第六节 互感和自感现象及其应用

合集下载

第四章第六节互感和自感

第四章第六节互感和自感

第六节 互感和自感[学习目标] 1.了解互感现象及其应用. 2.能够通过电磁感应的有关规律分析通电自感和断电自感现象. 3.了解自感电动势的表达式E =L ΔI Δt ,知道自感系数的决定因素. 4.了解自感现象中的能量转化.[学生用书P 29]一、互感现象(阅读教材第22页第1段至第3段)1.互感:两个线圈之间并没有导线相连,但当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势.这种现象叫做互感,这种感应电动势叫做互感电动势.2.互感的应用:利用互感现象可以把能量由一个线圈传递到另一个线圈,如变压器就是利用互感现象制成的.3.互感的危害:互感现象能发生在任何两个相互靠近的电路之间,互感现象有时会影响电路的正常工作.▏拓展延伸►———————————————————(解疑难)1.互感现象是一种常见的电磁感应现象,也满足法拉第电磁感应定律.2.互感能不通过导线相连来传递能量.3.变压器是利用互感制成的,而影响正常工作的互感现象要设法减小.1.(1)两线圈相距较近时,可以产生互感现象,相距较远时,不产生互感现象.( )(2)在实际生活中,有的互感现象是有害的,有的互感现象可以利用.( ) (3)只有闭合的回路才能产生互感.( )提示:(1)× (2)√ (3)×二、自感现象和自感系数(阅读教材第22页第4段至第24页第3段)1.自感:当一个线圈中的电流自身发生变化时,它产生的变化的磁场不仅在邻近的电路中激发出感应电动势,同样也在它本身激发出感应电动势的电磁感应现象.2.自感电动势:由于自感现象而产生的感应电动势.E =L ΔI Δt,其中L 是自感系数,简称自感或电感. 3.自感系数(1)单位:亨利,符号H.(2)决定自感系数大小的因素:与线圈的圈数、大小、形状以及有无铁芯等因素有关. ▏拓展延伸►———————————————————(解疑难)1.自感电动势的作用:总是阻碍导体中原电流的变化,即总是起着推迟电流变化的作用.2.自感电动势的方向:自感电动势总是阻碍导体中原来电流的变化,当原来电流增大时,自感电动势的方向与原来电流方向相反;当原来电流减小时,自感电动势的方向与原来电流方向相同.也遵循“增反减同”的规律.3.自感系数是由线圈本身性质决定的,是表征线圈产生自感电动势本领大小的物理量,数值上等于通过线圈的电流在1 s 内改变1 A 时产生的自感电动势的大小.4.线圈的长度越长,截面积越大,单位长度上匝数越多,线圈的自感系数越大,线圈有铁芯比无铁芯时自感系数大得多.2.(1)线圈的自感系数与电流大小无关,与电流的变化率有关.()(2)线圈自感电动势的大小与自感系数L有关,反过来,L与自感电动势也有关.()(3)线圈中电流最大的瞬间可能没有自感电动势.()(4)自感现象中,感应电流一定与原电流方向相反.()(5)一个线圈中的电流均匀增大,自感电动势也均匀增大.()提示:(1)×(2)×(3)√(4)×(5)×三、磁场的能量(阅读教材第24页第4段至第7段)1.线圈中电流从无到有时:磁场从无到有,电源的能量输送给磁场,储存在磁场中.2.线圈中电流减小时:磁场中的能量释放出来转化为电能.▏拓展延伸►———————————————————(解疑难)在自感现象中电能转化为线圈内的磁场能或线圈内的磁场能转化为电能,因此自感现象遵循能量守恒定律.3.断电自感的实验中,为什么开关断开后,灯泡的发光会持续一段时间?试从能量的角度加以解释.提示:开关断开后,线圈中储存的能量释放出来转化为电能,故灯泡发光会持续一段时间.对自感现象的理解[学生用书P30]自感现象的分析思路1.明确通过自感线圈的电流的变化情况(增大或减小).2.根据“增反减同”,判断自感电动势的方向.3.分析阻碍的结果:电流增大时,由于自感电动势的作用,线圈中的电流逐渐增大,与线圈串联的元件中的电流也逐渐增大;电流减小时,由于自感电动势的作用,线圈中的电流逐渐减小,与线圈串联的元件中的电流也逐渐减小.———————————(自选例题,启迪思维)1. 如图所示的电路中,电源电动势为E,内阻r不能忽略.R1和R2是两个定值电阻,L 是一个自感系数较大的线圈.开关S原来是断开的,从闭合开关S到电路中电流达到稳定为止的时间内,通过R1的电流I1和通过R2的电流I2的变化情况是()A.I1开始较大而后逐渐变小B.I1开始很小而后逐渐变大C.I2开始很小而后逐渐变大D.I2开始较大而后逐渐变小[思路探究](1)闭合开关S瞬间,线圈中的电流是如何变化的?线圈中自感电动势如何阻碍电流变化?(2)电阻R1两端电压如何变化?[解析]闭合开关S时,由于L是一个自感系数较大的线圈,产生反向的自感电动势阻碍电流的变化,所以开始I2很小,随着电流达到稳定,自感作用减小,I2开始逐渐变大.闭合开关S时,由于线圈阻碍作用很大,路端电压较大,随着自感作用减小,路端电压减小,所以R1上的电压逐渐减小,电流I1逐渐减小,故选AC.[答案]AC2. 如图所示,带铁芯的电感线圈的电阻与电阻器R的阻值相同,A1和A2是两个完全相同的电流表,则下列说法中正确的是()A.闭合S瞬间,电流表A1的示数小于A2的示数B.闭合S瞬间,电流表A1的示数等于A2的示数C.断开S瞬间,电流表A1的示数大于A2的示数D.断开S瞬间,电流表A1的示数等于A2的示数[解析]闭合开关时,线圈中产生与电流反向的自感电动势起到阻碍作用,所以电流表A1的示数小于电流表A2的示数,A对、B错;断开开关时,线圈中产生与原电流同向的自感电动势,并与R组成临时回路,电流表A1与电流表A2示数相等,C错、D对.[答案]AD3. 如图所示是一种延时装置的原理图,当S1闭合时,电磁铁F将衔铁D吸下,C线路接通;当S1断开时,由于电磁感应作用,D将延迟一段时间才被释放.则() A.由于A线圈的电磁感应作用,才产生延时释放D的作用B.由于B线圈的电磁感应作用,才产生延时释放D的作用C.如果断开B线圈的开关S2,无延时作用D.如果断开B线圈的开关S2,延时将变化[解析]线圈A中的磁场随开关S1的闭合而产生,随S1的断开而消失.当S1闭合时,线圈A中的磁场穿过线圈B,当S2闭合,S1断开时,线圈A在线圈B中的磁场变弱,线圈B中有感应电流,B中电流的磁场继续吸引D而起到延时的作用,所以B正确、A错误;若S2断开,线圈B中不产生感应电流而起不到延时作用,所以C正确、D错误.[答案]BC[名师点评](1)电流变化时,电感线圈对电流的变化有阻碍作用.(2)电流稳定时,电感线圈相当于一段导体,阻值即为直流电阻.通、断电自感中灯泡亮度变化分析[学生用书P31]1.通电自感如图甲所示,线圈产生的自感电动势阻碍电流的增加,使线圈的电流从通电瞬间的0逐渐增大到正常值,所以与线圈串联的灯泡的亮度是逐渐亮起来.甲乙2.断电自感如图乙所示,正常工作时线圈和电灯的电流分别为I L和I A.断电后,线圈产生自感电动势,线圈与灯泡组成回路,线圈起到电源作用.线圈产生的自感电动势阻碍电流的减小,使线圈中的电流由I L逐渐减小到0,因此灯泡中的电流也由断电前的I A突变为I L,然后逐渐减小到0,亮度也是逐渐变小到熄灭,当然灯泡中的电流方向由断电前的d→c突变为c→d.若I L>I A,灯泡闪亮一下再逐渐熄灭若I L≤I A,灯泡逐渐熄灭,不闪亮.——————————(自选例题,启迪思维)1. (2015·南京师大附中高二测试)如图所示的电路中,a、b、c为三盏完全相同的灯泡,L是一个自感系数很大、直流电阻为零的自感线圈,E为电源,S为开关.关于三盏灯泡,下列说法正确的是()A.合上开关,c、b先亮,a后亮B.合上开关一会后,a、b一样亮C.断开开关,b、c同时熄灭,a缓慢熄灭D.断开开关,c马上熄灭,b闪一下后和a一起缓慢熄灭[思路探究](1)合上开关时L产生的自感电动势有什么作用?a灯的亮度如何变化?(2)断开开关后L产生的自感电动势有什么作用?b灯闪亮吗?a灯闪亮吗?[解析]闭合开关S时,由于线圈L的自感作用,流过a灯的电流逐渐增大,所以a灯后亮,b、c灯与电源构成回路,所以b、c灯先亮,故A正确.合上开关一会后,电路稳定,L是一个直流电阻为零的自感线圈,可视为导线,a、b灯完全相同,并联电压相同,故a、b灯一样亮,故B正确.断开开关瞬间,a、b灯与线圈构成闭合回路.由于L的自感作用,a、b灯的电流要逐渐减小,故c灯马上熄灭,a、b灯缓慢熄灭,C错误.由于电路稳定时,a、b灯中电流相同,故b灯无闪亮现象,D 错误.[答案]AB2. 如图所示,L为一纯电感线圈(即电阻为零),L A是一灯泡,下列说法正确的是()A.开关S接通瞬间,无电流通过灯泡B.开关S接通后,电路稳定时,无电流通过灯泡C.开关S断开瞬间,无电流通过灯泡D.开关S接通瞬间,灯泡中有从a到b的电流,而在开关S断开瞬间,灯泡中有从b到a的电流[解析]L的直流电阻为0是指电路稳定后相当于短路.当通电瞬间,L相当于断路,电流通过灯泡且电流从a到b,稳定后,灯泡被短路熄灭.断电后,L和L A组成回路,L A 闪亮一下再逐渐熄灭,所以B、D正确.[答案]BD[名师点评](1)分析通、断电自感灯泡的亮度变化的关键是弄清电路的连接情况,根据自感线圈的自感电动势的方向进行具体分析.(2)断电自感时灯泡是否闪亮一下再熄灭的判断方法是通过比较断电前的线圈的电流和灯泡的电流的大小来确定.[学生用书P32]思想方法——自感现象中图象问题的解决方法1.明确研究对象及所研究的问题.2.分析所研究对象在电路中的位置,与电源、线圈等的关系及其电流、电压在某一段时间内的大小、方向和变化情况.3.看是否规定正方向,若没有说明,可只考虑其数值.4.结合题意和已知条件,利用自感知识和电路知识等进行分析和计算,从而确定出不同时间内某物理量随时间的变化规律.[范例]如图所示电路中,L为自感系数很大、电阻为R L的线圈,A为一阻值为R A的小灯泡,已知R L>R A,电源的电动势为E,内阻不计,某物理实验小组的同学们把S闭合一段时间后开始计时,记录各支路的电流,测得流过L的电流为i1,流过灯A的电流为i2,并在t1时刻将S断开,画出了通过灯泡A的电流随时间变化的图象,你认为正确的是()[解析]当S闭合时,由于R L>R A,故开始一段时间内,各支路电流之间的关系为i2>i1,流过灯A的电流方向从左向右,S断开时,由于L的自感作用,流经L的电流方向从左向右不变,大小由原来的i1逐渐减小,它与灯A构成闭合回路,由此可知灯A的电流方向与原来相反,大小与L中电流相同,即由i1逐渐减小,故A、B、C错,D对.[答案] D如图所示的电路中,电源的电动势为E,内阻为r,电感L的电阻不计,电阻R的阻值大于灯泡D的阻值.在t=0 时刻闭合开关S,经过一段时间后,在t=t1时刻断开S.下列表示A、B两点间电压U AB随时间t变化的图象中,正确的是()解析:选B.闭合开关S 后,灯泡D 直接发光,电感L 的电流逐渐增大,电路中的总电流也将逐渐增大,电源内电压增大,则路端电压U AB 逐渐减小;断开开关S 后,灯泡D 中原来的电流突然消失,电感L 中的电流通过灯泡形成的闭合回路逐渐减小,所以灯泡D 中电流将反向,并逐渐减小为零,即U AB 反向逐渐减小为零,故选B.[学生用书P 33][随堂达标]1.下列说法正确的是( )A .当线圈中电流不变时,线圈中没有自感电动势B .当线圈中电流反向时,线圈中自感电动势的方向与线圈中原电流的方向相反C .当线圈中电流增大时,线圈中自感电动势的方向与线圈中电流的方向相反D .当线圈中电流减小时,线圈中自感电动势的方向与线圈中电流的方向相反解析:选AC.由法拉第电磁感应定律可知,当线圈中的电流不变时,不产生自感电动势,A 正确;当线圈中的电流反向时,相当于电流减小,线圈中自感电动势的方向与线圈中原电流的方向相同,B 错误;当线圈中的电流增大时,自感电动势阻碍电流的增大,线圈中自感电动势的方向与线圈中电流的方向相反,所以选项C 正确,同理可知选项D 错误.故选AC.2.关于线圈中自感电动势大小的说法中正确的是( )A .电感一定时,电流变化越大,自感电动势越大B .电感一定时,电流变化越快,自感电动势越大C .通过线圈的电流为零的瞬间,自感电动势为零D .通过线圈的电流为最大值的瞬间,自感电动势最大解析:选B.由自感电动势E =L ΔI Δt 得L 一定时,E 与ΔI Δt成正比,即电感一定时,电流变化越快,自感电动势越大.故A 错误,B 正确.通过线圈的电流为零的瞬间,电流变化率不一定为零,自感电动势不一定为零,通过线圈的电流为最大值的瞬间,电流变化率可能为零,自感电动势也可能为零,故C 、D 均错误.正确答案选B.3.如图所示,L 为自感系数较大的线圈,电路稳定后小灯泡正常发光,当断开开关S 的瞬间会有( )A .灯A 立即熄灭B .灯A 慢慢熄灭C.灯A突然闪亮一下再慢慢熄灭D.灯A突然闪亮一下再突然熄灭解析:选A.当开关S断开时,由于通过自感线圈的电流从有变到零,线圈将产生自感电动势,但由于线圈L与灯A串联,在S断开后,不能形成闭合回路,因此灯A在开关断开后,电源供给的电流为零,灯立即熄灭.故选A.4. (选做题)如图所示,电感线圈L的自感系数足够大,其直流电阻忽略不计,L A、L B 是两个相同的灯泡,且在下列实验中不会烧毁,电阻R2阻值约等于R1的两倍,则() A.闭合开关S时,L A、L B同时达到最亮,且L B更亮一些B.闭合开关S时,L A、L B均慢慢亮起来,且L A更亮一些C.断开开关S时,L A慢慢熄灭,L B马上熄灭D.断开开关S时,L A慢慢熄灭,L B闪亮一下后才慢慢熄灭解析:选D.由于灯泡L A与线圈L串联,灯泡L B与电阻R2串联,当S闭合的瞬间,通过线圈的电流突然增大,线圈产生自感电动势,阻碍电流的增加,所以L B先亮,A、B错误;由于L A所在的支路电阻阻值偏小,故稳定时电流大,即L A更亮一些,当S断开的瞬间,线圈产生自感电动势,两灯组成的串联电路中,电流从线圈中电流开始减小,即从I A 减小,故L A慢慢熄灭,L B闪亮一下后才慢慢熄灭,C错误、D正确.[课时作业]一、选择题1.关于线圈的自感系数,下面说法正确的是()A.线圈的自感系数越大,自感电动势就一定越大B.线圈中电流等于零时,自感系数也等于零C.线圈中电流变化越快,自感系数越大D.线圈的自感系数由线圈本身的性质及有无铁芯决定解析:选D.自感系数是由线圈的大小、形状、圈数、有无铁芯等因素决定的,故B、C 错,D对;自感电动势不仅与自感系数有关,还与电流变化快慢有关,故A错.2.(多选)无线电力传输目前已取得重大突破,在日本展出了一种非接触式电源供应系统.这种系统基于电磁感应原理可无线传输电力.两个感应线圈可以放置在左右相邻或上下相对的位置,原理示意图如图所示.下列说法正确的是()A.若A线圈中输入电流,B线圈中就会产生感应电动势B.只有A线圈中输入变化的电流,B线圈中才会产生感应电动势C.A中电流越大,B中感应电动势越大D.A中电流变化越快,B中感应电动势越大解析:选BD.根据产生感应电动势的条件,只有处于变化的磁场中,B线圈才能产生感应电动势,A错,B对;根据法拉第电磁感应定律,感应电动势的大小取决于磁通量变化率,所以C错,D对.3.如图所示,闭合电路中的螺线管可自由伸缩,螺线管有一定的长度,灯泡具有一定的亮度.若将一软铁棒从螺线管左边迅速插入螺线管内,则将看到()A.灯泡变暗B.灯泡变亮C.螺线管缩短D.螺线管长度不变解析:选A.当软铁棒插入螺线管中时,穿过螺线管的磁通量增加,故产生反向的自感电动势,使总电流减小,灯泡变暗,每匝线圈间同向电流吸引力减小,螺线管变长.4.(多选)如图所示的电路中,线圈L的自感系数足够大,其直流电阻忽略不计,A、B 是两个相同的灯泡,下列说法中正确的是()A.S闭合后,A、B同时发光且亮度不变B.S闭合后,A立即发光,然后又逐渐熄灭C.S断开的瞬间,A、B同时熄灭D.S断开的瞬间,A再次发光,然后又逐渐熄灭解析:选BD.线圈对变化的电流有阻碍作用,开关接通时,A、B串联,同时发光,但电流稳定后线圈的直流电阻忽略不计,使A被短路,所以A错误,B正确;开关断开时,线圈产生自感电动势,与A构成回路,A再次发光,然后又逐渐熄灭,所以C错误,D正确.5.如图所示为测定自感系数很大的线圈L直流电阻的电路,L的两端并联一个电压表,用来测量自感线圈的直流电压.在测量完毕后,将电路拆解时应()A.先断开S1B.先断开S2C.先拆除电流表D.先拆除电压表解析:选B.若先断开S1或先拆除电流表,线圈与电压表组成闭合回路,这时,流过电压表的电流与原来方向相反,电压表的指针将反向偏转,容易损坏电压表.按操作要求,应先断开开关S2,再断开开关S1,然后拆除器材.故选项B正确.6. 如图所示电路中,A、B是相同的两小灯泡.L是一个带铁芯的线圈,电阻可不计,调节R,电路稳定时两灯泡都正常发光,则在开关合上和断开时()A.两灯同时点亮、同时熄灭B.合上S时,B比A先到达正常发光状态C.断开S时,A、B两灯都不会立即熄灭,通过A、B两灯的电流方向都与原电流方向相同D.断开S时,A灯会突然闪亮一下后再熄灭解析:选B.闭合S时,由于L的自感作用,A灯逐渐变亮,B灯立即变亮,稳定时两灯一样亮,故A错B对;断开S时,由于L的自感作用,A、B两灯都不会立即熄灭,通过A灯的电流方向不变,但通过B灯的电流反向,故C错;又因通过A灯的电流不会比原来的大,故A灯不会闪亮一下再熄灭,故D错.7. 在如图所示的电路中,两个相同的小灯泡L1和L2分别串联一个带铁芯的电感线圈L 和一个滑动变阻器R.闭合开关S后,调整R,使L1和L2发光的亮度一样,此时流过两个灯泡的电流均为I.然后,断开S.若t′时刻再闭合S,则在t′前后的一小段时间内,正确反映流过L1的电流i1、流过L2的电流i2随时间t变化的图象是()解析:选B.闭合开关S后,调整R,使两个灯泡L1、L2发光的亮度一样,电流为I,说明R L=R.若t′时刻再闭合S,流过电感线圈L和灯泡L1的电流迅速增大,使电感线圈L产生自感电动势,阻碍了流过L1的电流i1增大,直至达到电流为I,故A错误,B正确;而对于t′时刻再闭合S,流过灯泡L2的电流i2立即达到电流I,故C、D错误.故选B.8.在如图所示的电路中,两个相同的电流表G1和G2的零点均在刻度盘中央,当电流从“+”接线柱流入时,指针向左摆;当电流从“-”接线柱流入时,指针向右摆.在电路接通后再断开开关S的瞬间,下列说法中正确的是()A.G1指针向右摆,G2指针向左摆B.G1指针向左摆,G2指针向右摆C.两表指针都向右摆D.两表指针都向左摆解析:选B.当开关S闭合时,流经电感线圈L的电流方向自左向右.当断开开关S的瞬间,通过线圈L的电流将变小,根据楞次定律可知,感应电流方向与原电流方向相同,也将是自左向右流,以阻碍原电流减小的变化.这样在由L、G2、R及G1组成的闭合电路中,感应电流将从G2的负接线柱流入,因而G2的指针向右偏;感应电流将从G1的正接线柱流入,因而G1的指针向左偏.9. (2015·天水一中高二检测)在制作精密电阻时,为了消除使用过程中由于电流变化而引起的自感现象,采用双线并绕的方法,如图所示.其道理是()A.当电路中的电流变化时,两股导线产生的自感电动势相互抵消B.当电路中的电流变化时,两股导线产生的感应电流相互抵消C.当电路中的电流变化时,两股导线中原电流的磁通量相互抵消D.以上说法都不对解析:选C.由于采用双线并绕的方法,当电流通过时,两股导线中的电流方向是相反的,不管电流怎样变化,任何时刻两股导线中的电流总是等大反向的,所产生的磁通量也是等大反向的,故总磁通量等于零,在该线圈中不会产生电磁感应现象,因此消除了自感,选项A、B错误,只有C正确.☆10. (多选)如图所示电路中,自感系数较大的线圈L其直流电阻不计,下列操作中能使电容器C的A板带正电的是()A.S闭合的瞬间B.S断开的瞬间C.S闭合电路稳定后D.S闭合、向右移动变阻器触头解析:选BD.S闭合电路稳定时,线圈两端没有电势差,电容器两板不带电;S闭合的瞬间,电流增大,线圈产生自感电动势的方向与电流方向相反,使B板带正电;S断开的瞬间或S闭合、向右移动变阻器触头时,电流减小,线圈产生自感电动势的方向与电流方向相同,使A板带正电,B、D项正确.二、非选择题11.如图所示,电流表的内阻不计,电阻R1=2.5 Ω,R2=7.5 Ω,电感线圈的直流电阻可以忽略.闭合开关S的瞬时,电流表的读数I1=0.2 A;线圈中的电流稳定后,电流表的读数I2=0.4 A,试求电池的电动势和内电阻.解析:S闭合瞬时,可认为由于线圈的自感作用使得线圈中没有电流;而线圈中的电流稳定时,认为线圈的电阻为零,电阻R2被短路,R2中的电流为零.设电池的电动势为E,内电阻为r,则S闭合的瞬时,由闭合电路欧姆定律得:E=I1(R1+R2+r)稳定后,由闭合电路欧姆定律得:E=I2(R1+r)联立代入数据解得E=3 V,r=5 Ω.答案:见解析☆12.如图甲所示为研究自感实验电路图,并用电流传感器显示出在t=1×10-3 s时断开开关前后一段时间内各时刻通过线圈L的电流(如图乙).已知电源电动势E=6 V,内阻不计,灯泡R1的阻值为6 Ω,电阻R的阻值为2 Ω.甲乙求:(1)线圈的直流电阻R L;(2)开关断开时,该同学观察到的现象是什么?并计算开关断开瞬间线圈产生的自感电动势是多少?解析:(1)由题图可知,开关S闭合电路稳定时流过线圈L的电流I0=1.5 A,由欧姆定律得I0=ER L+R解得R L=EI0-R=2.0 Ω.(2)电路稳定时流过小灯泡的电流I1=ER1=66A=1 A断开开关后,线圈L、电阻R和灯泡R1构成一闭合回路,电流由1.5 A逐渐减小,所以小灯泡会闪亮一下再熄灭.开关断开瞬间自感电动势为E′=I0(R+R L+R1)=15 V.答案:(1)2.0 Ω(2)灯泡闪亮一下后逐渐变暗,最后熄灭15 V。

互感和自感课件

互感和自感课件

自感现象的应用与防止: 自感现象的应用与防止:
安全开关问题
电 弧 危 放 及 Байду номын сангаас 生 坏 命 开 关 烧
如图所示, 如图所示,由于两 根平行导线中的电流方 向相反,它们的磁场可 向相反, 以互相抵消, 以互相抵消,从而可以 使自感现象的影响减弱 到可以忽略的程度。 到可以忽略的程度。
自感的应用:日光灯
例题:
请 勿 模
仿 !
互 感 和 自 感
互感、 互感、互感电动势 自感现象 大小:E=LΔI/Δt 大小:E=LΔI/Δt 自感电动势E 自感电动势E
作用: 作用:总是阻碍电流变化 影响因素:线圈的形状、长短、 影响因素:线圈的形状、长短、 匝数、 匝数、有无铁芯等
自感系数L 自感系数L
单位: 毫亨、 单位:亨、毫亨、微亨
1
2
3
线圈越大 匝数越多 它的自感系数越大 线圈越大、匝数越多,它的自感系数越大! 给线圈中加入铁芯 自感系数比没有铁芯大得多! 给线圈中加入铁芯,自感系数比没有铁芯大得多! 加入铁芯, (2) ) 单位:亨利,简称亨 符号: 单位:亨利,简称亨,符号:H 其他单位 毫亨(mH)、微亨( 单位: )、微亨 其他单位:毫亨(mH)、微亨(µH)
B灯逐渐亮 灯逐渐亮
? 穿过线圈的电流Ι 穿过线圈的电流Ι 增大
阻碍电流增大 ΙΑ
流过A、 灯的电流随时间怎样变化 灯的电流随时间怎样变化? 流过 、B灯的电流随时间怎样变化?
Ι ΙΒ t
断 电 自 感
闪 为 亮 什 一 么 下 灯 才 不 熄 是 灭 立 . . . . 即 熄 灭 , 而 要
再看一遍
线圈L1 线圈L
线圈L2 线圈L
P G

互感和自感课件

互感和自感课件

一、互感现象的理解与应用
例 1 如图 3 所示,是一种延时装置的原理图,当 S1 闭合时,电磁铁 F 将衔铁
D 吸下,C 线路接通;当 S1 断开时,由于电磁感应作用,D 将延迟一段时A 线圈的电磁感应作用,才产生延时释放 D 的作用
√ B.由于 B 线圈的电磁感应作用,才产生延时释放 D 的作用 √ C.如果断开 B 线圈的开关 S2,无延时作用
针对训练 如图 5 所示,L 为一纯电感线圈(即电阻为零),LA是一灯泡,下列说法正确( BD)
× A.开关 S 接通瞬间,无电流通过灯泡
√ B.开关 S 接通后,电路稳定时,无电流通过灯泡
× C.开关 S 断开瞬间,无电流通过灯泡 图5
D.开关 S 接通瞬间,灯泡中有从 a 到 b 的电流,而在开关 S 断开瞬间,灯泡中有从 b 到 a
图7
3.(自感现象的图象问题)在如图 8 所示的电路中,S 是闭合的,此时流过线圈 L 的电流为 i1,
流过灯泡 A 的电流为 i2,且 i1>i2,在 t1 时刻将 S 断开,那么流过灯泡 A 的电流随时间变化
的图象是图中的
(D)
图8
解析 在 0~t1 时间内流过灯泡的电流为 i2,且方向为从左向右,当断开 S 时,i2 立即消 失,但由于自感作用,i1 并不立刻消失,而是产生自感电动势,与灯泡构成回路缓慢消失, 此时流过灯泡的电流从 i1 开始逐渐减小,方向为从右向左,故 D 正确.故选 D.
高中物理·选修3-2·人教版
互感和自感
1. 增强 减弱 2. 磁通量的变化
一、互感现象 1. 互感 互感电动势 2. 绕在同一铁芯上的 相互靠近的电路 3. 能量 变压器 二、自感现象
变化 变化 邻近的电路中 它本身 自感电动势 三、自感系数 1. 享利 H 2. 大小 形状 圈数 四、磁场的能量

8 第6节 互感和自感

8 第6节 互感和自感

第6节 互感和自感1.知道什么是互感现象和自感现象.2.观察通电自感和断电自感实验现象,理解自感电动势在自感现象中的作用.(重点+难点)3.知道自感电动势的大小与什么有关,理解自感系数和自感系数的决定因素.(重点)【基础梳理】一、互感现象1.互感:两个相互靠近的线圈,当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势,这种现象叫互感. 2.应用:利用互感现象可以把能量由一个线圈传递到另一个线圈,如变压器就是利用互感现象制成的. 3.危害:互感现象能发生在任何两个相互靠近的电路之间.在电力工程和电子电路中,互感现象有时会影响电路的正常工作. 二、自感现象当一个线圈中的电流变化时,它产生的变化的磁场不仅在邻近的电路中激发出感应电动势,同样也在它本身激发出感应电动势,这种现象称为自感.由于自感而产生的感应电动势叫做自感电动势.三、自感电动势与自感系数1.自感电动势:E =L ΔI Δt,其中L 是自感系数,简称自感或电感.单位:亨利,符号:H .2.自感系数与线圈的大小、形状、圈数,以及是否有铁芯等因素有关.四、自感现象中磁场的能量1.线圈中电流从无到有时:磁场从无到有,电源把能量输送给磁场,储存在磁场中.2.线圈中电流减小时,磁场中的能量释放出来转化为电能.【自我检测】判断正误 (1)两个线圈相距较近时,可以产生互感现象,相距较远时,不产生互感现象.( )(2)自感现象中,感应电流一定与原电流方向相反.( )(3)线圈的自感系数与电流大小无关,与电流的变化率有关.( )(4)线圈中电流最大的瞬间可能没有自感电动势.( )提示:(1)× (2)× (3)× (4)√探究思考 断电自感的实验中,为什么开关断开后,灯泡的发光会持续一段时间?试从能量的角度加以解释.提示:开关断开后,线圈中储存的能量释放出来转化为电能,故灯泡发光会持续一段时间.对互感现象的理解和应用1.互感现象是一种常见的电磁感应现象,它不仅发生于绕在同一铁芯上的两个线圈之间,而且可以发生于任何相互靠近的电路之间.2.互感现象可以把能量由一个电路传到另一个电路.变压器就是利用互感现象制成的.3.在电力工程和电子电路中,互感现象有时会影响电路的正常工作,这时需要设法减小电路间的互感.在同一铁芯上绕着两个线圈,单刀双掷开关原来接在点1,现把它从1扳向2,如图所示,试判断在此过程中,在电阻R上的电流方向是()A.先由P→Q,再由Q→PB.先由Q→P,再由P→QC.始终由Q→PD.始终由P→Q[解析]单刀双掷开关接在点1上时,A线圈中的电流恒定不变,在铁芯中产生的磁场方向是沿铁芯自右向左.在单刀双掷开关由点1扳向点2的过程中,通过线圈A中的电流,先沿原方向减小到零,再由零增大到原电流值,所以B中产生的感应电流分两个阶段分析:(1)在A中电流沿原方向减小到零的过程中,A产生的磁场自右向左也跟着减弱,导致穿过线圈B的磁通量在减小.由楞次定律知,线圈B中会产生右上左下的感应电流,即流过电阻R的电流方向是P→Q.(2)在A中电流由零增大到原方向的电流的过程中,A产生的磁场自右向左也跟着增强,导致穿过线圈B的磁通量在增大.由楞次定律知,线圈B中会产生左上右下的感应电流,即通过电阻R的电流方向是Q→P.综上分析知,全过程中流过电阻R的电流方向先是P→Q,然后是Q→P,所以A对.[答案] A(多选)如图所示是一种延时装置的原理图,当S1闭合时,电磁铁F将衔铁D吸下,C线路接通,当S1断开时,由于电磁感应作用,D将延迟一段时间才被释放.则()A.由于A线圈的电磁感应作用,才产生延时释放D的作用B.由于B线圈的电磁感应作用,才产生延时释放D的作用C.如果断开B线圈的开关S2,无延时作用D.如果断开B线圈的开关S2,延时将变化解析:选BC.线圈A中的磁场随开关S1的闭合而产生,随S1的断开而消失.当S1闭合时,线圈A中的磁场穿过线圈B,当S2闭合,S1断开时,线圈A在线圈B中的磁场变弱,线圈B中有感应电流,B中电流的磁场继续吸引D而起到延时的作用,所以选项B正确,A错误;若S2断开,线圈B中不产生感应电流而起不到延时作用,所以选项C正确,D错误.对自感现象的理解1.自感现象的特点(1)自感现象是由于通过导体本身的电流发生变化而产生的电磁感应现象.(2)自感电动势的作用:总是阻碍导体中原电流的变化,即总是起着推迟电流变化的作用.(3)自感电动势的方向:自感电动势总是阻碍导体中原来电流的变化,当原来电流增大时,自感电动势与原来电流方向相反;当原来电流减小时,自感电动势与原来电流方向相同,同样遵循“增反减同”的规律.2.通电自感与断电自感比较与线圈串联的灯泡与线圈并联的灯泡电路图通电时电流逐渐增大,灯泡逐渐变亮电流立刻变大,灯泡变亮,然后逐渐变暗断电时电流逐渐减小灯泡逐渐变暗电流方向不变电路中稳态电流为I1、I2①若I2≤I1,灯泡逐渐变暗②若I2>I1,灯泡闪亮后逐渐变暗两种情况灯泡中电流方向均改变命题视角1对自感电动势的理解(2019·南昌高二检测)关于线圈中自感电动势大小的说法中正确的是()A.电感一定时,电流变化越大,自感电动势越大B.电感一定时,电流变化越快,自感电动势越大C.通过线圈的电流为零的瞬间,自感电动势为零D .通过线圈的电流为最大值的瞬间,自感电动势最大[思路点拨] 影响自感电动势大小的两个因素:(1)线圈自感系数越大产生的自感电动势越大.(2)电流变化越快产生的自感电动势越大.[解析] 电感一定时,电流变化越快,ΔI Δt 越大,由E =L ΔI Δt知,自感电动势越大,A 错,B 对;线圈中电流为零时,电流的变化率不一定为零,自感电动势不一定为零,故C 错;当通过线圈的电流最大时,电流的变化率为零,自感电动势为零,故D 错.[答案] B命题视角2 对通电自感现象的分析(2019·长沙一中高二检测)如图所示,电路中自感线圈电阻很小,可以忽略不计.R 的阻值和L 的自感系数都很大,A 、B 为两个完全相同的灯泡,电源为理想电源,当S 闭合时,下列说法正确的是( )A .A 比B 先亮,然后A 灭B .B 比A 先亮,然后A 灯逐渐变亮C .A 、B 一起亮,然后A 灭D .A 、B 一起亮,然后B 灭[思路点拨] S 闭合瞬间,含电感线圈的支路相当于断路;稳定后,自感线圈相当于导体.[解析] S 闭合时,由于与A 灯串联的线圈L 的自感系数很大,故在线圈上产生很大的自感电动势,阻碍电流的增大,所以B 比A 先亮,由于L 的直流电阻很小,所以稳定后A 灯的电流变大,A 灯逐渐变亮,故A 、C 、D 错误,B 正确.[答案] B命题视角3 对断电自感现象的分析(2019·济南外国语学校高二检测)如图甲、乙中,自感线圈L 的电阻很小,接通S ,使电路达到稳定,灯泡A 发光,下列说法正确的是( )A .在电路甲中,断开S ,A 将立即熄灭B.在电路甲中,断开S,A将先变得更亮,然后逐渐变暗C.在电路乙中,断开S,A将逐渐变暗D.在电路乙中,断开S,A将先变得更亮,然后渐渐变暗[思路点拨][解析]甲图中,灯泡A与电感线圈L在同一个支路中,流过的电流相同,断开开关S 时,线圈L中的自感电动势的作用使得支路中的电流瞬时不变,以后渐渐变小,A、B错误;乙图中,灯泡A所在支路的电流比电感线圈所在支路的电流要小(因为电感线圈的电阻很小),断开开关S时,电感线圈的自感电动势要阻碍电流变小,此瞬间电感线圈中的电流不变,电感线圈相当于一个电源给灯泡A供电.因此反向流过A的电流瞬间要变大,然后逐渐变小,所以灯泡要先更亮一下,然后渐渐变暗,C错误,D正确.[答案] D自感问题的分析技巧(1)当电路接通瞬间,自感线圈相当于断路;当电路稳定时,相当于电阻,如果线圈没有电阻,相当于导线(短路);当电路断开瞬间,自感线圈相当于电源,电流逐渐减小.(2)断开开关后,灯泡是否瞬间变得更亮,取决于电路稳定时两支路中电流的大小关系,即由两支路中电阻的大小关系决定.(3)若断开开关后,线圈与灯泡不能组成闭合回路,则灯泡会立即熄灭.(4)电流减小时,自感线圈中电流大小一定小于原先所通的电流大小,但自感电动势可能大于原电源电动势.(5)在线圈中产生自感电动势,自感电动势阻碍电流的变化,但“阻碍”不是“阻止”,“阻碍”实质上是“延缓”.1.关于自感现象,下列说法正确的是( )A .感应电流一定和原电流方向相反B .线圈中产生的自感电动势较大时,其自感系数一定较大C .对于同一线圈,当电流变化越快时,线圈中的自感系数较大D .对于同一线圈,当电流变化较快时,线圈中的自感电动势也较大解析:选D.自感现象中感应电动势的方向遵从楞次定律.当原电流减小时,自感电动势和自感电流与原电流方向相同;当原电流增大时,自感电流与原电流方向相反,所以选项A 错误;自感电动势的大小E 自=L ΔI Δt,所以自感电动势大不一定是由自感系数大引起的,有可能是电流的变化率很大引起的,所以选项B 错误;线圈自感系数的大小,由线圈本身决定,与线圈中有无电流以及电流变化的快慢无关,所以选项C 错误;由E 自=L ΔI Δt知,对于同一线圈,自感系数L 确定,当电流变化较快时,线圈中产生的自感电动势也越大,所以选项D 正确.2.(多选)如图是用电流传感器(相当于电流表,其内阻可以忽略不计)研究自感现象的实验电路,图中两个电阻的阻值均为R ,L 是一个自感系数足够大的自感线圈,其直流电阻值也为R .坐标图是某同学画出的在t 0时刻开关S 切换前后,通过传感器的电流随时间变化的图象.关于这些图象,下列说法正确的是( )A .图甲是开关S 由断开变为闭合,通过传感器1的电流随时间变化的情况B .图乙是开关S 由断开变为闭合,通过传感器1的电流随时间变化的情况C .图丙是开关S 由闭合变为断开,通过传感器2的电流随时间变化的情况D .图丁是开关S 由闭合变为断开,通过传感器2的电流随时间变化的情况解析:选BC.开关S 由断开变为闭合,电源与传感器2组成的回路立即有电流,而线圈这一支路,由于线圈阻碍电流的增加,通过线圈的电流要慢慢增加,所以干路电流(通过传感器1的电流)也要慢慢增加,故A错误,B正确.开关S由闭合变为断开,通过传感器1的电流立即消失,而电感这一支路,由于电感阻碍电流的减小,该电流又通过传感器2,只是电流的方向与以前相反,且通过传感器2的电流逐渐减小,故C正确,D错误.3.(多选)如图所示的电路中,A1和A2是完全相同的灯泡,线圈L的电阻可以忽略.下列说法正确的是()A.合上开关S接通电路时,A2先亮,A1后亮,最后一样亮B.合上开关S接通电路时,A1和A2始终一样亮C.断开开关S切断电路时,A2立刻熄灭,A1过一会儿才熄灭D.断开开关S切断电路时,A1和A2都要过一会儿才熄灭解析:选AD.由于自感现象,合上开关时,A1中的电流缓慢增大到某一个值,故过一会儿才亮;断开开关时,A1中的电流缓慢减小到零,线圈产生感应电动势,相当于新电源;A1、A2串联,其电流始终相等,故两灯都是过一会儿才熄灭,故选项A、D正确.4.在如图所示的电路中,两个相同的电流表G1和G2的零点均在刻度盘中央,当电流从“+”接线柱流入时,指针向左摆;当电流从“-”接线柱流入时,指针向右摆.在电路接通后再断开开关S的瞬间,下列说法中正确的是()A.G1指针向右摆,G2指针向左摆B.G1指针向左摆,G2指针向右摆C.两表指针都向右摆D.两表指针都向左摆解析:选B.当开关S闭合时,流经电感线圈L的电流方向自左向右.当断开开关S的瞬间,通过线圈L的电流将变小,根据楞次定律可知,感应电流方向与原电流方向相同,也将是自左向右流,以阻碍原电流减小的变化.在由L、G2、R及G1组成的闭合回路中,感应电流将从G2的负接线柱流入,因而G2的指针向右摆;感应电流将从G1的正接线柱流入,因而G1的指针向左摆.故B正确.(建议用时:30分钟)【A组基础巩固】1.关于线圈的自感系数,下面说法正确的是()A.线圈的自感系数越大,自感电动势就一定越大B.线圈中电流等于零时,自感系数也等于零C.线圈中电流变化越快,自感系数越大D.线圈的自感系数由线圈本身的性质及有无铁芯决定解析:选D.自感系数是由线圈的大小、形状、圈数、有无铁芯等因素决定的,故B、C 错,D对;自感电动势不仅与自感系数有关,还与电流变化快慢有关,故A错.2.(多选)下列说法正确的是()A.当线圈中电流不变时,线圈中没有自感电动势B.当线圈中电流反向时,线圈中自感电动势的方向与线圈中原电流的方向相反C.当线圈中电流增大时,线圈中自感电动势的方向与线圈中电流的方向相反D.当线圈中电流减小时,线圈中自感电动势的方向与线圈中电流的方向相反解析:选AC.由法拉第电磁感应定律可知,当线圈中电流不变时,不产生自感电动势,选项A正确;当线圈中电流反向时,相当于电流减小,线圈中自感电动势的方向与线圈中原电流的方向相同,选项B错误;当线圈中电流增大时,自感电动势阻碍电流的增大,线圈中自感电动势的方向与线圈中电流的方向相反,选项C正确;当线圈中电流减小时,自感电动势阻碍电流的减小,线圈中自感电动势的方向与线圈中电流的方向相同,选项D错误.3. 在制作精密电阻时,为了消除使用过程中由于电流变化而引起的自感现象,采用双线并绕的方法,如图所示.其道理是()A.当电路中的电流变化时,两股导线产生的自感电动势相互抵消B.当电路中的电流变化时,两股导线产生的感应电流相互抵消C.当电路中的电流变化时,两股导线中原电流的磁通量相互抵消D.以上说法都不对解析:选C.由于采用双线并绕的方法,当电流通过时,两股导线中的电流方向是相反的,不管电流怎样变化,任何时刻两股导线中的电流总是等大反向的,所产生的磁通量也是等大反向的,故总磁通量等于零,在该线圈中不会产生电磁感应现象,因此消除了自感,选项A、B、D错误,只有C正确.4.(多选)一个线圈中的电流如果均匀增大,则这个线圈的()A.自感电动势将均匀增大B.磁通量将均匀增大C.自感系数也均匀增大D.自感系数和自感电动势都不变解析:选BD.线圈的自感系数L确定,当线圈中的电流均匀增大时,电流的变化率恒定知,自感电动势恒定不变,所以选项A、C错误,选项D正确;电流均匀不变,由E=LΔIΔt增大时,产生的磁场均匀增强,穿过线圈的磁通量也均匀增大,选项B正确.5.(2019·浙江诸暨中学月考)如图所示,电感线圈L的直流电阻R L=3.0 Ω,小灯泡A 的电阻R=6.0 Ω,闭合开关S,待电路稳定后再断开开关,则在断开开关S的瞬间,小灯泡A()A.不熄灭B.立即熄灭C.逐渐熄灭D.闪亮一下再逐渐熄灭解析:选D.因为电感线圈的直流电阻R L<R,当电流达到稳定时,小灯泡中的电流小于线圈中的电流,开关S断开瞬间,线圈L产生自感电动势,L中电流要逐渐变小,灯泡中的电流与L中的电流变化一致,由于电流比灯泡原来的电流大,所以灯泡要闪亮一下再逐渐熄灭,故D正确,A、B、C错误.6.(多选)如图所示,电池的电动势为E,内阻不计,线圈自感系数较大,直流电阻不计.当开关S闭合后,下列说法正确的是()A.a、b间电压逐渐增加,最后等于EB.b、c间电压逐渐增加,最后等于EC.a、c间电压逐渐增加,最后等于ED .电路中电流逐渐增加,最后等于E R解析:选BD.由于线圈自感系数较大,当开关闭合瞬间,a 、b 间近似断路,所以a 、b 间电压很大,随着电流的增加,a 、b 间电压减小,b 、c 间电压增大,最后稳定后,a 、b 间电压为零,b 、c 间电压等于E ,电流大小为I =E R,选项B 、D 对,A 、C 错. 7.如图所示电路,多匝线圈的电阻和电池的内电阻可以忽略,电源的电动势为E ,两个电阻的阻值都是R ,开关S 未闭合时,电流I 0=E 2R,现闭合开关S 将一电阻短路,于是线圈中有自感电动势产生,该自感电动势( )A .有阻碍电流减小的作用,最后电流由I 0减小到零B .有阻碍电流减小的作用,最后电流小于I 0C .有阻碍电流增大的作用,因而电流保持为I 0不变D .有阻碍电流增大的作用,但电流最后还是要增大到2I 0解析:选D.开关S 闭合后,电路中电流增大,由于线圈产生自感电动势,阻碍电流增大,但阻碍不是阻止,最终结果不受影响,电流最后还是要增大到2I 0.8.如图所示,L 为自感系数较大的线圈,电路稳定后小灯泡正常发光,当断开开关S 的瞬间会有( )A .灯A 立即熄灭B .灯A 慢慢熄灭C .灯A 突然闪亮一下再慢慢熄灭D .灯A 突然闪亮一下再突然熄灭解析:选A.当开关S 断开时,由于通过自感线圈的电流从有变到无,线圈将产生感应电动势,但由于线圈L 与灯A 在S 断开后,不能形成闭合回路,因此灯A 在开关断开后,电流为零,立即熄灭.【B 组 素养提升】9.(多选)用电流传感器可以清楚地演示自感对电路中电流的影响,不一定要用两个灯泡作对比.电流传感器的作用相当于一个电流表,实验就用电流表的符号表示.它与电流表的一个重要区别在于,传感器与计算机相结合能够即时反映电流的迅速变化,并能在屏幕上显示电流随时间变化的图象.先按图甲连接电路,测一次后,可以拆掉线圈,按图乙再测一次,得到如图a、b所示的图象.则下列说法正确的是()A.a图象是对应甲测得的B.a图象是对应乙测得的C.b图象是对应甲测得的D.b图象是对应乙测得的解析:选AD.电路甲中电流在开关闭合后,由于自感电动势作用,逐渐增至最大;电路乙中电流在开关闭合后,立即增至最大,所以选项A、D正确.10.如图所示,L为一纯电感线圈(即电阻为零),A是一灯泡,下列说法正确的是()A.开关S接通瞬间,无电流通过灯泡B.开关S接通后,电路稳定时,无电流通过灯泡C.开关S断开瞬间,无电流通过灯泡D.开关S接通瞬间及接通稳定后,灯泡中均有从a到b的电流,而在开关S断开瞬间,灯泡中有从b到a的电流解析:选B.开关S接通瞬间,灯泡中的电流从a到b,线圈由于自感作用,通过它的电流将逐渐增大.开关S接通后,电路稳定时,纯电感线圈对电流无阻碍作用,将灯泡短路,灯泡中无电流通过.开关S断开的瞬间,由于线圈的自感作用,线圈中原有向右的电流将逐渐减小,该线圈与灯泡形成回路,故灯泡中有从b到a的瞬间电流.11.如图所示为测定自感系数很大的线圈L直流电阻的电路,L的两端并联一个电压表,用来测量自感线圈的直流电压.在测量完毕后,将电路拆解时应()A.先断开S1B.先断开S2C.先拆除电流表D.先拆除电压表解析:选B.若先断开S1或先拆除电流表,线圈与电压表组成闭合回路,这时,流过电压表的电流与原来方向相反,电压表的指针将反向偏转,容易损坏电压表.按操作要求,应先断开开关S2,再断开开关S1,然后拆除器材.故选项B正确.12.(多选)(2019·南京高二测试)如图所示的电路中,a、b、c为三盏完全相同的灯泡,L 是一个自感系数很大、直流电阻为零的自感线圈,E为电源,S为开关.关于三盏灯泡,下列说法正确的是()A.合上开关,c、b先亮,a后亮B.合上开关一会后,a、b一样亮C.断开开关,b、c同时熄灭,a缓慢熄灭D.断开开关,c马上熄灭,b闪一下后和a一起缓慢熄灭解析:选AB.闭合开关S时,由于线圈L的自感作用,流过a灯的电流逐渐增大,所以a灯后亮,b、c灯与电源构成回路,所以b、c灯先亮,故A正确;合上开关一会后,电路稳定,L是一个直流电阻为零的自感线圈,可视为导线,a、b灯完全相同,并联电压相同,故a、b灯一样亮,故B正确;断开开关瞬间,a、b灯与线圈构成闭合回路.由于L的自感作用,a、b灯的电流要逐渐减小,故c灯马上熄灭,a、b灯缓慢熄灭,C错误;由于电路稳定时,a、b灯中电流相同,故b灯无闪亮现象,D错误.13.(多选)如图所示的电路中,电感L的自感系数很大,电阻可忽略,D为理想二极管,则下列说法正确的有()A.当S闭合时,L1立即变亮,L2逐渐变亮B.当S闭合时,L1一直不亮,L2逐渐变亮C.当S断开时,L2立即熄灭D.当S断开时,L1突然变亮,然后逐渐变暗至熄灭解析:选BD.当S闭合时,因二极管加上了反向电压,故二极管截止,L1一直不亮;通过线圈的电流增加,感应电动势阻碍电流增加,故使得L2逐渐变亮,选项B正确,A错误;当S断开时,由于线圈自感电动势阻碍电流的减小,故通过L1的电流要在L2→L1→D→L 之中形成新的回路,故L1突然变亮,然后逐渐变暗至熄灭,选项C错误,D正确.14.(2019·河南南阳一中月考)在如图所示的电路中,两个相同的小灯泡L1和L2分别串联一个带铁芯的电感线圈L和一个滑动变阻器R.闭合开关S后,调整R,使L1和L2发光的亮度一样,此时流过两个灯泡的电流均为I.然后,断开S.若t′时刻再闭合S,则在t′前后的一小段时间内,正确反映流过L1的电流i1、流过L2的电流i2随时间t变化的图象是()解析:选B.闭合开关S后,调整R,使两个灯泡L1、L2发光的亮度一样,电流为I,说明R L=R.若t′时刻再闭合S,流过电感线圈L和灯泡L1的电流迅速增大,使电感线圈L产生自感电动势,阻碍了流过L1的电流i1增大,直至达到电流为I,故A错误,B正确;而对于t′时刻再闭合S,流过灯泡L2的电流i2立即达到电流I,故C、D错误.。

电磁感应中的自感和互感的现象与应用

电磁感应中的自感和互感的现象与应用
应用:变压器、感应电机等。
变压器:利用自感和互感现 象改变电压
电磁炉:利用互感现象产生高 频磁场,使锅体产生涡流而发 热
感应电动机:利用互感现象产 生旋转磁场,使电动机运转
电磁铁:利用自感现象产生磁 场,用于电磁继电器、接触器

继电器:利用自感现象控制电流的通断 变压器:通过自感现象实现电压的变换 电磁炉:利用自感现象产生涡流加热食物 线圈电感:作为储能元件,实现能量的储存和释放
XX,a click to unlimited possibilities
汇报人:XX
01
02
03
04
05
06
法拉第电磁感应定律:当一个导体回路在磁场中作切割磁力线运动时,会在导体回路中产生 感应电动势。
楞次定律:感应电流的方向总是要使它的磁场阻碍原磁场的变化。
自感现象:当一个导体线圈中的电流发生变化时,它会产生自己的磁场,这个磁场又会反过 来影响线圈中的电流。
电磁炉:利用 自感现象产生 涡流加热食物
变压器:通过 自感现象实现
电压变换
交流电机:自 感现象是电机 正常工作的基
础之一
无线充电:利 用自感现象实 现电能的无线
传输
变压器的工作原 理:互感现象的 应用
变压器的作用: 电压变换、电流 变换和阻抗变换
变压器的种类:电 力变压器、音频变 压器、中周变压器 等
无线充电:利 用互感现象实 现无线充电,
方便快捷。
电力传输:通 过互感现象提 高电力传输的 效率,降低能
源损失。
传感器:互感 现象在传感器 技术中广泛应 用,如磁场传 感器、电流传
感器等。
磁悬浮技术: 互感现象在磁 悬浮技术中起 到关键作用, 实现无接触悬

互感和自感 课件

互感和自感  课件
图5
(1)若开始 I1>I2,则灯 LA 会闪亮一下(I1、I2 差别越大闪亮越明显, 但差别过大有可能会烧坏灯泡);即当线圈的直流电阻 RL<RLA 时, 会出现 LA 灯闪亮的情况。 (2)若 RL≥RLA,I1≤I2,则不会出现 LA 灯闪亮一下的情况,但灯 泡会逐渐熄灭。
因而电流 I0 保持不变
D.有阻碍电流增大的作用,
但电流最后还是增大到 2I0
图2
解析 当 S 合上时,电路的电阻减小,电路中电流要增大,故 L 要产生自感电动势,阻碍电路中的电流增大,但阻碍不是阻止; 当 S 闭合电流稳定后,L 的阻碍作用消失,电路的电流为 2I0,D 项正确。 答案 D
名师点睛 自感问题的求解策略 自感现象是电磁感应现象的一种特例,它仍遵循电磁感应定律。 分析自感现象除弄清这一点之外,还必须抓住以下三点:(1)自感 电动势总是阻碍电路中原来电流的变化。(2)“阻碍”不是“阻 止”。“阻碍”电流变化的实质是使电流不发生“突变”,使其 变化过程有所延缓。(3)当电路接通瞬间,自感线圈相当于断路; 当电路稳定时,相当于电阻,如果线圈没有电阻,相当于导线(短 路);当电路断开瞬间,自感线圈相当于电源。
2.公式:E
=L
ΔI Δt
,其中
L
是自感系数,简称自感或电感,单
位: 亨利 。符号: H 。1 mH=10-3 H,1 μH=10-6 H。
3.决定因素:与线圈的大小、形状、 匝数 ,以及是否有铁芯等
因素有关,与 E、ΔI、Δt 等无关。
[要 点 精 讲] 要点1 对自感现象的理解
(1)对自感现象的理解 自感现象是一种电磁感应现象,遵循法拉第电磁感应定律和楞次定 律。
要点2 对两类自感现象的理解

第四章第六节《互感和自感》PPT课件

第四章第六节《互感和自感》PPT课件

A
A2
A1
断电自感电路图 通电自感电路图
二、自感现象
1、由于导体本身的电流发生变化而产生的电磁 感应现象,叫自感现象。
2、自感现象中产生的电动势-----叫自感电动势。 自感电动势的作用:
阻碍导体中原来的电流变化。
注意: “阻碍”不是“阻止”,电流原来怎么 变化还是怎么变,只是变化变慢了,即对 电流的变化起延迟作用。
自感电动势的大小: E L I
t
自感系数
线圈产生自感电动势的大小与线圈本身的一些特性有关。 这些特性用自感系数(L)表示。简称自感或电感。
大小:由线圈本身结构决定。其长度越长、横截面越大、
匝数越多自感系数越大,有铁芯比无铁芯自感系数大得多。
10
电路断开瞬间,电流变小到零,穿
分 过线圈L的磁通量逐渐减小,L中产生的
析 感应电动势的方向与原来的电流方向相
同,阻碍L中电流减小,即推迟了电流减
小到零的时间。
自学提纲
1.自感电动势的大小取决于什么?其 表达式是什么?示中各符号代表什 么?
2.自感系数的大小与什么因素有关 ?它的主单位是什么?常用单位还 有那些?各单位的符号怎么写?
第四章 电磁感应
一、互感的定义 当一个线圈中电流变化,在另一个线圈 中产生感应电动势的现象,称为互感。 互感现象中产生的感应电动势,称为互 感电动势。
二、互感的特点:(1)传递信息 (2)传递能量
三.应用互感:
二、自感现象
1、由于导体本身的电流发生变化而产生的电磁 感应现象,叫自感现象。
2、自感现象中产生的电动势-----叫自感电动势。 自感电动势的作用:
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal

互感和自感精品课件

互感和自感精品课件
动势的方向与原来的电流方向相反,阻碍
L中电流增加,即推迟了电流达到正常值
的时间。
演示2
断电 论:P23
断 电 自 感
.
要 闪 亮 一 下 才 熄 灭
为 什 么 灯 不 是 立 即




再看一遍
.
现象分析
二、自感现象
1.由于导体本身的电流发生变化而产生的电磁 感应现象,叫自感现象。
第五章《电磁感应》
第六节 《互感和自感》
.
线圈L1
线圈L2
P G
G D
A
B
S
.
一、互感现象
1、定义:当一个线圈中电流变化,在另一个线 圈中产生感应电动势的现象,称为互感。互 感现象中产生的感应电动势,称为互感电动 势。 2、本质:一种电磁感应现象
.
3、应用:利用互感现象可以把能量从一个线圈传
递到另一个线圈,因此在电工技术和电子技术中有 广泛应用。变压器就是利用互感现象制成的。
2.自感现象中产生的电动势叫自感电动势。 自感电动势的作用:阻碍导体中原来的电流
变化。 注意:“阻碍”不是“阻止”,电流原来怎
么变化还是怎么变,只是变化变慢了,即对电 流的变化起延迟作用。
.
3.自感电动势的方向
导体电流增加时,阻碍电流增加,此 时自感电动势方向与原电流方向相反; 导体电流减小时,阻碍电流减小,此时 自感电动势方向与原电流方向相同。
2、由于导体本身的电流发生变化而产生的电磁感应 现象,叫自感现象。
3、自感现象中产生的电动势叫自感电动势。
(1)自感电动势的作用:阻碍导体中原来的电流变
化。 (2)自感电动势大小:
E L I t
4、自感系数L:与线圈的大小、形状、圈数及有无 铁心有关

第四章 第6节 互感和自感

第四章  第6节  互感和自感

第6节互感和自感1.当一个线圈中的电流变化时,会在另一个线圈中产生感应电动势,这种现象叫互感,互感的过程是一个能量传递的过程。

2.当一个线圈中的电流变化时,会在它本身激发出感应电动势,叫自感电动势,自感电动势的作用是阻碍线圈自身电流的变化。

3.自感电动势的大小为E =L ΔI Δt,其中L 为自感系数,它与线圈大小、形状、圈数,以及是否有铁芯等因素有关。

4.当电源断开时,线圈中的电流不会立即消失,说明线圈中储存了磁场能。

一、互感现象1.定义两个相互靠近的线圈,当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势的现象。

产生的电动势叫做互感电动势。

2.应用互感现象可以把能量由一个线圈传递到另一个线圈,变压器、收音机的“磁性天线”就是利用互感现象制成的。

3.危害互感现象能发生在任何两个相互靠近的电路之间。

在电力工程和电子电路中,互感现象有时会影响电路正常工作。

二、自感现象和自感系数1.自感现象 当一个线圈中的电流变化时,它产生的变化的磁场在它本身激发出感应电动势的现象。

2.自感电动势 由于自感而产生的感应电动势。

3.自感电动势的大小E =L ΔI Δt,其中L 是自感系数,简称自感或电感,单位:亨利,符号为H 。

4.自感系数大小的决定因素 自感系数与线圈的大小、形状、圈数,以及是否有铁芯等因素有关。

三、磁场的能量1.自感现象中的磁场能量(1)线圈中电流从无到有时:磁场从无到有,电源的能量输送给磁场,储存在磁场中。

(2)线圈中电流减小时:磁场中的能量释放出来转化为电能。

2.电的“惯性” 自感电动势有阻碍线圈中电流变化的“惯性”。

1.自主思考——判一判(1)两线圈相距较近时,可以产生互感现象,相距较远时,不产生互感现象。

(×)(2)在实际生活中,有的互感现象是有害的,有的互感现象可以利用。

(√)(3)只有闭合的回路才能产生互感。

(×)(4)线圈的自感系数与电流大小无关,与电流的变化率有关。

互感和自感课件

互感和自感课件

5、自感电动势的大小:
I
t t
E
t
E L I t
即自感电动势的大小与电流的变化率成正比,式中L叫作 该线圈的自感系数。
自感系数L
1、L的意义:表征线圈产生自感电动势本领大小的物理 量。在数值上等于通过线圈的电流在1秒内改变1A时产 生的自感电动势的大小;
2、影响L的因素:实验表明,线圈的长度越长,线圈的面 积越大,单位长度上的匝数越多,线圈的自感系数越大。 此外,线圈有铁芯时比无铁芯时的自感系数大得多;
应用与防止
(1). 收音机里的“磁性天线” 利用互感将广播信号从一个 线圈传送给另一线圈.
(2). 延时继电器
KD C 特别提醒:
互感是一种常见的电磁感应现象!
S
A
要注意,它不仅发生于绕在同一铁
芯上的两个线圈之间,而且可以发
B
生于任何相互靠近的电路之间.
二、自感现象
实验1:调节滑动变阻器,使其阻值 与电感阻值相同。两个小灯泡完全 相同。
3、L的单位:亨利,符号“H”. 1H=103mH=106μH
自感现象中的能量转化
问题:在断电自感的实验中,为什么开关断开后,灯泡 的发光会持续一段时间?甚至可能会比原来更亮?试从 能量的角度加以讨论。
电流增大时,自感电动势阻碍电流增大,电流克服自 感电动势做功,电能转化为磁场能;当电流稳定达到 最大,自感电动势为零。当电流减小时,线圈内的磁 场能开始释放,转化为电能提供电流,因而在开关断 开瞬间,灯泡不立即熄灭。
I B
通 电 自 感
I变化
B变2:
如实验电路,开关 闭合电路稳定后,当开关 S断开。观察小灯泡发光 情况,分析原因。
现象:小灯泡闪一下后缓慢熄灭。

互感和自感课件

互感和自感课件

电流减小时,自感线圈中电流大小一定小于原先所通电 流大小,自感电动势可能大于原电源电动势.
如图 4-6-3 所示的电路中,三个相同的灯泡 a、b、c
和电感 L1、L2 与直流电源连接,电感的电阻忽略不计.电键 S 从闭合状态突然断开时,下列判断正确的有( )
A.a 先变亮,然后逐渐变暗
B.b 先变亮,然后逐渐变暗
【答案】 AD
综合解题方略——有线圈电路的分析方法
如图 4-6-5 甲、乙电路中,电阻 R 和电感线 圈 L 的电阻都很小.接通 S,使电路达到稳定,灯泡 A 发光, 则( )


图 4-6-5
A.在电路甲中,断开 S,A 将渐渐变暗 B.在电路甲中,断开 S,A 将先变得更亮,然后渐渐变 暗 C.在电路乙中,断开 S,A 将渐渐变暗 D.在电路乙中,断开 S,A 将先变得更亮,然后渐渐变 暗 【规范解答】 甲图中,电灯 A 与电感线圈 L 在同一个 支路中,流过的电流相同,断开开关 S 时,线圈 L 中的自感 电动势要维持原电流不变,所以,开关断开的瞬间,电灯 A 的电流不变,以后电流渐渐变小.
自感系数和磁场的能量
1.基本知识 (1)自感系数 ①自感电动势的大小 E= LΔΔIt ,其中 L 是自感系数,简称自感或电感. 单位:亨利,符号: H . ②决定线圈自感系数大小的因素 线圈的 大小 、 形状 、圈数 ,以及是否有铁芯等.
(2)磁场的能量 ①线圈中电流从无到有时,磁场从无到有,电源的能量 输送给 线圈 ,储存在 磁场 中. ②线圈中电流减小时, 线圈 中的能量释放出来转化为 电能.
B.I1 开始很小而后逐渐变大
C.I2 开始很小而后逐渐变大 D.I2 开始较大而后逐渐变小
图 4-6-1

自感现象及其应用演示(附互感)课件

自感现象及其应用演示(附互感)课件

(2)正常发光: 日光灯正常发光时,镇流器与两灯丝及 灯管内的汞蒸气组成闭合电路,由于镇流器的线圈产 生自感现象,阻碍通过灯管的电流变化,起降压限流作 用,确保日光灯正常工作.
电路接通后,该部分不再发热,动触片冷却后将再次断开
气体在高压电作用下被击穿,将电路接通 发射出的紫外线使荧光粉发光
电路断开瞬间 产生瞬时高压
法拉第和他的实验线圈
互感现象
在法拉第的实验中,两个线圈之间并没有导线相 连,但当一个线圈中的电流发生变化时,它所产生的 变化的磁场会在另一个线圈中产生感应电动势。这种 现象叫做互感。这种感应电动势叫做互感电动势
互感现象
利用互感现象可以把能量从一个线圈传递到另一 个线圈,因此在电工技术和电子技术中有广泛的应用 如:变压器
例5、如图所示,多匝电感线圈的电阻和电池内阻都 忽略不计,两个电阻的阻值都是R,电键S原来打开,电 流为I0,今合上电键将一电阻短路,于是线圈有自感电 动势产生,这电动势 D A. 有阻碍电流的作用,最后电流由I0 减少到零 B. 有阻碍电流的作用,最后电流总小于I0 C. 有阻碍电流增大的作用,因而电流I0保持不变 D. 有阻碍电流增大的作用,但电流最后还是增大到2I0
例4(双)日光灯的主要部件有灯管、镇流器、启动器. 日光灯灯管的两端各有一个灯丝,灯管内充有微量的 氩气和稀薄的汞蒸气,灯管内壁上涂有荧光粉.两个灯 丝之间的气体导电时发出紫外线,使涂在管壁上的荧 启动器 光粉发出可见光 AB A.在日光灯正常工作后,如果取 走启动器,日光灯还能正常发光 镇流器 B.启动器如果被击穿了(短路), 220V 日光灯不能正常启动 C.镇流器在日光灯的灯管发光后,不再起任何作用 D.在日光灯中,镇流器的另一个作用是将交流电转换 为直流电

电磁感应理解互感和自感现象的应用

电磁感应理解互感和自感现象的应用

电磁感应理解互感和自感现象的应用在我们日常生活中,电磁感应是一种非常常见的物理现象,它是指导线中电流变化产生的磁场经过导线圈内、外环境产生的一种电动势。

通过对电磁感应的研究,我们可以更好地理解互感和自感现象,并将其应用于各个领域。

一、互感现象互感现象是指当两个电路存在磁耦合时,其中一个电路中的电流或电压的变化会引起另一个电路中的电流或电压的变化。

互感现象在电子通信、电力传输和电路设计中有着广泛的应用。

电子通信:互感现象在无线通信系统中起着重要的作用。

例如,手机中的天线将电信号作为电磁波发送出去,而天线接收到的电磁波也会通过互感现象转换成电信号。

同时,在通信线路中使用的变压器也利用了互感现象进行信号的传输和接收。

电力传输:变压器是电力传输系统中的重要设备,它利用了互感现象进行电能的传输。

变压器中的两个线圈通过磁耦合,通过改变输入线圈的电流来实现输出线圈电流和电压的变化。

这种方式可以实现电能从发电厂向用户的传输,提高了电力传输的效率。

电路设计:互感器在电路设计中也有着广泛的应用。

例如,互感输入电流传感器可以测量电路中的电流,并将其转换为与电流成正比的输出电压。

另外,交流耦合电感器可以将输入信号与输出信号在电路中进行耦合,以实现信号放大或滤波。

二、自感现象自感现象是指导线自身的电阻率变化引起的感应电动势。

自感现象在电子元件和电路设计中也有着重要的应用。

电子元件:电感器是利用自感现象制造的电子元件之一。

电感器通过将导线绕制成线圈,利用自感现象将变化的电流转换成感应电动势。

这种感应电动势可以用于各种电路中,例如滤波器、调谐电路和振荡电路。

电路设计:自感现象也广泛应用于电路设计中。

例如,为了抑制电路中的高频噪声,可以使用自感元件制造一个自感环,通过自感现象将高频噪声转变为热能。

另外,在配电线路中使用的电感线圈也可以通过自感现象过滤电路中的谐振电流。

三、电磁感应的其他应用除了互感和自感现象的应用之外,电磁感应还具有其他一些重要的应用。

互感和自感课件

互感和自感课件

解析:S 闭合,电路中电阻由 2R 减小为 R,电流从 I0=2ER增
大到 I′=ER.由于电流的变化,使线圈中产生自感电动势,阻碍 电流的变化,即阻碍电流的增加,最后变化到稳定后的值即没有 自感作用后应该达到的值.
答案:D
反思领悟:在进行分析计算时,要注意: (1)自感线圈的直流电阻为零,那么电路稳定时可认为线圈短 路; (2)在电流由零增大的瞬间可认为线圈断路. (3)在线圈中产生自感电动势,自感电动势阻碍电流的变化, 但“阻碍”不是“阻止”,“阻碍”实质上是“延缓”.
偏,若反偏电压过大,会烧坏电压表 ,故应先断开 S2,故选 B 项.
题型 2 电路中电流大小变化的判断
图 4-6-7 【例 2】 如图 4-6-7 所示,多匝电感线圈 L 的电阻和电池 内阻不计,两个电阻的阻值都是 R,开关 S 原来打开,电流 I0=2ER, 今合上开关 S 将一电阻短路,于是线圈有自感电动势产生
探究 3 通电自感和断电自感是如何产生的?
在处理通断电灯泡亮度变化问题时,不能一味套用结论,如 通电时逐渐变亮,断电时逐渐变暗,或闪亮一下逐渐变暗,要具 体问题具体分析,关键要搞清楚电路连接情况.
观察 对象
与线圈串联的灯泡
与线圈并联的灯泡
电路图
通电时
电流逐渐增大,灯泡 逐渐变亮
电流突然变大,然后逐渐减 小达到稳定
解析:当开关 S 接通时,A1 和 A2 同时亮,但由于自感现象 的存在,流过线圈的电流由零变大时,线圈上产生自感电动势阻
碍电流的增大,使通过线圈的电流从零开始慢慢增加,所以开始
时电流几乎全部从 A1 通过,而该电流又将同时分路通过 A2 和 R, 所以 A1 先达最亮,经过一段时间电路稳定后,A1 和 A2 达到一样 亮;当开关 S 断开时,电源电流立即为零,因此 A2 立即熄灭, 而对 A1,由于通过线圈的电流突然减小,线圈中产生自感电动势 阻碍电流的减小,使线圈 L 和 A1 组成的闭合电路中有感应电流, 所以 A1 后灭.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

至于灯泡中的电流是突然变大还是 变小(也就是说灯泡是否突然变得更 亮一下),就取决于I2与I1谁大谁小, 也就是取决于R和r谁大谁小的问题. 特别提醒
r为自感线圈L的直流电阻的电阻值(由题 目给定是否有其值)

1. 如乙图,当电流处于稳定状态时,如果R>r,则I1>I2, 灯泡会先更亮一下才熄灭. 2.如果R=r,灯泡会由原亮度渐渐熄灭. 3.如果R<r,灯泡会先立即暗一些,然后渐渐熄灭.产 生自感电动势的效果体现为线圈中电流在原来电流值 基础上逐渐减小,而不是电动势与线圈两端电压相等, 自感电动势可以超出线圈两端原电压
互感和自感现象及其应用
一、互感现象
问题:在法拉第的实验中两个线圈 并没有用导线连接,当一个线圈中 的电流变化时,在另一个线圈中为 什么会产生感应电动势呢?
1.当一个线圈中电流变化,在另一个线圈中产生感应 电动势的现象,称为 互感现象 互感现象中产生的感应电动势,称为 互感电动势 2.互感现象不仅发生于绕在同一铁芯上的两个线圈之间 , 且可发生于任何两个相互靠近的电路之间.
解析:选D.电键S由断开到闭合瞬间,回路中的电 流要增大,因而在L上要产生自感电动势.根据楞次定 律,自感电动势总是要阻碍引起它的电流的变化,这 就是说由于电流增加引起的自感电动势,要阻碍原电 流的增加.而阻碍不是阻止,电流仍要增大,而达到 稳定后其电流为2I0,故选项D正确.
3:如图电路中电源内阻不能忽略,R阻值和L 的自感系数都很大,A、B为两个完全相同的灯 泡,当S闭合时,下列说法正确的是( B )
思路点拨:断电自感,要注意抓住“电流”的变化情况来分析灯泡 是否突然变亮。断电自感中最容易判断失误的就是一看是断电自感, 便错误地认为灯泡会突然变亮.实际上,在断电自感现象中,灯泡 是否突然变亮,取决于通过它的电流是否突然变大,要根据题意, 分析电路中电流的大小.
【答案】 AD
2、如图所示,L为自感系数较大的线 圈,电路稳定后小灯泡正常发光,当 断开电键的瞬间会有( A ) A . 灯A立即熄灭
4、自感电动势的大小: 与电流的变化率成正比
I 公式: E L t 自感电动势的大小的推导: I
t
E t
t
I EL t
5、磁场的能量 ①线圈中电流从无到有时,磁场从无到有,电源的能量输送给 _______ 磁场 中. 线圈 ,储存在______ 线圈 中的能量释放出来转化为电能. ②线圈中电流减小时,_______
核心要点突破
第 四 章 电 磁 感 应
特别提醒
电阻R对恒定电流有阻碍作用.电感L 对恒定电流无阻碍作用.
上 页
下 页
课堂互动讲练
随堂达标自测
课时活页训练
类型一:通电自感现象的分析 例1、如图所示中灯LA、LB完全相同,带铁芯的线圈L的 电阻可忽 略.则( A ) A.S闭合的瞬间,LA、LB同时发光,接着LA变暗,LB更 亮,最后LA熄灭 B.S闭合瞬间,LA不亮,LB立即亮 C.S闭合瞬间,LA、LB都不立即亮 D.稳定后再断开S的瞬间,LB熄灭,LA比LB(原先亮度)更
3、互感的应用和危害: (1)应用:利用互感现象可以把能量由一个线圈传递到 另一个线圈.如变压器、收音机的“磁性天线” (2)危害:影响电力工程和电子电路的正常工作
4、互感是一种常见的电磁感应现象!
二、自感现象
问题:K接通瞬间,线圈L本身中会不会产生感应电动势? 1.自感现象:由于线圈(或导体)本身的 电流发生变化而产生的电磁感应现象, 叫自感现象。(它产生的变化的磁场在 它本身也将激发出感应电动势)
解析:K闭时,A、B、C三灯都通电,三灯同 时亮,且由于自感线圈的自感作用,L中瞬间 无电流,A中电流为B、C灯中的两倍,A灯最 亮.电流稳定后,自感现象消失,A灯被线圈 短路,逐渐熄灭,B选项对.
类型二:断电自感现象的分析 1、如图甲、乙电路中,电阻R和自感线圈L的电阻都很 小,接通S,使电路达到稳定,灯泡A发光,则( AD ) A.在电路甲中,断开S,A将渐渐变暗 B.在电路甲中,断开S,A将先变得更亮,然后渐渐变暗 C.在电路乙中,断开S,A将渐渐变暗 D.在电路乙中,断开S,A将先变得更亮,然后渐渐变暗
【点评】 在分析自感现象时要抓住两点:一是线 圈在电路中的位置、结构;二是电路中原有电流的变 化规律,如电流方向、电流突然变化的情况等.
2、如图所示,多匝线圈L的电阻和电池内阻不计,两个 电阻的阻值都是R,电键S原来是断开的,电流 I0=E/2R,今合上电键S将一电阻短路,于是线圈有 自感电动势产生,此电动势( D ) A.有阻碍电流的作用,最后电流由I0减小到零 B.有阻碍电流的作用,最后电流总小于I0 C.有阻碍电流增大的作用,因而电流将保持I0不变 D.有阻碍电流增大的作用,但电流最后还是增大到2I0
三、自感系数L及自感电动势的大小:
自感系数 L----简称自感或电感 1、L的意义:表征线圈产生自感电动势本领大小的物理
量。在数值上等于通过线圈的电流在1秒内改变1A时 产生的自感电动势的大小; 2.自感系数L的大小决定因素:自感系数与线圈 的 匝数 、 形状 、 大小 ,以及是否有铁芯等因素有关 线圈有铁芯时比无铁芯时的自感系数大得多 3、L的单位:亨利,符号“H”. 1H=103mH=106μH
二、两种电路的自感比较 与线圈串联的灯泡 与线圈并联的灯泡
电路 图
与线圈串联的灯泡 通 电 时
与线圈并联的灯泡
电流逐渐增大,灯 电流突然变大,然后逐渐减小达 泡逐渐变亮 到稳定 电路中稳态电流为 I1、 I2
断 电流逐渐减小 电 灯泡逐渐变暗 时 电流方向不变
①若 I2≤ I1,灯泡逐渐变暗; ②若 I2>I1,灯泡闪亮后逐渐变 暗. 两种情况灯泡电流方向均改变
L
A
B . 灯A慢慢熄灭
C . 灯A突然闪亮一下再慢慢熄灭
D . 灯A突然闪亮一下再突然熄灭
3.电路如图所示,小灯泡电阻为R,线圈L的直流电 阻为r,当开关S断开时,将看到灯泡怎样的现象,试 分析产生这种现象的原因。
I
A
【解析】 S接通的瞬间,L支路中电流从无到有 发生变化,因此,L中产生的自感电动势阻碍电流增 加.由于有铁芯,自感系数较大,对电流的阻碍作用 也就很强,所以S接通的瞬间L中的电流非常小,即干 路中的电流几乎全部流过LA.所以LA、LB会同时亮. 又由于L中电流很快稳定,感应电动势很快消 失,L的阻值很快就变得很小,对LA起到“短路”作 用,因此,LA便熄灭.这里电路的总电阻比刚接通 时小,由恒定电流知识可知,LB会比以前更亮. 【答案】 A
1.通电瞬时、断电瞬时、电路稳定时自感线圈在电路中各起什
么作用?
对电感线圈阻碍作用的理解 ①若电路中的电流正在改变,电感线圈会产生 自感电动势阻碍电路中电流的变化,使得通过电感 线圈的电流不能突变. ②若电路中的电流是稳定的,电感线圈相当于
一段导线,其阻碍作用是由绕制线圈的导线的电阻
引起的.
基础知识梳理
增反减同
3、如何画出自感电动势(自感电流)的方向即电源的正 负极(四指指向自感电动势的正极)
通电自感和断电自感
电路 现象 自感电动 势的作用
通电 自感
接通电源的瞬间, 阻碍 ______电 灯泡A1 流的增加 较慢地亮起来 ————————————————
断电 自感
断开开关的瞬间, 阻碍 电 ______ 灯泡A 流的减小 __________ 逐渐变暗
四、自感现象的分析:
L R A1 A2
S
R1
特别提醒:1、自感现象(自感电动势)只是在开关接通 或断开的瞬间(很短的时间内)即电流发生 变化时才发生,电路最终电流一定要稳定, 此时就没有自感电动势。 2、对于线圈而言,通电瞬间相当于一个极大的电阻, 断电瞬间相当于一个电源,电流稳定时就是一个直流 电阻。
要为 闪什 亮么 一灯 下不 才是 熄立 灭即 熄 灭 , 而 现象分析
? 通过线圈的电流I 减小 ?穿过圈的磁通量减小 ? 线圈产生感应电动势 ? 阻碍电
S断开
流减小(补偿) 1 感应电流方向如何? 2 原电流方向如何? 3 通过灯的电流怎样变化?
I
O
灯逐渐熄灭
t
(一)、自感现象的分析思路: (1)明确通过自感线圈的电流怎样变化(是增大还是 减小). (2)判断自感电动势方向,电流增强时(如通电),自 感电动势方向与原电流方向相反;电流减小时 (如断电),自感电动势与原电流方向相同. (3)分析电流变化情况,电流增强时(如通电),由于 自感电动势方向与原电流方向相反,阻碍增加, 电流逐渐增大;电流减小时(如断电),由于自感 电动势方向与原电流方向相同,阻碍减小,线圈 中电流方向不变,电流逐渐减小.
特别提醒: 电流减小时,自感线圈中电流大小一定小于原先所通 电流大小,自感电动势可能大于原电源电动势 .
三、电感和电阻的区别和联系 电阻R 电感L 对电流的变化
阻碍 作用 表现
大小 因素 决定 因素 联系
对电流 导体发热
产生自感现象 电感越大,电流变化 电阻越大,对电流的 越快,对电流的阻碍 阻碍越大,产生的电 作用越大,产生的自 势差越大 感电动势越大 长度、横截面积、单 长度、横截面积、电 位长度的匝数、有无 阻率 铁芯 电感和电阻都是反映导体本身性质的物理量
思考:若电阻R和自感线圈L的电阻值相等,其他条件都 不变,其结果呢?
【解析】 电阻R和自感线圈L的电阻都很小,图中,闭合S 时,I1<I2,断开S后,I2=0,由于自感线圈的存在,阻碍灯泡中的 电流I1变小,但I1仍继续变小,并通过R形成回路,所以甲图中灯 泡是渐渐变暗. 图中,同理I1′>I2′,断开S后,通过灯泡的电流在I1′的基础上 变小,所以乙图中灯泡会突然亮一下,然后渐渐变暗.
S闭合 的瞬间

2. 在断电自感中,灯泡的亮度变化 自感电动势(的方向)总是要阻碍引起 自感的电流的变化,就好像感应电流的 磁场总是要阻碍引起感应电流的磁通量 的变化一样.自感电动势阻碍的对象是 乙 “电流的变化”,而不是电流本身. 如乙图所示,当电流处于稳定状态时,流过L的电流 为I1=E/r(电源内阻不计),方向由a b;流过灯 泡A的电流I2=E/R,方向由d →c 断开S的瞬间,I2立即消失,而由于线圈的自感,I1 不会马上消失,线圈总力图维持I1的存在,所以线圈上产 生一个b端为正、a端为负的自感电动势,与灯泡组成abcd 回路,由此流过A的电流由大小I2变成I1,方向由d→c变 成c→d.可见通过A的电流大小与方向都发生了变化.
相关文档
最新文档