四年级奥数题及答案鸡兔同笼
四年级奥数题及答案-鸡兔同笼
四年级奥数题及答案-鸡兔同笼
导语:鸡兔同笼问题往往用假设的办法来解答,即假设全是鸡或全是兔,,脚的总数必然与条件矛盾,根据数量上出现的矛盾适当调整,从而找到正确答案。
今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡脚与兔脚共94只。
问鸡、兔各有多少只?
答案与解析:鸡兔同笼问题往往用假设的办法来解答,即假设全是鸡或全是兔,,脚的总数必然与条件矛盾,根据数量上出现的矛盾适当调整,从而找到正确答案。
假设全是鸡,那么相应的脚的总数应是2*35=70(只),与实际相比,减少了94-70=24(只)。
减少的原因是把一只兔子当做一只鸡时,要减少4-2=2(只)脚。
所以兔有24\2==12(只),鸡有35-12=23(只)。
兔同笼奥数题
兔同笼奥数题一、一个笼子里有鸡和兔,总共有35个头,94条腿,问笼子里有多少只兔子?A、12B、18C、23D、27(答案)D解析:假设笼子里全是鸡,那么腿的总数为35乘2等于70条,而实际腿数为94条,多出了24条。
由于兔子比鸡多两条腿,所以多出的24条腿可以分给12只兔子((24除以2等于12),即笼子里有12只兔子多出来的腿数,那么兔子总共有12加原本假设全为鸡时兔子应有的数量(35-12)等于23只中多出的兔子数,通过计算可知原有兔子数为27只,所以答案是D。
二、鸡兔同笼,总共有48个头,128条腿,问鸡有多少只?A、16B、20C、24D、28(答案)A解析:设鸡有x只,兔子有y只,则x加y等于48,2x加4y等于128。
通过解方程组,可以得到x等于16,y等于32,所以鸡有16只,答案是A。
三、一个笼子里有鸡和兔,总共有52个头,140条腿,问兔子比鸡多多少只?A、6B、10C、14D、18(答案)C解析:设鸡有x只,兔子有y只,则x加y等于52,2x加4y等于140。
通过解方程组,可以得到x等于24,y等于28。
兔子比鸡多28减24等于4只的2倍再加原本多出的兔子数(因为每多一只兔子就少一只鸡,腿数就会多2),即兔子比鸡多14只,所以答案是C。
四、笼子里有鸡和兔,总共有30个头,88条腿,问笼子里至少有多少只鸡?A、6B、8C、10D、12(答案)A解析:假设笼子里全是兔子,那么腿的总数为30乘4等于120条,而实际腿数为88条,少了32条。
由于鸡比兔子少两条腿,所以少的32条腿可以分给16只鸡((32除以2等于16),即笼子里至少有16只鸡替换掉16只兔子后的数量,那么原有鸡的数量至少为6只((30-16-原有兔子数中至少被替换的兔子数8),所以答案是A。
五、一个养殖场里鸡兔同笼,总共有63个头,172条腿,问养殖场里最多有多少只兔子?A、26B、29C、31D、34(答案)B解析:设鸡有x只,兔子有y只,则x加y等于63,2x加4y等于172。
四年级下册鸡兔同笼问题练习题(附答案及解析)
四年级下册鸡兔同笼问题练习题(附答案及解析).doc1、鸡兔同笼, 共100个头, 320只脚, 鸡有 ( ) 只, 兔 ( ) 只。
2、小明计算20道竞赛题,做对一道得5分,做错一道倒扣3分,结果小明考得60分,小明做对了( )道题。
3、松鼠妈妈采松子。
晴天每天可以采20个,雨天每天可以采12个。
它一连几天采了112个松子,平均每天采14个。
这几天中有 ( )天下雨。
4、个体户王小二承接了建筑公司一项运输1200块玻璃的业务,并签了合同。
合同上规定:每块玻璃运费2元;如果运输过程中有损坏,每损坏一块,除了扣除一块的运费外,还要赔偿25元。
王小二把这1200块玻璃运送到指定地点后,建筑公司按合同付给他2076元。
运输过程中损坏了 ( ) 块。
5、100名师生绿化校园,老师每人栽3棵树,学生每2人栽1棵,总共栽树100棵。
老师栽树( )棵,学生栽树( )棵。
6、 30枚硬币由2分和5分组成,共值9角9分, 2分硬币 ( ) 枚, 5分硬币( )枚。
7、某校数学竞赛,共有20道填空题,评分标准是每做对一题得5分,做错一题倒扣3分,某题没做该题得0分。
小英结果得了69分,那小英有()题没做。
8、蜘蛛有8只脚,蜻蜓有6只脚和2对翅膀,蝉有6只脚和1对翅膀,现在这三种昆虫18只,共有118只脚和20对翅膀。
蜘蛛有()只,蜻蜓有( )只,蝉有( )只。
9、甲、乙两人进行射击比赛,约定每中一发记20分,脱靶一发扣12分,两人各打10发,共得208分,其中甲比乙多64分,甲中了 ( ) 发,乙中了( )发。
10、鸡、兔共有脚96只,若将鸡、兔互换,则有脚84只,鸡有()只,兔有( )只。
附答案:1、40 602、 153、 64、 125、60 406、17 137、3.(100-69)/(5+3)=31/8 31-8*2=15 15/5=3所以有3道题没答8. 5 7 69、 8 610、 12 18。
数学下册四年级数学鸡兔同笼题 含答案解析
精选20道题攻克鸡兔同笼问题1.小兔和小鸡共12只排成一列,每只小兔都发现,站在自己前面和后面的全是小鸡,而每只小鸡发现与自己相邻的动物中恰好有一只小兔,那么这12只小动物共有条腿(每只小兔4条腿,每只小鸡2条腿).2.数学花园里盛开着三瓣花、四瓣花和六瓣花,其中三瓣花和六瓣花共有99片花瓣,四瓣花比六瓣花少3朵,花园里共有朵花.3.AMC是美国数学竞赛的简称,在过去的近10年中,有越来越多的中国学生参加了该项赛事.AMC的试卷共有25个选择题,规定每道题答对得6分,不答得1.5分,答错得0分.思敏在这项赛事中拿到了129分.则她答错了题.4.艾迪在IPS上做题目时发现,直接做对1道题目可以拿到10个积分,做错再订正的题目也可以拿到2个积分,今天他一共做了15道题目,拿到了126个积分,请问:艾迪直接做对了道题目.5.赵强有1元、5元、10元三种人民币共50张,共计260元,其中1元与10元的张数一样多,那么5元的人民币有多少张?6.若干只三脚猫组成一队,若干只四脚蛇组成一队,两支队伍进行比赛,已知两队成员数量相等,且两队所有成员共有28只脚,那么,三脚猫有只.7.小华参加数学竞赛,共有10道赛题.规定答对1题给10分,答错1题扣5分.小华10题全部答完得了85分.小华答对了道题.8.某校有学生1200人,每个学生一天要上5节课.假如一个教师一天教4节课,按每班30人计算,这所学校共需配备教师多少名?9.鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只.问:鸡、兔各几只?10.乙两人进行射击比赛,约定每中一发得20分,脱靶一发扣12分,两人各打10发,共得208分,最后甲比乙多得64分,乙打中多少发?11.和尚分馒头:100个和尚分100个馒头,大和尚每人分3个,小和尚每3个人分1个,刚好分完,大、小和尚各有多少人?12.3名同学去参加数学竞赛,共10道题,答对一道题得10分,答错一道题扣3分.这3个同学都回答了所有的问题,小笨得了87分,小聪得了74分,香香得了9分,问,他们一共答对了几道题?13.一个养殖园内,鸡比兔多36只,共有脚792只,鸡兔各几只?14.小明参加有奖竞猜,共有30道选择题,评分标准是:自己答对一题得4分;现场求助答对得2分;不答不得分;答错一题倒扣3分(现场求助的题答错也扣3分),小明最后得分为50分,而且他自己答对的和不答的题是一样多;现场求助答对的题比不答的多1题,那么他现场求助答对的题有()道题.A.7 B.8 C.9 D.1015.古怪星球上有一些稀奇古怪的动物,它们分别是单腿怪(1个头、1条腿)、双头虎(2个头、4条腿)、三脚猫(1个头、3条腿)和四爪蛇(1个头、4条腿),如果草坪上这四种动物共有58个头、160只脚,且四爪蛇的数量恰好是双头虎的2倍,那么“单腿怪”有只.某银行发行“十二生肖”邮票,每套12张,售价如下:(1)如果整套购买,每套售价100元;(2)如果单张购买,“猴”属相邮票每张16元,其它属相邮票每张10元;销售结束后,银行总共收入2016元,而且发现整套交易的套数与单张交易的张数相等,被交易走的“猴”属相邮票共有2424张.16.1千克大豆可以制成3千克豆腐,制成1千克豆油则需要6千克大豆,豆腐3元1千克,豆油15元1千克,一批大豆共460千克,制成豆腐或豆油销售后得到1800元,这批大豆中有千克被制成了豆油.校运动会有200个同学参加“3人4足”和“8人9足”项目,每人都参加其中一个项目,所有队伍同时进行比赛,一共240"足”,那么一共有个参赛队伍.17.动物园里有鸵鸟和梅花鹿若干,共有腿122条.如果将鸵鸟与梅花鹿的数目互换,则应有腿106条,那么鸵鸟有只,梅花鹿有只.19.60人参加脑筋急转弯答题游戏,共有10道题,每道题每人都答1次,共答对452次,已知每人都至少答对了6道题,且只答对6道题的有21人,只答对8道题的有12人,只答对7道题和只答对9道题的人数一样多,那么10道题全答对的有人.20.一张数学试卷,只有25道选择题.做对一题得4分,做错一题倒扣1分;如不做,不得分也不扣分.若小明得了78分,那么他做对多少题,做错多少题,没做多少题?精选20道题攻克鸡兔同笼问题18.小兔和小鸡共12只排成一列,每只小兔都发现,站在自己前面和后面的全是小鸡,而每只小鸡发现与自己相邻的动物中恰好有一只小兔,那么这12只小动物共有条腿(每只小兔4条腿,每只小鸡2条腿).鸡兔鸡鸡兔鸡鸡兔鸡鸡兔鸡鸡:8只,兔4只8×2+4×4=32条19.数学花园里盛开着三瓣花、四瓣花和六瓣花,其中三瓣花和六瓣花共有99片花瓣,四瓣花比六瓣花少3朵,花园里共有朵花.设三瓣花有a朵,六瓣花有b朵,则3a+6b=99a+2b=33(朵)即a+b+b=33(朵),即a+b+b-3=30(朵),答:花园里共有30朵花.20.AMC是美国数学竞赛的简称,在过去的近10年中,有越来越多的中国学生参加了该项赛事.AMC的试卷共有25个选择题,规定每道题答对得6分,不答得1.5分,答错得0分.思敏在这项赛事中拿到了129分.则她答错了题.假设全部答对,则25×6=150分150-129=21分不答损失6-1.5=4.5分答错损失6分,我们分析下损失的21分是由多少道不答的题和多少道错题组成即可21.5是小数,如果要变整数,只能乘偶数,所以21=4.5×2+6×222.艾迪在IPS上做题目时发现,直接做对1道题目可以拿到10个积分,做错再订正的题目也可以拿到2个积分,今天他一共做了15道题目,拿到了126个积分,请问:艾迪直接做对了道题目.假设艾迪全部是直接做对,则15×10=150个150-126=24个做错再订正的:24÷(10-2)=3道直接做对的:15-3=12道23.赵强有1元、5元、10元三种人民币共50张,共计260元,其中1元与10元的张数一样多,那么5元的人民币有多少张?假设全部是5元人民币,1元和10元人民币加起来当成一张11元的人民币,则5×50=250元260-250=10元1元人民币或10元人民币:10÷(11-10)=10张5元人民币:50-10×2=30张答:5元人民币30张24.若干只三脚猫组成一队,若干只四脚蛇组成一队,两支队伍进行比赛,已知两队成员数量相等,且两队所有成员共有28只脚,那么,三脚猫有只.28÷(3+4)=425.小华参加数学竞赛,共有10道赛题.规定答对1题给10分,答错1题扣5分.小华10题全部答完得了85分.小华答对了道题.假设10道题全部答对,则10×10=100分100-85=15分答错的题:15÷(10+5)=1道答对的题:10-1=9道26.某校有学生1200人,每个学生一天要上5节课.假如一个教师一天教4节课,按每班30人计算,这所学校共需配备教师多少名?1200÷30=40个40×5=200节200÷4=50名答:这所学校共需配备教师50名。
四年级奥数题及答案(鸡兔同笼)
四年级奥数1. 鸡兔同笼,共有头100个,足316只,那么鸡有_______只,兔有______只.2.小明花了4元钱买贺年卡和明信片,共14张,贺年卡每张3角5分,明信片每张2角5分.他买了_______张贺年卡,_______张明信片.3.东湖小学六年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题倒扣3分.刘刚得了60分,则他做对了________题.4.鸡兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只,则鸡______只.兔有_______只.5.100个馒头100个和尚吃,大和尚每人吃3个,小和尚3人吃一个,则大和尚有_______个,小和尚有_______个.6.30枚硬币,由2分和5分组成,共值9角9分,2分硬币有_______个,5分有________个.7.有钢笔和铅笔共27盒,共计300支.钢笔每盒10支,铅笔每盒12支,则钢笔有_______盒,铅笔有_______盒.8.鸡兔同笼,共有足248只,兔比鸡少52只,那么兔有______只,鸡有______只.9.工人运青瓷花瓶250个,规定完整运一个到目的地给运费20元,损坏一个倒赔100元,运完这批花瓶后,工人共得4400元,则损坏了______只.10.有2角,5角和1元人民币20张,共计12元,则1元有_______张,5角有______张,2角有_______张.二、分析与解答题:1.班主任张老师带五年级(2)班50名同学栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树120棵,问几名男生,几名女生?2.大油瓶一瓶装4千克,小油瓶2瓶装1千克.现有100千克油装了共60个瓶子.问大、小油瓶各多少个?3.小毛参加数学竞赛,共做20道题,得64分,已知做对一道得5分,不做得0分,错一题扣1分,又知道他做错的题和没做的一样多.问小毛做对几道题 ?4.有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿,蜻蜓6条腿,2对翅膀;蝉6条腿,1对翅膀),三种动物各几只?1.鸡有42只,兔有58只.兔: (316-100⨯2)÷(4-2)=58(只), 鸡: 100-58=42(只).2. 明信片有9张,贺年卡有5张.明信片: (35⨯14-400)÷(35-25)=9(张)贺年卡: 14-9=5(张).3. 15题. 20-(5⨯20-60)÷(5+3)=15(题).4. 鸡有14只,兔有18只.因鸡和兔互换,脚数减少100-92=8(只),所以原来的兔比鸡多8÷(4-2)=4(只),这4只兔子共有4⨯4=16只脚.因此,相等的鸡和兔共有脚100-16=84(只).由于兔和鸡的脚数有6只,所以鸡有84÷6=14(只),兔有14+4=18(只).5. 大和尚25人,小和尚75人.小和尚: 3⨯[(3⨯100-100)÷(3⨯3-1)=75(人),大和尚: 100-75=25(人).6. 2分币17枚,5分币13枚.2分: (5⨯30-99)÷(5-2)=17(枚)5分: 30-17=13(枚).7. 钢笔12盒,铅笔15盒.钢笔: (12⨯27-300)÷(12-10)=12(盒),铅笔: 27-12=15(盒).8. 鸡76只,兔24只.兔: (248-52⨯2)÷(2+4)=24(只),鸡: 24+52=76(只).9. 5个.(20⨯250-4400)÷(100+20)=5(只).10. 1元7张,5角8张,2角5张.2角的张数必须是5的倍数,因此只能是5张. 5角和1元共15张,合计11元.5角: (150-110)÷(10-5)=8(张), 1元: 20-8-5=7(张).二、分析与解答题:1. 男生15人,女生35人.男生: (120-5-2⨯50)÷(3-2)=15(人).女生: 50-15=35(人)2. 大油瓶20个,小油瓶40个.大油瓶: (100-0.5⨯60)÷(4-0.5)=20(个).小油瓶: 60-20=40(个).3. 14道.---因为做错的和没做的一样多,就假定这两种情况都倒扣1分.所以没做或做错的有(5⨯20-64)÷(5+1)=6(道),做对的有20-6=14(道).4. 蜘蛛5只,蜻蜓7只,蝉6只.蜘蛛: (118-6⨯18)÷(8-6)=5(只),那么6条腿的虫应有: 18-5=13(只).蜻蜓: (20-1⨯13)÷(2-1)=7(只).蝉: (2⨯13-20)÷(2-1)=6(只).。
【奥数专项】人教版小学数学奥数思维拓展四年级上册鸡兔同笼问题(试题)含答案与解析
奥数专项——鸡兔同笼问题(试题)一.选择题(共8小题)1.学校举行数学竞赛,试卷上共有20道题,每做对一道题得5分,不做或做错一道题倒扣3分,小敏得了84分。
她做对了()道题。
A.2B.8C.12D.182.小船限乘4人,大船限乘6人,四(1)班44人共租了9条船,每条船刚好坐满,租的小船有()艘。
A.4B.5C.63.学校组织秋游,到目的地后,有48位同学要坐电瓶车去游乐园游玩,每辆小车坐6人,每辆大车坐10人。
那么需要____辆小车和____辆大车,就能一次性刚好坐满。
()A.6,1B.4,2C.3,34.一个笼子里有8条腿的蜘蛛和6条腿的蚱蜢共25只。
如果它们的总数有170条,那么蜘蛛和蚱蜢各有()只。
A.10,15B.10,12C.12,155.鸡兔同笼,有36个头,96条腿,鸡有()只。
A.12B.24C.36D.306.张华用130元买了2元和5元的邮票共50张,那么张华买了2元邮票()张。
A.20B.30C.407.轩轩有2分和5分的硬币共29枚,数一数共有1元钱,那么5分的硬币有()枚。
A.14B.15C.208.停车场停着小轿车和两轮摩托车共50辆,数一数,一共有160个轮子。
那么小轿车有()辆。
A.15B.20C.30二.填空题(共9小题)9.李老师带51个同学到汾河公园去划船,共租了11条船,每条大船坐6人,每条小船坐4人,他们租了条大船,条小船。
10.体育馆内,14张乒乓球台上共有40人在打球(有单打、也有双打),正在进行双打的乒乓球台有张。
11.学校用115元买了50棵树苗,黄杨每棵2元,松树苗每棵3元,其中松树苗棵。
12.鸡和兔共5只,共有腿12条,鸡有只,兔有只。
13.书画教室里有12张桌子,大桌子每张坐4人,小桌子每张坐2人,一共坐了34人,其中大桌子有张。
14.鸡兔同笼,一共有100只脚,并且鸡和兔共有35只,那么笼子里有只兔和只鸡。
15.笼子里有一些鸡和兔,它们一共有22个头、74条腿。
小学奥数--鸡兔同笼(含答案解析)
小学奥数--鸡兔同笼一.选择题(共7小题)1.把一些鸡和兔子放在一只笼子里,从上面数有29个头,从下面数有92只脚,那么笼子中有鸡()只.A.8 B.12 C.17 D.292.有鸡和兔20只,共有46只脚,鸡有()只.A.14 B.15 C.16 D.173.每只蛐蛐有6条腿,每只蜘蛛有8条腿,蛐蛐和蜘蛛共有10只,一共有68条腿.蛐蛐和蜘蛛各有多少只?()A.4,6 B.6,4 C.5,5 D.3,74.实验小学四(1)班12名学生参加植树活动,其中男生每人植树5棵,女生每人植株4棵,一共植树56棵,男生有()A.6人 B.7人 C.8人 D.9人5.两个大人带几个小孩去公园游玩,大人门票每人10元,小孩门票每人5元,买门票一共花了45元,则这两个大人带了()个小孩.A.3 B.4 C.56.一次数学竞赛小华得了86分,这次竞赛一共20题,答对一题得5分,答错一题或不做倒扣2分,小华答对()题.A.19 B.18 C.17 D.167.全班54人去划船,共租了11条船,每条船都坐满了,已知大船限乘6人,小船限乘4人,大船租了()只.A.4 B.5 C.6 D.7二.解答题(共8小题)8.今有鸡兔同笼,有33个头,有108只脚,求鸡和兔各多少只?9.鸡与兔共有100只,共有脚260只,鸡与兔各有多少只?10.体育室里有乒乓球、羽毛球共16副,正好能让54个同学进行活动.羽毛球3人玩一副,乒乓球4人玩一副.羽毛球、乒乓球各有多少副?11.一个池塘里栖息着一些乌龟和仙鹤,从上面数有15个头,从下面数有58只脚,乌龟和仙鹤各有多少只?12.公园里的每条大船能坐6人,每条小船能坐4人.48名师生租了10条船(大船不多于小船),正好坐满.大船和小船各租了多少条?13.小亮参加学校数学竞赛,共20题,全部作答,每答对一题加5分,每答错一题扣2分,结果小亮得了86分.他答错了多少题?14.58名同学去划船,一共乘坐12只船,已知每只大船坐6人,每只小船坐4人,大船、小船各需要几只?15.猴子分桃,大猴每只分3个桃,小猴3只分1个桃,正好可以把20个桃子分完.大猴、小猴可能会是多少只?小学奥数--鸡兔同笼参考答案与试题解析一.选择题(共7小题)1.把一些鸡和兔子放在一只笼子里,从上面数有29个头,从下面数有92只脚,那么笼子中有鸡()只.A.8 B.12 C.17 D.29【分析】假设全是鸡,则脚有29×2=58只,比实际少92﹣58=34只,又因为每只兔比每只鸡多4﹣2=2只脚,所以多出的脚是兔脚,所以兔的只数是:34÷2=17只,进而求出鸡的数量.【解答】解:兔的只数:(92﹣29×2)÷(4﹣2)=34÷2=17(只)鸡有29﹣17=12(只).答:鸡有12只.故选:B.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.2.有鸡和兔20只,共有46只脚,鸡有()只.A.14 B.15 C.16 D.17【分析】假设20只全是兔子,则一共有20×4=80只脚,这比已知的46只脚多出80﹣46=34只,又因为一只兔子比一只鸡多4﹣2=2只脚,所以鸡有34÷2=17只,据此即可解答.【解答】解:(20×4﹣46)÷(4﹣2)=34÷2=17(只),答:鸡17只.故选:D.【点评】此题属于典型的鸡兔同笼问题,采用假设法即可解答.3.每只蛐蛐有6条腿,每只蜘蛛有8条腿,蛐蛐和蜘蛛共有10只,一共有68条腿.蛐蛐和蜘蛛各有多少只?()A.4,6 B.6,4 C.5,5 D.3,7【分析】假设全是蜘蛛,则一共有腿:10×8=80条,这比已知多了80﹣68=12条,又因为一只蜘蛛比一只蛐蛐多8﹣6=2条腿,所以蛐蛐有12÷2=6只,那么蜘蛛就是10﹣6=4只,据此即可解答.【解答】解:(10×8﹣68)÷(8﹣6)=12÷2=6(只)10﹣6=4(只)答:蛐蛐和蜘蛛分别有6只、4只.故选:B.【点评】解答此类题目一般都用假设法,这类问题也叫置换问题.通过先假设,再置换,使问题得到解决.4.实验小学四(1)班12名学生参加植树活动,其中男生每人植树5棵,女生每人植株4棵,一共植树56棵,男生有()A.6人 B.7人 C.8人 D.9人【分析】假设全是男生,那么一共可以植树12×5=60(棵),多植了60﹣56=4(棵),是因为一位男生比一位女生多植5﹣4=1(棵),那么女生的人数就是4÷1=4(人),进而可以求出男生的人数.【解答】解:假设全是男生,那么女生有:(12×5﹣56)÷(5﹣4)=4÷1=4(人)男生有:12﹣4=8(人)答:男生有8人.故选:C.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.5.两个大人带几个小孩去公园游玩,大人门票每人10元,小孩门票每人5元,买门票一共花了45元,则这两个大人带了()个小孩.A.3 B.4 C.5【分析】用总钱数减去两个大人门票的钱可得小孩买门票花的钱,再用总钱数除以小孩门票的价格即可得小孩的个数.【解答】解:(45﹣2×10)÷5=(45﹣20)÷5=25÷5=5(个)答:这两个大人带了5个小孩,故选:C.【点评】此题属于鸡兔同笼问题,关键是得出小孩买门票花的钱.6.一次数学竞赛小华得了86分,这次竞赛一共20题,答对一题得5分,答错一题或不做倒扣2分,小华答对()题.A.19 B.18 C.17 D.16【分析】假设小华20道题全答对,应得100分,现在小华得了86分,少了14分.因为答对一题不但得不到5分还要倒扣2分,也就是每答错一题要减去5+2=7(分),那么,少的这14分,就是因为答错题的缘故,因此小华答错了:14÷7=2(道),进一步解决问题.【解答】解:20﹣(20×5﹣86)÷(5+2)=20﹣14÷7=20﹣2=18(道).答:小华答对了18道题.故选:B.【点评】此题解答的关键是运用了假设法,先求出答错了几道题,再求出答对的题的数量.7.全班54人去划船,共租了11条船,每条船都坐满了,已知大船限乘6人,小船限乘4人,大船租了()只.A.4 B.5 C.6 D.7【分析】假设11条全是大船,则一共有6×11=66人,这比已知的54人多了66﹣54=12人,又因为一条大船比一条小船多坐6﹣4=2人,所以可得小船有12÷2=6条,则大船就是11﹣6=5条,据此即可解答问题.【解答】解:(6×11﹣54)÷(6﹣4)=(66﹣54)÷2=12÷2=6(只)11﹣6=5(只)答:大船租了5只.故选:B.【点评】此题属于鸡兔同笼问题,采用假设法即可解答问题.二.解答题(共8小题)8.今有鸡兔同笼,有33个头,有108只脚,求鸡和兔各多少只?【分析】假设全是鸡,则脚的只数是(33×2)只,而实际有108只,实际就比假设多和(108﹣33×2)只脚,这因每只兔子比每只鸡多(4﹣2)只.据此解答.【解答】解:(108﹣33×2)÷(4﹣2)=42÷2=21(只)33﹣21=12(只)答:鸡有12只,兔有21只.【点评】此题属于典型的鸡兔同笼问题,解答此类题的关键是用假设设法进行分析比较,进而得出结论;也可以用方程,设其中的一个数为未知数,另一个数也用未知数表示,列出方程解答即可.9.鸡与兔共有100只,共有脚260只,鸡与兔各有多少只?【分析】假设全部为兔子,共有腿4×100=400条,比实际的260条多:400﹣260=140条,因为我们把鸡当成了兔子,每只多算了4﹣2=2条腿,所以可以算出鸡的只数,列式为:140÷2=70(只),那么兔子就有:100﹣70=30(只);据此解答.【解答】解:假设全是兔,鸡:(4×100﹣260)÷(4﹣2)=140÷2=70(只)兔:100﹣70=30(只)答:鸡有70只,兔有30只.【点评】解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔.如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔.这类问题也叫置换问题.通过先假设,再置换,使问题得到解决.10.体育室里有乒乓球、羽毛球共16副,正好能让54个同学进行活动.羽毛球3人玩一副,乒乓球4人玩一副.羽毛球、乒乓球各有多少副?【分析】假设全是羽毛球,则有16×3=48人,这样就少了54﹣48=6人,因为一副乒乓球比一副羽毛球少算了4﹣3=1人,即乒乓球有6÷1=6(副);进而求出羽毛球的数量.【解答】解:假设全是羽毛球,乒乓球:(54﹣16×3)÷(4﹣3)=6÷1=6(副)羽毛球:16﹣6=10(副)答:羽毛球有10副,乒乓球有6副.【点评】此题属于典型的鸡兔同笼问题,解答此类题的关键是用假设法,也可以用方程进行解答.11.一个池塘里栖息着一些乌龟和仙鹤,从上面数有15个头,从下面数有58只脚,乌龟和仙鹤各有多少只?【分析】假设全部为乌龟,共有脚4×15=60只,比实际的58只多:60﹣58=2只,因为我们把仙鹤当成了乌龟,每只多算了4﹣2=2只脚,所以可以算出仙鹤的只数,列式为:2÷2=1(只),那么乌龟就有:15﹣1=14(只);据此解答.【解答】解:假设全是乌龟,仙鹤有:(4×15﹣58)÷(4﹣2)=2÷2=1(只);乌龟:15﹣1=14(只);答:乌龟有14只,仙鹤有1只.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.12.公园里的每条大船能坐6人,每条小船能坐4人.48名师生租了10条船(大船不多于小船),正好坐满.大船和小船各租了多少条?【分析】假设全部租大船,10条船能坐6×10=60人,比实际多算了:60﹣48=12人,因为把小船看作了大船,每条小船多算了6﹣4=2人,所以小船的条数是:12÷2=6条,那么大船的条数就是:10﹣6=4条,据此解答.【解答】解:(6×10﹣48)÷(6﹣4)=12÷2=6(条)10﹣6=4(条)答:大船租了4条,小船租了6条.【点评】解答鸡兔同笼问题一般用假设法,也就是假设全部为某种量,和实际的总量相比较,就会出现矛盾,然后利用这个矛盾求出另一个量,继而求出假设的量.13.小亮参加学校数学竞赛,共20题,全部作答,每答对一题加5分,每答错一题扣2分,结果小亮得了86分.他答错了多少题?【分析】假设小亮20题全答对,他应得100分,但现在只得了86分,少了14分.因为答错一题不但不得分,而且要扣2分,也就是答错一题要少得7分.因此答错了14÷7=2(题),据此解答即可.【解答】解:(20×5﹣86)÷(5+2)=(100﹣86)÷7=14÷7=2(题)答:他答错了2题.【点评】此题运用了假设法解答盈亏问题,假设全答对,根据分数差即可求出答错了几题.14.58名同学去划船,一共乘坐12只船,已知每只大船坐6人,每只小船坐4人,大船、小船各需要几只?【分析】假设全是大船,能坐12×6=72人,比实际多72﹣58=14人,因为每条大船比每条小船多坐6﹣4=2人,所以小船有14÷2=7条,进而可以求出大船的数量.【解答】解:假设全是大船,则小船有:(12×6﹣58)÷(6﹣4)=14÷2=7(条);则大船有:10﹣7=3(条).答:大船有3条,小船有7条.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.15.猴子分桃,大猴每只分3个桃,小猴3只分1个桃,正好可以把20个桃子分完.大猴、小猴可能会是多少只?【分析】因为小猴子3只分1个桃子,所以1只小猴子分得个桃子,大猴子每只分3个桃子,则1只大猴子比1只小猴子多分(3﹣)个桃子;假设都是小猴子,则桃子的个数是20×个,实际是20个桃子,多出的桃子个数是(20﹣20×)个,(20﹣20×)÷(3﹣)即为大猴子的只数,运用减法求出小猴子只数.【解答】解:因为小猴子3只分1个桃子,所以1只小猴子分得个桃子.(20﹣20×)÷(3﹣)=(20﹣)÷=×=5(只)20﹣5=15(只)答:猴村有5只大猴子,15只小猴子.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.。
四年级下册鸡兔同笼问题练习题(附答案及解析)
四年级下册鸡兔同笼问题练习题(附答案及解析)四年级下册鸡兔同笼问题练习题(附答案及解析)一、问题描述:在一个笼子里,鸡和兔子一共有35个头,94只脚。
问鸡和兔子各有多少只?二、问题分析:这是一个经典的鸡兔同笼问题,我们可以运用代数解法或者穷举法来求解。
本文将介绍两种解法,并提供相应的答案和解析。
三、代数解法:设鸡的数量为x,兔子的数量为y。
根据题目中的条件,可以列出以下两个方程:1. x + y = 35 (总头数为35个)2. 2x + 4y = 94 (总脚数为94只)利用这两个方程,我们可以解出鸡和兔子的数量。
下面是求解的步骤:1. 将方程1乘以2,得到2x + 2y = 70。
2. 将得到的等式与方程2相减,消去x的项,得到2y = 24,进一步化简得到y = 12。
3. 将y的值代入方程1,得到x = 23。
因此,根据代数解法,鸡的数量为23只,兔子的数量为12只。
四、穷举法:穷举法是通过尝试所有可能的情况来求解问题。
在这个问题中,我们可以从鸡和兔子的总数量开始尝试,逐渐减少其中一个种类的数量,直到满足题目中的头数和脚数条件。
具体的步骤如下:1. 假设鸡的数量为0,兔子的数量为35。
通过计算可得,鸡和兔子的总脚数为140,与题目中的脚数条件不符,因此排除此种情况。
2. 假设鸡的数量为1,兔子的数量为34。
通过计算可得,鸡和兔子的总脚数为138,与题目中的脚数条件不符,因此排除此种情况。
3. ...继续逐渐减少鸡的数量,直到满足题目中的脚数条件。
通过不断尝试,最终可以得出鸡的数量为23只,兔子的数量为12只,与代数解法的结果一致。
五、答案及解析:根据两种解法的计算,鸡的数量为23只,兔子的数量为12只。
代数解法通过建立方程组,通过代数方法求解得出结果。
它的优点是计算准确、简便快捷,适用于各种复杂的问题。
但对于一些年级较低的学生来说,可能会比较难理解和掌握。
穷举法则是通过尝试所有可能的情况,直到找到符合条件的解。
四年级数学奥数鸡兔同笼含答案
鸡兔同笼问题(一)1:(4×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数总只数-鸡的只数=兔的只数总只数-兔的只数=鸡的只数2:(总脚数-2×总只数)÷(4-2)=兔的只数1、鸡兔同笼,共30个头,88只脚。
笼中鸡兔各有多少只?2 某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.问:小华做对几道题?2、小邮迷郑渊用10元钱正好买了20分和50分的邮票共35枚,这两种邮票各买了多少枚?3、小华买了2元和5元的纪念邮票一共34枚,用去98元钱。
小华买了2元和5元的纪念邮票各多少枚?4、小明的储蓄罐里共有1角和5角的硬币54枚,小明算了一下,一共有15元。
问:两种硬币各多少枚?6、45人去划船,一共乘坐7只船,其中每只大船坐7人,每只小船坐5人。
求大船和小船的只数。
7、46名同学去公园划船,共乘坐9只船,其中大船坐6人,小船坐4人。
大船和小船各有几只?8、六(1)班42个同学向2008年北京奥运会捐款。
其中12人每人捐2元,其余同学每人捐5元或10元,一共捐了229元。
求捐5元和10元的同学各有多少人?鸡兔同笼问题(一)1:(4×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数总只数-鸡的只数=兔的只数总只数-兔的只数=鸡的只数2:(总脚数-2×总只数)÷(4-2)=兔的只数1鸡兔同笼,共30个头,88只脚。
笼中鸡兔各有多少只?22 某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.问:小华做对几道题?3小邮迷郑渊用10元钱正好买了20分和50分的邮票共35枚,这两种邮票各买了多少枚?4小华买了2元和5元的纪念邮票一共34枚,用去98元钱。
小华买了2元和5元的纪念邮票各多少枚?5小明的储蓄罐里共有1角和5角的硬币54枚,小明算了一下,一共有15元。
奥数鸡兔同笼问题
奥数鸡兔同笼问题1、有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?解:我们设想,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,•也就是244 + 2=122 (只).在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数122-88=34,有34只兔子.当然鸡就有54只.答:有兔子34只,鸡54只.上面的计算,可以归结为下面算式:总脚数+ 2-总头数二兔子数.2、红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了 16支,花了 2.80元.问红、蓝铅笔各买几支?解:以“分”作为钱的单位.我们设想,一种“鸡”有11只脚,一种“兔子”有19只脚,它们共有16个头,280只脚.现在已经把买铅笔问题,转化成“鸡兔同笼”问题了.利用上面算兔数公式,就有蓝笔数=(19x 16-280) + (19-11)=24 + 8=3 (支).红笔数=16-3=13 (支).答:买了13支红铅笔和3支蓝铅笔.3、一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成, 现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时?解:我们把这份稿件平均分成30份(30是6和10的最小公倍数),甲每小时打30 + 6=5 (份),乙每小时打30 + 10=3 (份).现在把甲打字的时间看成“兔”头数,乙打字的时间看成“鸡” 头数,总头数是7.“兔”的脚数是5,“鸡”的脚数是3,总脚数是30,就把问题转化成“鸡兔同笼”问题了.根据前面的公式“兔”数二(30-3X7)・(5-3)=4.5,“鸡”数=7-4.5=2.5,也就是甲打字用了 4.5小时,乙打字用了 2.5小时.答:甲打字用了 4小时30分.4.今年是1998年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁.四年后(2002年)父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元哪一年?解:4年后,两人年龄和都要加8.此时兄弟年龄之和是17+8=25,父母年龄之和是78+8=86.我们可以把兄的年龄看作“鸡”头数,弟的年龄看作“兔”头数.25是“总头数”.86是“总脚数”.根据公式,兄的年龄是(25X4-86) + (4-3) =14 (岁).1998年,兄年龄是14-4=10 (岁).父年龄是(25-14)X4-4=40 (岁).因此,当父的年龄是兄的年龄的3倍时,兄的年龄是(40-10) + (3-1) =15 (岁).这是2003年.答:公元2003年时,父年龄是兄年龄的3倍.5.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀.现在这三种小虫共18只,有118条腿和20对翅膀.每种小虫各几只?解:因为蜻蜓和蝉都有6条腿,所以从腿的数目来考虑,可以把小虫分成“8条腿”与“6条腿”两种.利用公式就可以算出8条腿的蜘蛛数二(118-6X18)0(8-6)=5 (只).因此就知道6条腿的小虫共18-5=13 (只).也就是蜻蜓和蝉共有13只,它们共有20对翅膀.再利用一次公式蝉数二(13X2-20)0(2-1) =6 (只).因此蜻蜓数是13-6=7 (只).答:有5只蜘蛛,7只蜻蜓,6只蝉.6.某次数学考试考五道题,全班52人参加,共做对181道题,已知每人至少做对1道题,做对1道的有7人,5道全对的有6人,做对7道和3道的人数一样多,那么做对4道的人数有多少人?解:对2道、3道、4道题的人共有52-7-6=39 (人).他们共做对181Tx7-5X6=144 (道).由于对2道和3道题的人数一样多,我们就可以把他们看作是对2.5道题的人((2+3)+2=2.5).这样兔脚数=4,鸡脚数=2.5,总脚数=144,总头数=39.对4道题的有(144-2.5X39) + (4-1.5) =31 (人).答:做对4道题的有31人.7.买一些4分和8分的邮票,共花6元8角.已知8分的邮票比4分------------------------------------------------ 百度文库 ---------------------------------------------- 的邮票多40张,那么两种邮票各买了多少张?解一:如果拿出40张8分的邮票,余下的邮票中8分与4分的张数就一样多.(680-8X40) + (8+4) =30 (张),这就知道,余下的邮票中,8分和4分的各有30张.因此8分邮票有40+30=70 (张).答:买了 8分的邮票70张,4分的邮票30张.也可以用任意假设一个数的办法.解二:譬如,假设有20张4分,根据条件“8分比4分多40张”,那么应有60张8分.以“分”作为计算单位,此时邮票总值是4X20+8X60=560.比680少,因此还要增加邮票.为了保持“差”是40,每增加1 张4分,就要增加1张8分,每种要增加的张数是(680-4X20-8X60) + (4+8) =10 (张).因此4分有20+10=30 (张),8分有60+10=70 (张).------------------------------------------------ 百度文库 ----------------------------------------------- 8.一项工程,如果全是晴天,15天可以完成.倘若下雨,雨天一天工程要多少天才能完成?解:类似于例3,我们设工程的全部工作量是150份,晴天每天完成10份,雨天每天完成8份.用上一例题解一的方法,晴天有(150-8X3) + (10+8) = 7 (天).雨天是7+3=10天,总共7+10=17 (天).答:这项工程17天完成.。
四年级下册奥数试题-鸡兔同笼问题(含答案)全国通用
小学奥数:鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
例题:鸡兔同笼,头共有52个,脚共有136只,问鸡和兔各有多少只?根据上面所说的思路,套用公式方法1:把所有的鸡假设成兔子:鸡=(4 × 52 - 136 )÷(4 - 2 )= 36兔= 52 - 36 = 16方法2:把所有的兔子假设成鸡:兔=(136 - 2 × 52 )÷ ( 4 - 2 ) = 16鸡= 52 - 16 = 36特点:公式所得那个种类与假设的种类相反1、某玩具店购进飞机和汽车模型共30个,其中飞机模型每个有3个轮子,汽车模型每个有4个轮子,这些玩具模型共有110个轮子,那么新购进的飞机模型和汽车模型各有多少个?解:假设全为飞机模型全为飞机情况下总轮数:3×30=90 (个)汽车模型数量:20÷1=20(个)与实际总轮子数之差:110-90=20(个)飞机模型数量:30-10(个)每单位轮子数之差:4-3=1(个)公式综合算式:汽车=(110-3×30)÷(4-3)=20(个)2、某商店买了儿童上衣和裤子共30件,其中一件上衣20元,一条裤子15元,一共花了515元,求买了几件上衣和几条裤子?解:假设全为上衣全为上衣情况下总价格:20×30=600(元)裤子数量:85÷5=17(条)与实际总价之差:600-515=85(元)衣服数量:30-17=13(件)每单位价格之差:20-15=5(元)公式综合算式:裤子=(20×30-515)÷(20-15)=17(条)3、一些2角和5角的硬币放在同一个存钱罐里,一共50枚,总钱数是14元8角,求各有多少枚?解:假设全为2角硬币 ,14元8角=148角全为2角时总钱数:2×50=100(角) 5角数量:48÷3=16(枚)与实际钱数之差:148-100=48(角) 2角数量:50-16=34(枚)每单位钱数之差:5-2=3(角)公式综合算式:(148-2×50)÷(5-2)=16(枚)4、现有大油瓶和小油瓶一共35个,其中大油瓶可装5千克,小油瓶可装3千克,一共装了145千克的由,求有大小油瓶各有几个?解:假设全为大油瓶全为大油瓶时总容量:5×35=175(千克)小油瓶数量:30÷2=15(个)与实际容量之差:175-145=30(千克)大油瓶数量:35-15=20(个)每单位容量之差:5-3=2(千克)公式综合算式:(5×35-145)÷(5-3)=15(个)5、亮亮参加数学竞赛,一共20道题,按照规定每答对一道题得5分,答错一道或者不答倒扣2分,一共得了72分,请问答对了几道题?解:假设全为答对的全为答对时总得分数:5×20=100(分)答错题数:28÷7=4(题)与实际得分之差:100-72=28(分)答对题数:20-4=16(题)每单位得分之差:5-(-2)= 5+2=7(分)公式综合算式:(5×20-72)÷(5+2)=4(题)*本题由于答对得5分,答错扣2分,故一共相差为7分*6、鸡和兔子关在同一个笼子里,鸡比兔子多28只,一共有176条腿,求鸡和兔各有几只?解:把兔子数量看做单位数鸡比兔子多28只,除这28只以外,鸡与兔子一样多,兔子的腿数量是鸡的2倍(鸡×2)那么得出脚的数量算式:(鸡+鸡×2+28)×2 = 176等式两边扩大或缩小相同倍数等式不变(鸡×3+28)×2÷2=176÷2鸡×3+28 = 88等式两边增加或减少相同的数等式不变鸡×3+28-28 = 88-28鸡×3=60等式两边扩大或缩小相同倍数等式不变鸡×3÷3=60÷3鸡=20只此得数为单位数,故兔子=20只,鸡=20+28=48只。
思维拓展训练:鸡兔同笼-数学2024四年级下册含答案
思维拓展训练:鸡兔同笼-数学2024四年级下册一、选择题1.鸡兔同笼,共有12个头,有36只脚,兔有()只,鸡有()只。
A.5;4 B.6;6 C.4;62.自行车和三轮车共10辆,共23个轮子,其中自行车有()辆。
A.3 B.5 C.73.张华用130元买了2元和5元的邮票共50张,那么张华买了2元邮票()张。
A.20 B.30 C.404.有5元和10元的人民币共10张,一共是80元,5元的人民币有()张。
A.4 B.5 C.65.一块湿地上,有龟、鹤共30只,龟的腿和鹤的腿共100条,龟有()只。
A.20 B.22 C.106.一场篮球比赛中,3分线外投中一球得3分,3分线内投中一球得2分,李勇总共投中8个球,得21分,他投中了()个3分球。
A.5 B.4 C.27.一队猎手一队狗,二队并作一队走,数头一共三十三,数脚一共九十整。
猎手有()人。
A.18 B.21 C.128.天童画室组织48名学员去南海公园划船。
大船每只坐6人,小船每只坐4人,他们共租了10只船,每只船上都坐满了人,大船、小船各租了()只。
A.大船6只,小船4只B.大船5只,小船5只C.大船4只,小船6只二、填空题9.一款VR射击电玩游戏,要求击中屏幕里漂浮的气球。
击中1个气球记10分,未击中扣4分,明明一局射击15次,共得80分,他有( )次未击中。
10.自行车越野赛全程共260千米,全程被分为20个路段,其中一部分路段长15千米,其余的路段长10千米。
长15千米的路段有( )个,长10千米的路段有( )个。
11.迎亚运会,某校四年级举行乒乓球赛,有10张乒乓球桌正在进行单打、双打比赛,一共有28名同学正在比赛。
进行双打比赛的球桌有( )张。
12.为更好地开展垃圾分类工作,幸福小区规定:每次正确投放垃圾可获得8个积分,错误投放垃圾倒扣4个积分,小明家6月份一共投放垃圾30次,共获得192分,小明家这个月正确投放垃圾( )次。
小学奥数各类型鸡兔同笼问题练习题及答案参考
小学奥数各类型鸡兔同笼问题练习题及答案参考小学奥数各类型鸡兔同笼问题练习题及答案参考公式1.已知总头数和总脚数,求鸡、兔各多少:方法一:(总脚数-每只鸡的脚数总头数)(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
方法二:(每只兔脚数总头数-总脚数)(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
例1 有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?解法一 (100-236)(4-2)=14(只)36-14=22(只)鸡。
解法二 (436-100)(4-2)=22(只)36-22=14(只)兔。
公式2.已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,求鸡、兔各多少:方法一:(每只鸡脚数总头数-脚数之差)(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数方法二:(每只兔脚数总头数+鸡兔脚数之差)(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
公式3.已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的.总脚数多时,求鸡、兔各多少。
方法一:(每只鸡的脚数总头数+鸡兔脚数之差)(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
方法二:(每只兔的脚数总头数-鸡兔脚数之差)(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。
(例略)公式4.得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数产品总数-实得总分数)(每只合格品得分数+每只不合格品扣分数)=不合格品数。
或者是总产品数-(每只不合格品扣分数总产品数+实得总分数)(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,灯泡厂生产灯泡的工人,按得分的多少给工资。
每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。
某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?解一 (41000-3525)(4+15)=47519=25(个)解二 1000-(151000+3525)(4+15)=1000-1852519=1000-975=25(个)(答略)(得失问题也称运玻璃器皿问题,运到完好无损者每只给运费元,破损者不仅不给运费,还需要赔成本元。
四年级鸡兔同笼奥数题及答案
四年级鸡兔同笼奥数题及答案
鸡兔同笼的例题及答案【1】
鸡和兔共有100只脚,若将鸡换成兔,将兔换成鸡,则共有86只脚,则鸡有多少只?兔有多少只?
【分析】【解法一】:鸡兔互换后减少的腿数:100-86=14(条);
鸡比兔子少的只数:14÷(4-2)=7(只);
让鸡只数和兔只数相等后的脚数:100+7×2=114(条);
鸡的脚数:114÷(2+1)=38(条);
鸡的只数:38÷2=19(只);兔的.只数:19-7=12(只);
【解法二】鸡兔互换后减少的腿数:100-86=14(条);
鸡比兔子少的只数:14÷(4-2)=7(只);
让兔只数和鸡只数相等后的脚数:100-7×4=72(条);
鸡的脚数:72÷(2+1)=24(条);
兔(鸡)的只数:24÷2=12(只);鸡的只数:12+7=19(只);
【解法三】:方程法设鸡有x只,兔有y只;
解方程得:x=12;y=19;
鸡兔同笼的例题及答案【2】
鸡兔同笼,头共46,足共128,鸡兔各几只
【分析】假设只都是兔,一共应有4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚,这是因为我们把鸡当成了兔子,如果把1只鸡当成1只兔,就要比实际多4-2=2(只)脚,那么56只脚是我们把56÷2=28只鸡当成了兔子,所以鸡的只数就是28,兔的只数是46-28=18(只).当然,这里我们也可以假设46只全是鸡,小朋友们,请你按此思路做做这道题目!。
四年级奥数题及答案:鸡兔同笼问题
这篇关于《四年级奥数题及答案:鸡兔同笼问题》,是⽆忧考特地为⼤家整理的,希望对⼤家有所帮助!
1、⼤⼩两辆汽车共同运216吨货物,⼩汽车运了7⼩时,⼤汽车运了8⼩时,已知⼩汽车5⼩时运的数量等于⼤汽车2⼩时运的数量,则⼤汽车每⼩时运多少吨?
2、笼⼦⾥有鸡兔共27只,兔脚⽐鸡脚多18只,问:有鸡兔各多少只?
3、有182只兔⼦,把它们分别装在甲⼄两种笼⼦⾥,甲种笼⼦每笼装6只,⼄种笼⼦每笼装4只,两种笼⼦正好⽤36个,问:两种笼⼦个多少个?
4、⼀个⼤⼈⼀餐吃2个⾯包,两个⼩孩⼀餐吃1个⾯包,现在有⼤⼈和⼩孩共99⼈,⼀餐刚好吃了99个⾯包,⼤⼈、⼩孩各有多少⼈?
5、四年级共有52位同学参加植树,男⽣每⼈种3棵,⼥⽣每⼈种2棵,已知男⽣⽐⼥⽣多种36棵,求:有多少名男⽣?。
鸡兔同笼的奥数题大全
1、某玩具店新购进飞机和汽车模型共30个,其中飞机模型每个有5个轮子,汽车模型每个有6个轮子,这些玩具模型共有160个轮子。
则新购进的飞机模型有多少个?A. 10个B. 15个C. 20个D. 25个(答案:C)2、小福奥数考试,一共15题,每题5分,错一题或者不答一题倒扣3分,小福一共得了51分,他对了多少题?A. 10题B. 11题C. 12题D. 13题(答案:B)3、动物园饲养的食肉动物分大型动物和小型动物两类,规定老虎、狮子一类的大动物每次喂肉每头三斤,狐狸、山猫一类小动物每三头喂一斤。
该动物园共有这两类动物100头,每次需喂肉100斤,问大、小动物各多少?A. 大动物20头,小动物80头B. 大动物25头,小动物75头C. 大动物30头,小动物70头D. 大动物35头,小动物65头(答案:B)4、自行车和三轮车共5辆,总共13个轮子,三轮车有:A. 2辆B. 3辆C. 4辆D. 5辆(答案:B)5、乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费0.24元,但如果发生损毁,那么每打破一只不仅不给运费,而且还要赔偿1.26元,结果搬运站共得运费115.5元。
问:搬运过程中共打破了几只花瓶?A. 5只B. 10只C. 15只D. 20只(答案:A)6、鸡兔同笼有23个头,有62条腿.兔有多少只?A. 10只B. 11只C. 12只D. 13只(答案:D)7、鸡比兔多13只,鸡腿比兔腿多16条,鸡和兔各有多少只?A. 鸡23只,兔10只B. 鸡20只,兔10只C. 鸡15只,兔10只D. 鸡25只,兔12只(答案:D)8、小福奥数考试,一共10题,每题2分,错一题或者不答一题倒扣1分,小福一共得了15分,他对了多少题?A. 8题B. 9题C. 10题D. 11题(答案:B)9、鸡兔同笼共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只,则鸡有多少只.A. 10只B. 12只C. 14只D. 16只(答案:D)10、动物园饲养的食肉动物分大型动物和小型动物两类,规定老虎、狮子一类的大动物每次喂肉每头三斤,狐狸、山猫一类小动物每三头喂一斤。
小学四年级数学下册鸡兔同笼的习题及答案
小学鸡兔同笼的习题及答案1、某个笼子里有10只鸡和兔,一共有22只脚,请问这个笼子里有几只兔子?2、有一个笼子里面装有鸡和兔子,头数共35个,脚的数目共94只,请问笼子里有多少只鸡?多少只兔子?3、在一个笼子里,鸡和兔的总数为40只,它们的脚一共有100只,请问这个笼子里有几只兔子?4、有一个笼子,里面有若干只鸡和兔子,在数它们的头和脚时,得到了这样的结果:头数比脚数少5,问笼子里有多少只鸡和兔子?5、有一个笼子里关着鸡和兔,它们的头数为50,脚数为140,请问笼子里分别有多少只鸡和兔?6、一个笼子里有36个头,100只脚,问里面共有多少只鸡和多少只兔?7、在一个笼子里有十几只鸡和兔子,把它们全部赶出笼子,数了一下它们的头,数到45个。
请问这个笼子里原来有几只兔子?8、有一个笼子里面装着鸡和兔子,一共有50个头,130只脚,请问笼子里各有多少只鸡和兔子?9、一只鸟笼里关着若干只鸡和兔子,共有54只脚。
如果兔子的数量比鸡的数量多4只,那么这只鸟笼里一共关着多少只动物?10、一个农夫买了一批鸡和兔共80只,花费了240元;后来他又另外买了一批鸡和兔共60只,花费了180元。
他买第一批时,每只鸡和兔的价格都是3元,第二批则为4元。
请问他买来多少只鸡和兔?答案1.答案:笼子里有6只兔子。
2.答案:笼子里有23只鸡和12只兔子。
3.答案:笼子里有20只兔子。
4.答案:笼子里有8只鸡和3只兔子。
5.答案:笼子里有30只鸡和20只兔子。
6.答案:笼子里有22只鸡和14只兔子。
7.答案:笼子里原来有10只兔子。
8.答案:笼子里有40只鸡和10只兔子。
9.答案:笼子里一共有16只动物,其中有6只兔子和10只鸡。
10.答案:农夫买了40只鸡和40只兔(共80只),以及20只鸡和40只兔(共60只)。
奥数思维拓展:鸡兔同笼(讲义)-2024-2025学年四年级上册数学苏教版
奥数思维拓展:鸡兔同笼-数学四年级上册苏教版第一部分知识梳理鸡兔同笼方法:假设法,方程法,抬腿法,列表法公式1:(兔的脚数×总只数﹣总脚数)÷(兔的脚数﹣鸡的脚数)=鸡的只数;总只数﹣鸡的只数=兔的只数公式2:(总脚数﹣鸡的脚数×总只数)÷(兔的脚数﹣鸡的脚数)=兔的只数;总只数﹣兔的只数=鸡的只数公式3:总脚数÷2﹣总头数=兔的只数;总只数﹣兔的只数=鸡的只数公式4:鸡的只数=(4×鸡兔总只数﹣鸡兔总脚数)÷2;兔的只数=鸡兔总只数﹣鸡的只数公式5:兔总只数=(鸡兔总脚数﹣2×鸡兔总只数)÷2;鸡的只数=鸡兔总只数﹣兔总只数公式6:(头数x4﹣实际脚数)÷2=鸡公式7:4×+2(总数﹣x)=总脚数(x=兔,总数﹣x=鸡数,用于方程)公式8:鸡的只数:兔的只数=兔的脚数﹣(总脚数÷总只数):(总脚数÷总只数)﹣鸡的脚数.第二部分典型例题1.一张试卷26个题目,答对一题给8分,答错一题扣5分,有一位考生虽然答完了全部题目,但所得总分为0分,这位考生答对多少题?【解答】解:答错:(26×8)÷(8+5),=208÷13,=16(道);答对:26﹣16=10(道);答:这位考生做对了10道题.2.学校会议室有两种沙发,大沙发可坐6人,小沙发可坐4人.开会时,学校46名教师刚好在10个沙发上坐满,有几个大沙发?几个小沙发?【解答】解:假设全是大沙发,则小沙发有:(6×10﹣46)÷(6﹣4)=(60﹣46)÷2=14÷2=7(个)大沙发:10﹣7=3(个)答:有3个大沙发,7个小沙发.第三部分跟踪训练1.盒子里有大、小两种钢珠共30颗,共重266克。
已知大钢珠每颗11克,小钢珠每颗7克。
盒中大、小钢珠各有多少颗?2.学校举行乒乓球比赛,一共有14张乒乓球桌同时进行,已知双打的人数比单打的多2人,你知道单打比赛的有几桌?双打呢?3.同一学校举行升旗仪式,同学们搬了红色和白色的小凳子共29张到操场。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四年级奥数
1. 鸡兔同笼,共有头100个,足316只,那么鸡有_______只,兔有______只.
2.小明花了4元钱买贺年卡和明信片,共14张,贺年卡每张3角5分,明信片每张2角5分.他买了_______张贺年卡,_______张明信片.
3.东湖小学六年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题倒扣3分.刘刚得了60分,则他做对了________题.
4.鸡兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只,则鸡______只.兔有_______只.
5.100个馒头100个和尚吃,大和尚每人吃3个,小和尚3人吃一个,则大和尚有_______个,小和尚有_______个.
6.30枚硬币,由2分和5分组成,共值9角9分,2分硬币有_______个,5分有________个.
7.有钢笔和铅笔共27盒,共计300支.钢笔每盒10支,铅笔每盒12支,则钢笔有_______盒,铅笔有_______盒.
8.鸡兔同笼,共有足248只,兔比鸡少52只,那么兔有______只,鸡有______只.
9.工人运青瓷花瓶250个,规定完整运一个到目的地给运费20元,损坏一个倒赔100元,运完这批花瓶后,工人共得4400元,则损坏了______只.
10.有2角,5角和1元人民币20张,共计12元,则1元有_______张,5角有______张,2角有_______张.
二、分析与解答题:
1.班主任张老师带五年级(2)班50名同学栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树120棵,问几名男生,几名女生?
2.大油瓶一瓶装4千克,小油瓶2瓶装1千克.现有100千克油装了共60个瓶子.问大、小油瓶各多少个?
3.小毛参加数学竞赛,共做20道题,得64分,已知做对一道得5分,不做得0分,错一题扣1分,又知道他做错的题和没做的一样多.问小毛做对几道题 ?
4.有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿,蜻蜓6条腿,2对翅膀;蝉6条腿,1对翅膀),三种动物各几只?
1.鸡有42只,兔有58只.
兔: (316-100⨯2)÷(4-2)=58(只), 鸡: 100-58=42(只).
2. 明信片有9张,贺年卡有5张.
明信片: (35⨯14-400)÷(35-25)=9(张)
贺年卡: 14-9=5(张).
3. 15题. 20-(5⨯20-60)÷(5+3)=15(题).
4. 鸡有14只,兔有18只.
因鸡和兔互换,脚数减少100-92=8(只),所以原来的兔比鸡多8÷(4-2)=4(只),这4只兔子共有4⨯4=16只脚.因此,相等的鸡和兔共有脚100-16=84(只).
由于兔和鸡的脚数有6只,所以鸡有84÷6=14(只),兔有14+4=18(只).
5. 大和尚25人,小和尚75人.
小和尚: 3⨯[(3⨯100-100)÷(3⨯3-1)=75(人),
大和尚: 100-75=25(人).
6. 2分币17枚,5分币13枚.
2分: (5⨯30-99)÷(5-2)=17(枚)
5分: 30-17=13(枚).
7. 钢笔12盒,铅笔15盒.
钢笔: (12⨯27-300)÷(12-10)=12(盒),
铅笔: 27-12=15(盒).
8. 鸡76只,兔24只.
兔: (248-52⨯2)÷(2+4)=24(只),
鸡: 24+52=76(只).
9. 5个.
(20⨯250-4400)÷(100+20)=5(只).
10. 1元7张,5角8张,2角5张.
2角的张数必须是5的倍数,因此只能是5张. 5角和1元共15张,合计11元.
5角: (150-110)÷(10-5)=8(张), 1元: 20-8-5=7(张).
二、分析与解答题:
1. 男生15人,女生35人.
男生: (120-5-2⨯50)÷(3-2)=15(人).
女生: 50-15=35(人)
2. 大油瓶20个,小油瓶40个.
大油瓶: (100-0.5⨯60)÷(4-0.5)=20(个).
小油瓶: 60-20=40(个).
3. 14道.---因为做错的和没做的一样多,就假定这两种情况都倒扣1分.所以没做或
做错的有 (5⨯20-64)÷(5+1)=6(道),做对的有20-6=14(道).
4. 蜘蛛5只,蜻蜓7只,蝉6只.
蜘蛛: (118-6⨯18)÷(8-6)=5(只),
那么6条腿的虫应有: 18-5=13(只).
蜻蜓: (20-1⨯13)÷(2-1)=7(只).
蝉: (2⨯13-20)÷(2-1)=6(只).。