模型.基本特征如下:等差数列模型:均匀增加或者减少等比数列模型:指数增长或减少,常见的是增产率问题、存款复利问题简单递推数列模型:指数增长的同时又均匀减少.如年收入增长率为20%,每年年底要拿出a(常数)作为下年度的开销,即数列{}1 1.2n n n a a a a +满足=-(2)准确解决模型:解模就是根据数列的知识,求数列的通项、数列的和、解方程(组)或者不等式(组)等,在解模时要注意运算准确.(3)给出问题的回答:实际应用问题最后要把求解的数学结果化为对实际问题的答案,在解题中不要忽视了这点.【常考题型剖析】题型一:数列与函数的综合例1.(2021·河南·睢县高级中学高三阶段练习(理))已知数列{}n a 的首项11a =,函数()()41cos221n n f x x a x a +=+-+有唯一零点,则通项n a =( ) A .13n - B .12n -C .21n -D .32n -【答案】C 【解析】 【分析】由奇偶性定义可判断出()f x 为偶函数,由此可确定唯一零点为0x =,从而得到递推关系式;利用递推关系式可证得数列{}1n a +为等比数列,由等比数列通项公式可推导得到n a . 【详解】()()()()()()4411cos 221cos221n n n n f x x a x a x a x a f x ++-=-+--+=+-+=,()f x ∴为偶函数,图象关于y 轴对称,()f x ∴的零点关于y 轴对称,又()f x 有唯一零点,()f x ∴的零点为0x =,即()()10210n n f a a +=-+=,121n n a a +∴=+,即()1121n n a a ++=+,又112a +=,∴数列{}1n a +是以2为首项,2为公比的等比数列,12n n a ∴+=,则21n n a =-.故选:C. 【点睛】关键点点睛:本题考查函数与数列的综合应用问题;解题关键是能够根据奇偶性的性质确定函数的唯一零点为0x =,从而结合零点确定数列的递推关系式,由递推关系式证得数列{}1n a +为等比数列. 例2.(2023·全国·高三专题练习)设函数()12ln x f x x -=+,11a =,()*21N 1,23n n a f f n f f n n n n n -⎛⎫=+++⋅ ⎪⋅⋅+∈≥ ⎪⎝⎛⎫⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭⎝⎭⎭.则数列{}n a 的前n 项和n S =______. 【答案】2n n 1-+ 【解析】 【分析】由题设11()()4n f f n n-+=,讨论n 的奇偶性求{}n a 的通项公式,再求n S . 【详解】由题设,111()()4ln(1)ln 41n f f n n n n -+=+-+=-, 所以()()**14121,2,N 221421,21,N 2n n f n n k k a n n n k k ⎧⎛⎫⎛⎫⨯-+=-=∈ ⎪ ⎪⎪⎪⎝⎭⎝⎭=⎨-⎪⨯=-=+∈⎪⎩,即2(1)n a n =-且n ≥ 2, 当1n =时,11S =,当2n ≥时,21242(1)1n S n n n =+++⋅⋅⋅+-=+-,所以21n S n n =-+,n *∈N故答案为:2n n 1-+.例3.(2017·上海·高考真题)根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤=⎨-+≥⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量? 【答案】(1)935;(2)见解析. 【解析】 【详解】试题分析:(1)计算{}n a 和{}n b 的前4项和的差即可得出答案;(2)令n n a b ≥得出42n ≤,再计算第42个月底的保有量和容纳量即可得出结论. 试题分析:(1)()()1234123496530935a a a a b b b b +++-+++=-=(2)10470542n n n -+>+⇒≤,即第42个月底,保有量达到最大()()()()12341234420503864742965878222a a a ab b b b ⎡⎤+⨯+⨯+++⋅⋅⋅+-+++⋅⋅⋅+=+-=⎢⎥⎣⎦()2424424688008736S =--+=,∴此时保有量超过了容纳量.【温馨提醒】解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到数列的求和、和的最值,利用函数性质或不等式性质求解较为常规. 题型二:数列与不等式的综合例4.(2021·浙江·高考真题)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.【答案】(1)33()4nn a =-⋅;(2)31λ-≤≤.【解析】【分析】(1)由1439n n S S +=-,结合n S 与n a 的关系,分1,2n n =≥讨论,得到数列{}n a 为等比数列,即可得出结论;(2)由3(4)0n n b n a +-=结合(1)的结论,利用错位相减法求出n T ,n n T b λ≤对任意N n *∈恒成立,分类讨论分离参数λ,转化为λ与关于n 的函数的范围关系,即可求解. 【详解】(1)当1n =时,1214()39a a a +=-,229272749,4416a a =-=-∴=-, 当2n ≥时,由1439n n S S +=-①, 得1439n n S S -=-②,①-②得143n n a a += 122730,0,164n n n a a a a +=-≠∴≠∴=, 又213,{}4n a a a =∴是首项为94-,公比为34的等比数列, 1933()3()444n n n a -∴=-⋅=-⋅;(2)由3(4)0n n b n a +-=,得43(4)()34n n n n b a n -=-=-, 所以234333333210(4)44444nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯⨯++-⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎝+⎭⎭,2413333333321(5)(4)444444nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯++-⋅+-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得234113333333(4)4444444nn n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯++++--⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1193116493(4)34414n n n -+⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=-+-- ⎪⎝⎭-111993334(4)44444n n n n n +++⎛⎫⎛⎫⎛⎫=-+---⋅=-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以134()4n n T n +=-⋅,由n n T b λ≤得1334()(4)()44n nn n λ+-⋅≤-⋅恒成立,即(4)30n n λ-+≥恒成立,4n =时不等式恒成立;4n <时,312344n n n λ≤-=----,得1λ≤; 4n >时,312344n n n λ≥-=----,得3λ≥-; 所以31λ-≤≤.【点睛】易错点点睛:(1)已知n S 求n a 不要忽略1n =情况;(2)恒成立分离参数时,要注意变量的正负零讨论,如(2)中(4)30n n λ-+≥恒成立,要对40,40,40n n n -=->-<讨论,还要注意40n -<时,分离参数不等式要变号.例5.(2021·天津·高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=. (I )求{}n a 和{}n b 的通项公式;(II )记2*1,n n nc b b n N =+∈,(i )证明{}22nn c c -是等比数列;(ii )证明)*nk n N =∈ 【答案】(I )21,n a n n N *=-∈,4,n n N b n *=∈;(II )(i )证明见解析;(ii )证明见解析.【解析】 【分析】(I )由等差数列的求和公式运算可得{}n a 的通项,由等比数列的通项公式运算可得{}n b 的通项公式;(II )(i )运算可得2224nn n c c =⋅-,结合等比数列的定义即可得证;(ii )放缩得21222422n n n n n a n c a c +<-⋅,进而可得112n n k k k-==,结合错位相减法即可得证. 【详解】(I )因为{}n a 是公差为2的等差数列,其前8项和为64. 所以12818782642a a a a ⨯++⋅⋅⋅+=+⨯=,所以11a =, 所以()12121,n n n n N a a *=+-=-∈;设等比数列{}n b 的公比为(),0q q >,所以()221321484q b b b q q b q ==-=--,解得4q =(负值舍去), 所以114,n n n b q n N b -*==∈;(II )(i )由题意,221441n n nn n b c b =++=,所以22224211442444n n nn nnn c c ⎛⎫⎛⎫=+-+=⋅ ⎪ ⎪⎝⎭⎝⎭-,所以220nn c c ≠-,且212222124424n n n n nn c c c c +++⋅==⋅--, 所以数列{}22nn c c -是等比数列; (ii )由题意知,()()22122222121414242222n n n n n n n n n a n n c c a +-+-==<-⋅⋅⋅,12n n-,所以112nn k k k k-==, 设10121112322222nn k n k k nT --===+++⋅⋅⋅+∑, 则123112322222n n n T =+++⋅⋅⋅+, 两式相减得21111111122121222222212nn n n nn n n n T -⎛⎫⋅- ⎪+⎝⎭=+++⋅⋅⋅+-=-=--, 所以1242n n n T -+=-,所以1112422nn k n k k n --==+⎫-<⎪⎭ 例6.(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【答案】(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【解析】 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可;(2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可. 【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n nn n .设0121111101212222Γ3333------=++++n n n , ⑧ 则1231111012112222Γ33333-----=++++n nn . ⑨由⑧-⑨得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n nS n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--, 211213333n n nn n T --=++++,①231112133333n n n n nT +-=++++,② ①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---,所以31(1)4323n n nnT =--⋅,所以2n n S T -=3131(1)(1)043234323n n n nn n ----=-<⋅⋅,所以2nn S T <. [方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭n n c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n n n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法 设()231()1-=++++=-n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n nx x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭'13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二. 【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法. 【温馨提醒】数列与不等式的结合,除应熟练掌握数列的通项公式、求和公式,关于不等式证明、不等式恒成立问题的处理方法亦应灵活运用. 题型三:数列与实际应用问题例7.【多选题】(2022·全国·高三专题练习)参加工作5年的小郭,因工作需要向银行贷款A 万元购买一台小汽车,与银行约定:这A 万元银行贷款分10年还清,贷款的年利率为r ,每年还款数为X 万元,则( ) A .()1011ArX r =+- B .小郭第3年还款的现值为()31Xr +万元C .小郭选择的还款方式为“等额本金还款法”D .小郭选择的还款方式为“等额本息还款法” 【答案】BD 【解析】 【分析】因为小郭每年还款钱数相等,所以小郭选择为“等额本息还款法”,所以利用等比数列前n 项和公式求出X ,再设小郭第3年还款的现值为y ,根据复利规则求出y . 【详解】解:小郭与银行约定,每年还一次欠款,并且每年还款的钱数都相等,∴小郭靖选择的还款方式为“等额本息还款法”,故D 正确,C 错误, 设每年应还X 元,还款10次,则该人10年还款的现金与利息和为29[1(1)(1)(1)]X r r r +++++⋯++, 银行贷款A 元10年后的本利和为10(1)A r +.2910[1(1)(1)(1)](1)X r r r A r ∴+++++⋯++=+, ∴10101[1(1)](1)1(1)r X A r r ⨯-+⋅=+-+, 即1010(1)(1)1Ar r X r +=+-,故A 错误.设小郭第三年还款的现值为y ,则3(1)y r X ⋅+=,所以()31Xy r =+,故B 正确;例8.(2021·全国·高三专题练习)某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( ) A .22800a t =- B .175n n a a t +=-C .1n n a a +>D .当400t =时,33800a >【答案】BC 【解析】先求得第一年年底剩余资金1a ,第二年底剩余资金2a ,即可判断A 的正误;分析总结,可得1n a +与n a 的关系,即可判断B 的正误;根据题意,求得n a 的表达式,利用作差法即可比较1n a +与n a 的大小,即可判断C 的正误,代入400t =,即可求得3a ,即可判断D 的正误,即可得答案. 【详解】第一年年底剩余资金12000(140%)2800a t t =⨯+-=-,第二年底剩余资金211712(140%)392055a a t a t t =⨯+-=-=-,故A 错误;第三年底剩余资金3227109(140%)5488525t a a t a t =⨯+-=-=-,⋅⋅⋅ 所以第n +1年年底剩余资金为17(140%)5n n n a a t a t +=⨯+-=-,故B 正确;因为212277777()()55555n n n n a a t a t t a t t ---=-=--=--12217777()[1()()]5555n n a t --=-+++⋅⋅⋅+117[1()]75()(2800)7515n n t t ---=---=11757()(2800)[()1]525n n t t -----=1775()(2800)522n t t --+,所以111722775277[()(2800)]()(2800)555522552n n n n n n n t t t a a a t a a t t --+-=--=-=-+-=-, 因为800t <,所以7280002t->, 所以11277()(2800)0552n n n ta a -+-=->,即1n n a a +>,故C 正确;当400t =时,310910940054885488374438002525t a ⨯=-=-=<,故D 错误;【总结提升】1.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.2.等比数列最值有关问题的解题思路:求解此类问题的常用思路是根据题目所给条件建立关于变量n 的函数关系进行求解.有时也注意基本不等式的应用.题型四:数列的“新定义”问题例9.(2022·全国·高三专题练习)对于数列{}n a ,定义11222-=+++n n n A a a a 为数列{}n a 的“加权和”,已知某数列{}n a 的“加权和”12n n A n +=⋅,记数列{}+n a pn 的前n 项和为n T ,若5≤n T T 对任意的N n *∈恒成立,则实数p 的取值范围为( ) A .127,53⎡⎤--⎢⎥⎣⎦B .167,73⎡⎤--⎢⎥⎣⎦C .512,25⎡⎤--⎢⎥⎣⎦D .169,74⎡⎤--⎢⎥⎣⎦【答案】A 【解析】 【分析】根据n A 与n a 的关系求出n a ,再根据等差数列的求和公式求出n T ,将5≤n T T 化为216(5)06+⎛⎫-+≤ ⎪+⎝⎭n n p n 对任意的n *∈N 恒成立,分类讨论n 可求出结果. 【详解】 由1112222n n n n A a a a n -+=+++=⋅,∴2n ≥时,212122(1)2n n n a a a n --+++=-⋅,∴1122(1)2-+⋅=⋅--⋅n n n n a n n ,∴22n a n =+,1n =时,14a =也成立,∴22n a n =+,∴数列{}+n a pn 的前n 项和为:12(12)n n T a a a p n =+++++++2(422)(1)(1)3222++++=+⋅=++⋅n n n n n n p n n p ,∵5≤n T T 对任意的n *∈N 恒成立,∴225(1)56353522+⨯++⋅≤=+⨯+⨯n n n n p T p , 即225335(1)5(51)022p pn n n n -+-⨯++-⨯⨯+≤, 即22225335(5)(5)022p p n n n n -+-⨯+-+-≤,即5(5)(53)0222pn p p n n -+++++≤, 即(6)(5)(8)02p n n n +-++≤, 即216(5)06+⎛⎫-+≤ ⎪+⎝⎭n n p n 对任意的n *∈N 恒成立,当14n ≤≤时,2164266+-≤=+++n p n n 对任意的n *∈N 恒成立, 因为4412226465n +≥+=++,∴125-≤p ,所以125p ≥-,当5n =时,216(5)06n n p n +⎛⎫-+= ⎪+⎝⎭恒成立,R p ∈,当6n ≥时,2164266+-≥=+++n p n n 对任意的n *∈N 恒成立, 因为447226663n +≤+=++,∴73-≥p ,所以73p ≤-,综上可得:实数p 的取值范围为127,53⎡⎤--⎢⎥⎣⎦.故选:A .例10.(2022·江西抚州·高二阶段练习(理))对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:3325⎧⎨⎩,3739,11⎧⎪⎨⎪⎩,3131541719⎧⎪⎪⎨⎪⎪⎩,…仿此,若3m 的“分裂数”中有一个是1111,则m 的值为( ) A .32B .33C .34D .35【答案】B 【解析】 【分析】根据分裂数的定义,求出从32到()31m -、从32到3m 分裂数个数,再根据所有分裂数成等差数列求出1111对应的位置,进而根据不等式求m 值. 【详解】由题意,对于332,...,m ,它们依次对应2、3、…、m 个分裂数,则从32到()31m -各分裂数个数的和为(2)(1)2m m -+,从32到3m 各分裂数个数和为(1)(2)2m m -+,又332,...,m 的分裂数{}n a ,构成首项为3,公差为2的等差数列,所以21n a n =+,令211111n +=,可得555n =,所以(2)(1)(1)(2)55522m m m m -+-+<≤,当32m =时,(1)(2)5275552m m -+=<不符合; 当33m =时,(1)(2)5605552m m -+=>,(2)(1)5275552m m -+=<符合; 当34m =时,(2)(1)5605552m m -+=>不符合; 综上,33m =. 故选:B例11.(2022·河南开封·高二期末(理))若数列{}n a 中不超过()f m 的项数恰为()*,m b n m ∈N ,则称数列{}m b 是数列{}n a 的生成数列,称相应的函数()f m 是数列{}n a 生成{}m b 的控制函数.已知2n n a =,()f m m =,记数列{}m b 的前m 项和为m S ,则63S =( ) A .258 B .264 C .642 D .636【答案】A 【解析】 【分析】分析可知对任意的N k *∈,当)12,2k k m +⎡∈⎣,满足2nn a m =≤的项数为k ,即m b k =,满足条件的m 的个数为1222k k k +-=,进而可求得63S 的值.【详解】因为562632<<,由题中定义,对任意的N k *∈,当)12,2k k m +⎡∈⎣, 满足2nn a m =≤的项数为k ,即m b k =,满足条件的m 的个数为1222k k k +-=,当1m =时,0m b =,当)122,2m ⎡∈⎣时,1m b =,此时满足条件的m 的个数为12,当)232,2m ⎡∈⎣时,2m b =,此时满足条件的m 的个数为22,当)562,2m ⎡∈⎣时,5m b =,此时满足条件的m 的个数为52, 因此,01234563021222324252258S =⨯+⨯+⨯+⨯+⨯+⨯=.故选:A.例12.(2022·全国·高三专题练习)定义:对于任意一个有穷数列,第一次在其每相邻的两项间都插人这两项的和,得到的新数列称之为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和称之为二阶和数列,以此类推可以得到n 阶和数列,如{1,5}的一阶和数列是{1,6,5},设它的n 阶和数列各项和为n S .(1)试求{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想n S 的通项公式(无需证明);(2)若()()311log 3log 33n n n c S S +=--⋅-,求{}n c 的前n 项和n T ,并证明:1126n T -<≤-. 【答案】(1)21263=+⨯S ,()12312633=+⨯+S ,133n n S +=+ (2)1122=-+n T n ,证明见解析 【解析】【分析】(1)根据定义求出{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,由此归纳出n S ,(2)由(1)化简n c ,再由裂项相消法求其前n 项和,并完成证明.(1)由题意得,116512S =++=,217611512181263S =++++=+=+⨯,()2123187136171116512185412636312633S =++++++++=++=+⨯+⨯=+⨯+,41981572013196231728112716215S =++++++++++++++++121854162=+++2312636363=+⨯+⨯+⨯()123126333=+⨯++, …()12311263333(1)n n S n -=+⨯++++≥,由等比数列的前n 项和公式可得,()113131263313n n n S -+-=+⨯=+-, 所以{}n S 的通项公式133n n S +=+.(2)由于133n n S +=+,所以()()33111111log 3log 31221n n n c S S n n n n +⎛⎫=-=--=- ⎪-⋅-++++⎝⎭, 则1111111132432122n T n n n =-+-++-=-+++, 因为n *∈N ,所以102n >+,所以111222n ->-+, 又n T 随n 的增大而减小,所以当1n =时,n T 取得最大值16-,故1126n T -<≤-. 【温馨提醒】立足于“转化”,将新定义问题转化成等差数列、等比数列问题求解.题型五:数列与解析几何例12.(2021·浙江·高考真题)已知,R,0a b ab ∈>,函数()2R ()f x ax b x =+∈.若(),(),()f s t f s f s t -+成等比数列,则平面上点(),s t 的轨迹是( )A .直线和圆B .直线和椭圆C .直线和双曲线D .直线和抛物线【答案】C 【解析】【分析】首先利用等比数列得到等式,然后对所得的等式进行恒等变形即可确定其轨迹方程.【详解】由题意得2()()[()]f s t f s t f s -+=,即()2222()()a s t b a s t b as b ⎡⎤⎡⎤-+++=+⎣⎦⎣⎦, 对其进行整理变形:()()()22222222asat ast b as at ast b as b +-++++=+, ()()222222(2)0as at b ast as b++--+=, ()2222222240as at b at a s t ++-=, 222242220a s t a t abt -++=,所以22220as at b -++=或0=t ,其中2212s t b b a a-=为双曲线,0=t 为直线.故选:C.例13.(2017山东,理19)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2(Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y=0,11n x x x x +==,所围成的区域的面积.【答案】(I)(II )(II )过……向轴作垂线,垂足分别为……, 由(I)得记梯形的面积为.由题意, 所以 ……+n T 12.n n x -=(21)21.2n n n T -⨯+=123,,,P P P 1n P +x 123,,,Q Q Q 1n Q +111222.n n n n n x x --+-=-=11n n n n P P Q Q ++n b 12(1)2(21)22n n n n n b n --++=⨯=+⨯123n T b b b =+++n b=……+ ①又……+ ②①-②得= 所以题型六:数列与传统文化 例14.(2022·云南师大附中模拟预测(理))《九章算术》是我国秦汉时期一部杰出的数学著作,书中第三章“衰分”有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共出百钱.欲令高爵出少,以次渐多,问各几何”意思是:“有大夫、不更、簪裏、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成递增等差数列,这5个人各出多少钱?”在这个问题中,若不更出17钱,则公士出的钱数为( )A .10B .14C .23D .26【答案】D【解析】【分析】设大夫、不更、簪裹、上造、公士所出的钱数依次构成等差数列{}n a ,根据217a =,前5项和为100求解.【详解】解:设大夫、不更、簪裹、上造、公士所出的钱数依次排成一列,构成数列{}n a .由题意可知,等差数列{}n a 中217a =,前5项和为100,设公差为(0)d d >,前n 项和为n S ,则535100S a ==,解得320a =,所以323d a a , 所以公士出的钱数为532202326a a d =+=+⨯=,故选:D .例15.(2022·山东青岛·一模)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金101325272-⨯+⨯+⨯+32(21)2(21)2n n n n ---⨯++⨯0122325272n T =⨯+⨯+⨯+21(21)2(21)2n n n n ---⨯++⨯121132(22......2)(21)2n n n T n ----=⨯++++-+⨯1132(12)(21)2.212n n n ---+-+⨯-(21)21.2n n n T -⨯+=几何?”其意思为“今有人持金出五关,第1关收税金为持金的12,第2关收税金为剩余金的13,第3关收税金为剩余金的14,第4关收税金为剩余金的15,第5关收税金为剩余金的16,5关所收税金之和恰好重1斤.问原来持金多少?”.记这个人原来持金为a 斤,设()101,115,01x x f x x x +>⎧=⎨-<≤⎩,则()f a =( ) A .5-B .7C .13D .26【答案】C 【解析】【分析】 根据题意求得每次收的税金,结合题意得到111111223344556a a a a a ++++=⨯⨯⨯⨯,求得a 的值,代入函数的解析式,即可求解.【详解】由题意知:这个人原来持金为a 斤,第1关收税金为:12a 斤;第2关收税金为111(1)3223a a ⋅-⋅=⋅⨯斤; 第3关收税金为1111(1)42634a a ⋅--⋅=⋅⨯斤, 以此类推可得的,第4关收税金为145a ⋅⨯斤,第5关收税金为156a ⋅⨯斤, 所以111111223344556a a a a a ++++=⨯⨯⨯⨯, 即1111111111(1)(1)12233445566a a -+-+-+-+-⋅=-⋅=,解得65a =, 又由()101,115,01x x f x x x +>⎧=⎨-<≤⎩,所以66()1011355f =⨯+=. 故选:C.例16.(2017·全国·高考真题(理))我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏【答案】B【解析】【详解】。
第四节数列与不等式的综合应用
数列和不等式是高考的两大热点也是难点,数列是高 中数学中一个重要的内容,在高等数学也有很重要的地位
,不等式是高中数学培养学生思维能力的一个突出的内容
,它可以体现数学思维中的很多方法.数列与不等式的交
汇综合又是高考的重中之重.
考试要求
数列与不等式的综合问题是考查的热点和重点内容,近 几年,高考关于数列与不等式的综合应用的命题趋势是: (1)以客观题考查不等式的性质、解法与数列、等差数列 、等比数列的简单交汇. (2)以解答题(中档题或压轴题)的形式考查数列与不等式 的交汇,常涉及到导数、解析几何、三角函数的知识等, 深度考查不等式的证明(主要比较法、综合法、分析法、 放缩法、反证法)和逻辑推理能力及分类与整合、化归与 转化的数学思想,试题新颖别致,难度相对较大.
即直线a4 a1 3d,由图知,当直线a4 a1 3d过可行域内(1,1)点时截距最大,
此时目标函数取最大值a4 4.
题型一 数列中的不等关系
例1:设等差数列 {an } 的前 n 项和为 S n , S5 15 ,则 a4 的最大值 S 4 10 , 是 .
21 2 1 设a1 3d 1 (2a1 3d ) 2 (a1 2d ),由 31 22 3
点评
(3)探索型问题常常需要由给定的题设条件去探索相应的结论,或探索 满足某些条件的对象是否存在,问题增加了许多可变因素,思维指向 不明显.探索型问题有:①猜想型,即结论未给出,解题时需要首先 探索结论,然后再加以证明;②判断型,即判定符合某种条件的数学 对象是否存在或其结论是否成立,解题时常先假设存在,然后求出或 导出矛盾. (4)数列中的不等式问题,一般有放缩,构造函数这两类常见的方法. 用放缩法证明不等式有:①利用迭代法构建关系进行放缩;②利用累 加法构建关系进行放缩;③利用累乘法构建关系进行放缩;④利用可 求和的新数列构建关系进行放缩.而放缩主要是把数列的通项放缩为 一个可求和的数列,如放缩为等比、等差或可裂项求和的数列.
数列不等式综合练习题
数列不等式综合练习题一、等差数列与不等式1. 已知等差数列{an}中,a1=1,a3=3,求满足不等式a_n > 0的最小正整数n。
2. 设等差数列{bn}的前n项和为Sn,若S4=8,S8=24,求满足不等式b_n < 5的最小正整数n。
3. 已知等差数列{cn}的公差为2,首项为1,求满足不等式c_n > 7的所有正整数n的个数。
二、等比数列与不等式1. 已知等比数列{dn}中,d1=2,d3=8,求满足不等式d_n < 64的所有正整数n。
2. 设等比数列{en}的前n项和为Tn,若T3=13,T6=121,求满足不等式e_n > 1的所有正整数n。
3. 已知等比数列{fn}的公比为1/2,首项为16,求满足不等式f_n < 1的所有正整数n的个数。
三、数列与不等式综合1. 已知数列{gn}的通项公式为gn = n^2 n + 1,求满足不等式gn > 10的所有正整数n。
2. 设数列{hn}的通项公式为hn = 3^n 2^n,求满足不等式hn < 100的所有正整数n。
3. 已知数列{kn}的通项公式为kn = 2n + 1,求满足不等式kn > 30的所有正整数n的个数。
四、数列不等式证明1. 证明:对于等差数列{an},若a1 > 0,公差d > 0,则数列中存在正整数n,使得an > 0。
2. 证明:对于等比数列{bn},若b1 > 1,公比q > 1,则数列中存在正整数n,使得bn > 1。
3. 证明:对于数列{cn},若cn = n^2 + n + 1,则数列中存在正整数n,使得cn > 100。
四、数列不等式证明(续)4. 证明:对于数列{dn},若dn = 2^n n^2,则存在正整数N,使得对于所有n > N,不等式dn > 0恒成立。
5. 证明:对于数列{en},若en = n! / 2^n,则存在正整数M,使得对于所有n > M,不等式en < 1恒成立。
数列与不等式综合习题
数列与不等式的题型分类。
解题策略题型一求有数列参与的不等式恒成立条件下参数问题求得数列与不等式绫结合恒成立条件下的参数问题主要两种策略:(1)若函数f(x)在定义域为D,则当x∈D时,有f(x)≥M恒成立⇔f(x)min≥M;f(x)≤M恒成立⇔f(x)max≤M;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得。
【例1】等比数列{a n}的公比q>1,第17项的平方等于第24项,求使a1+a2+…+a n>错误!+错误!+…+错误!恒成立的正整数n的取值范围.【分析】利用条件中两项间的关系,寻求数列首项a1与公比q之间的关系,再利用等比数列前n项公式和及所得的关系化简不等式,进而通过估算求得正整数n的取值范围。
【解】由题意得:(a1q16)2=a1q23,∴a1q9=1.由等比数列的性质知:数列{错误!}是以错误!为首项,以错误!为公比的等比数列,要使不等式成立,则须错误!>错误!,把a错误!=q-18代入上式并整理,得q-18(q n-1)>q(1-错误!),q n>q19,∵q>1,∴n>19,故所求正整数n的取值范围是n≥20.【点评】本题解答数列与不等式两方面的知识都用到了,主要体现为用数列知识化简,用不等式知识求得最后的结果。
本题解答体现了转化思想、方程思想及估算思想的应用。
【例2】(08·全国Ⅱ)设数列{a n}的前n项和为S n.已知a1=a,a n+1=S n+3n,n∈N*.(Ⅰ)设b n=S n-3n,求数列{b n}的通项公式;(Ⅱ)若a n+1≥a n,n∈N*,求a的取值范围.【分析】第(Ⅰ)小题利用S n与a n的关系可求得数列的通项公式;第(Ⅱ)小题将条件a n+1≥a n转化为关于n与a的关系,再利用a≤f(n)恒成立等价于a≤f(n)min求解.【解】(Ⅰ)依题意,S n+1-S n=a n+1=S n+3n,即S n+1=2S n+3n,由此得S n+1-3 n+1=2(S n-3n).因此,所求通项公式为b n=S n-3n=(a-3)2 n-1,n∈N*, ①(Ⅱ)由①知S n=3n+(a-3)2 n-1,n∈N*,于是,当n≥2时,a n=S n-S n-1=3n+(a-3)2 n-1-3n-1-(a-3)2 n-2=2×3n-1+(a-3)2 n-2,a n+1-a n=4×3 n-1+(a-3)2 n-2=2 n-2·[12·(错误!)n-2+a-3],当n≥2时,a n+1≥a n,即2 n-2·[12·(错误!)n-2+a-3]≥0,12·(错误!)n-2+a-3≥0,∴a≥-9,综上,所求的a的取值范围是[-9,+∞].【点评】一般地,如果求条件与前n项和相关的数列的通项公式,则可考虑S n与a n 的关系求解。
数列与函数不等式的综合应用
法二:
a3 a4 a1 a2 4,
解之得 d 1
江苏省启东中学资源库
第八届 “名师之路”大型教科研活 动 暨南通市普通高中高效课堂推进会
(2) a1
5 2
7 ∴数列 an 的通项公式为 an a1 (n 1)d n , 2 1 1 . bn 1 1 7 an n 2 7 7 1 ∵函数 f ( x ) 1 在 (, ) 和 ( , ) 上均是单调递 7 2 2 x 2
次组成数列 an ,则 an3 an .
36
江苏省启东中学资源库
第八届 “名师之路”大型教科研活 动 暨南通市普通高中高效课堂推进会
互动
例1
提升
已知 an 是公差为 d 的等差数列,它的前
1 an n 项和为 Sn ,且 S4 2S2 4, bn . an (1)求公差 d 的值; 5 (2) 若 a1 , 求数列 bn 中的最大项和最小项 2
21 2
a 则数列 n 的前 n 项和为 n 1
2.
n 1
2
3. 设 M cos x cos x,sin x sin 3 4 3 4
2
x , x R 为 坐 标 平 面 上 一 点 , 记
f x OM 2, 且 f x 的图像与射线 y 0 x 0 交点的横坐标从小到大依
的值;
* n N (3)若对任意的 , 都有 bn b8 成立, 求 a1 的
取值范围.
江苏省启东中学资源库
第八届 “名师之路”大型教科研活 动 暨南通市普通高中高效课堂推进会
解:(1)法一:
S4 2S2 4, 4a1 6d 2(2a1 d ) 4, 解之得 d 1 S4 2S2 4,
2021届新课标数学一轮复习讲义_第五章_第5讲_数列的综合应用
第5讲 数列的综合应用考点一__等差数列与等比数列的综合问题______已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }为等比数列.(1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和.[解] (1)设等差数列{a n }的公差为d ,由题意得d =a 4-a 13=12-33=3,所以a n =a 1+(n -1)d =3n (n =1,2,…).设等比数列{b n -a n }的公比为q ,由题意得q 3=b 4-a 4b 1-a 1=20-124-3=8,解得q =2.所以b n -a n =(b 1-a 1)q n -1=2n -1.从而b n =3n +2n -1(n =1,2,…). (2)由(1)知b n =3n +2n -1(n =1,2,…).数列{3n }的前n 项和为32n (n +1),数列{2n -1}的前n 项和为1-2n 1-2=2n -1.所以,数列{b n }的前n 项和为32n (n +1)+2n -1.[规律方法] 解决等差数列与等比数列的综合问题,关键是理清两个数列的关系.如果同一数列中部分项成等差数列,部分项成等比数列,要把成等差数列或等比数列的项抽出来单独研究;如果两个数列通过运算综合在一起,要从分析运算入手,把两个数列分割开弄清两个数列各自的特征,再进行求解.1.已知等差数列{a n }的公差不为零,a 1=25 ,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式;(2)求a 1+a 4+a 7+…+a 3n -2.解:(1)设{a n }的公差为d ,由题意得a 211=a 1a 13, 即(a 1+10d )2=a 1(a 1+12d ). 于是d (2a 1+25d )=0.又a 1=25,所以d =0(舍去),d =-2.故a n =-2n +27. (2)令S n =a 1+a 4+a 7+…+a 3n -2. 由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列. 从而S n =n 2(a 1+a 3n -2)=n2(-6n +56)=-3n 2+28n .考点二__数列的实际应用问题__________________某企业在第1年初购买一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少.从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开始,每年初M 的价值为上年初的75%.(1)求第n 年初M 的价值a n 的表达式;(2)设S n 表示数列{a n }的前n 项和,求S n (n ≥7).[解] (1)当n ≤6时,数列{a n }是首项为120,公差为-10的等差数列,a n =120-10(n -1)=130-10n ; 当n ≥6时,数列{a n }是以a 6为首项,34为公比的等比数列.又a 6=70,所以a n =70×⎝⎛⎭⎫34n -6.因此,第n 年初,M 的价值a n 的表达式为a n =⎩⎪⎨⎪⎧130-10n ,n ≤6,70×⎝⎛⎭⎫34n -6,n ≥7. (2)由等差及等比数列的求和公式得 当n ≥7时,由于S 6=570,故S n =S 6+(a 7+a 8+…+a n )=570+70×34×4×⎣⎡⎦⎤1-⎝⎛⎭⎫34n -6 =780-210×⎝⎛⎭⎫34n -6.[规律方法] 解答数列实际应用问题的步骤:(1)确定模型类型:理解题意,看是哪类数列模型,一般有等差数列模型、等比数列模型、简单的递推数列模型.基本特征见下表:数列模型 基本特征 等差数列 均匀增加或者减少等比数列 指数增长,常见的是增产率问题、存款复利问题 简单递推数列指数增长的同时又均匀减少.如年收入增长率为20%,每年年底要拿出a (常数)作为下年度的开销,即数列{a n }满足a n +1=1.2a n -a(2)或者不等式(组)等,在解模时要注意运算准确;(3)给出问题的答案:实际应用问题最后要把求解的数学结果化为对实际问题的答案,在解题中不要忽视了这点.2.现有流量均为300 m 3s 的两条河A ,B 汇合于某处后,不断混合,它们的含沙量分别为2 kgm 3和0.2 kgm 3,假设从汇合处开始,沿岸设有若干观测点,两股水流在流经相邻两个观测点的过程中,其混合效果相当于两股水流在1 s 内交换100 m 3的水量,即从A 股流入B 股100 m 3水,经混合后,又从B 股流入A 股100 m 3水并混合,问从第几个观测点开始,两股河水的含沙量之差小于0.01 kgm 3(不考虑沙沉淀). 解:设第n 个观测点处A 股水流含沙量为a n kg m 3,B 股水流含沙量为b n kgm 3,则a 1=2,b 1=0.2,b n =1400(300b n -1+100a n -1)=14(3b n -1+a n -1),a n =1400(300a n -1+100b n -1)=14(3a n -1+b n -1),a n -b n =12(a n -1-b n -1),∴{a n -b n }是以(a 1-b 1)为首项,12为公比的等比数列.∴a n -b n =95×⎝⎛⎭⎫12n -1.解不等式95×⎝⎛⎭⎫12n -1<10-2,得2n -1>180,∴n ≥9.因此,从第9个观测点开始,两股水流的含沙量之差小于0.01 kg m 3.考点三__数列与不等式的综合问题(高频考点)__数列与不等式的综合问题是每年高考的难点,多为解答题,难度偏大. 高考对数列与不等式的综合问题的考查常有以下两个命题角度: (1)以数列为载体,考查不等式的恒成立问题; (2)考查与数列问题有关的不等式的证明问题.等比数列{a n }满足a n +1+a n =9·2n -1,n ∈N *.(1)求数列{a n }的通项公式;(2)设数列{a n }的前n 项和为S n ,若不等式S n >ka n -2对一切n ∈N *恒成立,求实数k 的取值范围. [解] (1)设等比数列{a n }的公比为q , ∵a n +1+a n =9·2n -1,n ∈N *, ∴a 2+a 1=9,a 3+a 2=18, ∴q =a 3+a 2a 2+a 1=189=2.∴2a 1+a 1=9,∴a 1=3. ∴a n =3·2n -1,n ∈N *.(2)由(1)知S n =a 1(1-q n )1-q =3(1-2n )1-2=3(2n -1),∴3(2n -1)>k ·3·2n -1-2,∴k <2-13·2n -1对一切n ∈N *恒成立. 令f (n )=2-13·2n -1,则f (n )随n 的增大而增大,∴f (n )min =f (1)=2-13=53,∴k <53.∴实数k 的取值范围为⎝⎛⎭⎫-∞,53. [规律方法] 数列与不等式的综合问题的解题策略(1)数列与不等式的恒成立问题.此类问题常构造函数,通过函数的单调性、最值等解决问题;(2)与数列有关的不等式证明问题.解决此类问题要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等.3.(1)已知函数f (x )满足f (x +y )=f (x )·f (y )且f (1)=12.①当n ∈N *时,求f (n )的表达式;②设a n =n ·f (n ),n ∈N *,求证:a 1+a 2+a 3+…+a n <2; (2)已知数列{a n }的前n 项和为S n ,且S n =2-⎝⎛⎭⎫2n +1a n (n ∈N *).①求证:数列⎩⎨⎧⎭⎬⎫a n n 是等比数列;②设数列{2n a n }的前n 项和为T n ,A n =1T 1+1T 2+1T 3+…+1T n ,试比较A n 与2na n 的大小.解:(1)①令x =n ,y =1,得f (n +1)=f (n )·f (1)=12f (n ),∴{f (n )}是首项为12,公比为12的等比数列,∴f (n )=⎝⎛⎭⎫12n .②证明:设T n 为{a n }的前n 项和,∵a n =n ·f (n )=n ·⎝⎛⎭⎫12n, ∴T n =12+2×⎝⎛⎭⎫122+3×⎝⎛⎭⎫123+…+n ×⎝⎛⎭⎫12n ,12T n =⎝⎛⎭⎫122+2×⎝⎛⎭⎫123+3×⎝⎛⎭⎫124+…+(n -1)×⎝⎛⎭⎫12n +n ×⎝⎛⎭⎫12n +1, 两式相减得12T n =12+⎝⎛⎭⎫122+…+⎝⎛⎭⎫12n -n ×⎝⎛⎭⎫12n +1,∴T n =2-⎝⎛⎭⎫12n -1-n ×⎝⎛⎭⎫12n <2.(2)①证明:由a 1=S 1=2-3a 1,得a 1=12,当n ≥2时,由a n =S n -S n -1,得a n n =12×a n -1n -1,所以⎩⎨⎧⎭⎬⎫a n n 是首项和公比均为12的等比数列.②由①得a n n =12n ,于是2n a n =n ,所以T n =1+2+3+…+n =n (n +1)2,则1T n =2⎝⎛⎭⎫1n -1n +1,于是A n =2⎝⎛⎭⎫1-1n +1=2nn +1,而2na n =2n +1n 2,所以问题转化为比较2n n 2与n n +1的大小. 设f (n )=2n n 2,g (n )=n n +1,当n ≥4时,f (n )≥f (4)=1,而g (n )<1,所以f (n )>g (n ). 经验证当n =1,2,3时,仍有f (n )>g (n ). 因此对任意的正整数n ,都有f (n )>g (n ).即A n <2na n.交汇创新——数列与函数的交汇设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ; (2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和T n . [解] (1)由已知,b 7=2a 7,b 8=2a 8=4b 7, 有2a 8=4×2a 7=2a 7+2.解得d =a 8-a 7=2.所以S n =na 1+n (n -1)2d =-2n +n (n -1)=n 2-3n .(2)函数f (x )=2x 在(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2), 它在x 轴上的截距为a 2-1ln 2.由题意知,a 2-1ln 2=2-1ln 2,解得a 2=2.所以d =a 2-a 1=1,从而a n =n ,b n =2n . 所以T n =12+222+323+…+n -12n -1+n 2n ,2T n =11+22+322+…+n2n -1.因此,2T n -T n =1+12+122+…+12n -1-n 2n =2-12n -1-n 2n =2n +1-n -22n .所以T n =2n +1-n -22n.[名师点评] 数列与函数的交汇创新主要有以下两类:(1)如本例,已知函数关系转化为数列问题,再利用数列的有关知识求解;(2)已知数列,在求解中利用函数的性质、思想方法解答.[提醒] 解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到递推数列,因此掌握递推数列的常见解法有助于该类问题的解决,同时要注意n 的范围.已知数列{a n }的前n 项和为S n ,a 1=1且3a n +1+2S n =3(n 为正整数).(1)求{a n }的通项公式;(2)若∀n ∈N *,32k ≤S n 恒成立,求实数k 的最大值.解:(1)当n =1时,a 1=1,3a n +1+2S n =3⇒a 2=13;当n ≥2时,3a n +1+2S n =3⇒3a n +2S n -1=3,得3(a n +1-a n )+2(S n -S n -1)=0,因此3a n +1-a n =0,即a n +1a n =13,因为a 2a 1=13,所以数列{a n }是首项a 1=1,公比q =13的等比数列,所以a n =⎝⎛⎭⎫13n -1.(2)因为∀n ∈N *,32k ≤S n 恒成立,S n =32⎣⎡⎦⎤1-⎝⎛⎭⎫13n ,即32k ≤32⎣⎡⎦⎤1-⎝⎛⎭⎫13n ,所以k ≤1-⎝⎛⎭⎫13n .令f (n )=1-⎝⎛⎭⎫13n,n ∈N *,所以f (n )单调递增,k 只需小于等于f (n )的最小值即可, 当n =1时,f (n )取得最小值,所以k ≤f (1)=1-13=23,实数k 的最大值为23.1.设等差数列{a n }和等比数列{b n }首项都是1,公差与公比都是2,则a b 1+a b 2+a b 3+a b 4+a b 5=( )A .54B .56C .58D .57解析:选D.由题意,a n =1+2(n -1)=2n -1,b n =1×2n -1=2n -1, ∴ab 1+…+ab 5=a 1+a 2+a 4+a 8+a 16=1+3+7+15+31=57.2.已知数列{a n }满足:a 1=m (m 为正整数),a n +1=⎩⎪⎨⎪⎧a n 2,当a n 为偶数时,3a n +1,当a n 为奇数时.若a 6=1,则m 所有可能的取值为( )A .{4,5}B .{4,32}C .{4,5,32}D .{5,32}解析:选C.a n +1=⎩⎪⎨⎪⎧a n 2,当a n 为偶数时,3a n +1,当a n 为奇数时,注意递推的条件是a n (而不是n )为偶数或奇数.由a 6=1一直往前面推导可得a 1=4或5或32.3.设等差数列{a n }的公差为d .若数列{2a 1a n }为递减数列,则( )A .d <0B .d >0C .a 1d <0D .a 1d >0解析:选C.设b n =2a 1a n ,则b n +1=2a 1a n +1,由于{2a 1a n }是递减数列,则b n >b n +1,即2a 1a n >2a 1a n +1.∵y =2x 是单调增函数,∴a 1a n >a 1a n +1,∴a 1a n -a 1(a n +d )>0,∴a 1(a n -a n -d )>0,即a 1(-d )>0,∴a 1d <0. 4.在数列{a n }中,若a 1=-2,a n +1=a n +n ·2n ,则a n =( ) A .(n -2)·2n B .1-12n C.23⎝⎛⎭⎫1-14n D.23⎝⎛⎭⎫1-12n 解析:选A.因为a n +1=a n +n ·2n ,所以a n +1-a n =n ·2n ,所以a n -a 1=(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)=(n -1)×2n -1+(n -2)×2n -2+…+2×22+1×21(n ≥2).设T n =(n -1)×2n -1+(n -2)×2n -2+…+2×22+1×21(n ≥2),则2T n =(n -1)×2n +(n -2)×2n -1+(n -3)×2n-2+…+2×23+1×22,两式相减得T n =(n -2)·2n +2(n ≥2),所以a n =(n -2)·2n +2+a 1=(n -2)·2n (n ≥2).又n=1时,上式成立,所以选A.5.在等比数列{a n }中,0<a 1<a 4=1,则能使不等式⎝⎛⎭⎫a 1-1a 1+⎝⎛⎭⎫a 2-1a 2+…+⎝⎛⎭⎫a n -1a n ≤0成立的最大正整数n 是( )A .5B .6C .7D .8解析:选C.设等比数列{a n }的公比为q ,则⎩⎨⎧⎭⎬⎫1a n 为等比数列,其公比为1q ,因为0<a 1<a 4=1,所以q >1且a 1=1q 3.又因为⎝⎛⎭⎫a 1-1a 1+⎝⎛⎭⎫a 2-1a 2+…+⎝⎛⎭⎫a n -1a n ≤0,所以a 1+a 2+…+a n ≤1a 1+1a 2+…+1a n , 即a 1(1-q n)1-q≤1a 1⎝⎛⎭⎫1-1q n 1-1q,把a 1=1q 3代入,整理得q n ≤q 7,因为q >1,所以n ≤7,故选C.6.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)等于________.解析:每天植树的棵数构成以2为首项,2为公比的等比数列,其前n 项和S n =a 1(1-q n )1-q =2(1-2n )1-2=2n +1-2.由2n +1-2≥100,得2n +1≥102.由于26=64,27=128.则n +1≥7,即n ≥6.答案:67.在等比数列{a n }中,若a n >0,且a 1·a 2·…·a 7·a 8=16,则a 4+a 5的最小值为________. 解析:由等比数列性质得,a 1a 2…a 7a 8=(a 4a 5)4=16,又a n >0,∴a 4a 5=2. 再由基本不等式,得a 4+a 5≥2a 4a 5=2 2.∴a 4+a 5的最小值为2 2. 答案:2 28.设S n 是数列{a n }的前n 项和,若S 2nS n(n ∈N *)是非零常数,则称数列{a n }为“和等比数列”.若数列{2b n }是首项为2,公比为4的等比数列,则数列{b n }__________(填“是”或“不是”)“和等比数列”.解析:数列{2b n }是首项为2,公比为4的等比数列,所以2b n =2·4n -1=22n -1,b n =2n -1.设数列{b n }的前n项和为T n ,则T n =n 2,T 2n =4n 2,所以T 2nT n=4,因此数列{b n }是“和等比数列”.答案:是9.在等比数列{a n }(n ∈N *)中,a 1>1,公比q >0,设b n =log 2a n ,且b 1+b 3+b 5=6,b 1b 3b 5=0. (1)求证:数列{b n }是等差数列;(2)求{b n }的前n 项和S n 及{a n }的通项公式a n . 解:(1)证明:∵b n =log 2a n , ∴b n +1-b n =log 2a n +1a n =log 2q 为常数,∴数列{b n }为等差数列且公差d =log 2q .(2)设数列{b n }的公差为d ,∵b 1+b 3+b 5=6,∴b 3=2. ∵a 1>1,∴b 1=log 2a 1>0. ∵b 1b 3b 5=0,∴b 5=0.∴⎩⎪⎨⎪⎧b 1+2d =2,b 1+4d =0,解得⎩⎪⎨⎪⎧b 1=4,d =-1. ∴S n =4n +n (n -1)2×(-1)=9n -n 22.∵⎩⎪⎨⎪⎧log 2q =-1,log 2a 1=4,∴⎩⎪⎨⎪⎧q =12,a 1=16.∴a n =25-n (n ∈N *).10.已知数列{a n }和{b n }满足a 1a 2a 3…·a n =(2)b n (n ∈N *).若{a n }为等比数列,且a 1=2,b 3=6+b 2. (1)求a n 与b n ;(2)设c n =1a n -1b n (n ∈N *).记数列{c n }的前n 项和为S n .①求S n ;②求正整数k ,使得对任意n ∈N *,均有S k ≥S n .解:(1)由题意知a 1a 2a 3…a n =(2)b n ,b 3-b 2=6,知a 3=(2)b 3-b2=8.又由a 1=2,得公比q =2(q =-2舍去), 所以数列{a n }的通项公式为a n =2n (n ∈N *), 所以,a 1a 2a 3…a n =2n (n +1)2=(2)n (n+1).故数列{b n }的通项公式为b n =n (n +1)(n ∈N *).(2)①由(1)知c n =1a n -1b n =12n -⎝⎛⎭⎫1n -1n +1(n ∈N *),所以S n =1n +1-12n (n ∈N *).②因为c 1=0,c 2>0,c 3>0,c 4>0,当n ≥5时,c n =1n (n +1)⎣⎡⎦⎤n (n +1)2n -1, 而n (n +1)2n-(n +1)(n +2)2n +1=(n +1)(n -2)2n +1>0,得n (n +1)2n ≤5×(5+1)25<1, 所以,当n ≥5时,c n <0.综上,对任意n ∈N *恒有S 4≥S n ,故k =4.1.已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n +2b n +1b n =0. (1)令c n =a nb n ,求数列{c n }的通项公式;(2)若b n =3n -1,求数列{a n }的前n 项和S n .解:(1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N *), 所以a n +1b n +1-a nb n=2,即c n +1-c n =2,所以数列{c n }是以首项c 1=1,公差d =2的等差数列,故c n =2n -1. (2)由b n =3n-1知a n =c n b n =(2n -1)3n -1,于是数列{a n }的前n 项和S n =1·30+3·31+5·32+…+(2n -1)·3n -1, 3S n =1·31+3·32+…+(2n -3)·3n -1+(2n -1)·3n ,相减得-2S n =1+2·(31+32+…+3n -1)-(2n -1)·3n =-2-(2n -2)3n , 所以S n =(n -1)3n +1.2.为了加强环保建设,提高社会效益和经济效益,北京市计划用若干时间更换一万辆燃油型公交车,每更换一辆新车,则淘汰一辆旧车,替换车为电力型和混合动力型车.今年初投入了电力型公交车128辆,混合动力型公交车400辆;计划以后电力型车每年的投入量比上一年增加50%,混合动力型每年比上一年多投入a 辆.(1)求经过n 年,该市被更换的公交车总数S (n ); (2)若该市计划7年内完成全部更换,求a 的最小值.解:(1)设a n ,b n 分别为第n 年投入的电力型公交车、混合动力型公交车的数量.依题意,得{a n }是首项为128,公比为1+50%=32的等比数列,{b n }是首项为400,公差为a 的等差数列.所以{a n }的前n 项和S n =128×⎣⎡⎦⎤1-⎝⎛⎭⎫32n1-32=256⎣⎡⎦⎤⎝⎛⎭⎫32n-1,{b n }的前n 项和T n =400n +n (n -1)2a . 所以经过n 年,该市被更换的公交车总数为S (n )=S n +T n =256⎣⎡⎦⎤⎝⎛⎭⎫32n-1+400n +n (n -1)2a .(2)若计划7年内完成全部更换,则S (7)≥10 000,所以256⎣⎡⎦⎤⎝⎛⎭⎫327-1+400×7+7×62a ≥10 000,即21a ≥3 082,所以a ≥1461621.又a ∈N *,所以a 的最小值为147.3.已知点⎝⎛⎭⎫1,13是函数f (x )=a x (a >0且a ≠1)的图象上一点,等比数列{a n }的前n 项和为f (n )-c ,数列{b n }(b n >0)的首项为c ,且前n 项和S n 满足S n -S n -1=S n +S n -1(n ≥2,n ∈N *).(1)求数列{a n }和{b n }的通项公式;(2)若数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和为T n .问T n >1 0002 015的最小正整数n 是多少?解:(1)∵f (1)=a =13,∴f (x )=⎝⎛⎭⎫13x,a 1=f (1)-c =13-c , a 2=[f (2)-c ]-[f (1)-c ]=-29,当一个人先从自己的内心开始奋斗,他就是个有价值的人。
2020年高考数学压轴题专题复习: 数列与不等式的综合问题【解析版】
第二章 数列与不等式专题 数列与不等式的综合问题纵观近几年的高考命题,考查常以数列的相关项以及关系式,或数列的前n 项和与第n 项的关系入手,结合数列的递推关系式与等差数列或等比数列的定义展开,求解数列的通项、前n 项和,有时与参数的求解、数列不等式的证明等加以综合.数列与不等式的结合,一般有两类题:一是利用基本不等式求解数列中的最值;二是与数列中的求和问题相联系,证明不等式或求解参数的取值范围,此类问题通常是抓住数列通项公式的特征,多采用先求和后利用放缩法或数列的单调性证明不等式,求解参数的取值范围. 本专题通过例题说明此类问题解答规律与方法.①函数方法:即构造函数,通过函数的单调性、极值等得出关于正实数的不等式,通过对关于正实数的不等式特殊赋值得出数列中的不等式;②放缩方法:数列中不等式可以通过对中间过程或者最后的结果放缩得到; ③比较方法:作差或者作商比较.【压轴典例】例1.(2013·全国高考真题(理))设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n=1,2,3,… 若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=2n n c a +,c n +1=2n nb a +,则( ) A .{S n }为递减数列 B .{S n }为递增数列C .{S 2n -1}为递增数列,{S 2n }为递减数列D .{S 2n -1}为递减数列,{S 2n }为递增数列 【答案】B 【解析】因为11b c >,不妨设111142,33a a b c ==,13()22p a b c a =++=;故211S ==; 21a a =,112125326a ab a +==,112147326a a c a +==,2216S a ==; 显然21S S >;同理,31a a =,112159428a a b a +==,113137428a a c a +==,231S ==,显然32S S >.例2. (2018·江苏高考真题)已知集合*{|21,}A x x n n N ==-∈,*{|2,}n B x x n N ==∈.将AB 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为________. 【答案】27 【解析】设=2kn a ,则12[(211)+(221)+(221)][222]k k n S -=⨯-⨯-+⋅-++++()11221212212(12)222212k k kk k ---++⨯--=+=+--由112n n S a +>得2211211522212(21),(2)20(2)140,22,6k k k k k k k -+---+->+-->≥≥ 所以只需研究5622n a <<是否有满足条件的解,此时25[(211)+(221)+(21)][222]n S m =⨯-⨯-+-++++25122m +=+-,+121n a m =+,m 为等差数列项数,且16m >. 由25122212(21),2450022,527m m m m m n m ++->+-+>∴≥=+≥,得满足条件的n 最小值为27. 例3.(2018·浙江高考模拟)设数列的前项和分别为,其中,使成立的最大正整数__________,__________.【答案】 6. 114. 【解析】根据题意,数列{a n }中,a n =-3n+20,则数列{a n }为首项为17,公差为-3的等差数列,且当n≤6时,a n >0,当n >7时,a n <0,又由b n =|a n |,当n≤6时,b n =a n ,当n >7时,b n =-a n , 则使T n =S n 成立的最大正整数为6,T 2018+S 2018=(a 1+a 2+……+a 6+a 7+a 8+……+a 2018)+(b 1+b 2+……+b 6+b 7+b 8+……+b 2018)=(a 1+a 2+……+a 6+a 7+a 8+……+a 2018)+(a 1+a 2+……+a 6-a 7-a 8-……-a 2018) =2(a 1+a 2+……+a 6)=,故答案为:6,114 例4.(2019·江西师大附中高考模拟(文))数列{}n a 中的项按顺序可以排成如图的形式,第一行1项,排1a ;第二行2项,从左到右分别排2a ,3a ;第三行3项,……依此类推,设数列{}n a 的前n 项和为n S ,则满足2019n S >的最小正整数n 的值为( )A .20B .21C .26D .27【答案】B 【解析】第一行为4,其和为4,可以变形为:1232T =⨯-;第二行为首项为4,公比为3的等比数列,共2项,其和为:()22241323213T -==⨯--;第三行为首项为4,公比为3的等比数列,共3项,其和为()33341323213T -==⨯--;依此类推:第n 行的和:232nn T =⨯-;则前6行共:12345621+++++=个数 前6行和为:()()()()26267212322322322333123152172S =⨯-+⨯-+⋅⋅⋅+⨯-=⨯++⋅⋅⋅+-=-=满足2019n S >而第六行的第6个数为:543972⨯=,则202197212002019S S =-=<∴满足2019n S >的最小正整数n 的值为:21本题正确选项:B例5.(2019·内蒙古高考模拟(理))数列()11n a n n =+的前n 项和为n S ,若1S ,m S ,n S 成等比数列()1m >,则正整数n 值为______. 【答案】8 【解析】∵()11111n a n n n n ==-++,∴11111122311n nS n n n =-+-++-=++, 又1S ,m S ,n S 成等比数列()1m >,∴()21m n S S S =⋅, 即()221211m n n m =⋅++,()22211m n n m =++, ∴()2221m m <+,即2210m m --<,解得1212m -<<+,结合1m 可得2m =, ∴8n =,故答案为8.例6.(2016·天津高考真题(理))已知{}是各项均为正数的等差数列,公差为d ,对任意的,是和的等比中项.(Ⅰ)设求证:数列{}是等差数列;(Ⅱ)设求证:【答案】(Ⅰ)详见解析(Ⅱ)详见解析 【解析】(Ⅰ)证明:由题意得,有,因此,所以是等差数列.(Ⅱ)证明:所以.例7.(2016·四川高考真题(理))已知数列{}的首项为1,为数列{}的前n 项和,,其中q>0,.(Ⅰ)若成等差数列,求数列{a n }的通项公式;(Ⅱ)设双曲线的离心率为,且,证明:.【答案】(Ⅰ);(Ⅱ)详见解析.【解析】(Ⅰ)由已知,两式相减得到.又由得到,故对所有都成立.所以,数列是首项为1,公比为q的等比数列.从而.由成等差数列,可得,即,则,由已知,,故.所以.(Ⅱ)由(Ⅰ)可知,.所以双曲线的离心率.由解得.因为,所以.于是,故.例8.(2016·浙江高考真题(理))设数列满足,.(Ⅰ)证明:,;(Ⅱ)若,,证明:,.【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析.【解析】(Ⅰ)由得,故,,所以,因此.(Ⅱ)任取,由(Ⅰ)知,对于任意,,故.从而对于任意,均有.由的任意性得.①否则,存在,有,取正整数且,则,与①式矛盾.综上,对于任意,均有.【压轴训练】1.(2019·安徽高考模拟(理))设是等差数列,下列结论一定正确的是()A.若,则B.若,则C.若,则D.若,则【答案】C【解析】若a1+a2>0,则2a1+d>0,a2+a3=2a1+3d>2d,d>0时,结论成立,即A不正确;对于B选项,当,分别为-4,-1,2时,满足a1+a3<0,但a2+a3=1>0,故B不正确;又{a n }是等差数列,0<a 1<a 2,2a 2=a 1+a 3>2,∴a 2,即C 正确;若a 1<0,则(a 2﹣a 1)(a 2﹣a 3)=﹣d 2≤0,即D 不正确. 故选:C .2.(2018·浙江高考模拟)已知等差数列的前项和是,公差不等于零,若成等比数列,则A .B .C .D .【答案】C 【解析】 由成等比数列.可得,可得(,即,∵公差不等于零,故选:C .3.(2019·山东高考模拟(文))已知正项等比数列{}n a 满足5432a a a +=,若存在两项m a ,n a ,使得18m n a a a =,则91m n+的最小值为__________. 【答案】2 【解析】正项等比数列{}n a 满足5432a a a +=, 432111=+2a q a q a q ∴,整理,得210+2q q -=,又0q >,解得,12q =, 存在两项m a ,n a 使得18m n a a a =, 2221164m n a q a +-∴=,整理,得8m n +=,∴9119119()()(10)88m n m n m n m n n m +=++=++ 19(102)28m n n m+=, 则91m n+的最小值为2. 当且仅当9m n n m=取等号,又m ,*n N ∈.8m n +=, 所以只有当6m =,2n =时,取得最小值是2. 故答案为:24.(2019·湖南师大附中高考模拟(理))已知等比数列{a n }的前n 项积为T n ,若124a =-,489a =-,则当T n 取最大值时,n 的值为_____. 【答案】4 【解析】设等比数列{a n }的公比为q ,因为124a =-,489a =-,可得341127a q a ==,解得13q =,则()()()1112312(2131)(32424)n n nnn n n T a a a a q-+++⋅⋅⋅+-=⋅⋅⋅=-=-, 当T n 取最大值时,可得n 为偶数,函数13xy =()在R 上递减, 又由2192T =,4489T =,66983T =,可得246T T T <>,当6n >,且n 为偶数时,6n T T <, 故当4n =时,T n 取最大值.5.(2019·安徽高考模拟(理))已知数列的各项均为正数,记为的前项和,若,,则使不等式成立的的最小值是________.【答案】11 【解析】由可得,则()()=0,又数列的各项均为正数,∴,即,可得数列{a n }是首项为公比为q =2的等比数列,∴,则n>10,又,∴n 的最小值是11,故答案为11.6.(2019·甘肃天水一中高考模拟(文))已知数列{}n a 满足11a =,0n a >,11n n a a +=,那么32n a <成立的n 的最大值为______ 【答案】5 【解析】11n n a a +=, 所有{}na 11a =,公差d 1=n n a =,2n a n = 解232n a n =<,得n 42<所以32n a <成立的n 的最大值为5 故答案为:57.(2019·河北高考模拟(理))已知数列{}n a 的前n 项和为n S ,且()2119*2n n n nS S n N +-+=∈,若24a <-,则n S 取最小值时n =__________.【答案】10 【解析】由21192n n n nS S +-+=,()21(1)1912n n n n S S ----+=,两式作差可得:1110(2)n n S S n n +--=-≥,即110(2)n n a a n n ++=-≥,由110n na a n ++=-,219n n a a n +++=-,两式作差可得:21(2)n n a a n +-=≥,则328a a +=-,24a <-,故234a a <-<,进一步可得:4567891011,,,a a a a a a a a <<<<,又10110a a +=,则10110a a <<,且111212130a a a a <+<+<,则n S 取最小值时10n =.8.(2019·河南高考模拟(理))记首项为11(0)a a >,公差为d 的等差数列{}n a 的前n 项和为n S ,若1212a d =-,且1n n n S a S λ+≤+,则实数λ的取值范围为__________. 【答案】19,121⎡⎤⎢⎥⎣⎦【解析】由1n n n S a S λ+≤+,得11n n n n S S a a λ++-=≤. 因为10a >,所以0d <,()12312n a a n d n d ⎛⎫=+-=-⎪⎝⎭. 所以当111n ≤≤时,0n a >,当12n ≥时,0n a <. (1)当111n ≤≤时,由1n n a a λ+≥得1211223n n n n n a a d d a a a n λ++≥==+=+-. 因为221911223212321n +≤+=-⨯-,所以1921λ≥.(2)当12n ≥时,由1n n a a λ+≥得121223n n a a n λ+≤=+-. 因为211223n +>-,所以1λ≤.综上所述,λ的取值范围是19,121⎡⎤⎢⎥⎣⎦. 9.(2019·四川重庆南开中学高考模拟(理))在正项递增等比数列{}n a 中,51a =,记12...n n S a a a =+++,12111...n nT a a a =+++,则使得n n S T ≤成立的最大正整数n 为__________. 【答案】9【解析】由题得11111(1)(1)(1)11(1)1n nn nq q a q a q q q a q q--⋅-≤=---,因为数列是正项递增等比数,所以10,1a q >>,所以2111n a q -≤.因为51a =,所以44281111,,a q a q a q --=∴=∴=,所以81901,,9n n q qq q n ---⋅≤∴≤∴≤.所以使得n n S T ≤成立的最大正整数n 为9. 故答案为:910.(2017·吉林高考模拟(理))已知数列{}n a 满足()113,31.2n n a a a n N *+==-∈ (1)若数列{}n b 满足12n n b a =-,求证:{}n b 是等比数列; (2)若数列{}n c 满足312log ,n n n n c a T c c c ==+++,求证:()1.2n n n T ->【答案】(1) 见解析;(2)见解析. 【解析】(1) 由题可知()*n N∈,从而有13n n b b +=,11112b a =-=,所以{}n b 是以1为首项,3为公比的等比数列.(2) 由(1)知13n n b -=,从而1132n n a -=+,11331log 3log 312n n n c n --⎛⎫=+>=- ⎪⎝⎭,有()12101212n n n n T c c c n -=+++>+++-=,所以()12n n n T ->.11.(2019·江苏金陵中学高考模拟)已知各项均为正整数的数列{a n }的前n 项和为S n ,满足:S n ﹣1+ka n =ta n 2﹣1,n≥2,n∈N *(其中k ,t 为常数).(1)若k =12,t =14,数列{a n }是等差数列,求a 1的值; (2)若数列{a n }是等比数列,求证:k <t . 【答案】(1)a 1=(2)见解析 【解析】(1)∵k=12,t =14,∴2111124n n n S a a -+=-(n≥2),设等差数列{a n }的公差为d ,令n =2,则212211a a a 124+=-,令n =3,则2123311124a a a a ++=-,两式相减可得:()()()2332321124a a a a a a +=+-,∵a n >0,∴a 3﹣a 2=2=d .由212211124a a a +=-,且d =2,化为2112a a -﹣4=0,a 1>0.解得a 1=(2)∵S n ﹣1+ka n =ta n 2﹣1①,n≥2,n∈N *,所以S n +ka n+1=2n 1ta +﹣1②, ②-①得a n +ka n+1﹣ka n =2n 1ta +﹣2n ta ,∴a n =(a n+1﹣a n )[t (a n+1+a n )﹣k], 令公比为q >0,则a n+1=a n q ,∴(q ﹣1)k+1=ta n (q 2﹣1), ∴1=(q ﹣1)[ta n (q+1)﹣k];∵对任意n≥2,n∈N *, 1=(q ﹣1)[ta n (q+1)﹣k]成立;∴q≠1,∴a n 不是一个常数; ∴t=0,∴S n ﹣1+ka n =﹣1,且{a n }是各项均为正整数的数列,∴k<0, 故k <t .12.(2019·天津高考模拟(理))已知单调等比数列{}n a ,首项为12,其前n 项和是n S ,且3312a S +,5S ,44a S +成等差数列,数列{}n b 满足条件1231(2)n b na a a a =(1)求数列{}n a 、{}n b 的通项公式; (2)设1n n nc a b =-,记数列{}n c 的前n 项和是n T . ①求n T ;②求正整数k ,使得对任意*n N ∈,均有k n T T ≥.【答案】(1)12nn a ⎛⎫= ⎪⎝⎭,(1)n b n n =+;(2)①.1112n n T n =-+;②.4k =. 【解析】(1)设11n n a a q -=.由已知得53344122S a S a S =+++,即5341222S a S =+, 进而有()543122S S a -=.所以53122a a =,即214q =,则12q =±.由已知数列{}n a 是单调等比数列,且112a =,所以取12q =.数列{}n a 的通项公式为12nn a ⎛⎫= ⎪⎝⎭. 1231(2)n b na a a a =,(1)2322222222n b n nn+∴⨯⨯⨯⨯==,则(1)n b n n =+.即数列{}n b 的通项公式为(1)n b n n =+. (2)①.由(1)可得:1111112(1)21n n n n n c a b n n n n ⎛⎫=-=-=-- ⎪++⎝⎭, 分组求和可得:1111112112n n nT n n ⎛⎫=---=- ⎪++⎝⎭. ②由于11111111(1)(2)222122(1)(2)n n n n n n n n T T n n n n ++++++--=--+=++++, 由于12n +比()()12n n ++变化快,所以令10n n T T +->得4n <. 即1234,,,T T T T 递增,而456,,n T T T T 递减.所以,4T 最大.即当4k =时,k n T T ≥.13.(2019·安徽高考模拟(文))已知数列为等差数列,且公差,其前项和为,,且,,成等比数列. (1)求等差数列的通项公式;(2)设,记数列的前项和为,求证.【答案】(1);(2)证明见解析.【解析】 (1)由题意得: ,解得:,∴(2)由(1)得,∴ ∴14.(2019·广东高考模拟(理))已知数列{}n a 满足11*121(22)2()n n n a a a n N n-++++=∈.(1)求12,a a 和{}n a 的通项公式;(2)记数列{}n a kn -的前n 项和为n S ,若4n S S ≤对任意的正整数n 恒成立,求实数k 的取值范围. 【答案】(1) 1a 4= 26;a = 22n a n =+ (2) 125[,].52【解析】(1)由题意得111222?2n n n a a a n -++++=,所以23112124,222,a a a =⨯=+=⨯得26;a =由111222?2n n n a a a n -++++=,所以()2121221?2n n n a a a n --+++=-(2n ≥),相减得()1+12?21?2n n n n a n n -=--,得22,1n a n n =+=当也满足上式. 所以{}n a 的通项公式为22n a n =+.(2)数列{}n a kn -的通项公式为()2222,n a kn n kn k n -=+-=-+ 是以4k -为首项,公差为2k -的等差数列,若4n S S ≤对任意的正整数n 恒成立,等价于当4n =时,n S 取得最大值,所以()()4544220,55220.a k k a k k ⎧-=-+≥⎪⎨-=-+≤⎪⎩解得125.52k ≤≤ 所以实数k 的取值范围是125,.52⎡⎤⎢⎥⎣⎦ 15.(2017·浙江高考模拟)已知无穷数列{}n a 的首项112a =,*1111,2n n n a n N a a +⎛⎫=+∈ ⎪⎝⎭. (Ⅰ)证明: 01n a <<;(Ⅱ) 记()211n n nn n a a b a a ++-=, n T 为数列{}n b 的前n 项和,证明:对任意正整数n , 310n T <. 【答案】(Ⅰ)见解析;(Ⅱ)见解析. 【解析】(Ⅰ)证明:①当1n =时显然成立;②假设当n k = ()*k N ∈时不等式成立,即01k a <<, 那么当1n k =+时,11112k k k a a a +⎛⎫=+ ⎪⎝⎭ > 1·12=,所以101k a +<<, 即1n k =+时不等式也成立.综合①②可知, 01n a <<对任意*n N ∈成立. (Ⅱ)12211n n n a a a +=>+,即1n n a a +>,所以数列{}n a 为递增数列. 又1111112n n n n n a a a a a +⎛⎫-=-+ ⎪⎝⎭ 112n n a a ⎛⎫=- ⎪⎝⎭,易知1n n a a ⎧⎫-⎨⎬⎩⎭为递减数列, 所以111nn a a +⎧⎫-⎨⎬⎩⎭也为递减数列, 所以当2n ≥时,111n n a a +-22112a a ⎛⎫≤- ⎪⎝⎭154245⎛⎫=- ⎪⎝⎭ 940= 所以当2n ≥时, ()211n n nn n a a b a a ++-== ()()11111940n n n n n n a a a a a a +++⎛⎫--<- ⎪⎝⎭当1n =时, 11934010n T T b ===<,成立; 当2n ≥时, 12n n T b b b =+++ < ()()()32431994040n n a a a a a a +⎡⎤+-+-++-⎣⎦()12994040n a a +=+- ()2999942731140404040510010a ⎛⎫<+-=+-=< ⎪⎝⎭ 综上,对任意正整数n , 310n T <16.(2017·浙江高考模拟)已知数列{}n a 满足: 11p ap +=, 1p >, 11ln n n na a a +-=.(1)证明: 11n n a a +>>; (2)证明:12112n nn n a a a a ++<<+; (3)证明:()1211121121ln 122n n n n n a a a p p ----⨯<⋯<⨯+. 【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析. 【解析】(1)先用数学归纳法证明1n a >. ①当1n =时,∵1p >,∴111p a p+=>; ②假设当n k =时, 1k a >,则当1n k =+时, 1111ln 1k k k k k a a a a a +--=>=-. 由①②可知1n a >. 再证1n n a a +>.111ln ln ln n nn nn n n n na a a a a a a a a +----=-=, 令()1ln f x x x x =--, 1x >,则()'ln 0f x x =-<, 所以()f x 在()1,+∞上单调递减,所以()()10f x f <=,所以1ln 0ln n n nna a a a --<,即1n n a a +>.(2)要证12112n nn n a a a a ++<<+,只需证2111ln 2n n n n n a a a a a -+<<+, 只需证()2210,{1220,n n n n n na lna a a lna a -+<+-+>其中1n a >, 先证22ln 10n n n a a a -+<,令()22ln 1f x x x x =-+, 1x >,只需证()0f x <. 因为()()'2ln 2221220f x x x x x =+-<-+-=, 所以()f x 在()1,+∞上单调递减,所以()()10f x f <=. 再证()1ln 220n n n a a a +-+>,令()()1ln 22g x x x x =+-+, 1x >,只需证()0g x >,()11'ln 2ln 1x g x x x x x +=+-=+-, 令()1ln 1h x x x =+-, 1x >,则()22111'0x h x x x x -=-=>,所以()h x 在()1,+∞上单调递增,所以()()10h x h >=,从而()'0g x >,所以()g x 在()1,+∞上单调递增,所以()()10g x g >=, 综上可得12112n nn n a a a a ++<<+. (3)由(2)知,一方面, 1112n n a a ---<,由迭代可得()1111111122n n n a a p --⎛⎫⎛⎫-<-= ⎪⎪⎝⎭⎝⎭,因为ln 1x x ≤-,所以111ln 12n n n a a p -⎛⎫≤-< ⎪⎝⎭,所以()1212ln ln ln ln n n a a a a a a ⋯=++⋯+ 0111111222n p -⎡⎤⎛⎫⎛⎫⎛⎫<++⋯+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ 111112121212nn n p p -⎛⎫- ⎪-⎝⎭=⨯=⨯-;另一方面,即11112n n n na a a a ++-->, 由迭代可得111111111212n n nn a a a a p ----⎛⎫⎛⎫>⨯= ⎪ ⎪+⎝⎭⎝⎭.因为1ln 1x x ≥-,所以1ln 1n n a a ≥- 11112n p -⎛⎫> ⎪+⎝⎭,所以()01112121111ln ln ln ln 1222n n n a a a a a a p -⎡⎤⎛⎫⎛⎫⎛⎫⋯=++⋯+>⨯++⋯+⎢⎥ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦112112n n p --=⨯+;综上,()1211121121ln 122n n n n n a a a p p ----⨯<⋯<⨯+.。
高考数学数列题型之数列与不等式交汇的综合题
数列与不等式交汇的综合题例31 已知数列{}n a 满足.21211--+=n n n a na a *)(N n ∈(1)若数列{}n a 是以常数1a 首项,公差也为1a 的等差数列,求a 1的值; (2)若012a =,求证:21111n n a a n--<对任意n N *∈都成立; (3)若012a =,求证:12n n a n n +<<+对任意n N *∈都成立. 解 (1)由21121()n n n a a a n N n*--=+∈得:[]211121(2)a a n a n =+-即221121()n a a n-=,求得10a =(2)由10n n a a ->>知1121n n n n a a a a n--<+,两边同除以1n n a a -,得21111n n a a n--< (3)00112111111111()()()n n na a a a a a a a --=-+-++- 222111123n <++++ 11111223(1)n n<++++⨯⨯- 111111111()()()()233445(1)n n=+-+-+-++--12n =-,将012a =代入,得n a n <; ㈠ 11n a n -<- ∴ 21121n n n a a a n --=+1121n n n a a n ---<+2121n n n a a n n ->+- 2112211n n n n n a a a a n n n -->+∙+-211111111n n a a n n n n -->>-+-+11223111111111()()()n n na a a a a a a a --=-+-++-111111()()()23341n n >-+-++-+ 1121n =-+ 而134a =,1512611n n a n n +∴<+<++ 12n n a n +∴>+ ㈡ 由㈠㈡知,命题成立.例32 设数列{}n a 的前n 项和为n S ,)1(2,11-+==n nS a a nn 。
数列与不等式结合的题型解析
数列与不等式结合的题型解析一、数列不等式恒成立问题例1 已知数列{an}满足a1=1,an+1=14a2n+p.(1)若数列{an}是常数列,求p的值;(2)求最大的正数p,使得an2对一切整数n恒成立,并证明你的结论.解析(1)若数列{an}是常數列,则a2=14a1+p=14+p=1,p=34.(2)因为ak+1-ak=14a2k-ak+p=14(ak-2)2+p-1≥p-1,所以an=a1+(a2-a1)+。
+(an-an-1)1+(n-1)(p-1),这说明,当p1时,an越来越大,不满足an2,所以要使得an2对一切整数n恒成立,只可能p≤1.下面证明当p=1时,an2恒成立.用数学归纳法证明:当n=1时,a1=1显然成立;假设当n=k时成立,即ak2,则当n=k+1时,ak+1=14a2k+114×22+1=2成立,由上可知对一切正整数n 恒成立,因此,正数p的最大值是1.点评求解数列不等式恒成立问题的常用方法有:先利用等差数列与等比数列等知识化简不等式,再通过解不等式解得,或转化利用最值法解得.本题是在数列不等式恒成立的条件下,求参数p的最大值问题,首先将数列作差递推,利用累差法得到数列通项的不等关系,然后在讨论范围的基础上确定出参数p的最大值,进而运用数学归纳法给出证明的.二、数列不等式证明问题例2 已知数列{an]的前n项和记为Sn,且满足Sn=2an-n,n∈N*.(1)求数列{an}的通项公式;(2)证明:n2-13解析(1)因为Sn=2an-n(n∈N+),所以Sn-1=2an-1-n+1(n≥2),两式相减得:an=2an-1+1,变形可得:an+1=2(an-1+1).又因为a1=2a1-1,即a1=1,所以数列{an+1}是首项为2、公比为2的等比数列,所以an+1=2·2n-1=2n,an=2n-1.(2)由akak+1=2k-12k+1-12k-12k+1-2=12,(k=1,2,。
高考数学复习知识点讲解教案第38讲 数列的综合问题
4.某商场为了满足广大数码爱好者的需求,开展商品分期付款活动.已知某商品一次性付款的金额为元,计划以分期付款的形式等额分成 期付清,每期期末所付款是元,每期利率为,则 _ _________.
[解析] 由题意得 ,, .
5.假设每次用相同体积的清水清洗一件衣服,且每次能洗去污垢的 ,那么至少要清洗___次才能使存留的污垢在 以下.
3.[教材改编] 假设某银行的活期存款年利率为 ,某人存入10万元后,既不加进存款也不取款,每年到期利息连同本金自动转存.如果不考虑利息税及利率的变化,经过年到期时的存款余额为万元,那么 ________________________.
,
[解析] 由题意得, ,, ,则易知 .
题组二 常错题
(1) 求数列 的通项公式;
解:因为,所以,,故,,所以等比数列 的公比,故,所以,即等比数列 的通项公式为 .
(2) 记,的前项和分别为,,求满足 的所有数对 .
解: 由已知得,由(1)可知 ,因为,所以 ,则,可得,因为为正整数, ,所以,8,10,则当时,,当时, ,当时,,故满足条件的所有数对为,, .
[总结反思]解决与数列有关的实际问题的一般步骤:首先要认真阅读,学会翻译(数学化),其次考虑用熟悉的数列知识建立数学模型,然后求出问题的解,最后还需验证求得的解是否符合实际.
变式题(1) 某牧场2022年年初牛的存栏数为1200头,计划以后每年存栏数的增长率为 ,且在每年年底卖出100头牛,按照该计划预计_______年年初牛的存栏量首次超过8900头.(参考数据:, )
所以数列是公比为2的等比数列,又 ,,所以,即 ,所以,可得.因为,所以 ,则,由,得 ,可得,所以不等式的解有无限个,故D正确.故选 .
高中数学数列与不等式综合问题放缩法
高中数学数列与不等式综合问题放缩法Last updated on the afternoon of January 3, 2021数列与不等式综合问题 一裂项放缩放缩法证明与数列求和有关的不等式中,很多时候要留一手,即采用有保留的方法,保留数列第一项或前两项,从数列第二项或第三项开始放缩,这样才不至于结果放得过大或过小。
常见裂项放缩技巧:例1求证(1)变式训练[2016·湖南怀化质检]设数列{a n }的前n 项和为S n ,已知a 1=1,=a n +1-n 2-n -,n ∈N *.(1)求数列{a n }的通项公式;(2)证明:++…+<.[2014·广东高考]设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足S -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式;证明:对一切正整数n ,有++…+<. (3)二等比放缩(一般的,形如的数列,求证都可以等比放缩)例4 [2014·课标全国卷Ⅱ]已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明是等比数列,并求{a n }的通项公式;(2)证明++…+<.变式训练【2012.广东理】已知数列{a n }满足111221,1n n n s a a ++=-+=(1)求{a n }的通项公式 2311111()21212121n n *++++<∈++++N 例求证:,n n n n n a a b a a b =-=-12111....n k a a a +++<231111+++......+12222n <(2)证明:对一切正整数n ,都有121113 (2)n a a a +++< 三伯努利不等式应用及推广 对任意的实数()()*1,11nx x nx n N >-+≥+∈有伯努利不等式 例:求证()1111+11+1....13521n ⎛⎫⎛⎫⎛⎫++> ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭变式训练【2008,福建理】已知函数()()ln 1f x x x =+-(1)求f (x )的单调区间(2)记f (x )在[]()0,n n N ∈上的最小值是n b ,令()ln 1n n a x b =+-,求证1313211224242......1...n na a a a a a a a a a a a -+++< 伯努利不等式的推广对任意的实数,例,【2006,江西理】已知数列{a n }满足()11133,2221n n n na a a n a n --==≥+- (1)已知数列{a n }满足(2)证明:对于一切正整数n ,不等式123...2!n a a a a n <恒成立。
数列综合题型
(一)数列和函数综合1.已知数列{a n}中,,且当时,函数取得极值.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)数列{b n}满足:b1=2,,证明:是等差数列,并求数列{b n}的通项公式通项及前n 项和S n.2.已知:f n(x)=a1x+a2x2+…+a n x n,且数列{a n}成等差数列.(1)当n为正偶数时,f n(﹣1)=n,且a1=1,求数列{a n}的通项;(2)试比较与3的大小.3.已知f(x)在(﹣1,1)上有定义,,且满足x,y∈(﹣1,1)有.对数列{x n}有(1)证明:f(x)在(﹣1,1)上为奇函数.(2)求f(x n)的表达式.(3)是否存在自然数m,使得对于任意n∈N*且<成立?若存在,求出m的最小值.(二)数列与不等式综合4.(2011•湖南)已知函数f(x)=x3,g (x)=x+.(Ⅰ)求函数h (x)=f(x)﹣g (x)的零点个数.并说明理由;(Ⅱ)设数列{ a n}(n∈N*)满足a1=a(a>0),f(a n+1)=g(a n),证明:存在常数M,使得对于任意的n∈N*,都有a n≤M.5.如图:假设三角形数表中的第n行的第二个数为a n(n≥2,n∈N*)(1)归纳出a n+1与a n的关系式并求出a n的通项公式;(2)设a n b n=1求证:b2+b3+…+b n<2.6.已知正项等差数列{a n}的前n项和为S n,其中a1≠a2,a m、a k、a h都是数列{a n}中满足a h﹣a k=a k﹣a m的任意项.(Ⅰ)证明:m+h=2k;(Ⅱ)证明:S m•S h≤S k2;(III)若也成等差数列,且a 1=2,求数列的前n项和.(三)数列和向量综合7.已知点集,其中=(2x﹣b,1),=(1,b+1),点列P n(a n,b n)在L中,P1为L与y轴的交点,等差数列{a n}的公差为1,n∈N*.(I)求数列{b n}的通项公式;(Ⅱ)若,令S n=f(1)+f(2)+f(3)+…+f(n);试写出S n关于n的函数解析式;8.已知一列非零向量,n∈N*,满足:=(10,﹣5),,(n32 ).,其中k是非零常数.(1)求数列{||}是的通项公式;(2)求向量与的夹角;(n≥2);(3)当k=时,把,,…,,…中所有与共线的向量按原来的顺序排成一列,记为,,…,,…,令,O为坐标原点,求点列{B n}的极限点B的坐标.(注:若点坐标为(t n,s n),且,,则称点B(t,s)为点列的极限点.)9.我们把一系列向量(i=1,2,…,n)按次序排成一列,称之为向量列,记作{}.已知向量列{}满足:,=(n≥2).(1)证明数列{||}是等比数列;(2)设θn表示向量,间的夹角,若b n=2nθn﹣1,S n=b1+b2+…+b n,求S n;(3)设||•log2||,问数列{c n}中是否存在最小项?若存在,求出最小项;若不存在,请说明理由.10.从原点出发的某质点M,按向量=(0,1)移动的概率为,按向量=(0,2)移动的概率为,设可达到点(0,n)的概率为P n,求:(1)求P1和P2的值.(2)求证:P n+2=P n+P n+1.(3)求P n的表达式.(四)数列和三角函数综合11.已知点列B1(1,y1)、B2(2,y2)、…、B n(n,y n)(n∈N)顺次为一次函数图象上的点,点列A1(x1,0)、A2(x2,0)、…、A n(x n,0)(n∈N)顺次为x轴正半轴上的点,其中x1=a(0<a<1),对于任意n∈N,点A n、B n、A n+1构成一个顶角的顶点为B n的等腰三角形.(1)求数列{y n}2的通项公式,并证明{y n}3是等差数列;(2)证明x n+2﹣x n5为常数,并求出数列{x n}6的通项公式;(3)问上述等腰三角形A n8B n9A n+110中,是否存在直角三角形?若有,求出此时a值;若不存在,请说明理由.12.设数列{a n}是首项为0的递增数列,(n∈N),,x∈[a n,a n+1]满足:对于任意的b∈[0,1),f n(x)=b总有两个不同的根.(1)试写出y=f1(x),并求出a2;(2)求a n+1﹣a n,并求出{a n}的通项公式;(3)设S n=a1﹣a2+a3﹣a4+…+(﹣1)n﹣1a n,求S n.13.(理)已知复数,其中A,B,C是△ABC的内角,若.(1)求证:;(2)当∠C最大时,存在动点M,使|MA|,|AB|,|MB|成等差数列,求的最大值.(五)数列和解析几何综合14.在xoy平面上有一系列点P1(x1,y1),P2(x2,y2)…,P n(x n,y n),…,(n∈N*),点P n在函数y=x2(x≥0)的图象上,以点P n为圆心的圆P n与x轴都相切,且圆P n与圆P n+1又彼此外切.若x1=1,且x n+1<x n x1=1.(I)求数列{x n}的通项公式;(II)设圆P n的面积为S n,,求证:.15.已知点P n(a n,b n)满足,且.(1)求点P1坐标,并写出过点P0,P1的直线L的方程;(2)猜测点P n(n≥2)与直线L的位置关系,并加以证明;(3)求数列{a n}与{b n}的通项公式,并求的最小值(其中O为坐标原点,n∈N*).16.如图,在直角坐标系xOy中,有一组底边长为a n的等腰直角三角形A n B n C n(n=1,2,3,…),底边B n C n依次放置在y轴上(相邻顶点重合),点B1的坐标为(0,b),b>0.(1)若A1,A2,A2,…,A n在同一条直线上,求证:数列{a n}是等比数列;(2)若a1是正整数,A1,A2,A2,…,A n依次在函数y=x2的图象上,且前三个等腰直角三角形面积之和不大于,求数列{a n}的通项公式.17.已知点P n(a n,b n)满足,且.(1)求点P1坐标,并写出过点P0,P1的直线L的方程;(2)猜测点P n(n≥2)与直线L的位置关系,并加以证明;(3)求数列{a n}与{b n}的通项公式(n∈N*).答案与评分标准1.已知数列{a n}中,,且当时,函数取得极值.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)数列{b n}满足:b1=2,,证明:是等差数列,并求数列{b n}的通项公式通项及前n项和S n.考点:数列与函数的综合;等比数列的通项公式;数列的求和;数列递推式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列与不等式的综合问题测试时间:120分钟满分:150分解答题(本题共9小题,共150分,解答应写出文字说明、证明过程或演算步骤) 1.[2016·银川一模](本小题满分15分)在等差数列{a n }中,a 1=3,其前n 项和为S n ,等比数列{b n }的各项均为正数,b 1=1,公比为q (q ≠1),且b 2+S 2=12,q =S 2b 2.(1)求a n 与b n ;(2)证明:13≤1S 1+1S 2+…+1S n<23.解 (1)设{a n }的公差为d ,因为⎩⎪⎨⎪⎧b 2+S 2=12,q =S 2b 2,所以⎩⎪⎨⎪⎧q +6+d =12,q =6+dq .解得q =3或q =-4(舍),d =3.(4分)故a n =3+3(n -1)=3n ,b n =3n -1.(6分) (2)证明:因为S n =n 3+3n 2,(8分)所以1S n =2n 3+3n =23⎝⎛⎭⎫1n -1n +1.(10分)故1S 1+1S 2+…+1S n= 23⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1n +1 =23⎝⎛⎭⎫1-1n +1.(12分)因为n ≥1,所以0<1n +1≤12,于是12≤1-1n +1<1,所以13≤23⎝⎛⎭⎫1-1n +1<23, 即13≤1S 1+1S 2+…+1S n<23.(15分)2.[2017·黄冈质检](本小题满分15分)已知数列{a n }的首项a 1=35,a n +1=3a n2a n +1,n∈N *.(1)求证:数列⎩⎨⎧⎭⎬⎫1a n-1为等比数列;(2)记S n =1a 1+1a 2+…+1a n,若S n <100,求最大正整数n .解 (1)证明:因为1a n +1=23+13a n,所以1a n +1-1=13a n-13=13⎝⎛⎭⎫1a n -1. 又因为1a 1-1≠0,所以1a n-1≠0(n ∈N *),所以数列⎩⎨⎧⎭⎬⎫1a n-1为等比数列.(7分)(2)由(1),可得1a n -1=23×⎝⎛⎭⎫13n -1,所以1a n=2×⎝⎛⎭⎫13n +1. 所以S n =1a 1+1a 2+…+1a n =n +2⎝⎛⎭⎫13+132+…+13n =n +2×13-13n +11-13=n +1-13n ,若S n <100,则n +1-13n <100,所以最大正整数n 的值为99.(15分)3.[2016·新乡许昌二调](本小题满分15分)已知{a n }是等差数列,{b n }是各项都为正数的等比数列,且a 1=2,b 1=3,a 3+b 5=56,a 5+b 3=26.(1)求数列{a n },{b n }的通项公式;(2)若-x 2+3x ≤2b n2n +1对任意n ∈N *恒成立,求实数x 的取值范围.解 (1)由题意,⎩⎪⎨⎪⎧a 1+2d +b 1·q 4=56,a 1+4d +b 1·q 2=26,将a 1=2,b 1=3代入,得⎩⎪⎨⎪⎧2+2d +3·q 4=56,2+4d +3·q 2=26,消d 得2q 4-q 2-28=0,∴(2q 2+7)(q 2-4)=0,∵{b n }是各项都为正数的等比数列,∴q =2,所以d =3,(4分) ∴a n =3n -1,b n =3·2n -1.(8分)(2)记c n =3·2n -12n +1,c n +1-c n =3·2n -1·2n -12n +12n +3>0所以c n 最小值为c 1=1,(12分) 因为-x 2+3x ≤2b n2n +1对任意n ∈N *恒成立, 所以-x 2+3x ≤2,解得x ≥2或x ≤1, 所以x ∈(-∞,1]∪[2,+∞).(15分)4.[2016·江苏联考](本小题满分15分)在等差数列{a n }和等比数列{b n }中,a 1=1,b 1=2,b n >0(n ∈N *),且b 1,a 2,b 2成等差数列,a 2,b 2,a 3+2成等比数列.(1)求数列{a n }、{b n }的通项公式;(2)设c n =abn ,数列{c n }的前n 项和为S n ,若S 2n +4nS n +2n >a n+t 对所有正整数n 恒成立,求常数t 的取值范围.解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q (q >0).由题意,得⎩⎪⎨⎪⎧21+d =2+2q ,2q2=1+d 3+2d ,解得d =q =3.(3分)∴a n =3n -2,b n =2·3n -1.(5分)(2)c n =3·b n -2=2·3n -2.(7分) ∴S n =c 1+c 2+…+c n =2(31+32+…+3n )-2n =3n +1-2n -3.(10分)∴S 2n +4n S n +2n =32n +1-33n +1-3=3n +1.(11分) ∴3n +1>3n -2+t 恒成立,即t <(3n -3n +3)min .(12分)令f (n )=3n -3n +3,则f (n +1)-f (n )=2·3n -3>0,所以f (n )单调递增.(14分) 故t <f (1)=3,即常数t 的取值范围是(-∞,3).(15分)5.[2016·天津高考](本小题满分15分)已知{a n }是各项均为正数的等差数列,公差为d .对任意的n ∈N *,b n 是a n 和a n +1的等比中项.(1)设c n =b 2n +1-b 2n ,n ∈N *,求证:数列{c n }是等差数列;(2)设a 1=d ,T n =∑2nk =1 (-1)k b 2k ,n ∈N *,求证:∑nk =11T k <12d 2. 证明 (1)由题意得b 2n =a n a n +1,有c n =b 2n +1-b 2n =a n +1a n +2-a n a n +1=2da n +1,(3分)因此c n +1-c n =2d (a n +2-a n +1)=2d 2,所以{c n }是等差数列.(6分)(2)T n =(-b 21+b 22)+(-b 23+b 24)+…+(-b 22n -1+b 22n )=2d (a 2+a 4+…+a 2n ) =2d ·n a 2+a 2n 2=2d 2n (n +1).(9分)所以∑nk =1 1T k =12d 2∑n k =1 1k k +1=12d 2∑nk =1 ⎝⎛⎭⎫1k -1k +1(12分)=12d 2·⎝⎛⎭⎫1-1n +1<12d 2.(15分)6.[2016·德州一模](本小题满分15分)已知数列{a n }满足a 1+2a 2+3a 3+…+na n =n (n ∈N *).(1)求数列{a n }的通项公式a n ;(2)令b n ·2 1an=1a 2n -1(n ∈N *),T n =b 1+b 2+…+b n ,写出T n 关于n 的表达式,并求满足T n >52时n 的取值范围.解 (1)∵a 1+2a 2+3a 3+…+na n =n ,所以a 1+2a 2+3a 3+…+(n -1)a n -1=n -1(n ≥2). 两式相减得a n =1n (n ≥2),(4分)又a 1=1满足上式,∴a n =1n (n ∈N *),(5分)(2)由(1)知b n =2n -12n ,(6分)T n =12+322+523+…+2n -12n ,12T n =122+323+524+…+2n -12n +1. 两式相减得12T n =12+2⎝⎛⎭⎫122+123+…+12n -2n -12n +1, 12T n =12+2×122-12n ·121-12-2n -12n +1,(9分) T n =1+4⎝⎛⎭⎫12-12n -2n -12n =3-2n +32n ,(10分) 由T n -T n -1=3-2n +32n -⎝ ⎛⎭⎪⎫3-2n +12n -1=2n -12n ,当n ≥2时,T n -T n -1>0,所以数列{T n }单调递增.(12分) T 4=3-1116=3716<52,又T 5=3-2×5+325=8332>8032=52,所以n ≥5时,T n ≥T 5>52, 故所求n ≥5,n ∈N *.(15分)7.[2016·吉林二模](本小题满分20分)已知数列{a n }前n 项和S n 满足:2S n +a n =1. (1)求数列{a n }的通项公式; (2)设b n =2a n +11+a n 1+a n +1,数列{b n }的前n 项和为T n ,求证:T n <14.解 (1)因为2S n +a n =1,所以2S n +1+a n +1=1. 两式相减可得2a n +1+a n +1-a n =0,即3a n +1=a n , 即a n +1a n =13,(4分) 又2S 1+a 1=1,∴a 1=13,所以数列{a n }是公比为13的等比数列.(6分) 故a n =13·⎝⎛⎭⎫13n -1=⎝⎛⎭⎫13n,数列{a n }的通项公式为a n =⎝⎛⎭⎫13n.(8分) (2)证明:∵b n =2a n +11+a n 1+a n +1,∴b n =2·3n 3n +1·3n +1+1=13n +1-13n +1+1,(11分) ∴T n =b 1+b 2+…+b n =⎝⎛⎭⎫131+1-132+1+( 132+1-133+1 )+…+⎝⎛⎭⎫13n +1-13n +1+1 =14-13n +1+1<14,(18分)∴T n <14.(20分)8.[2016·浙江高考](本小题满分20分)设数列{a n }满足⎪⎪⎪⎪a n -a n +12≤1,n ∈N *. (1)证明:|a n |≥2n -1(|a 1|-2),n ∈N *;(2)若|a n |≤⎝⎛⎭⎫32n,n ∈N *,证明:|a n |≤2,n ∈N *. 证明 (1)由⎪⎪⎪⎪a n -a n +12≤1,得|a n |-12|a n +1|≤1,故|a n |2n -|a n +1|2n +1≤12n ,n ∈N *,(3分) 所以|a 1|21-|a n |2n =⎝⎛⎭⎫|a 1|21-|a 2|22+⎝⎛⎭⎫|a 2|22-|a 3|23+…+⎝ ⎛⎭⎪⎫|a n -1|2n -1-|a n |2n ≤121+122+ (12)-1<1,(6分)因此|a n |≥2n -1(|a 1|-2).(8分)(2)任取n ∈N *,由(1)知,对于任意m >n ,|a n |2n -|a m |2m =⎝ ⎛⎭⎪⎫|a n |2n -|a n +1|2n +1+⎝ ⎛⎭⎪⎫|a n +1|2n +1-|a n +2|2n +2+…+⎝ ⎛⎭⎪⎫|a m -1|2m -1-|a m |2m ≤12n +12n +1+…+12m -1<12n -1,(12分)故|a n |<⎝⎛⎭⎫12n -1+|a m |2m ·2n ≤⎣⎡⎦⎤12n -1+12m ·⎝⎛⎭⎫32m ·2n =2+⎝⎛⎭⎫34m·2n.(15分) 从而对于任意m >n ,均有 |a n |<2+⎝⎛⎭⎫34m·2n . ① 由m 的任意性得|a n |≤2.否则,存在n 0∈N *,有|an 0|>2,取正整数m 0>log34|a n 0|-22 n 0且m 0>n 0,则2n 0·⎝⎛⎭⎫34m 0<2n 0·⎝⎛⎭⎫34 log34|a n 0|-22 n 0=|a n 0|-2,与①式矛盾,综上,对于任意n ∈N *,均有|a n |≤2.(20分)9.[2016·金丽衢十二校联考](本小题满分20分)设数列{a n }满足:a 1=2,a n +1=ca n+1a n(c 为正实数,n ∈N *),记数列{a n }的前n 项和为S n .(1)证明:当c =2时,2n +1-2≤S n ≤3n -1(n ∈N *);(2)求实数c 的取值范围,使得数列{a n }是单调递减数列.解 (1)证明:易得a n >0(n ∈N *),由a n +1=2a n +1a n ,得a n +1a n =2+1a n 2>2,所以{a n }是递增数列,从而有a n ≥2,故a n +1a n ≤2+14<3,(2分)由此可得a n +1<3a n <32a n -1<…<3n a 1=2·3n , 所以S n ≤2(1+3+32+…+3n -1)=3n -1,(4分)又有a n +1>2a n >22a n -1>…>2n a 1=2n +1,所以S n ≥2+22+…+2n =2n +1-2,(6分)所以,当c =2时,2n +1-2≤S n ≤3n -1(n ∈N *)成立.(8分)(2)由a 1=2可得a 2=2c +12<2,解得c <34,(10分) 若数列{a n }是单调递减数列,则a n +1a n =c +1a n 2<1,得a n >11-c ,记t =11-c,① 又a n +1-t =(a n -t )⎝⎛⎭⎫c -1ta n ,因为a n -t (n ∈N *)均为正数,所以c -1ta n >0,即a n >1tc .②由①a n >0(n ∈N *)及c ,t >0可知a n +1-t <c (a n -t )<…<c n (a 1-t )=c n (2-t ), 进而可得 a n <c n -1(2-t )+t .③由②③两式可得,对任意的自然数n ,1tc <c n -1(2-t )+t 恒成立. 因为0<c <34,t <2,所以1tc <t ,即1c <t 2=11-c ,解得c >12.(14分)下面证明:当12<c <34时,数列{a n }是单调递减数列. 当c >12时,由a n +1=ca n +1a n 及a n =ca n -1+1a n -1(n ≥2),两式相减得a n +1-a n =(a n -a n -1)⎝⎛⎭⎫c -1a n -1a n .由a n +1=ca n +1a n 有a n ≥2c 成立,则a n -1a n >4c >1c ,即c >1a n -1a n.又当c <34时,a 2-a 1<0成立,所以对任意的自然数n ,a n +1-a n <0都成立. 综上所述,实数c 的取值范围为12<c <34.。