紫外分光光度法1详解

合集下载

紫外可见分光光度法解析课件

紫外可见分光光度法解析课件
即 T= It/I0
吸光度: 为透光度倒数的对数,用A表示,即 A=lg1/T=lgI0/It
二、朗伯-比尔定律 当一束平行单色光通过含有吸光物质的
稀溶液时,溶液的吸光度与吸光物质浓度、 液层厚度乘积成正比,即
A= E cl 式中比例常数E为吸光系数,与吸光物质 的本性,入射光波长及温度等因素有关。c为 吸光物质浓度,l为透光液层厚度。
2. 使用 仪器自检结束后(7个自检项目均出现
OK字样),按[MAIN MENU]键(主 菜单),屏幕显示如下5个功能项: 1. Phtometry(定量运算);2. Wavelength Scan(波长扫描模式);3. Time Scan (时间曲线扫描);4. System(系统校 正);5. Data display(光度直接测量 模式)。根据需要测量的实验项目按相
朗伯-比尔定律是紫外-可见分光光度法的理 论基础。
A lg 1 lg I0 ECL TI
式中,A为吸光度,T为透光率,I0、I分别为入射光
和透过光的强度;E为吸光系数,当c用物质的量浓 度表示,L用厘米表示,用ε代替E,称为摩尔吸光 系数,单位为(L·mol-1·cm-1);当c用百分浓度 (g/100mL),L用厘米表示时,用E1cm1%表示E,称 为比吸光系数。它们的关系如下:
4.4 如果仪器不能初始化,关机重启。
4.5 如果吸收值异常,依次检查:波长设 置是否正确(重新调整波长,并重新调 零)、测量时是否调零(如被误操作,重 新调零)、比色皿是否用错(测定紫外波 段时,要用石英比色皿)、样品准备是否 有误(如有误,重新准备样品)。
2 标准对比法
即将待测溶液与某一标样溶液,在相同 的条件下,测定各自的吸光度,建立朗伯比尔定律,解方程求出未知样浓度与含量。

1紫外可见分光光度法精选全文

1紫外可见分光光度法精选全文

可编辑修改精选全文完整版1.紫外可见分光光度法1.1 概述物质的吸收光谱本质上就是物质中的分子和原子吸收了入射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。

由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同,因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据吸收光谱上的某些特征波长处的吸光度的高低判别或测定该物质的含量,这就是分光光度定性和定量分析的基础。

分光光度分析就是根据物质的吸收光谱研究物质的成分、结构和物质间相互作用的有效手段。

紫外可见分光光度法的定量分析基础是朗伯-比尔(Lambert-Beer)定律。

即物质在一定波长的吸光度与它的吸收介质的厚度和吸光物质的浓度呈正比。

当分子中含有一个或更多的生色基团(即具有不饱和键的原子基团),辐射就会引起分子中电子能量的改变。

常见的生色团有:如果两个生色团之间只隔一个碳原子,则形成共轭基团,会使吸收带移向较长的波长处(即红移),且吸收带的强度显著增加。

当分子中含有助色基团(有未共用电子对的基团)时,也会产生红移效应。

常见的助色基团有:-OH, -NH2, -SH, -Cl, -Br, -I。

紫外可见分光光度法从问世以来,在应用方面有了很大的发展,尤其是在相关学科发展的基础上,促使分光光度计仪器的不断创新,功能更加齐全,使得光度法的应用更拓宽了范围。

目前,分光光度法已为工农业各个部门和科学研究的各个领域所广泛采用,成为人们从事生产和科研的有力测试手段。

我国在分析化学领域有着坚实的基础,在分光光度分析方法和仪器的制造方面在国际上都已达到一定的水平。

1.2 特点分光光度法对于分析人员来说,可以说是最有用的工具之一。

几乎每一个分析实验室都离不开紫外可见分光光度计。

分光光度法的主要特点为:(1)应用广泛由于各种各样的无机物和有机物在紫外可见区都有吸收,因此均可借此法加以测定。

到目前为止,几乎化学元素周期表上的所有元素(除少数放射性元素和惰性元素之外)均可采用此法。

紫外分光光度法原理

紫外分光光度法原理

紫外分光光度法原理
紫外分光光度法是一种广泛应用于化学、生物、环境等领域的分析方法,它利
用物质对紫外光的吸收特性来进行定量或定性分析。

其原理是基于物质分子在紫外光照射下,能够吸收特定波长的光线,吸收量与物质的浓度成正比。

接下来我们将详细介绍紫外分光光度法的原理及其应用。

首先,紫外分光光度法的原理是基于兰伯-比尔定律,即溶液中吸光度与浓度
和光程的乘积成正比。

当紫外光通过溶液时,溶液中的物质会吸收特定波长的光,吸光度与溶液中物质的浓度成正比。

这种吸收特性可以用来确定物质的浓度,从而实现定量分析。

其次,紫外分光光度法的原理还涉及到分子的电子跃迁。

在紫外光照射下,分
子的电子会发生跃迁,从基态跃迁到激发态,吸收特定波长的光。

不同的物质由于其分子结构的不同,会吸收不同波长的光,因此可以通过测量吸光度来确定物质的种类和浓度。

紫外分光光度法广泛应用于药物分析、环境监测、生物化学等领域。

在药物分
析中,可以用紫外分光光度法来确定药物的含量和纯度;在环境监测中,可以用来检测水体中有机物的浓度;在生物化学中,可以用来研究生物分子的结构和功能等。

总之,紫外分光光度法是一种简单、快速、准确的分析方法,其原理基于物质
对紫外光的吸收特性。

通过测量溶液的吸光度,可以确定物质的浓度和种类,具有广泛的应用前景。

希望本文能够帮助读者更好地理解紫外分光光度法的原理及其应用。

紫外分光光度法知识点总结

紫外分光光度法知识点总结

紫外分光光度法知识点总结一、原理紫外分光光度法是利用物质吸收紫外或可见光的特性来进行分析的一种方法。

在紫外区,分子的电子能级跃迁对应的波长范围为200-400nm,而在可见光区,分子的电子能级跃迁对应的波长范围为400-700nm。

当物质受到紫外或可见光照射时,其中的某些分子会吸收特定波长的光,跃迁至激发态,导致光束透射率的减小,而其他分子则不吸收光,导致光束透射率的不变。

通过测量样品溶液吸收的光强和未被吸收的光强的比值,即吸光度,可得到与样品浓度或成分相关的信息。

二、仪器常用的紫外分光光度仪包括单波长紫外分光光度仪和双波长紫外分光光度仪。

单波长紫外分光光度仪主要用于定量分析,而双波长紫外分光光度仪则可用于定量分析和定性分析。

该仪器主要由光源、光栅、样品室、检测器和信号处理系统组成。

光源通常采用氘灯或钨灯,光栅用于分光,并将输入光束分成不同波长的光束,样品室用于放置样品,检测器用于测量透射光强,信号处理系统用于记录和处理测量到的数据。

三、样品制备在进行紫外分光光度法分析之前,通常需要对样品进行一些特殊处理。

例如,在分析有色物质时,需要进行稀释处理,以确保在测量范围内。

在样品中包含多种组分时,通常需要进行分离提取,以分离出感兴趣的组分。

此外,还需要注意去除空气对样品测量造成的影响,保持溶液的清澈度,在样品制备过程中尽量避免空气氧化和光降解的影响。

四、分析方法紫外分光光度法常用于定量分析和定性分析。

在定量分析中,可以利用比色法、标准曲线法、内标法等方法来测定样品中目标组分的含量。

在定性分析中,则通常通过比较样品的吸收光谱和已知物质的光谱,来进行鉴定和分析。

在实际应用中,还可以结合色谱法、电泳法、萃取法等技术,对样品进行预处理和分离,以满足复杂样品的分析要求。

紫外分光光度法具有灵敏度高、分辨率高、测定范围宽、样品制备简便等优点,因此在药品分析、环境监测、食品安全等领域有着广泛的应用。

同时,随着仪器技术的不断发展和进步,紫外分光光度法的应用范围也在不断扩大,有望在更多领域发挥作用。

紫外可见分光光度法(鉴别、检查、含量测定)

紫外可见分光光度法(鉴别、检查、含量测定)

紫外-可见分光光度法紫外分光光度:紫外光区特定波长内的吸收度,被测物质或杂质的定性和定量紫外-可见分光光度计的工作波长:190-900nm近紫外区(氘灯)200-400nm 可见光区(碘钨灯)400-850nm定量分析:①最大吸收波长处测出吸收度②对照品或百分吸收系数算出被测物或杂质的含量双光束光栅型紫外-可见分光光度计波长准确度误差±0.5nm一、样品测定:⑴吸收系数测定:①按食品药品监督管理局标准的该药品项下规定的方法配制供试液②在规定的波长测定其吸收度③计算吸收系数,应符合规定范围⑵鉴别与检查:按食品药品监督管理局标准的该药品项下规定测定供试品在有关波长处的最大或最小吸收,或最大吸收峰值或最大或最小吸收的比值,应符合规定⑶含量测定:①对照品比较法㈠按食品药品监督管理局标准的该药品项下规定的方法分别配制对照品和供试品溶液注:对照品中所测成分的量应在供试品中所测成分标示量的(100±100)%以内㈡用同一溶剂,在规定的波长处测定供试品和对照品的吸收度②吸收系数法㈠按食品药品监督管理局标准的该药品项下规定的方法配制供试品溶液㈡在规定波长(±1nm)处测定其吸收度㈢按食品药品监督管理局标准的该药品在规定的条件下给出的吸收系数计算含量具体过程对照品比较法①调节波长测吸光度(吸光度最大波长应在该品种项下规定的波长±2nm以内)②A样品的吸光度:A对照品的吸光度= C样品:C对照品(C为浓度,mg/ml)C样品=A样品的吸光度×C对照品/A对照品的吸光度C样品×A对照品的吸光度= A样品的吸光度×C对照品P﹪(所含物质占标示量的百分比)= C供试品-稀释后的对照品×A对照品的吸光度/ A 样品的吸光度×C对照品×供试品的标示含量例1奥硝唑含量(紫外分光光度计):⑴对照品①取0.0113g奥硝唑溶于100ml的容量瓶中稀释至100ml②从容量瓶中取出5ml③再用蒸馏水稀释至50 ml在319nm处测得对照品A(吸光度)=0.465⑵供试品①取5ml供试品于100lml的容量瓶中稀释至100ml②从容量瓶中取出5ml③用蒸馏水稀释至25ml319nm处供试品A1=0.413 供试品A2=0.417⑶①P﹪(所含物质占标示量的百分比)=0.413供试品的吸光度ⅹ(0.0113g/100ml)对照品浓度ⅹ(5/50) / 0.465对照品的吸光度ⅹ(5ml/100ml) ⅹ(1/25ml)ⅹ0.5g﹪ml标示含量供试品浓度ⅹ 100﹪=100.36﹪注:0.5﹪(供试品的标示含量)表示100ml 0.5g②P﹪= P1﹪+ P2﹪ /2。

紫外分光光度法

紫外分光光度法

第4节 紫外分光光度法
• (3)紫外吸收光谱常用吸收曲线来描述。

即用一束具有连续波长的紫外光照射
一定浓度的样品溶液,分别测量不同波长下
溶液的吸光度,以吸光度对波长作图得到该
化合物的紫外吸收曲线,即紫外吸收光谱。

化合物的紫外吸收特征可以用曲线上
最大吸收峰所对应的最大吸收波长λmax 和
该波长下的摩尔吸光系数εmax 来表示。
远紫外区,而在近紫外光区是透明的, 它们的吸收光谱曲线必须在真空中测定。
(一)紫外吸收光谱的产生
2、价电子的种类及电子跃迁类型:
• ②n → σ* 跃迁
• 含有氧、氮、硫、卤素等杂原子的饱和 烃衍生物都可发生 n → σ* 跃迁,它比 σ → σ* 跃迁的能量要低,吸收波长较长, 一般在150~250 nm范围内。如CH3OH
• 1.生色团和助色团 • ①生色团——含不饱和键基团,有π键 • 含有不饱和键,能吸收紫外可见光,产生
n→π* 或π→π*跃迁的基团称为发色团
• 是指在200~1000nm波长范围内产生特征吸收 带的具有一个或多个不饱和键和未共用电子对 的基团。如

C O CC NN C C
CO
COOH
(二)紫外吸收光谱中的有关术语
吸收峰波长
吸收强度 极性溶剂
π→π*
n→π*
与组成双键的
有关
原子种类基本无关
强吸收 104~105 弱吸收 <102
向长波方向移动 向短波方向移动
2、价电子的种类及电子跃迁类型:
• 由于一般紫外-可见分光光度计只能提供 190~850nm范围的单色光,因此只能测 量n → π* 跃迁和部分 n → σ* 跃迁、π → π* 跃迁的吸收,而对只能产生200 nm以 下吸收的 σ → σ* 跃迁则无法测量。常见 电子跃迁所处的波长范围及强度如图824所示。

紫外可见分光光度法

紫外可见分光光度法
案例导入
在夏天参加户外活动时,假如天气晴朗,就应该注 意保护皮肤,不然,暴露在火辣辣太阳之下旳皮肤, 数小时后就会出现红肿、瘙痒、发烧、刺痛症状,数 后来出现蜕皮现象,这表白太阳光中有一种光线能伤 害生物细胞。科学家研究证明,这种光线是紫外线。
根据可见光、紫外光与物质分子旳相互作用建立了 紫外-可见分光光度法,
仪器简朴
操作简便
价格低廉
测定迅速
第一节 概述
课堂活动
1.紫外-可见光旳波长范围是
A.200~400nm
B.400~760nm
C.200~760nm
D.360~800nm
2.下列论述错误旳是
A.光旳能量与其波长成反比
B.有色溶液越浓,对光旳吸收也越强烈
C.物质对光旳吸收有选择性 D.光旳能量与其频率成反比
第一节 概述
一、物质对光旳选择性吸收
单色光: 单一波长旳光束 复合光: 具有多种波长旳光束 电磁波谱: 以波长大小顺序排列旳电磁波谱图
波长 10pm 300pm 200nm 400nm 800nm 500mm 1cm 1m
光谱 射线 X射线 紫外光 可见光 红外光 微波 无线电波
措施 光谱法
分光光度法 光谱法
第三节 紫外-可见分光光度计
二、紫外-可见分光光度计旳光学性能
1.测光方式 3.狭缝或光谱带宽 5.波长精确度 7.波长反复性 9.光度反复性
2.波长范围 4.杂散光 6.吸光度范围 8.测光精确度 10.辨别率
第三节 紫外-可见分光光度计
三、紫外-可见分光光度计旳类型 1.可见分光光度计 721型
0.7范围内。若吸光度读数不在此范围,可 采用哪些措施进行调整?
第四节 分析条件旳选择

紫外-分光光度法原理知识讲解

紫外-分光光度法原理知识讲解

紫外-分光光度法原理紫外分光光度计的使用原理和方法紫外-可见分光光度法(ultraviolet-visible spectrophotometry, UV-VIS)1定义:它是利用物质的分子或离子对某一波长范围的光的吸收作用,对物质进行定性分析、定量分析及结构分析, 所依据的光谱是分子或离子吸收入射光中特定波长的光而产生的吸收光谱。

2分类:按所吸收光的波长区域不同:分为紫外分光光度法和可见分光光度法,合称为紫外-可见分光光度法。

3、紫外-可见分光光度法的特点:(1) 其仪器设备和操作都比较简单,费用少,分析速度快;(与其它光谱分析方法相比)(2)灵敏度高;(3)选择性好;(4)精密度和准确度较高;(5)用途广泛。

§1. 紫外-可见吸收光谱1. 物质对光的选择性吸收物质对光的吸收是选择性的,利用被测物质对某波长的光的吸收来了解物质的特性,这就是光谱法的基础。

通过测定被测物质对不同波长的光的吸收强度(吸光度),以波长为横坐标,吸光度为纵坐标作图,得出该物质在测定波长范围的吸收曲线。

在吸收曲线中,通常选用最大吸收波长λmax进行物质含量的测定。

2.有机化合物的紫外-可见吸收光谱2.1 有机化合物的电子跃迁与紫外-可见吸收光谱有关的电子有三种,即形成单键的σ电子、形成双键的π电子以及未参与成键的n电子。

跃迁类型有:σ→σ*、n→σ* 、π→π *、 n→π * 四种。

饱合有机化合物的电子跃迁类型为σ→σ*,n→σ*跃迁,吸收峰一般出现在真空紫外区,吸收峰低于200nm,实际应用价值不大。

不饱合机化合物的电子跃迁类型为n→π*,π→π*跃迁,吸收峰一般大于200nm。

生色团:是指分子中可以吸收光子而产生电子跃迁的原子基团。

人们通常将能吸收紫外、可见光的原子团或结构系统定义为生色团。

助色团:是指带有非键电子对的基团,如-OH、-OR、-NHR、-SH、-Cl、-Br、-I等,它们本身不能吸收大于200nm的光,但是当它们与生色团相连时,会使生色团的吸收峰向长波方向移动,并且增加其吸收强度。

紫外可见分光光度法(共73张PPT)

紫外可见分光光度法(共73张PPT)
)。
2022/11/21
分光光度计的类型
2022/11/21
3.紫外-可见吸收光谱及其特征
吸收光谱
用不同波长的紫外-可见光(200~ 760 nm)依次照一定浓度的被测样品溶液时,就 会发现部分波长的光被吸收。如果以波长λ为 横座标(单位nm),吸收度 (absorbance)A为纵座标作图,即得到紫 外-可见吸收光谱(ultraviolet-visible spectra,简称UV)。
对光波来说,产生感光作用与生理作用的是 电场强度 E 。
2022/11/21
光的波长越短(频率越高),其能量越 大。
紫外光区 可见光区
远紫外区 10-200 nm (真空紫外区)
近紫外区 200 - 400 nm (UV光谱的研究区域)
400 - 760 nm
2022/11/21
2022/11/21
能量最小,λ 200~400nm(近紫外区)
ε = 10~ 100,弱吸收
跃迁能量大小: σ→σ* > n→σ* > π→π* > n→π*
2022/11/21
∆E
n → σ*
σ→ σ*
π → π* n → π*
200
300
σ*反键轨道 π*反键轨道
n 非键轨道 π 成键轨道 σ 成键轨道
λ(nm)
第二节 紫外-可见分光度计
紫外-可见分 光光度计
2022/11/21
一、分光光度计的主要部件
Major Components of spectrometer
紫外-可见分光光度计的基本组成模块( general process)
2022/11/21
1.光源
在整个紫外光区或可见光谱区可以发射连 续光谱,具有足够的辐射强度、较好的稳定性、 较长的使用寿命。

02 紫外可见分光光度法

02 紫外可见分光光度法
紫外可见分光光度法
分光光度法基本原理:测定被测物质在特定波长处或一定 波长范围内对光的吸收度,对物质进行定性、定量分析。
分类:
紫外分光光度法
吸收光波长范围200~400nm,可用于物质的定性和定量分析
可见分光光度法
吸收光波长范围400~780nm,用于有色物质的定性和定量分析
红外分光光度法
吸 收 强 度
max
/ nm
绿光被吸收
– KMnO4溶液的max=525nm
特点:
① 为带状光谱,具有最大吸收波长。 ②不同浓度的同一种物质,其吸收曲线形状相似 ,max不变。但是不同物质,其吸收曲线形状和 max不一样,所以可作为定性分析的依据。
③ 不同浓度的同一种物质,在max处吸光度随浓 度变化的幅度最大,测定的灵敏度最高,所以通 常选取在max处测量。
特点:
• 不随浓度和液层厚度的改变而改变,作为定性鉴别的 参数; • 在max处的摩尔吸光系数,常用 max表示,。不同物质 的 λmax 有时可能相同,但 max 不一定相同,作为定性 的依据;

• max越大表明该物质的吸光能力越强,用光度法测定
该物质的灵敏度越高
例:Cd2+浓度为140 umol ·L-1 ,双 硫腙法显色测定波长为520nm,液 层厚度2cm,吸光度为0.22,求 和 透光率T。 解: (1) A = b c
4.检测器
检测器的作用是接受从比色皿发出的透射光并转换成 电信号进行测量。分为光电管和光电倍增管。
光电管:光电管依其对光敏感的波长范围不同分为红敏和紫敏
两种。红敏光电管是在阴极表面涂银和氧化铯,适用波长范围
为625—1000nm;紫敏光电管是阴极表面涂锑和铯,适用波长 范围为200—625nm。

中国药典版紫外分光光度法讲义优秀

中国药典版紫外分光光度法讲义优秀
中国药典版紫外分光光度法讲义优秀
• 肩峰或吸收谷处的吸光度测定受波长变动影响也较小,有时也可用谷 值、肩峰值与峰值同时作鉴别依据。(比如甲硝唑片的第三个鉴别就 是分别在277 nm和241 nm的波长处分别测最大吸收和最小吸收。)
• 具有不同吸光基团的化合物可有相同的最大吸收波长,但它们的摩尔 吸光系数常有明显的差别,所以摩尔吸光系数常用于分子结构分析中 吸光基团的鉴别。对于分子中含有相同吸光基团的物质,他们的摩尔 吸光系数常很接近,但可因相对分子质量不同,使百分吸光系数的值 差别较大,可以用百分吸光系数作为鉴别的依据。(比如结构相似的 甲基睾丸酮和丙酸睾丸素在无水乙醇中的最大吸收波长λmax都在 240nm,但在该波长处的E1%1cm数值,前者为540,而后者为460, 因而有较大的鉴别意义)。
• 紫外光谱是物质在200~400 nm的近紫外 光区和400~850 nm的可见光区的吸收光 谱。通常使用的紫外-可见分光光度计的 工作波长范围为190~900nm,本法在药品 检验中主要用于药品的鉴别、检查和含量 测定。适用于微量和痕量组分的分析,测 定灵敏度可达到10-4~10-7g/ml或更低范围。
处的吸收度与浓度之间是线性关系。因此 只要选择适宜的波长测定溶液的吸光度, 就可以求出其浓度。通常应选择被测物质 吸收光谱的吸收峰处,以提高灵敏度并减 少测量误差,被测物质如有几个吸收峰, 可选不易有其他物质干扰的较高吸收峰, 一般不选光谱中末端吸收峰。
中国药典版紫外分光光度法讲义优秀
• 单组分物质的含量测定 • 就是物质有单一成份构成,常用的测定法
中国药典版紫外分光光度法讲义优秀
第二节 原理
• 紫外分光光度法之所以能成为一种分析方 法,主要依据两点:
• 一、就是我们常说的吸收度,2005年版药 典已将它改为吸光度,这样说可能更准确 些。就是物质对光的吸收程度。我们首先 说一下电磁波,所有电磁波在性质上都完 全相同的,他们之间的区别仅在于波长或 频率的不同。

实例解析——紫外可见分光光度法(UV-VIS)

实例解析——紫外可见分光光度法(UV-VIS)

紫外可见分光光度法实例解析一、原理分析UV-VIS依据电子跃迁光谱,通常分子轨道基态外层电子处在,当分子外层吸收紫外或者可见辐射后,从基态向激发态跃迁。

其中紫外光谱:200~400nm,可见400~780nm。

其定性依据是不同物质对不同波长吸光度不同,定量依据是朗伯比尔定律A= εbc 吸光度分子二、适用范围一般适用于有机物,尤其是含有发色光能团、大共轭体系如含有苯环的有机物的测定三、特点:灵敏度高、选择性好、准确度好、通用性强、操作简单、价格低廉缺点:远不如红外光谱好,很多化合物在紫外没有吸收或者吸收很弱,而且紫外光谱特征性不强。

可以用来检验一些具有大的共轭体系或者发色官能团,并作为其他方法的补充。

四、仪器组成:光源——单色器——狭缝——样品池——检测器五、准备工作实验开始前查相关文献确定显色剂,显色剂:将待测组分形成有色化合物反应类型:络合反应氧化还原反应取代反应缩合反应显色剂选择条件:(1)灵敏度(2)选择性(3)生色物质稳定(4)组成恒定(5)显色剂在测定波长处无明显吸收,有色化合物与显色剂颜色对比大六、实验仪器前期设定:由待测物质查阅相关文献,确定使用可见区还是紫外区,确定光源钨丝或者氢、氘。

由待测物质确定样品池采用紫外区的石英池或者可见区的玻璃池检测器选用光电倍增管达到最佳检测效果七、配置标准检测液、显色剂溶液、参比溶液、标准溶液标准溶液:由分析纯的待测物质配置而成的溶液参比溶液:若仅待测组分和显色剂反应产物有吸收,其他试剂无吸收,用水做参比若显色剂和其他试剂略有吸收,试液本身无吸收,用“试剂空白”(不加试样溶液)参比若待测试液有吸收,而显色剂无吸收,则用“试样空白”(不加显色剂)做参比一般都选用试剂空白,即八、样品前处理,制成相应的溶液,如果其中有干扰离子,则加入掩蔽剂进行掩蔽或者采用化学方法分离出干扰离子九、实验条件确定:(1)最大吸收波长确定取1ml的标准溶液,1ml显色剂配制成溶液,稀释、定容、差文献确定谱线大致范围,多次测定,选择有最大吸收时的波长定为最大吸收波长,并且和标线对比,确定其误差是否在允许范围内,适当控制吸光度在最适范围(2)显色剂用量确定分别取1ml标准液,不同体积显色剂配成溶液,稀释、定容、多次测定得到吸光度-显色剂用量曲线,选择使得曲线平缓的最低用量再增加0.5ml为最佳显色剂用量(设为a ml)(3)显色温度确定取分别取1ml标准液、和a ml的显色显色液,稀释定容,测量在相同时间,不同温度下的吸光度显色时间曲线,得到最适温度T0(4)显色时间的确定分别取1ml标准液、和a ml的显色显色液,稀释定容,恒温T0测量,分在测量得到吸光度-显色时间曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E 摩尔吸光系数
M 10
E1% 1cm
>104强吸收 <102弱吸收
C:g / 100 mL
E E11c%m百分吸光系数
比吸光系数
偏离比尔定律的因素
(一)化学因素 浓度变化引起的离解、缔合、与溶剂间作用等。 减免:控制溶液条件。 (二)光学因素 1.非单色光的影响:E1与E2相差越大,引起 的偏离越大。也与杂光的强度和检测器对之的 响应灵敏度有关。 减免:选用较纯的单色光。
选max的光作为入射光。
入射光选择示意图
A
结论:单组份分 析时,一般选择 max的光作为入 射光,测量灵敏 度高,且对比尔 定律的偏离小。
max
2.杂散光(stray light) 减免:优化仪器设计,维护好仪器。 3.反射光和散射光:使A偏高
减免:真溶液用空白对比补偿。胶 体溶液或浑浊溶液较难用空白补偿。 4.非平行光
紫外可见分光光度计的光学性能
狭缝或谱带宽:单色光纯度指标之一,低级仪 器几纳米,中高级仪器0.1~0.5nm 分辨率:260nm处,中等仪器 <0.5nm,高级 仪器 <0.1nm 杂散光:中等仪器 <0.5%,高级仪器<0.001%, 影响仪器测定浓度上限。 光度准确度:±1%~±0.1%
分光光度计的校正
•光电二极管阵列
阴极
真 抽真空 空 光 电 管
光束
e
阳极丝(Ni)
直流放大
R
- 90V DC +
阴极表面可涂渍不同光敏物质:高灵敏(K,Cs,Sb其中二者)、红光敏 (Na/K/Cs/Sb, Ag/Cs,625~1000nm)、紫外光敏(200~625nm)、平坦响应 (Ga/As,响应受波长影响小)。产生的光电流约为硒光电池的1/10。
光源 参比 样品
0.575
单色器
检测器 显示
吸收池
I0
I
A lg lg T ECl
I0
I 请注意与定义比较
入射光 I0
透射光 I
(三)透光率测量误差
C A 1 lg 1
C C
El El T
微分后并除以上式可得:
暗噪音 讯号噪音
C 0.434T
C
T lg T
0 0.4 1.2 2.0 2.8 3.6 A
JJ21 J0
吸收光谱 Absorption Spectrum
A
min max sh min max
定性分析与定量分析的基础
定性分析基础 A
B A
物质对光的选 择吸收
定量分析基础
A
在一定的实验条 件下,物质对光 的吸收与物质的 浓度成正比。
max (A) max (B)
增 大 C
透光率和吸光度
优点:阻抗大,电流易放大,响应快,应用广。 缺点:有微小暗电流(Dark current,40K的放射线激发)。
光电倍增管(photomultiplier tube, PMT)
石英套
栅极,Grill
阳极
1个光子产生106~107个电子
光束 屏蔽
光电倍增管示意图
高灵敏度;响应快;适于弱光测定,甚至对单一光子均 可响应。
1. 波长的校正:用氢灯、氘灯、汞灯的发射谱线、 镨钕玻璃、钬玻璃、苯蒸汽的吸收光谱进行校 正。
2. 吸光度校正:用硫酸铜、硫酸钴铵、铬酸钾的 标准溶液进行校正。
3. 吸收池的校正:交换空白池与样品池,两次所 测吸光度值应小于1%。
参考文献:李昌厚.紫外可见分光光度计.北京:化学 工业出版社,2005
单光束分光光度计光路示意图
双光束分光光度计光路示意图
紫外可见分光光度计的光学性能
波长范围: 可见400~1000nm 紫外190~1000nm
波长准确度:仪器显示波长与实际波长值 的误差。±5nm~±0.2nm 一般为 ±0.5nm
波长重现性:重复使用同一波长,单色光实际波 长的变动值。一般小于等于0.5nm
减免:当± 0.002<ΔT< ± 0.01时,使0.2<A<0.7 当ΔT< 0.0001时,使0.2<A<2.0
紫外可见分光光度计主要部件
光源
单色器
吸收池
•光电池:硒光、硅光 •n光1m0电0)0,••管红稳钨氢n:m敏压灯灯紫)(、或或敏6•••稳卤氘色 准 狭2(流5钨灯散直缝讯及••测-2玻石灯:0元镜号显定璃英0:1件处示用-5::630:理器的25用用-50棱4一于于-0镜1组0可紫0n、吸0m见外0光收n区 区检栅池m测应器相 •光电倍增管 互匹配
讨论: 1.该定律适用于紫外光、可见光和红外光, 但要求入射光为单色光;对于溶液、气体和 均匀固体均适用。 2.吸光度具有加和性。 3.吸光系数( absorptivity):物质特征常数 之一,是定性鉴别的重要依据。定量分析中, 其值越大,测定的灵敏度越高。
E:吸光系数 物质的性质 入射光波长
C:mol / L 相互关系
小结
适用范围 加和性
朗 伯 比 尔 定 律
分 吸收系数: 光 形式、换算 光
度 计
偏离因素:
化学、光学因素
透光率测定误差
基本部件 光路类型 光学性能 仪器校正
(absorbance and transmittance)
入射光 I0
透射光 I
I: 光强(光功率),光束在单位时间传输的
能量或光子数
T I / I 0 T 取值为0.0 % ~ 100.0 %
A lg TA 取Fra bibliotek为∞ ~ 0朗伯-比尔定律(Lambert-Beer law)
A ECl 或 T 10A 10ECl
第十章
分子吸收光谱法
红紫外外可分见光分光光度光法度法(I(R)U:V-Vis): 电 光光光能源(源:4:00紫红~外76外光0n线(m)( ;: 20:02~4.50~0n5m0E)1m、)子激发可;见分子能 能级级跃跃迁迁::分分子子外层振价动电能子级能跃级跃迁迁,态,伴级分 随用伴用构量随 途和转 途:分定动:某子 量能物1 2 3 40些振 分级质类、 析跃结型转,迁构有能无机级机;分物跃离析分迁子。子;的的定定量E性。JJ034 、电子基态结布示意图
相关文档
最新文档