解三角形的综合应用.pdf
解三角形大题和答案解析-精品.pdf
( Ⅱ) 当
时,
所以
问题转化为方程
设 则 因为
, 所以
,
在
内是否有解
,
,
在
内单调递增
又
,
且函数
的图象连续不断 , 故可知函数
在
内存在唯一零点 ,
即存在唯一的
( Ⅲ) 依题意 ,
当
,即
满足题意
,令
时,
, 从而
所以方程
等价于关于 的方程
,
现研究
时方程解的情况
令
,
则问题转化为研究直线
与曲线
在
,令
,得
或
当 变化时 ,
WORD版)) 已知函数
f ( x) 4cos x sin x
( 0) 的最小正周期为 .
4
专业知识编辑整理
WORD 完美格式
( Ⅰ) 求 的值 ; ( Ⅱ) 讨论 f ( x) 在区间 0,2 上的单调性 .
【
答
案
】
解
:
( Ⅰ)
2 2 cos x(sin x cos x) 2 (sin 2 x cos2 x 1) 2sin(2 x ) 2 4
WORD版)) 已知函数
的周期为 , 图像的一个对称中心为
, 将函数
图像上的所有点的横坐标伸长为原来的
2 倍 ( 纵坐标不变 ), 在将所得图像向右平移
个单位长度后得到函数
的图像 .
(1) 求函数
与
的解析式 ;
(2) 是否存在
, 使得
按照某种顺序成等差数列 ?若存
在, 请确定 的个数 ; 若不存在 , 说明理由
37
37
BC
2022届高考数学解三角形综合满分突破专题八 多三角形问题(解析版)
专题八 多三角形问题多三角形计算问题求解多个三角形问题的关键及思路求解多个三角形的计算问题,关键是梳理条件和所求问题的类型,然后将数据化归到多个三角形中,利用正弦定理、余弦定理、三角形面积公式及三角恒等变换公式等建立已知和所求的关系.具体解题思路如下:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解; (2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题.【例题选讲】[例1]如图,在△ABC 中,∠B =π3,AB =8,点D 在边BC 上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ; (2)求BD ,AC 的长.解析 (1)在△ADC 中,∵cos ∠ADC =17,∴sin ∠ADC =1-cos 2∠ADC =1-⎝⎛⎭⎫172=4849=437, 则sin ∠BAD =sin(∠ADC -∠B )=sin ∠ADC ·cos ∠B -cos ∠ADC ·sin ∠B =437×12-17×32=3314.(2)在△ABD 中,由正弦定理得BD =AB ·sin ∠BADsin ∠ADB =8×3314437=3.在△ABC 中,由余弦定理得AC 2=AB 2+CB 2-2AB ·BC cos B =82+52-2×8×5×12=49,即AC =7.[例2] (2020·江苏)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知a =3,c =2,B =45°. (1)求sin C 的值;(2)在边BC 上取一点D ,使得cos ∠ADC =-45,求tan ∠DAC 的值.解析 (1)在△ABC 中,因为a =3,c =2,B =45°,由余弦定理b 2=a 2+c 2-2ac cos B , 得b 2=9+2-2×3×2cos 45°=5,所以b =5.在△ABC 中,由正弦定理b sin B =c sin C ,得5sin 45°=2sin C ,所以sin C =55. (2)在△ADC 中,因为cos ∠ADC =-45,所以∠ADC 为钝角.而∠ADC +C +∠CAD =180°,所以C 为锐角.故cos C =1-sin 2C =255,则tan C =sin C cos C =12.因为cos ∠ADC =-45,所以sin ∠ADC =1-cos 2∠ADC =35,所以tan ∠ADC =sin ∠ADC cos ∠ADC =-34.从而tan ∠DAC =tan(180°-∠ADC -C )=-tan(∠ADC +C ) =-tan ∠ADC +tan C 1-tan ∠ADC ×tan C=--34+121-⎝⎛⎭⎫-34×12=211.[例3] (2018·全国Ⅰ)在平面四边形ABCD 中,∠ADC =90°,∠A =45°,AB =2,BD =5. (1)求cos ∠ADB ; (2)若DC =22,求BC .解析 (1)在△ABD 中,由正弦定理得BD sin ∠A =AB sin ∠ADB ,即5sin 45°=2sin ∠ADB ,所以sin ∠ADB =25.由题意知,∠ADB <90°,所以cos ∠ADB =1-sin 2∠ADB =1-225=235. (2)由题意及(1)知,cos ∠BDC =sin ∠ADB =25.在△BCD 中,由余弦定理得 BC 2=BD 2+DC 2-2BD ·DC ·cos ∠BDC =25+8-2×5×22×25=25,所以BC =5. [例4]如图,在平面四边形ABCD 中,∠ABC =3π4,AB ⊥AD ,AB =1.(1)若AC =5,求△ABC 的面积;(2)若∠ADC =π6,CD =4,求sin ∠CAD .解析 (1)在△ABC 中,由余弦定理得,AC 2=AB 2+BC 2-2AB ·BC ·c os ∠ABC ,即5=1+BC 2+2BC ,解得BC =2,所以△ABC 的面积S △ABC =12AB ·BC ·sin ∠ABC =12×1×2×22=12.(2)设∠CAD =θ,在△ACD 中,由正弦定理得AC sin ∠ADC =CD sin ∠CAD,即AC sin π6=4sin θ,①在△ABC 中,∠BAC =π2-θ,∠BCA =π-3π4-⎝⎛⎭⎫π2-θ=θ-π4, 由正弦定理得AC sin ∠ABC =AB sin ∠BCA ,即AC sin3π4=1sin ⎝⎛⎭⎫θ-π4,②①②两式相除,得sin 3π4sin π6=4sin ⎝⎛⎭⎫θ-π4sin θ,即4⎝⎛⎭⎫22sin θ-22cos θ=2sin θ,整理得sin θ=2cos θ.又因为sin 2θ+c os 2θ=1,所以sin θ=255,即sin ∠CAD =255.[例5]如图,在△ABC 中,AB =2,cos B =13,点D 在线段BC 上.(1)若∠ADC =3π4,求AD 的长.(2)若BD =2DC ,△ACD 的面积为432,求sin ∠BAD sin ∠CAD的值.解析 (1)在△ABC 中,∵cos B =13,∴sin B =223.∵∠ADC =3π4,∴∠ADB =π4.在△ABD 中,由正弦定理可得AD 223=222,∴AD =83.(2)∵BD =2DC ,△ACD 的面积为432,∴S △ABC =3S △ACD ,则42=12×2×BC ×223,∴BC =6,DC =2.∴由余弦定理得AC =4+36-2×2×6×13=42.由正弦定理可得4sin ∠BAD =2sin ∠ADB,∴sin ∠BAD =2sin ∠ADB .又∵2sin ∠CAD =42sin ∠ADC ,∴sin ∠CAD =24sin ∠ADC .∵sin ∠ADB =sin ∠ADC ,∴sin ∠BAD sin ∠CAD =42.【对点训练】1.(2013·全国Ⅰ)如图,在△ABC 中,∠ABC =90°,AB =3,BC =1,P 为△ABC 内一点,∠BPC =90°. (1)若PB =12,求P A ;(2)若∠APB =150°,求tan ∠PBA .2.如图,在△ABC 中,D 为边BC 上一点,AD =6,BD =3,DC =2. (1)如图1,若AD ⊥BC ,求∠BAC 的大小; (2)如图2,若∠ABC =π4,求△ADC 的面积.3.如图,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB =90°,BD 交AC 于E ,AB =2. (1)求cos ∠CBE 的值; (2)求AE .4.如图,在平面四边形ABCD 中,AB =BD =DA =2,∠ACB =30°. (1)求证:BC =4cos ∠CBD ;(2)点C 移动时,判断CD 是否为定长,并说明理由.5.如图,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,且∠CBE ,∠BEC ,∠BCE 成等差数列. (1)求sin ∠CED ; (2)求BE 的长.6.如图所示,在四边形ABCD 中,∠D =2∠B ,且AD =1,CD =3,cos B =33. (1)求△ACD 的面积; (2)若BC =23,求AB 的长.7.如图,在平面四边形ABCD 中,AB ⊥BC ,AB =2,BD =5,∠BCD =2∠ABD ,△ABD 的面积为2. (1)求AD 的长; (2)求△CBD 的面积.8.已知在平面四边形ABCD 中,∠ABC =3π4,AB ⊥AD ,AB =1,△ABC 的面积为12.(1)求sin ∠CAB 的值;(2)若∠ADC =π6,求CD 的长.专题八 多三角形问题多三角形计算问题求解多个三角形问题的关键及思路求解多个三角形的计算问题,关键是梳理条件和所求问题的类型,然后将数据化归到多个三角形中,利用正弦定理、余弦定理、三角形面积公式及三角恒等变换公式等建立已知和所求的关系.具体解题思路如下:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解; (2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题.【例题选讲】[例1]如图,在△ABC 中,∠B =π3,AB =8,点D 在边BC 上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ; (2)求BD ,AC 的长.解析 (1)在△ADC 中,∵cos ∠ADC =17,∴sin ∠ADC =1-cos 2∠ADC =1-⎝⎛⎭⎫172=4849=437, 则sin ∠BAD =sin(∠ADC -∠B )=sin ∠ADC ·cos ∠B -cos ∠ADC ·sin ∠B =437×12-17×32=3314.(2)在△ABD 中,由正弦定理得BD =AB ·sin ∠BADsin ∠ADB =8×3314437=3.在△ABC 中,由余弦定理得AC 2=AB 2+CB 2-2AB ·BC cos B =82+52-2×8×5×12=49,即AC =7.[例2] (2020·江苏)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知a =3,c =2,B =45°. (1)求sin C 的值;(2)在边BC 上取一点D ,使得cos ∠ADC =-45,求tan ∠DAC 的值.解析 (1)在△ABC 中,因为a =3,c =2,B =45°,由余弦定理b 2=a 2+c 2-2ac cos B , 得b 2=9+2-2×3×2cos 45°=5,所以b =5.在△ABC 中,由正弦定理b sin B =c sin C ,得5sin 45°=2sin C ,所以sin C =55. (2)在△ADC 中,因为cos ∠ADC =-45,所以∠ADC 为钝角.而∠ADC +C +∠CAD =180°,所以C 为锐角.故cos C =1-sin 2C =255,则tan C =sin C cos C =12.因为cos ∠ADC =-45,所以sin ∠ADC =1-cos 2∠ADC =35,所以tan ∠ADC =sin ∠ADC cos ∠ADC =-34.从而tan ∠DAC =tan(180°-∠ADC -C )=-tan(∠ADC +C ) =-tan ∠ADC +tan C 1-tan ∠ADC ×tan C=--34+121-⎝⎛⎭⎫-34×12=211.[例3] (2018·全国Ⅰ)在平面四边形ABCD 中,∠ADC =90°,∠A =45°,AB =2,BD =5. (1)求cos ∠ADB ; (2)若DC =22,求BC .解析 (1)在△ABD 中,由正弦定理得BD sin ∠A =AB sin ∠ADB ,即5sin 45°=2sin ∠ADB ,所以sin ∠ADB =25.由题意知,∠ADB <90°,所以cos ∠ADB =1-sin 2∠ADB =1-225=235. (2)由题意及(1)知,cos ∠BDC =sin ∠ADB =25.在△BCD 中,由余弦定理得 BC 2=BD 2+DC 2-2BD ·DC ·cos ∠BDC =25+8-2×5×22×25=25,所以BC =5. [例4]如图,在平面四边形ABCD 中,∠ABC =3π4,AB ⊥AD ,AB =1.(1)若AC =5,求△ABC 的面积;(2)若∠ADC =π6,CD =4,求sin ∠CAD .解析 (1)在△ABC 中,由余弦定理得,AC 2=AB 2+BC 2-2AB ·BC ·c os ∠ABC ,即5=1+BC 2+2BC ,解得BC =2,所以△ABC 的面积S △ABC =12AB ·BC ·sin ∠ABC =12×1×2×22=12.(2)设∠CAD =θ,在△ACD 中,由正弦定理得AC sin ∠ADC =CD sin ∠CAD,即AC sin π6=4sin θ,①在△ABC 中,∠BAC =π2-θ,∠BCA =π-3π4-⎝⎛⎭⎫π2-θ=θ-π4, 由正弦定理得AC sin ∠ABC =AB sin ∠BCA ,即AC sin3π4=1sin ⎝⎛⎭⎫θ-π4,②①②两式相除,得sin 3π4sin π6=4sin ⎝⎛⎭⎫θ-π4sin θ,即4⎝⎛⎭⎫22sin θ-22cos θ=2sin θ,整理得sin θ=2cos θ.又因为sin 2θ+c os 2θ=1,所以sin θ=255,即sin ∠CAD =255.[例5]如图,在△ABC 中,AB =2,cos B =13,点D 在线段BC 上.(1)若∠ADC =3π4,求AD 的长.(2)若BD =2DC ,△ACD 的面积为432,求sin ∠BAD sin ∠CAD的值.解析 (1)在△ABC 中,∵cos B =13,∴sin B =223.∵∠ADC =3π4,∴∠ADB =π4.在△ABD 中,由正弦定理可得AD 223=222,∴AD =83.(2)∵BD =2DC ,△ACD 的面积为432,∴S △ABC =3S △ACD ,则42=12×2×BC ×223,∴BC =6,DC =2.∴由余弦定理得AC =4+36-2×2×6×13=42.由正弦定理可得4sin ∠BAD =2sin ∠ADB,∴sin ∠BAD =2sin ∠ADB .又∵2sin ∠CAD =42sin ∠ADC ,∴sin ∠CAD =24sin ∠ADC .∵sin ∠ADB =sin ∠ADC ,∴sin ∠BAD sin ∠CAD =42.【对点训练】1.(2013·全国Ⅰ)如图,在△ABC 中,∠ABC =90°,AB =3,BC =1,P 为△ABC 内一点,∠BPC =90°. (1)若PB =12,求P A ;(2)若∠APB =150°,求tan ∠PBA .1.解析 (1)由已知得,∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得P A 2=AB 2+PB 2-2AB ·PB cos ∠PBA =3+14-2×3×12cos 30°=74.故P A =72.(2)设∠PBA =α,由已知得PBBC=cos ⎝⎛⎭⎫π2-α,即PB =sin α. 在△PBA 中,由正弦定理得3sin 150°=sin αsin (30°-α),化简得3cos α=4sin α.所以tan α=34,即tan ∠PBA =34. 2.如图,在△ABC 中,D 为边BC 上一点,AD =6,BD =3,DC =2. (1)如图1,若AD ⊥BC ,求∠BAC 的大小; (2)如图2,若∠ABC =π4,求△ADC 的面积.2.解析 (1)设∠BAD =α,∠DAC =β.因为AD ⊥BC ,AD =6,BD =3,DC =2, 所以tan α=12,tan β=13,所以tan ∠BAC =tan(α+β)=tan α+tan β1-tan αtan β=12+131-12×13=1.又∠BAC ∈(0,π),所以∠BAC =π4.(2)设∠BAD =α.在△ABD 中,∠ABC =π4,AD =6,BD =3.由正弦定理得AD sin π4=BD sin α,解得sin α=24.因为AD >BD ,所以α为锐角,从而cos α=1-sin 2α=144. 因此sin ∠ADC =sin ⎝⎛⎭⎫α+π4=sin αcos π4+cos αsin π4=22⎝⎛⎭⎫24+144=1+74. 所以△ADC 的面积S =12×AD ×DC ·sin ∠ADC =12×6×2×1+74=32(1+7).3.如图,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB =90°,BD 交AC 于E ,AB =2. (1)求cos ∠CBE 的值; (2)求AE .3.解析 (1)∵∠BCD =90°+60°=150°,CB =AC =CD ,∴∠CBE =15°, ∴cos ∠CBE =cos(45°-30°)=6+24. (2)在△ABE 中,AB =2,由正弦定理可得AE sin (45°-15°)=2sin (90°+15°),得AE =2sin 30°cos 15°=2×126+24=6-2.4.如图,在平面四边形ABCD 中,AB =BD =DA =2,∠ACB =30°. (1)求证:BC =4cos ∠CBD ;(2)点C 移动时,判断CD 是否为定长,并说明理由.4.解析 (1)在△ABC 中,AB =2,∠ACB =30°,由正弦定理可知,BC sin ∠BAC =2sin 30°,所以BC =4sin ∠BAC .又∠ABD =60°,∠ACB =30°,则∠BAC +∠CBD =90°, 则sin ∠BAC =cos ∠CBD ,所以BC =4cos ∠CBD . (2)CD 为定长,因为在△BCD 中,由(1)及余弦定理可知,CD 2=BC 2+BD 2-2×BC ×BD ×cos ∠CBD =BC 2+4-4BC cos ∠CBD =BC 2+4-BC 2=4,所以CD =2.5.如图,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,且∠CBE ,∠BEC ,∠BCE 成等差数列. (1)求sin ∠CED ; (2)求BE 的长.5.解析 设∠CED =α.因为∠CBE ,∠BEC ,∠BCE 成等差数列,所以2∠BEC =∠CBE +∠BCE ,又∠CBE +∠BEC +∠BCE =π,所以∠BEC =π3.(1)在△CDE 中,由余弦定理得EC 2=CD 2+DE 2-2CD ·DE ·c os ∠EDC , 即7=CD 2+1+CD ,即CD 2+CD -6=0,解得CD =2(CD =-3舍去).在△CDE 中,由正弦定理得EC sin ∠EDC =CD sin α,于是sin α=CD ·sin 2π3EC =2×327=217,即sin ∠CED =217.(2)由题设知0<α<π3,由(1)知cos α=1-sin 2α=1-2149=277,又∠AEB =π-∠BEC -α=2π3-α, 所以c os ∠AEB =c os ⎝⎛⎭⎫2π3-α=c os 2π3cos α+sin 2π3sin α=-12×277+32×217=714. 在Rt △EAB 中,c os ∠AEB =EA BE =2BE =714,所以BE =47. 6.如图所示,在四边形ABCD 中,∠D =2∠B ,且AD =1,CD =3,cos B =33. (1)求△ACD 的面积; (2)若BC =23,求AB 的长.6.解析 (1)因为∠D =2∠B ,cos B =33,所以cos D =cos 2B =2cos 2B -1=-13, 因为∠D ∈(0,π),所以sin D =1-cos 2D =223. 因为AD =1,CD =3,所以△ACD 的面积S =12AD ·CD ·sin D =12×1×3×223=2. (2)在△ACD 中,AC 2=AD 2+DC 2-2AD ·DC ·cos D =12,所以AC =23,因为BC =23,AC sin B =AB sin ∠ACB ,所以23sin B =AB sin (π-2B )=AB sin 2B =AB 2sin B cos B =AB 233sin B , 所以AB =4.7.如图,在平面四边形ABCD 中,AB ⊥BC ,AB =2,BD =5,∠BCD =2∠ABD ,△ABD 的面积为2.(1)求AD 的长;(2)求△CBD 的面积.7.解析 (1)由已知S △ABD =12AB ·BD ·sin ∠ABD =12×2×5×sin ∠ABD =2,可得sin ∠ABD =255, 又∠BCD =2∠ABD ,所以∠ABD ∈⎝⎛⎭⎫0,π2,所以c os ∠ABD =55. 在△ABD 中,由余弦定理AD 2=AB 2+BD 2-2·AB ·BD ·c os ∠ABD ,可得AD 2=5,所以AD =5.(2)由AB ⊥BC ,得∠ABD +∠CBD =π2,所以sin ∠CBD =c os ∠ABD =55. 又∠BCD =2∠ABD ,所以sin ∠BCD =2sin ∠ABD ·c os ∠ABD =45, ∠BDC =π-∠CBD -∠BCD =π-⎝⎛⎭⎫π2-∠ABD -2∠ABD =π2-∠ABD =∠CBD , 所以△CBD 为等腰三角形,即CB =CD .在△CBD 中,由正弦定理BD sin ∠BCD =CD sin ∠CBD ,得CD =BD ·sin ∠CBD sin ∠BCD =5×5545=54, 所以S △CBD =12CB ·CD ·sin ∠BCD =12×54×54×45=58. 8.已知在平面四边形ABCD 中,∠ABC =3π4,AB ⊥AD ,AB =1,△ABC 的面积为12.(1)求sin ∠CAB 的值;(2)若∠ADC =π6,求CD 的长. 8.解析 (1)△ABC 的面积S =12AB ·BC ·sin ∠ABC =12×1×BC ×22=12,得BC =2. 在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos ∠ABC ,即AC 2=1+2-2×1×2×⎝⎛⎭⎫-22=5,得AC =5. 在△ABC 中,由正弦定理得BC sin ∠CAB =AC sin ∠ABC ,即2sin ∠CAB =5sin 3π4,所以sin ∠CAB =55. (2)由题设知∠CAB <π2,则cos ∠CAB =1-sin 2∠CAB =1-15=255, 因为AB ⊥AD ,所以∠DAC +∠CAB =π2.所以sin ∠DAC =cos ∠CAB =255. 在△ACD 中,由正弦定理得AC sin ∠ADC =CD sin ∠DAC ,即5sin π6=CD 255,解得CD =4.。
高考解答题专项突破(二) 三角函数的综合问题--2025年高考数学复习讲义及练习解析
[考情分析]以三角形、三角函数为载体,以三角函数的图象与性质、正弦定理、余弦定理为工具,以三角恒等变换为手段来考查三角函数的综合问题是高考的热点题型,主要考查内容有正、余弦定理、三角形面积的计算、三角恒等变换和三角函数的性质.解题时要充分利用三角函数的图象与性质,交替使用正弦定理、余弦定理,利用数形结合、函数与方程思想等进行求解.考点一三角函数图象与性质的综合例1已知函数f (x )=A sin(ωx +φ>0,ω>0,|φ(1)求f (x )=2的解集;(2)求函数g (x )=f 解(1)由图象可知,周期T =5π12+7π12=π,∴ω=2ππ=2,∵,∴A 2×5π12+0,∴0,解得5π6+φ=π+2k π,φ=2k π+π6,k ∈Z ,∵|φ|<π2,∴φ=π6,∵点(0,1)在函数图象上,∴A sin π6=1,A =2,∴函数f (x )的解析式为f (x )=x由f (x )=x 2,得x 1,即2x +π6=π2+2k π,k ∈Z ,解得x =π6+k π,k ∈Z ,∴f (x )=2|x =π6k π,k ∈(2)g (x )=由(1)知f (x )=xg (x )=2sin 2+π6-2sin 2+π6=2sin2x -2sinx =2sin2x -x +32cos2sin2x -3cos2x=x 由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z ,∴函数g (x )=f k π-π12,k π+5π12,k ∈Z .解决三角函数图象与性质综合问题的方法利用图象讨论三角函数的性质,应先把函数化成y =A sin(ωx +φ)(ω>0)或y =A cos(ωx +φ)(ω>0)的形式,然后通过换元法令t =ωx +φ,转化为研究y =A sin t 或y =A cos t 的性质.1.已知函数f (x )=2sin ωx cos φ+2sin φ-4sin 2ωx 2sin φ(ω>0,|φ|<π),其图象的一条对称轴与相邻对称中心的横坐标相差π4,________,从以下两个条件中任选一个补充在空白横线中.①函数f (x )的图象向左平移π6个单位长度后得到的图象关于y 轴对称且f (0)<0;②函数f (x )的图象的一条对称轴为直线x =-π3且f (1).(1)求函数f (x )的解析式;(2)若x ∈π2,3π4,函数h (x )=f (x )-a 存在两个不同零点x 1,x 2,求x 1+x 2的值.解(1)f (x )=2sin ωx cos φ+2sin φ-2(1-cos ωx )sin φ=2sin(ωx +φ),又函数f (x )的最小正周期为T =4×π4=π,所以ω=2πT=2,若选条件①:将函数f (x )的图象向左平移π6个单位长度得到的图象关于y 轴对称,所得函数为y =2sin 2φ=x +π3+由函数y =2sin x +π3+y 轴对称,可得π3+φ=π2+k π(k ∈Z ),解得φ=π6+k π(k ∈Z ),因为|φ|<π,所以φ的可能取值为-5π6,π6,若φ=-5π6,则f (x )=xf (0)=1,符合题意;若φ=π6,则f (x )=x f (0)=2sin π6=1,不符合题意.所以f (x )=x若选条件②:因为函数f (x )图象的一条对称轴为直线x =-π3,所以φ=π2+k π(k ∈Z ),解得φ=7π6+k π(k ∈Z ),因为|φ|<π,所以φ的可能取值为-5π6,π6,若φ=-5π6,则f (x )=x则2<f (1),符合题意;若φ=π6,则f (x )=x则2sin π2=2>f (1),不符合题意.所以f (x )=x(2)令t =2x -5π6∈π6,2π3,此时函数h (x )=f (x )-a 存在两个不同零点x 1,x 2等价于直线y =a 与函数y =2sin t ,t ∈π6,2π3的图象有两个不同交点.当t =π2时,函数取到最大值,所以t 1+t 2=π,即2x 1-5π6+2x 2-5π6=π,所以x 1+x 2=4π3.考点二三角函数与解三角形的综合例2(2023·河北石家庄二中模拟)设函数f (x )=2sin(ωx +φ)(ω>0,0<φ<π),该函数图象上相邻两个最高点间的距离为4π,且f (x )为偶函数.(1)求ω和φ的值;(2)已知角A ,B ,C 为△ABC 的三个内角,若(2sin A -sin C )cos B =sin B cos C ,求[f (A )]2+[f (C )]2的取值范围.解(1)因为f (x )=2sin(ωx +φ)的图象上相邻两个最高点间的距离为4π,所以2πω=4π,解得ω=12,所以f (x )=2sin +又因为f (x )为偶函数,所以φ=k π+π2,k ∈Z .又因为0<φ<π,所以φ=π2.(2)因为(2sin A -sin C )cos B =sin B cos C ,所以2sin A cos B -sin C cos B =sin B cos C ,所以2sin A cos B =sin(B +C ),又因为A +B +C =π,且0<A <π,所以sin(B +C )=sin A ≠0,所以cos B =12,因为0<B <π,所以B =π3,则A +C =2π3,即C =2π3-A ,由(1)知,函数f (x )=2cos 12x ,所以[f (A )]2+[f (C )]2=2cos 212A +2cos 212C =cos A +cos C +2=cos A +2=cos A -12cos A +32sin A +2=32sin A +12cos A +2=2,因为0<A <2π3,所以π6<A +π6<5π6,所以1,则23,即[f (A )]2+[f (C )]23.解三角形与三角函数的综合应用主要体现在以下两个方面:(1)利用三角恒等变换化简三角函数式进行解三角形;(2)解三角形与三角函数图象和性质的综合应用.2.设f (x )=sin x cos x -cos x ∈[0,π].(1)求f (x )的单调递增区间;(2)在锐角三角形ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若0,a =1,求△ABC面积的最大值.解(1)由题意,得f (x )=12sin2x -12cos x 1=sin2x -12,因为0≤x ≤π,所以0≤2x ≤2π,由正弦函数的单调性可知,当0≤2x ≤π2或3π2≤2x ≤2π,即0≤x ≤π4或3π4≤x ≤π时,函数f (x )=sin2x -12单调递增,所以f (x )的单调递增区间是0,π4和3π4,π.(2)由题意,得sin A -12=0,所以sin A =12,因为△ABC 为锐角三角形,所以A 故A =π6.由余弦定理,得b 2+c 2-2bc cos A =a 2,故b 2+c 2-3bc =1,由基本不等式,得b 2+c 2≥2bc ,故bc ≤2+3,当且仅当b =c 时,等号成立.因此S △ABC =12bc sin A ≤2+34,当且仅当b =c 时,△ABC 的面积取得最大值2+34.考点三三角函数与平面向量的综合例3已知向量a =(sin x ,3sin(π+x )),b =(cos x ,-sin x ),函数f (x )=a ·b -32.(1)求f (x )的最小正周期及f (x )图象的对称轴方程;(2)先将f (x )的图象上每个点的纵坐标不变,横坐标变为原来的2倍,再向左平移π3个单位长度得到函数g (x )的图象,若函数y =g (x )-m 在区间π6,5π6内有两个零点,求m 的取值范围.解(1)因为f (x )=a ·b -32sin x cos x +3sin 2x -32=12sin2x -32cos2x =x 故f (x )的最小正周期为T =2π2=π.由2x -π3=k π+π2,k ∈Z ,得x =k π2+5π12,k ∈Z ,所以f (x )的最小正周期为π,对称轴方程为x =k π2+5π12,k ∈Z .(2)由(1),知f (x )=x由题意,得g (x )=sin x .函数y =g (x )-m 在区间π6,5π6内有两个零点,转化为函数y =sin x ,x ∈π6,5π6的图象与直线y =m 有两个交点.由图象可得,m 的取值范围为12,当题目条件给出的向量坐标中含有三角函数的形式时,首先运用向量数量积的定义、向量共线、向量垂直等,得到三角函数的关系式,然后利用三角函数的图象、性质解决问题.3.已知向量a x b =(cos x ,-1).(1)当a ∥b 时,求2cos 2x -sin2x 的值;(2)求f (x )=(a +b )·b 在-π2,0上的单调递增区间.解(1)由a ∥b ,得(-1)sin x =32cos x ,所以tan x =-32,所以2cos 2x -sin2x =2cos 2x -2sin x cos x cos 2x +sin 2x =2-2tan x 1+tan 2x =2+31+94=2013.(2)f (x )=a ·b +b 2=sin x cos x -32+cos 2x +1=12sin2x +1+cos2x 2-12=22sin x 当x ∈-π2,0时,2x +π4∈-3π4,π4,令-π2≤2x +π4≤π4,得-3π8≤x ≤0.故函数f (x )在-π2,0上的单调递增区间为-3π8,0.考点四解三角形与平面向量的综合例4(2024·四川成都调研)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且m =(2b +c ,a ),n =(cos A ,cos C ),m ⊥n .(1)求角A 的大小;(2)D 是线段BC 上的点,且AD =BD =2,CD =3,求△ABD 的面积.解(1)因为m =(2b +c ,a ),n =(cos A ,cos C ),m ⊥n ,所以m ·n =(2b +c )cos A +a cos C =0,由正弦定理可得2sin B cos A +(sin A cos C +cos A sin C )=0,即2sin B cos A +sin(A +C )=0,又A +C =π-B ,所以2sin B cos A +sin B =0,又B ∈(0,π),则sin B >0,所以cos A =-12,又A ∈(0,π),因此A =2π3.(2)设B =θ,因为A =2π3,则C =π-2π3-θ=π3-θ,因为AD =BD =2,所以∠BAD =B =θ,∠ADC =2θ,∠DAC =2π3-θ,在△ACD 中,由正弦定理可知AD sin C =CD sin ∠DAC,即23即θ-12sin θ+12sin 化简可得5sin θ=3cos θ,即tan θ=35,所以sin2θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=5314,所以S △ABD =12AD ·BD sin(π-2θ)=12AD ·BD sin2θ=12×22×5314=537.解决解三角形与平面向量综合问题的关键:准确利用向量的坐标运算化简已知条件,将其转化为三角函数的问题解决.4.(2023·广东广州天河区模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足b cos B +C 2=a sin B .(1)求A ;(2)若a =19,BA →·AC →=3,AD 是△ABC 的中线,求AD 的长.解(1)因为cos B +C 2=sin A 2,所以b sin A 2=a sin B .由正弦定理,得sin B sin A 2=sin A sin B .因为sin B ≠0,所以sin A 2=sin A .所以sin A 2=2sin A 2cos A 2.因为A ∈(0,π),A 2∈所以sin A 2≠0,所以cos A 2=12.所以A 2=π3.所以A =2π3.(2)因为BA →·AC →=3,所以bc cos(π-A )=3.又A =2π3,所以bc =6.由余弦定理,得b 2+c 2=a 2+2bc cos A =13.又AD →=12(AB →+AC →),所以|AD →|2=14(AB →+AC →)2=14(c 2+b 2+2bc cos A )=74.所以|AD →|=72,即AD 的长为72.课时作业1.(2023·广东佛山模拟)已知函数f (x )=cos 4x +23sin x cos x -sin 4x .(1)求f (x )的最小正周期和单调递减区间;(2)已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=1,BC 边的中线AD 的长为7,求△ABC 面积的最大值.解(1)∵f (x )=cos 4x +23sin x cos x -sin 4x =(cos 2x -sin 2x )(cos 2x +sin 2x )+3sin2x =cos2x +3sin2x =x 故f (x )的最小正周期T =π,由π2+2k π≤2x +π6≤3π2+2k π,k ∈Z ,得π6+k π≤x ≤2π3+k π,k ∈Z ,∴f (x )的单调递减区间为π6+k π,2π3+k π(k ∈Z ).(2)由(1)得,f (A )=A 1,即A =12,∵0<A <π,∴2A +π6=5π6,∴A =π3,又AD →=12(AB →+AC →),∴AD →2=14(AB →2+AC →2+2AB →·AC →),∴7=14(c 2+b 2+2bc cos A )=14(b 2+c 2+bc ),∵b 2+c 2≥2bc ,∴b 2+c 2+bc ≥3bc ,∴bc ≤283,当且仅当b =c =2213时取等号,∴S △ABC =12bc sin A =34bc ≤34×283=733,∴△ABC 面积的最大值为733.2.(2024·江西南昌模拟)如图为函数f (x )=A sin(ωx +φ>0,ω>0,|φ|<π2,x ∈(1)求函数f (x )的解析式和单调递增区间;(2)若将y =f (x )的图象向右平移π12个单位长度,然后再将横坐标缩短为原来的12得到y =g (x )的图象,求函数g (x )在区间-π4,π12上的最大值和最小值.解(1)由图象知,A =2,T 4=π3-π12=π4,T =π,又ω>0,则ω=2ππ=2,则f (x )=2sin(2x +φ),,2,得π6+φ=2k π+π2,k ∈Z ,解得φ=2k π+π3,k ∈Z ,因为|φ|<π2,所以φ=π3,所以f (x )=x 令-π2+2k π≤2x +π3≤π2+2k π,k ∈Z ,得-5π12+k π≤x ≤π12+k π,k ∈Z ,所以f (x )的单调递增区间为-5π12+k π,π12+k π(k ∈Z ).(2)将f (x )=2sin x 的图象向右平移π12个单位长度,得2sin 2+π3=2sin x ,然后再将横坐标缩短为原来的12,得g (x )=2sin x .因为x ∈-π4,π12,则4x +π6∈-5π6,π2,所以-1≤x 1.故当4x +π6=-π2,即x =-π6时,g (x )取得最小值,为-2;当4x +π6=π2,即x =π12时,g (x )取得最大值,为2.3.设函数f (x )=m ·n ,其中向量m =(2cos x ,1),n =(cos x ,3sin2x )(x ∈R ).(1)求f (x )的最小值;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,已知f (A )=2,b =1,△ABC 的面积为32,求b sin B的值.解(1)因为m =(2cos x ,1),n =(cos x ,3sin2x ),所以f (x )=2cos 2x +3sin2x =3sin2x +cos2x +1=x 1,所以当x 1,即2x +π6=-π2+2k π,k ∈Z ,即x =-π3+k π,k ∈Z 时,f (x )取得最小值,为-1.(2)由f (A )=2,得A 1=2,则A =12,又A ∈(0,π),所以2A +π6∈故2A +π6=5π6,则A =π3,由S △ABC =12bc sin A =12×1×c ×32=32,可得c =2,在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A =1+4-2×1×2×12=3,所以a =3,所以b sin B =a sin A =332=2.4.(2023·四川成都模拟)已知函数f (x )=2cos 2x +3sin2x .(1)求函数f (x )的单调递增区间;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且f (C )=3,c =1,ab =23,求△ABC 的周长.解(1)依题意,f (x )=2cos 2x +3sin2x =1+cos2x +3sin2x =x 1,由-π2+2k π≤2x +π6≤π2+2k π,k ∈Z ,得-π3+k π≤x ≤π6+k π,k ∈Z ,所以函数f (x )的单调递增区间是-π3+k π,π6+k π(k ∈Z ).(2)由(1)知,f (C )=C 1=3,即C 1,而C ∈(0,π),则2C +π6∈于是2C +π6=π2,解得C =π6,由余弦定理c 2=a 2+b 2-2ab cos C ,得1=(a +b )2-(2+3)ab =(a +b )2-23×(2+3),解得a +b =2+3,所以△ABC 的周长为3+ 3.5.(2023·福建福州模拟)已知向量m 23sin x 4,n cos x 4,cos(1)若m ·n =2,求cos (2)记f (x )=m ·n ,在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求f (A )的取值范围.解(1)m ·n =23sin x 4cos x 4+2cos 2x 4=3sin x 2+cos x 2+1= 1.因为m ·n =2,所以=12.所以1-2sin =12.(2)因为f (x )=m ·n =1,所以f (A )= 1.因为(2a -c )cos B =b cos C ,由正弦定理,得(2sin A -sin C )cos B =sin B cos C .所以2sin A cos B -sin C cos B =sin B cos C ,所以2sin A cos B =sin(B +C ).因为A +B +C =π,所以sin(B +C )=sin A ,且sin A ≠0.所以cos B =12.因为B ∈(0,π),所以B =π3.所以0<A <2π3.所以π6<A 2+π6<π2,12<sin ,故f (A )的取值范围是(2,3).6.(2024·湖北黄冈调研)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知向量m =(b ,a ),n =(sin A ,3cos(A +C )),且m ·n =0.(1)求角B 的大小;(2)若b =3,求3a +c 的最大值.解(1)在△ABC 中,因为m =(b ,a ),n =(sin A ,3cos(A +C )),m ·n =0,所以b sin A -3a cos B =0.由正弦定理,得sin A sin B =3sin A cos B ,又sin A >0,所以sin B =3cos B ,即tan B = 3.又0<B <π,所以B =π3.(2)由(1),知B =π3,b =3,由正弦定理,得a sin A =c sin C =b sin B=2,即a =2sin A ,c =2sin C .又C =2π3-A ,所以3a +c =6sin A +2sin C =6sin A +7sin A +3cos A =213sin(A +θ),其中锐角θ由tan θ=37确定,又0<A <2π3,所以θ<A +θ<2π3+θ.则当且仅当A +θ=π2,即tan A ==733时,sin(A +θ)取最大值1,所以3a +c 的最大值为213.7.已知函数f (x )=cos 4x -2sin x cos x -sin 4x .(1)求f (x )的最小正周期和单调递增区间;(2)求函数f (x )在区间0,π2上的值域;(3)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若0,a =2,求△ABC 面积的最大值.解(1)依题意,f (x )=(cos 2x +sin 2x )(cos 2x -sin 2x )-sin2x =cos2x -sin2x =2sinx 所以f (x )的最小正周期T =2π2=π;由2k π-π2≤2x +3π4≤2k π+π2,k ∈Z ,得k π-5π8≤x ≤k π-π8,k ∈Z ,所以f (x )的单调递增区间为k π-5π8,k π-π8(k ∈Z ).(2)由x ∈0,π2,得2x +3π4∈3π4,7π4,则-1≤x ≤22,即-2≤f (x )≤1,所以函数f (x )在区间0,π2上的值域为[-2,1].(3)由(1)知,=2sin 0,而0<A <π,即有3π4<A +3π4<7π4,则A +3π4=π,解得A =π4,由余弦定理a 2=b 2+c 2-2bc cos A ,得4=b 2+c 2-2bc ≥2bc -2bc ,于是bc ≤4+22,当且仅当b =c 时等号成立,因此S △ABC =12bc sin A =24bc ≤2+1,所以△ABC 面积的最大值为2+1.8.(2024·重庆永川北山中学模拟)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,cos(A-C )+cos B =32,设m =(b ,c ),n =(a ,b )且m ∥n .(1)求角B 的大小;(2)延长BC 至D ,使BD =5,若△ACD 的面积S =3,求AD 的长.解(1)由cos(A -C )+cos B =32,可知cos(A -C )-cos(A +C )=32,即cos A cos C +sin A sin C -cos A cos C +sin A sin C =32,可得sin A sin C =34.由m ∥n 可得b 2-ac =0,由正弦定理可知sin 2B =sin A sin C =34,因为B ∈(0,π),所以sin B =32,因此B =π3或2π3.分别代入cos(A -C )+cos B =32,可知当B =2π3时,cos(A -C )=2,不成立.因此B =π3.(2)由B =π3可知cos(A -C )=1,即A =C ,因此△ABC 为等边三角形,即a =b =c ,S △ACD =12AC ·CD sin ∠ACD =12b (5-a )sin 2π3=34a (5-a )=3,整理可得a (5-a )=4,即a 2-5a =-4,在△ABD 中,由余弦定理可知,AD 2=AB 2+BD 2-2AB ·BD cos π3=c 2+25-5c =a 2+25-5a =21,因此AD 的长为21.。
三角形全等、相似及综合应用模型(6大模型+解题技巧)—2024年中考数学(全国通用)(解析版)
三角形全等、相似及综合应用模型题型解读|模型构建|通关试练三角形基础知识部分多以选择或者填空题形式,考察其三边关系、内角和/外角和定理、“三线”基本性质等。
特殊三角形的性质与判定也是考查重点,年年都会考查,最为经典的“手拉手”模型就是以等腰三角形为特征总结的,且等腰三角形单独出题的可能性还是比较大。
直角三角形的出题类型可以是选择填空题这类小题,也可以是各类解答题,以及融合在综合压轴题中,作为问题的几何背景进行拓展延伸。
模型01 与三角形有关的线段应用高(AD)中线(AD)角平分线(AD)中位线(DE)模型02 与三角形有关的角的应用(1)三角形的内角:(1)三角形内角的概念:三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°.(2)三角形内角和定理:三角形内角和是180°.(3)三角形内角和定理的证明证明方法,不唯一,但其思路都是设法将三角形的三个内角移到一起,组合成一个平角.在转化中借助平行线.(4)三角形内角和定理的应用主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.(2)三角形的外角:(1)三角形外角的定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.三角形共有六个外角,其中有公共顶点的两个相等,因此共有三对.(2)三角形的外角性质:①三角形的外角和为360°.②三角形的一个外角等于和它不相邻的两个内角的和.③三角形的一个外角大于和它不相邻的任何一个内角.(3)若研究的角比较多,要设法利用三角形的外角性质②将它们转化到一个三角形中去.(4)探究角度之间的不等关系,多用外角的性质③,先从最大角开始,观察它是哪个三角形的外角.模型03 三角形全等的判定及应用(1)全等三角形的定义:全等的图形必须满足:(1)形状相同;(2)大小相等能够完全重合的两个三角形叫做全等三角形。
最新人教版高中数学必修5第一章《解三角形》
数学人教B 必修5第一章解三角形知识建构综合应用专题一判断三角形的形状正弦定理、余弦定理是反映三角形中边角关系的重要定理,是处理有关三角形问题的有力工具,要注意两定理的变形运用及实际应用.判断三角形的形状,其常用方法是:将已知式子都化为角的式子或边的式子再判断.通常利用正弦定理的变形如a =2R ·sin A 将边化角,b 2+c 2-a 2a 利用余弦定理的推论如cos A =把角的余弦化边,或利用sin A =把角的正弦化2bc 2R边,然后利用三角形的有关知识,三角恒等变形方法、代数恒等变形方法进行转化、化简,从而得出结论.常见结论有:设a ,b ,c 是△ABC 的角∠A ,∠B ,∠C 的对边,①若a 2+b 2=c 2,则∠C =90°;②若a 2+b 2>c 2,则∠C <90°;③若a 2+b 2<c 2,则∠C >90°;π④若sin 2A =sin 2B ,则∠A =∠B 或∠A +∠B =.2应用1在△ABC 中,若sin A ∶sin B ∶sin C =2∶3∶4,则该三角形是__________三角形.提示:考虑到已知条件是三个角正弦的比值,可用正弦定理得出三边的关系,再利用余弦定理判断最大角的大小即可.应用2在△ABC 中,若∠B =60°,2b =a +c ,试判断△ABC 的形状.提示:已知条件中等式只有边,故结合其特点,可选择利用正弦定理化边为角,再结合三角函数关系化简求解;本题也可利用∠B =60°这一条件,用余弦定理,找出边之间的关系来判断.专题二恒等式的证明证明有关三角形中边角关系的恒等式,若出现边角混合关系式,通常情况下,有两种方法:化边为角,将已知条件统一用角表示;化角为边,将已知条件用边表示,然后利用角的关系或边的关系进行求解,从而使问题得到解决.应用1在△ABC 中,求证:a 2+b 2sin 2A +sin 2B (1)2=;c sin 2C(2)a 2+b 2+c 2=2(bc cos A +ca cos B +ab cos C ).提示:本题(1)可从左边证到右边,利用正弦定理将边的关系转化为角的关系;本题(2)可从右边证到左边,利用余弦定理将角的关系转化为边的关系.应用2已知在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,△ABC 的面积为S .a 2+b 2+c 2求证:cot A +cot B +cot C =.4S提示:解本题的关键是化切为弦,再结合余弦定理变形.专题三三角形的面积问题求三角形面积与正弦定理、余弦定理、三角函数、函数的有关知识紧密地联系在一起,是高考中的常见题型.常用三角形面积公式:111(1)S △ABC =ah a =bh b =ch c .222111(2)S △ABC =ab sin C =bc sin A =ac sin B .222a +b +c (3)S =p (p -a )(p -b )(p -c )(其中p =).2应用在△ABC 中,sin A +cos A =2,AC =2,AB =3,求tan A 的值和△ABC 的面积.2提示:由已知可把角A 算出来,再求tan A ,并求出sin A ,直接代入面积公式即可求面积.专题四正、余弦定理的综合应用以三角形为载体,以正、余弦定理为工具,以三角恒等变换为手段来考查解三角形问题是近几年高考中一类热点题型.在具体解题中,除了熟练使用正弦、余弦定理这个工具外,也要根据条件,合理选用三角函数公式,达到简化解题的目的.cos C 2a -c 应用1在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,且=.cos B b(1)求cos B 的值;(2)若b =7,a +c =4,求△ABC 的面积.提示:(1)先利用正弦定理化简,再用三角变换整理即得.(2)利用余弦定理及面积公式,再注意整体求ac 的技巧.应用2在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,且3a =2c sin A .(1)确定角C 的大小;33(2)若c =7,且△ABC 的面积为,求a +b 的值.2提示:(1)利用正弦定理将边转化为角即可;(2)利用余弦定理和面积公式列出关于a ,b 的方程求解,注意整体技巧.专题五正、余弦定理在实际问题中的应用解决有关三角形的应用问题时,首先要认真分析题意,找出各量之间的关系,根据题意画出示意图,将要求的问题抽象为三角形模型,然后利用正弦定理、余弦定理求解,最后将结果还原为实际问题,这一程序可用框图表示为:实际问题――→解三角形问题――→三角形问题的解――→实际问题的解概括演算应用1如图所示,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧抽象推理还原远处一山顶D 在西偏北15°的方向上,行驶5 km 后到达B 处,测得此山顶在西偏北25°的方向上,仰角为8°,求此山的高度CD .提示:要测出高CD ,只要测出高所在的直角三角形的另一条直角边或斜边的长即可.根据已知条件,可以计算出BC 的长.应用2如图,某巡逻艇在A 处发现北偏东45°相距9海里的C 处有一艘走私船,正沿南偏东75°的方向以10海里/时的速度向我海岸行驶,巡逻艇立即以14海里/时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才能追赶上该走私船?提示:在求解三角形中,可以根据正弦函数的定义得到两个解,但作为有关现实生活的应用题,必须检验上述所求的解是否符合实际意义,从而得出实际问题的解.真题放送1.(2011·天津高考)如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为().A .3366B .C .D .36362.(2011·福建高考)若△ABC 的面积为3,BC =2,∠C =60°,则边AB 的长度等于__________.→→3.(2011·上海高考)在正三角形ABC 中,D 是BC 上的点.若AB =3,BD =1,则AB ·AD=______.4.(2011·湖南高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足c sin A =a cos C .(1)求角C 的大小;π(2)求3sin A -cos(B +)的最大值,并求取得最大值时角A ,B 的大小.45.(2011·湖北高考)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知a =1,b1=2,cos C =.4(1)求△ABC 的周长;(2)求cos(A -C )的值.6.(2011·辽宁高考)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a .b (1)求;a(2)若c 2=b 2+3a 2,求∠B .7.(2011·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知sin A +sin C1=p sin B (p ∈R ),且ac =b 2.45(1)当p =,b =1时,求a ,c 的值;4(2)若角B 为锐角,求p 的取值范围.答案:综合应用专题一应用1:钝角∵sin A ∶sin B ∶sin C =2∶3∶4,根据正弦定理,得a ∶b ∶c =2∶3∶4.设a =2m ,b =3m ,c =4m (m >0),∵c >b >a ,∴∠C >∠B >∠A .a 2+b 2-c 24m 2+9m 2-16m 21∴cos C ===-<0.2ab 42×2m ×3m∴∠C 是钝角.∴△ABC 是钝角三角形.应用2:解:解法一:由正弦定理,得2sin B =sin A +sin C .∵∠B =60°,∴∠A +∠C =120°.∴∠A =120°-∠C ,代入上式,得2sin 60°=sin (120°-C )+sin C ,31展开,整理得sin C +cos C =1.22∴sin(C +30°)=1.∴∠C +30°=90°.∴∠C =60°.故∠A =60°.∴△ABC 为等边三角形.解法二:由余弦定理,得b 2=a 2+c 2-2ac cos B .a +c ∵∠B =60°,b =,2a +c 2∴()=a 2+c 2-2ac cos 60°.2整理,得(a -c )2=0,∴a =c .从而a =b =c .∴△ABC 为等边三角形.专题二a b c 应用1:证明:(1)由正弦定理,设===k ,sin A sin B sin Ck 2sin 2A +k 2sin 2B sin 2A +sin 2B 显然k ≠0,所以,左边===右边,即原等式成立.k 2sin 2C sin 2Cb 2+c 2-a 2c 2+a 2-b 2a 2+b 2-c 2(2)根据余弦定理,右边=2(bc ·+ca ·+ab ·)=(b 2+c 2-a 2)2bc 2ca 2ab222222222+(c +a -b )+(a +b -c )=a +b +c =左边,即原等式成立.222b 2+c 2-a 2cos A b +c -a 应用2:证明:由余弦定理,得cos A =,所以cot A ===2bc sin A 2bc sin Ab 2+c 2-a 2a 2+c 2-b 2a 2+b 2-c 2,同理可得cot B =,cot C =,所以cot A +cot B +cot C =4S 4S 4Sb 2+c 2-a 2a 2+c 2-b 2a 2+b 2-c 2a 2+b 2+c 2++=.4S 4S 4S 4S专题三2应用:解:∵sin A +cos A =2cos (A -45°)=,21∴cos (A -45°)=.2又∵0°<∠A <180°,∴∠A =105°.tan 45°+tan 60°∴tan A =tan (45°+60°)==-2-3,1-tan 45°tan 60°2+6sin A =sin (45°+60°)=sin 45°cos 60°+cos 45°sin 60°=.4又∵AC =2,AB =3,2+6311∴S △ABC =AC ·AB ·sin A =×2×3×=(2+6).2244专题四cos C 2a -c 2sin A -sin C 应用1:解:(1)由==,得cos B b sin Bcos C ·sin B =2sin A ·cos B -cos B ·sin C .∴2sin A ·cos B =sin B ·cos C +cos B ·sin C=sin (B +C )=sin (π-A )=sin A .1∵sin A ≠0,∴cos B =.2(2)∵b 2=a 2+c 2-2ac cos B =a 2+c 2-ac =7,又a +c =4,∴(a +c )2-3ac =7.∴ac =3.11333∴S △ABC =ac sin B =×3×=.2224应用2:解:(1)由3a =2c sin A 及正弦定理,得a 2sin A sin A ==.c sin C 33∵sin A ≠0,∴sin C =.2∵△ABC 是锐角三角形,π∴∠C =.3π(2)∵c =7,∠C =.由面积公式,得31π33ab sin =,∴ab =6.①232π由余弦定理,得c 2=a 2+b 2-2ab cos =7,即a 2+b 2-ab =7.②3由①②,得(a +b )2=25,故a +b =5.专题五应用1:解:在△ABC 中,∠BAC =15°,∠ACB =25°-15°=10°.根据正弦定理,AB sin ∠BAC 5sin 15°得BC ==≈7.452 4(km),sin 10°sin ∠ACBCD =BC tan ∠DBC =BC ×tan 8°≈1.047 (km).答:山的高度约为1.047 km.应用2:解:设该巡逻艇沿AB 方向经过x 小时后在B 处追上走私船,则CB =10x ,AB =14x ,AC =9,∠ACB =75°+45°=120°,222∴(14x )=9+(10x )-2×9×10x cos 120°,2化简,得32x -30x -27=0.39解得x =或x =-(舍去).216∴BC =10x =15,AB =14x =21.BC sin 120°15353又∵sin ∠BAC ==×=,AB 21214∴∠BAC =38°13′或∠BAC =141°47′(钝角不合题意,舍去).∴38°13′+45°=83°13′.答:巡逻艇应该沿北偏东83°13′方向去追,经过1.5小时才能追赶上该走私船.真题放送31.D 设BD =a ,则BC =2a ,AB =AD =a .2在△ABD 中,由余弦定理,得33(a )2+(a )2-a 222222AB +AD -BD 1cos A ===.2AB ·AD 3332×a ·a 2222又∵∠A 为△ABC 的内角,∴sin A =.3BC AB 在△ABC 中,由正弦定理,得=.sin A sin C3a 222AB 6∴sin C =·sin A =·=.BC 2a 361132.2在△ABC 中,由面积公式得S =BC ·CA ·sin C =×2·AC ·sin60°=AC =3,∴AC 2221=2.再由余弦定理,得AB 2=BC 2+AC 2-2·AC ·BC ·cos C =22+22-2×2×2×=4.∴AB =2.23.15如图,在△ABD 中,由余弦定理得2AD 2=AB 2+BD 2-2AB ·BD ·cos 60°=9+1-2×3×cos 60°=7,∴AD =7,AB 2+AD 2-BD 29+7-15∴cos ∠BAD ===.2AB ·AD 2×3×727515于是,AB ·AD =|AB ||AD |cos ∠BAD =3×7×=.2724.解:(1)因为c sin A =a cos C ,由正弦定理,得sin C sin A =sin A cos C .因为0<A <π,所以sin A >0.从而sin C =cos C .π又cos C ≠0,所以tan C =1,则∠C =.43π(2)由(1)知,B =-A .于是4π3sin A -cos(B +)4=3sin A -cos(π-A )=3sin A +cos Aπ=2sin(A +).63πππ11π因为0<A <,所以<A +<.46612ππππ从而当A +=,即A =时,2sin(A +)取最大值2.6236ππ5π综上所述,3sin A -cos(B +)的最大值为2,此时∠A =,∠B =.431215.解:(1)∵c 2=a 2+b 2-2ab cos C =1+4-4×=4,4∴c =2.∴△ABC 的周长为a +b +c =1+2+2=5.1(2)∵cos C =,4115∴sin C =1-cos 2C =1-()2=.44154a sin C 15∴sin A ===.c 28∵a <c ,∴∠A <∠C .故∠A 为锐角.1527)=.88∴cos(A -C )=cos A cos C +sin A sin C71151511=×+×=.8484166.解:(1)由正弦定理得,sin 2A sin B +sin B cos 2A =2sin A ,即sin B (sin 2A +cos 2A )=2sin A .b 故sin B =2sin A ,所以= 2.a(2)由余弦定理和c 2=b 2+3a 2,(1+3)a 得cos B =.2c由(1)知b 2=2a 2,故c 2=(2+3)a 2.12可得cos 2B =,又cos B >0,故cos B =,22所以∠B =45°.5a +c =,47.解:(1)由题设和正弦定理,得1ac =,4∴cos A =1-sin 2A =1-(⎧⎨⎩1a =1,⎧⎧⎪⎪a =4,解得⎨1或⎨c =,⎪⎪⎩4⎩c =1.11(2)由余弦定理,b 2=a 2+c 2-2ac cos B =(a +c )2-2ac -2ac cos B =p 2b 2-b 2-b 2cos B ,2231即p2=+cos B,223因为0<cos B<1,得p2∈(,2).2由题设知p>0,所以6<p< 2. 2。
2023年安徽中考数学总复习专题:解直角三角形的实际应用(PDF版,有答案)
2023年安徽中考数学总复习专题:解直角三角形的实际应用1.超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到万丰路的距离为100米的点P处.这时,一辆小轿车由西向东匀速行驶,测得此车从A处行驶到B处所用的时间为4秒且∠APO=60°,∠BPO =45°.(1)求A、B之间的路程;(2)请判断此车是否超过了万丰路每小时70千米的限制速度?(参考数据:2≈1.41,3≈1.73).2.小丽与爸妈在公园里荡秋千.如图,小丽坐在秋千的起始位置A处,OA与地面垂直,两脚在地面上用力一蹬,妈妈在距地面1.2m高的B处接住她后用力一推,爸爸在C处接住她.若妈妈与爸爸到OA的水平距离BD、CE分别为1.8m和2.4m,∠BOC=90°.(1)△CEO与△ODB全等吗?请说明理由.(2)爸爸在距离地面多高的地方接住小丽的?(3)秋千的起始位置A处与距地面的高是 m.3.投影仪,又称投影机,是一种可以将图象或视频投射到幕布上的设备.如图①是屏幕投影仪投屏情景图,如图②是其侧面示意图,已知支撑杆AD与地面FC垂直,且AD的长为12cm,脚杆CD的长为50cm,AD距墙面EF的水平距离为240cm,投影仪光源散发器与支撑杆的夹角∠EAD=120°,脚杆CD与地面的夹角∠DCB=42°,求光源投屏最高点与地面间的距离EF.(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,3≈1.73)4.如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.BC∥AD,BE⊥AD,斜坡AB长26m,斜坡AB的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A不动,则坡顶B沿BC至少向右移多少m时,才能确保山体不滑坡.(取tan50°≈1.2)5.小华在网上看到一个如图(1)的躺椅,他决定自己动手用木条制作一个简易的躺椅,如图(2)是简易躺椅的侧面,其中∠B=44°,∠ACB=17°,∠DEC=∠DCE=48°,AE=13AC,若木条AB=5dm,请你计算木条AC,DE,DC的长.(相关数据:sin44°=0.69,cos44°=0.72,tan44°=0.97,sin17°=0.29,cos17°=0.96,tan17°=0.31,sin48°=0.74,cos48°=0.67,tan48°=1.11,结果保留一位小数)6.“蛟龙号”载人潜水器是中国探索深蓝的利器.如图,在某次任务中,当蛟龙号下潜到点B处时,科研人员在海面的观察点A测得点B的俯角为60°,当蛟龙号继续垂直下潜2千米到达海底C处时,在观察点A测得点C的俯角为75.97°,求点C到海面的深度.(结果精确到0.1千米)参考数据:3≈1.73,sin75.97°=0.97,cos75.97°≈0.24,tan75.97°≈4.007.图1是重庆欢乐谷的一个大型娱乐设施——“重庆之眼”摩天轮,它是全球第六、西南最高的观光摩天轮.如图2,小嘉从摩天轮最低处B出发先沿水平方向向左行走37米到达点C,再经过一段坡度(坡面的垂直高度与水平方向的距离的比)为i=1:2.4,坡长为26米的斜坡CD到达点D,然后再沿水平方向向左行走50米到达点E.在E处小嘉操作一架无人勘测机,当无人勘测机飞行至点E的正上方点F时,测得点D处的俯角为58°,摩天轮最高处A的仰角为24°.AB所在的直线垂直于地面,垂足为O,点A、B、C、D、E、F、O在同一平面内,求AB的高度.(结果精确到1米,参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin24°≈0.40,cos24°≈0.91,tan24°≈0.45)8.一艘渔船在海中自西向东航行,速度为28海里/小时,船在A处测得灯塔C在北偏东60°方向,半小时后渔船到达B点,测得灯塔C在北偏东15°方向,求船与灯塔间的最近距离.9.海洋安全预警系统为海洋安全管理起到了巨大作用,某天海洋监控中心收到信息,在A 的北偏西60°方向的120海里的C处,疑似有海盗船在沿CB方向行驶,C在B的北偏西30°方向上,监控中心向A正西方向的B处海警船发出指令,海警船立即从B出发沿BC方向行驶,在距离A为602海里的D处拦截到该可疑船只.(1)求点A到直线CB的距离;(2)若海警船的速度是30海里/小时,那么海警船能否在1小时内拦截到可疑船只?请说明理由.(结果保留一位小数,参考数据:3≈1.73)10.如图1,图2分别是某款篮球架的实物图与侧面示意图,已知底座矩形BCLK的高BK=19cm,宽BC=40cm,底座BC与支架AC所成的角∠ACB=76°,支架AF的长为240cm,篮板顶端F到篮筐D的距离FD=90cm(FE与地面LK垂直,支架AK与地面LK 垂直,支架HE与FE垂直),篮板底部支架HE与支架AF所成的角∠FHE=66°,求篮筐D到地面的距离(精确到1cm).(参考数据:sin66°≈910,cos66°≈25,tan66°≈94,sin76°≈0.96,cos76°≈0.24,tan76°≈4.0)参考答案1.解:(1)在Rt△BOP中,∠BOP=90°,∵∠BPO=45°,OP=100,∴OB=OP=100.在Rt△AOP中,∠AOP=90°,∵∠APO=60°,∴AO=OP•tan∠APO.∴AO=1003(米),∴AB=100(3―1)(米);(2)∵此车的速度=100(3―1)4=25(3―1)≈25×0.73=18.25米/秒,70千米/小时=700003600米/秒≈19.4米/秒,18.25米/秒<19.4米/秒,∴此车没有超过了万丰路每小时70千米的限制速度.2.解:(1)△OBD与△COE全等.理由如下:由题意可知∠CEO=∠BDO=90°,OB=OC,∵∠BOC=90°,∴∠COE+∠BOD=∠BOD+∠OBD=90°.∴∠COE=∠OBD,在△COE和△OBD中,∠COE=∠OBD∠CEO∠ODBOC=OB,∴△COE≌△OBD(AAS);(2)∵△COE≌△OBD,∴CE=OD,OE=BD,∵BD、CE分别为1.8m和2.4m,∴OD=2.4m,OE=1.8m,∴DE=OD﹣OE=CE﹣BD=2.4﹣1.8=0.6(m),∵妈妈在距地面1.2m高的B处,即DM=1.2m,∴EM=DM+DE=1.8(m),答:爸爸是在距离地面1.8m的地方接住小丽的;(3)∵OA=OB=OD2+BD2=2.42+1.82=3(m),∴AM=OD+DM﹣OA=2.4+1.2﹣3=0.6(m).∴秋千的起始位置A处与距地面的高0.6m.故答案为:0.6.3.解:过点A作AG⊥EF,垂足为G,过点D作DH⊥EF,垂足为H,则AB=GF,AG=BF=240cm,∠GAB=90°,在Rt△DBC中,∠DCB=42°,CD=50cm,∴DB=CD•sin42°≈50×0.67=33.5(cm),∵AD=12cm,∴GF=AB=AD+DB=45.5(cm),∵∠EAD=120°,∴∠EAG=∠EAD﹣∠GAB=30°,在Rt△EAG中,EG=AG•tan30°=240×33=803(cm),∴EF=EG+GF=803+45.5≈183.9(cm),∴光源投屏最高点与地面间的距离EF约为183.9cm.4.解:作∠DAG=50°,AG交BC于G,过点G作GH⊥AD于H,则BEGH为矩形,∴GH=BE,BG=EH,设BE=12xm,∵斜坡AB的坡比为12:5,∴AE=5xm,由勾股定理得:(5x)2+(12x)2=262,解得:x=2(负值舍去),∴BE=24m,AE=12m,∴GH=BE=24m,在Rt△GAH中,tan∠GAH=GH AH,则24AH≈1.2,解得:AH=20,∴EH=AH﹣AE=10(m),∴BG=EH=10m,答:坡顶B沿BC至少向右移10m时,才能确保山体不滑坡.5.解:过点A作AM⊥BC于点M,过点D作DN⊥FC于点N,如图,在Rt△ABM中,AB=5dm,∠ABC=44°,∵sin∠ABM=AM AB,∴AM=AB•sin∠ABM=5•sin44°=5×0.69=3.45dm,在Rt△ACM中,∠ACM=17°,∵sin∠ACM=AM AC∴AC=AMsin∠ACM=AMsin17°=3.450.29≈11.9dm;∵AE=13 AC,∴EC=AC―AE=23AC=23×11.9≈7.93dm,∵∠DEC=∠DCE=48°,∴DE=DC,∵DN⊥FC∴FN=CN=12EC≈3.97dm,在Rt△DEN中,EN=3,97dm,∠DEN=48°,∵cos∠DEN=EN DE,∴DE=ENcos∠DEN=3.97cos48°=3.970.67≈5.9dm答:AC的长为11.9dm,DE的长为5.9dm,DC的长为5.9dm.6.解:延长CB,交AE于点D,由题意得,∠DAB=60°,∠DAC=75.97°,∠ADC=90°,BC=2千米,设BD=x千米,则CD=(x+2)千米,在Rt△ABD中,tan60°=BDAD=xAD=3,解得AD=33 x,在Rt△ACD中,tan75.97°=CDAD=x+233x≈4.00,解得x≈1.5,经检验,x≈1.5是原方程的解且符合题意,∴CD≈3.5千米.∴点C到海面的深度约为3.5千米.7.解:过C作CM⊥OD于M,过F作FN⊥AB于N,如图所示:则FN=EO,ON=EF,OM=BC=37米,BO=CM,FN∥EO,∴∠EDF=∠DFN=58°,∵斜坡CD的坡度为i=1:2.4,CD=26米,∴BO=CM=10(米),MD=24(米),∵DE=50米,∴FN=EO=DE+MD+OM=50+24+37=111(米),在Rt△DEF中,tan∠EDF=EFDE=tan58°≈1.60,∴EF≈1.60DE=1.60×50=80(米),∴ON=EF≈80米,∴BN=ON﹣BO≈70(米),在Rt△AFN中,∠AFN=24°,∵tan∠AFN=ANFN=tan24°≈0.45,∴AN≈0.45FN=0.45×111=49.95(米),∴AB=AN+BN=49.95+70≈120(米),即AB的高度约为120米.8.解:过点C作CD⊥AB,交AB的延长线于点D,过点B作BE⊥AC于点E,由题意得,∠CAB=90°﹣60°=30°,∠CBD=90°﹣15°=75°,AB=28×0.5=14(海里),∴∠ACB=∠CBD﹣∠CAB=45°,在Rt△ABE中,sin30°=BEAB=BE14=12,cos30°=AEAB=AE14=32,解得BE=7,AE=73,在Rt△BCE中,∠BCE=45°,∴BE=CE=7海里,∴AC=AE+CE=(7+73)海里,在Rt△ACD中,sin30°=CDAC=CD7+73=12,解得CD=72+732.∴船与灯塔间的最近距离为(72+732)海里.9.解:(1)过点A作AH⊥CB于点H,如图.由题意得:∠CAB=90°﹣60°=30°,∠ABC=180°﹣60°=120°,∴∠C=180°﹣30°﹣120°=30°,∴AH=12AC=12×120=60(海里).答:点A到直线CB的距离是60海里;(2)海警船能否在1小时内拦截到可疑船只,理由:在Rt△ADH中,AD=602海里,AH=60海里,∴DH=AD2―AH2=60(海里),∵∠ABH=∠BAC+∠C=60°,在Rt△ABH中,∠BAH=90°﹣∠ABH=30°,∴BH=12 AB,∴AB=2BH,∵BH2+AH2=AB2,∴BH2+602=(2BH)2,∴BH=203,∴BD=DH﹣BH=(60﹣203)海里,∵海警船的速度是30海里/小时,∴(60﹣203)÷30≈0.9<1,答:海警船能否在1小时内拦截到可疑船只.10.解:延长FE交地面LK于点M,过点A作AG⊥FM,垂足为G,则∠FML=90°,AK=GM,HE∥AG,∴∠FHE=∠FAG=66°,在Rt△ACB中,∠ACB=76°,BC=40cm,∴AB=BC•tan76°≈40×4=160(cm),∵BK=19cm,∴GM=AK=AB+BK=179(cm),在Rt△AFG中,AF=240cm,∴FG=AF•sin66°≈240×910=216(cm),∵FD=90cm,∴DM=FG+GM﹣FD=216+179﹣90=305(cm),∴篮筐D到地面的距离约为305cm.。
专题02 三角形中的动点综合问题(解析版)
专题02 三角形中的动点综合问题1、已知:△ABC中,BC=a,AC=b,AB=c,a是最小的合数,b、c满足等式:|b﹣5|+(c﹣6)2=0,点P是△ABC的边上一动点,点P从点B开始沿着△ABC的边按BA→AC→CB顺序顺时针移动一周,回到点B后停止,移动的路径为S,移动的速度为每秒3个单位.如图1所示.(1)试求出△ABC的周长;(2)当点P移动到AC边上时,化简:|S﹣4|+|3S﹣6|+|4S﹣45|;(3)如图2所示,若点Q是△ABC的边上一动点,P、Q两点分别从B、C同时出发,即当点P开始移动的时候,点Q从点C开始沿着△ABC的边顺时针移动,移动的速度为每秒5个单位,试问:当t为何值时,P、Q两点的路径(在三角形的边上的距离)相差为3?此时点P在△ABC的哪条边上?解:(1)∵a是最小的合数,∴a=4,∵|b﹣5|+(c﹣6)2=0,∴b﹣5=0,c﹣6=0,∴b=5,c=6,∴BC=4,AC=5,AB=6,∴△ABC的周长=BC+AC+AB=4+5+6=15;(2)∵点P移动到AC边上,AB+AC=6+5=11,∴6≤S≤11,∴S﹣4>0,3S﹣6>0,4S﹣45<0,∴|S﹣4|+|3S﹣6|+|4S﹣45|=S﹣4+3S﹣6+45﹣4S=35.(3)①按顺时针方向移动,若P在Q的前面,∴3t+4﹣5t=3,解得:t=.此时点P在AB上.②按顺时针方向移动,若Q在P的前面,∴5t﹣4﹣3t=3,解得:t=.此时点P在AC上.综合以上可得,当t为s或s时,P、Q两点的路径(在三角形的边上的距离)相差为3,此时点P分别在AB,AC上.2、如图(1)AC⊥AB,BD⊥AB,AB=12cm,AC=BD=8cm,点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=2时,△ACP与△BPQ是否全等,请说明理由;(2)在(1)的条件下,判断此时线段PC和线段PQ的位置关系,并证明;(3)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=50°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.解:(1)△ACP与△BPQ全等,理由如下:当t=2时,AP=BQ=4cm,则BP=12﹣4=8cm,∴BP=AC=8cm,又∵∠A=∠B=90°,在△ACP和△BPQ中,,∴△ACP≌△BPQ(SAS).(2)PC⊥PQ,证明:∵△ACP≌△BPQ,∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直.(3)①若△ACP≌△BPQ,则AC=BP,AP=BQ,∴12﹣2t=8,解得,t=2(s),则x=2(cm/s).②若△ACP≌△BQP,则AC=BQ,AP=BP,则2t=×12,解得,t=3(s),则x=8÷3=(cm/s),故当t=2s,x=2cm/s或t=3s,x=cm/s时,△ACP与△BPQ全等.3、在平面直角坐标系中,B(2,0),A(6,6),M(0,6),P点为y轴上一动点.(1)当P点在线段OM上运动时,试问是否存在一个点P使S△PAB=13,若存在,请求出P点的坐标;若不存在,请说明理由.(2)当点P在y的正半轴上运动时(不包括O,M),∠PAM,∠APB,∠PBO三者之间是否存在某种数量关系,如果有,请利用所学的知识找出并证明;如果没有,请说明理由.解:(1)存在,设P(0,m).∵S△PAB=13,四边形AMOB是直角梯形,∴•(6+2)•6﹣•m•2﹣•(6﹣m)•6=13,∴m=,∴P(0,).(2)①如图2,当点P在线段OM上时,∠APB=∠PAM+∠PBO;理由如下:作PQ∥AM,则PQ∥AM∥ON,∴∠1=∠PAM,∠2=∠PBO,∴∠1+∠2=∠PAM+∠PBO,即∠APB=∠PAM+∠PBO;②如图3,当点P在OM的延长线上时,∠PBO=∠PAM+∠APB.理由如下:∵AM∥OB,∵∠4=∠PAM+∠APB,∴∠PBO=∠PAM+∠APB.4、如图(1),已知A(a,0),B(0,b),且满足a=.(1)求A、B两点坐标;(2)在(1)的条件下,Q为直线AB上一点,且满足S△AOQ=2S△BOQ,求Q点的纵坐标;(3)如图(2),E点在y轴上运动,且在B点上方,过E作AB的平行线,交x轴于点C,∠CEO的平分线与∠BAO的平分线交于点F.问:点E在运动过程中,∠F的大小是否发生改变?若改变,请说明理由;若不变,请求出它的值.解:(1)由题意可得:b﹣4≥0,4﹣b≥0,∴b=4,则a=﹣6,∴A(﹣6,0),B(0,4);(2)∵A(﹣6,0),B(0,4),∴S△AOB=×4×6=12,∵Q在直线AB上,所以点Q位置有3种可能,设点Q到x轴的距离为h,当Q在线段AB上时,∵S△AOQ=2S△BOQ,∴S△AOQ=8,S△BOQ=4,∴×6×h=8,解得,h=,∴Q点纵坐标为;当Q在点B上方时,∵S△AOQ=2S△BOQ,S△AOQ=S△AOB+S△BOQ,∴S△AOB=S△BOQ,∴S△AOQ=24,∴×6×h=24,解得,h=8,∴Q点纵坐标为8;当Q在A点下方时,不符合题意,综上所述,Q点纵坐标为或8;(3)∠F的大小不变,理由如下:∵AB∥CE,∴∠BAO=∠ECO,∠ADF=∠CEF,∵∠EOC=90°,∴∠ECO+∠CEO=90°,∵AF平分∠BAO,EF平分∠CEO,∴∠DAF=∠BAO,∠CEF=∠CEO,∴∠DAF=∠ECO,∠ADF=∠CEO ∴∠DAF+∠ADF=∠ECO+∠CEO=(∠ECO+∠CEO)=×90°=45°,∴∠F=180°﹣(∠DAF+∠ADF)=180°﹣45°=135°.5、如图,在△ABC中,AB=AC=4,∠BAC=120°,AD为BC边上的高,点P从点B以每秒个单位长度的速度向终点C运动,同时点Q从点C以每秒1个单位长度的速度向终点A运动,其中一个点到达终点时,两点同时停止.(1)求BC的长;(2)设△PDQ的面积为S,点P的运动时间为t秒,求S与t的函数关系式,并写出自变量的取值范围;(3)在动点P、Q的运动过程中,是否存在PD=PQ,若存在,求出△PDQ的周长,若不存在,请说明理由.解:(1)如图1中,∵AB=AC,AD⊥BC,∴BD=DC,∠BAD=∠BAC=×120°=60°,∴∠B=30°,∴AD=AB=2,∴BD===2,∴BC=2BD=4.(2)如图2中,作QH⊥CD于H.∵AB=AC,∠ABC=120°,∴∠C=∠B=30°,∵CQ=t,∴QH=CQ=t,当0<t<2时,S=•PD•QH=•(2﹣t)•t=﹣t2+t.当2<t≤4时,同法可得S=t2﹣t,综上所述,S=.(3)当DP=DQ时,如图3中,作QH⊥BC于H.由题意QH=t,CH=t,PC=4﹣t,∴PH=CH﹣PC=t﹣(4﹣t)=t﹣4,∴PQ==,∵PD=PQ,∴t﹣2=,解得t=3,经检验t=3是方程的解,此时PH=DH=,∵QH⊥DP,∴QD=QP,∴PD=PQ=DQ=,∴△PQD的周长为3.5、已知直线a:y=2x+4分别与x、y轴交于点A、C.将直线a竖直向下平移7个单位后得到直线b,直线b交直线AD:y=x+2于点E.(1)若点Q为直线x轴上一动点,是否存在点Q,使△QDE的周长最小,若存在,求△QDE周长的最小值及点Q的坐标:(2)已知点M是第一象限直线a上的任意一点,过点M作直线c⊥x轴,交直线b于点N,H为直线AD上任意一点,是否存在点M,使得△MNH成为等腰直角三角形?若存在,请直接写出点H的坐标.解:(1)存在.理由:∵直线y=2x+4分别与x、y轴交于点A、C,令x=0,得到y=4,令y=0,得到x=﹣2,∴A(﹣2,0),C(0,4),∵直线y=2x+4竖直向下平移7个单位后得到直线b,∴直线b的解析式为y=2x﹣3,∵直线y=x+2交x轴于A,交y轴于D,令x=0,得到y=2,∴D(0,2),由,解得,∴E(5,7),如图1中,作点D关于x轴的对称点D′,连接ED′交x轴于Q,连接DQ,此时△DEQ的周长最小.∵D′(0,﹣2),E(5,7),∴直线DE的解析式为y=x﹣2,∴Q(,0),∵DE==5,ED′==,∴△DEQ的周长的最小值=DE+DQ+EQ=DE+QD′+QE=DE+ED′=5+.(2)如图2中,存在.理由:当点N与E(5,7)重合时,作MH∥x轴交直线y=x+2于H,此时△MNH是等腰直角三角形,取EH的中点H′,连接MH′,此时△MNH′也是等腰直角三角形,∵M(5,14),MH∥x轴,∴H(12,14),∵E(5,7),EH′=HH′,∴H′(,).综上所述,满足条件的点H的坐标为(12,14)或(,).6、如图,在平面直角坐标系中,点A,B的坐标分别为(0,1),(0,﹣3),现将点A向右平移2个单位,再向下平移1个单位,得到点C,点D在点C的下方,CD∥x轴,且CD的长度为4,连接AC,BD,CD.(1)填空:点D的坐标为.(2)若P点在直线BD上运动,连接PC、PO.①若P在线段BD上(不与B,D重合),求S△CDP+S△BOP的取值范围.②若P在直线BD上运动,请在考卷的图中画出相应的示意图,并写出∠CPO、∠DCP、∠BOP的数量关系.解:(1)∵点A,B的坐标分别为(0,1),(0,﹣3),∴AB=4,由题意得:C(2,0),∵CD=4,AB∥CD,∴D(2,﹣4).故答案为(2,﹣4);(2)①如图1中,S梯形OCDB=×(3+4)×2=7,当点P运动到点B时,S△POC最小,S△POC的最小值=×3×2=3,此时S△CDP+S△BOP=4,当点P运动到点D时,S△POC最大,S△POC的最大值=×4×2=4,S△CDP+S△BOP=3,所以3<S△CDP+S△BOP<4;②当点P在BD上,如图1,作PE∥CD,∵CD∥AB,∴CD∥PE∥AB,∴∠DCP=∠EPC,∠BOP=∠EPO,∴∠DCP+∠BOP=∠EPC+∠EPO=∠CPO;当点P在线段BD的延长线上时,如图2,作PE∥CD,∵CD∥AB,∴CD∥PE∥AB,∴∠DCP=∠EPC,∠BOP=∠EPO,∴∠EPO﹣∠EPC=∠BOP﹣∠DCP,∴∠BOP﹣∠DCP=∠CPO;同理可得当点P在线段DB的延长线上时,∠DCP﹣∠BOP=∠CPO.7、如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm.动点P,Q同时从点C出发,均以1cm/s的速度运动,其中点P沿CA向终点A运动;点Q沿CB向终点B运动.过点P作PE∥BC,分别交AD,AB于点E,F,设动点Q运动的时间为t秒.(1)求DQ的长(用含t的代数式表示);(2)以点Q,D,F,E为顶点围成的图形面积为S,求S与t之间的函数关系式;(3)连接PQ,若点M为PQ中点,在整个运动过程中,直接写出点M运动的路径长.解:(1)当0≤t≤3时,DQ=3﹣t;当3<t≤5时,DQ=t﹣3.(2)a.当0≤t≤3时,如图1,∵PC=t,AC=4,∴,,,∴.b.当3<t≤4时,如图2,∴.c.当4<t≤5时,如图3,∴.综上所述(3)点M运动的路径长为2+,如图4中,在CB上取一点J,使得CJ=CA,连接AJ,作CR⊥AJ于R,RT∥BC交AB于T.由题意点M的运动路径是C→R→T,∵CA=CJ=4,CR⊥AJ,∠ACJ=90°,∴AJ=4,AR=RJ,∴CR=AJ=2,∵RT∥BJ,AR=RJ,∴AT=TB,∴RT=BJ=,∴点M的运动路径的长为2+.8、几何探究题(1)发现:在平面内,若AB=a,BC=b,其中b>a.当点A在线段BC上时,线段AC的长取得最小值,最小值为;当点A在线段CB延长线上时,线段AC的长取得最大值,最大值为.(2)应用:点A为线段BC外一动点,如图2,分别以AB、AC为边,作等边△ABD和等边△ACE,连接CD、BE.①证明:CD=BE;②若BC=5,AB=2,则线段BE长度的最大值为.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(7,0),点P为线AB外一动点,且PA=2,PM=PB,∠BPM=90°.请直接写出线段AM长的最大值及此时点P的坐标.解:(1)∵当点A在线段BC上时,线段AC的长取得最小值,最小值为BC﹣AB,∵BC=b,AB=a,∴BC﹣AB=b﹣a,当点A在线段CB延长线上时,线段AC的长取得最大值,最大值为BC+AB,∵BC=b,AB=a,∴BC+AB=b+a,故答案为:b﹣a,b+a;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,,∴△CAD≌△EAB(SAS),∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,∴由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BE=CD=BD+BC=AB+BC=5+2=7;故答案为:7.(3)最大值为5+2;∴P(2﹣,).如图1,连接BM,∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(7,0),∴AO=2,OB=7,∴AB=5,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=AP=2,∴最大值为5+2;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=,∴OE=OA﹣AE=2﹣,∴P(2﹣,).9、如图1,平面直角坐标系xOy中,若A(0,4)、B(1,0)且以AB为直角边作等腰Rt△ABC,∠CAB=90°,AB=AC.(1)如图1,求C点坐标;(2)如图2,在图1中过C点作CD⊥x轴于D,连接AD,求∠ADC的度数;(3)如图3,点A在y轴上运动,以OA为直角边作等腰Rt△OAE,连接EC,交y轴于F,试问A点在运动过程中S△AOB:S△AEF的值是否会发生变化?如果没有变化,请说明理由.解:(1)如图①,∵A(0,4)、B(1,0),∴OA=4,OB=1,过点C作CG⊥y轴于G,∴∠AGC=90°=∠BOA,∴∠OAB+∠OBA=90°∵∠CAB=90°,∴∠OAB+∠GAC=90°,∴∠OBA=∠GAC,∵AB=AC,∴△AOB≌△CGA(AAS),∴CG=OA=4,AG=OB=1,∴OG=OA+AG=5,∴C(4,5);(2)由(1)知,OA=4,点C(4,5),∵CD⊥x轴,∴点D(4,0),∴OD=4,∴OA=OD,∠OAD=45°,∵CD⊥x轴,∴CD∥y轴,∴∠ADC=∠OAD=45°;(3)A点在运动过程中S△AOB:S△AEF的值不会发生变化,理由:设点A的坐标为(0,a),①当点A在y轴正半轴上时,连接CE交y轴于F,∴点C,E在y轴的两侧,即点E在y轴左侧,同(1)的方法得,C(a,a+1),∵△OAE是等腰直角三角形,∴AE⊥OA,∴E(﹣a,a),∴直线CE的解析式为y=x+a+,∴F(0,a+),∴AF=a+﹣a=,∵OB=1,∴=2;②当点A在y轴负半轴上时,同①的方法得,C(﹣a,a﹣1),E(a,a),∴直线CE的解析式为y=x+a﹣,∴F(0,a﹣),∴AF=,∴=2.即A点在运动过程中S△AOB:S△AEF的值不会发生变化.10、已知:Rt△ABC中,∠CAB=90°,CA=BA,Rt△ADE中,∠DAE=90°,DA=EA,连接CE、BD.(1)如图1,求证:CE=BD;(2)如图2,当D在AC上,E在BA的延长线上,直线BD、CE相交于点F,求证:CE⊥BD;(3)如图3,在(2)的条件下,若D是AC中点,BF=6,求△BEF的面积.(1)证明:∵∠EAC=∠DAE+∠DAC=90°+∠DAC,∠DAB=∠CAB+∠DAC=90°+∠DAC,∴∠EAC=∠DAB,在△EAC和△DAB中,,∴△EAC≌△DAB(SAS),∴CE=BD;(2)证明:在△EAC和△DAB中,,∴△EAC≌△DAB(SAS),∴∠ECA=∠DBA,∵∠CDB为△CFD、△ADB的外角,∴∠CDB=∠ECA+∠CFD=∠DBA+∠BAD,∴∠CFD=∠BAD=90°,∴CE⊥BD;(3)解:连接AF,过点A作AP⊥CE于P、AQ⊥BF于Q,过点F作FR⊥BE于R,如图3所示:则∠APC=∠AQB=90°,在△APC和△AQB中,,∴△APC≌△AQB(AAS),∴AP=AQ,∵S△AEF=AE•FR=EF•AP,S△ABF=AB•FR=BF•AQ,∴==,∵D是AC中点,∴=,∵AD=AE,AC=AB,∴===,∴EF=BF=×6=3,∵BF⊥EF,∴S△BEF=BF•EF=×6×3=9.11、如图(1),Rt△AOB中,∠A=90°,∠AOB=60°,OB=2,∠AOB的平分线OC交AB于C,过O点作与OB垂直的直线ON.动点P从点B出发沿折线BC﹣CO以每秒1个单位长度的速度向终点O运动,运动时间为t秒,同时动点Q从点C出发沿折线CO﹣ON以相同的速度运动,当点P到达点O时P、Q同时停止运动.(1)求OC、BC的长;(2)当t=1时,求△CPQ的面积;(3)当P在OC上,Q在ON上运动时,如图(2),设PQ与OA交于点M,当t为何值时,△OPM 为等腰三角形?求出所有满足条件的t值.解:(1)∵∠A=90°,∠AOB=60°,OB=2,∴∠B=30°,∴OA=OB=,由勾股定理得:AB=3,∵OC平分∠AOB,∴∠AOC=∠BOC=30°=∠B,∴OC=BC,在△AOC中,AO2+AC2=CO2,∴()2+(3﹣OC)2=OC2,∴OC=2=BC,∴OC=2,BC=2.(2)如图1﹣1中,作CH⊥PQ于H.当t=1时,P在BC上,Q在OC上,CQ=OQ=PC=PB=1,∴PQ∥OB,∴∠CPQ=∠B=30°,∵CQ=CP,CH⊥QP,∴QH=PH,∴CH=PC=,QH=PH=CH=,∴QP=,∴S△PQC=•PQ•CH=××=.(3)如图(2),∵ON⊥OB,∴∠NOB=90°,∵OC平分∠AOB,∴∠AOC=∠BOC=30°,∴∠NOC=90°﹣30°=60°,①OM=PM时,∠MOP=∠MPO=30°,∴∠PQO=180°﹣∠QOP﹣∠MPO=90°,∴OP=2OQ,∴2(t﹣2)=4﹣t,解得:t=,②PM=OP时,此时∠PMO=∠MOP=30°,∴∠MPO=120°,∵∠QOP=60°,∴此时不存在;③OM=OP时,过P作PG⊥ON于G,OP=4﹣t,∠QOP=60°,∴∠OPG=30°,∴GO=(4﹣t),PG=(4﹣t),∵∠AOC=30°,OM=OP,∴∠OPM=∠OMP=75°,∴∠PQO=180°﹣∠QOP﹣∠QPO=45°,∴PG=QG=(4﹣t),∵OG+QG=OQ,∴(4﹣t)+(4﹣t)=t﹣2,解得:t=.综合上述:当t为或时,△OPM是等腰三角形.。
专题:解直角三角形的应用拥抱型
专题7:解直角三角形的应用拥抱型方法点睛解直角三角形的实际应用题解题方法审题、分析题意,将已知量和未知量弄清楚,明确题目中的一些名词、术语的含义,如仰角、俯角、坡角、坡度、方位角等;若所给三角形是直角三角形,确定合适的边角关系进行计算;若不是直角三角形,可尝试添加辅助线,把它们分割成一些直角三角形或矩形,把实际问题转化为直角三角形问题进行解决.此外,在测量问题中往往会涉及测角仪、身高等与计算无关的数据,在求建筑物高度时不要忽略这些数据.模型典例分析例1(2022营口中考)在一次数学课外实践活动中,某小组要测量一幢大楼MN的高度,如图,在山坡的坡脚A 处测得大楼顶部M的仰角是58︒,沿着山坡向上走75米到达B处.在B处测得大楼顶部M的仰角是22︒,已知斜i=(坡度是指坡面的铅直高度与水平宽度的比)求大楼MN的高度.(图中的点A,B,M,N,坡AB的坡度3:4︒≈︒≈)C均在同一平面内,N,A,C在同一水平线上,参考数据:tan220.4,tan58 1.6【答案】大楼MN的高度为92米【解析】【分析】过点B分别作BE⊥AC,BF⊥MN,垂足分别为E、F,通过解直角三角形表示出BF、AN、AE的长度,利用BF=NE 进行求解即可.【详解】过点B 分别作BE ⊥AC ,BF ⊥MN ,垂足分别为E 、F ,90BEA BFN BFM MNA ∴∠=∠=∠=∠=︒∴四边形BENF 为矩形,,BE AN BF NE∴==设MN x =,在Rt ABE △中,斜坡AB 的坡度3:4i =,即34BE AE =,3sin 5BE BAE AB ∴∠==75AB =45,60BE AE ∴==45FN ∴=45MF x ∴=-在Rt AMN △中,tan ,58MN MAN MAN AN∠=∠=︒tan 58 1.6x AN∴︒=≈58AN x ∴≈5608NE AN AE x ∴=+=+在Rt BMF △中,tan ,22MF MBF MBF BF∠=∠=︒45tan 220.4x BF -∴︒=≈5(45)2BF x ∴≈-5560(45)82x x ∴+=-解得92x =,所以,大楼MN 的高度为92米.【点睛】本题考查了解直角三角形的应用—仰角俯角问题,准确理解题意,能添加辅助线构造直角三角形是解题的关键.专题过关1.(2022葫芦岛中考)(12分)数学活动小组欲测量山坡上一棵大树CD的高度,如图,DC⊥AM于点E,在A处测得大树底端C的仰角为15°,沿水平地面前进30米到达B处,测得大树顶端D的仰角为53°,测得山坡坡角∠CBM =30°(图中各点均在同一平面内).(1)求斜坡BC的长;(2)求这棵大树CD的高度(结果取整数),(参考数据:sin30°≈,cos53°≈,tan53°≈,≈1.73)【分析】(1)根据题意可得:∠CAE=15°,AB=30米,根据三角形的外角可求出∠ACB=15°,从而可得AB=BC=30米,即可解答;(2)在Rt△CBE中,利用锐角三角函数的定义求出CE,BE的长,再在Rt△DEB中,利用锐角三角函数的定义求出DE的长,然后进行计算即可解答.【解答】解:(1)由题意得:∠CAE=15°,AB=30米,∵∠CBE是△ABC的一个外角,∴∠ACB=∠CBE﹣∠CAE=15°,∴∠ACB=∠CAE=15°,∴AB=BC=30米,∴斜坡BC的长为30米;(2)在Rt△CBE中,∠CBE=30°,BC=30米,∴CE=BC=15(米),BE=CE=15(米),在Rt△DEB中,∠DBE=53°,∴DE=BE•tan53°≈15×=20(米),∴DC=DE﹣CE=20﹣15≈20(米),∴这棵大树CD的高度约为20米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,坡度坡角问题,熟练掌握锐角三角函数的定义是解题的关键.2.(2022鄂州中考)亚洲第一、中国唯一的航空货运枢纽一一鄂州花湖机场,于2022年3月19日完成首次全货运试飞,很多市民共同见证了这一历史时刻.如图,市民甲在C 处看见飞机A 的仰角为45°,同时另一市民乙在斜坡CF 上的D 处看见飞机A 的仰角为30°,若斜坡CF 的坡比=1:3,铅垂高度DG=30米(点E 、G 、C 、B 在同一水平线上).求:(1)两位市民甲、乙之间的距离CD ;(2)此时飞机的高度AB ,(结果保留根号)【答案】(1)(2)()90+米【解析】【分析】(1)先根据斜坡CF 的坡比=1:3,求出CG 的长,然后利用勾股定理求出CD 的长即可;(2)如图所示,过点D 作DH ⊥AB 于H ,则四边形BHDG 是矩形,BH=DG=30米,DH=BG ,证明AB=BC ,设AB=BC=x米,则()30AH AB BH x =-=-米,()90DH BG CG BC x ==+=+米,解直角三角形得到30903x x -=+据此求解即可.【小问1详解】解:∵斜坡CF 的坡比=1:3,铅垂高度DG=30米,∴13DG CG =,∴90CG =米,∴CD ==米;【小问2详解】解:如图所示,过点D 作DH ⊥AB 于H ,则四边形BHDG 是矩形,∴BH=DG=30米,DH=BG ,∵∠ABC=90°,∠ACB=45°,∴△ABC 是等腰直角三角形,∴AB=BC ,设AB=BC=x 米,则()30AH AB BH x =-=-米,()90DH BG CG BC x ==+=+米,在Rt △ADH 中,tan 3AH ADH DH ∠==,∴30903x x -=+,解得90x =+,∴()90AB =米.【点睛】本题主要考查了解直角三角形的实际应用,矩形的性质与判定,勾股定理,正确理解题意作出辅助线是解题的关键.3.(2022信阳三模)由绿地集团耗资22亿建设的“大玉米”位于河南省省会郑州市郑东新区,因为其是圆柱塔式建筑,夜晚其布景灯采用黄色设计,因此得名,如今已经成为CBD 的一座新地标建筑.某数学兴趣小组为测量其高度,一人先在附近一楼房的底端A 点处观测“大玉米”顶端C 处的仰角是45°,然后爬到该楼房顶端B 点处观测“大玉米”底部D 处的俯角是30°.已知楼房AB 高约是162m ,根据以上观测数据求“大玉米”的高.(结果≈1.41≈1.73)【答案】280米【解析】【分析】在Rt △ABD 中由边角关系求出AD 的长,在Rt △ACD 中,求出CD 即可.【详解】解:如图,由题意可知,∠CAD =45°,∠EBD =30°=∠ADB ,AB =DE =162米,在Rt △ABD 中,∵tan30°AB AD=,∴AD 33==3,在Rt △ACD 中,∠CAD =45°,∴CD =AD =3≈280(米),答:“大玉米”的高约为280米.【点睛】本题考查解直角三角形的应用,掌握直角三角形的边角关系是正确解答的前提.4.(2022河南永城一模)濮阳龙碑是纪念中华第一龙特设的纪念碑.雄伟高大的龙碑展现了濮阳龙乡的古老文明和现代化城市的勃勃雄姿.某实验学校九年级数学兴趣小组测量龙碑的高度(示意图如图所示),测得底座CE =2.5m ,在平地上的B 处测得石碑的底部E 的仰角为10°,向前走1m 到达点D 处,测得石碑的顶端A 的仰角为60°,求石碑AE 的高度.(精确到0.1m ;参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.183)【答案】石碑AE 的高度为19.8m【解析】【分析】在Rt BCE 中利用正切可求出BC 的长,从而得出CD 的长,再在Rt ACD △中利用正切即可求出AC 的长,进而可求出AE 的长.【详解】解:根据题意可知10EBC ∠=︒,60ADC ∠=︒,1m BD =.∵在Rt BCE 中,tan EC EBC BC∠=,∴ 2.5tan10BC ︒=,∴ 2.513.9m 0.18BC ≈≈,∴12.9m CD BC BD =-=.∵在Rt ACD △中,tan AC ADC CD ∠=,∴tan 6012.9AC ︒=,∴13.9tan 6012.912.9 1.22.37m 3AC =⨯︒=⨯≈⨯≈,∴22.3 2.519.8m AE AC EC =-=-=.答:石碑AE 的高度为19.8m .【点睛】本题考查解直角三角形的实际应用.利用数形结合的思想是解题关键.5.(2022河南二模)洛阳市栾川县老君山景区的老子铜像,是目前世界上最高的老子铜像.某数学活动小组用学到的锐角三角函数的知识去测量老子铜像的高度.如图,铜像底座CE 的高度为21m ,他们在测量点A (与C 在同一水平线上)测得底座最高点E 的仰角为20°,沿AC 方向前进24m 到达测量点B ,测得老子铜像顶部D 的仰角为60°.求老子铜像DE 的高度.(结果精确到0.1m .参考数据:sin 200.34︒≈,cos 200.94︒≈,tan 200.36︒≈,1.73≈)【答案】老子铜像DE 的高约38.3米.【解析】【分析】在t R ACE △,由根据正切定义解得AC 的长,继而得到BC 的长,在t R BCD 中,由正切定义解得CD 的长,最后根据线段的和差解答.【详解】解:在t R ACE △tan 20,21CE CE AC ︒==2158.33tan 20AC ∴=≈︒24AB =58.32434.3BC ∴=-=在t tan 60CDR BCD BC︒=,tan 6034.359.34CD BC ∴=⋅︒=⨯59.342138.3DE CD CE ∴=-=-≈(米)答:老子铜像DE的高约38.3米.【点睛】本题考查解直角三角形的应用—仰角俯角问题,建立好数学模型,利用直角三角形中的三角函数是解题关键.6.(2022郑州二模)如图,某大楼的顶部竖有一块广告牌CD,小明与同学们在山坡的坡脚A处测得广告牌底部D的仰角为53°,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1AB=10米,AE=21米.(测角器的高度忽略不计,结果精确到0.1米,≈1.41,sin53°≈45,cos53°≈35,tan53°≈4 3)(1)求点B距水平地面AE的高度;(2)求广告牌CD的高度.(结果精确到0.1米)【答案】(1)点B距水平地面AE的高度为5米;(2)广告牌CD的高度约为6.7米【解析】【分析】(1)过点B作BM⊥AE,BN⊥CE,垂足分别为M、N,由坡度的含义可求得∠BAM=30゜,由含30度角的直角三角形的性质即可求得结果;(2)由辅助线作法及已知得四边形BMEN是矩形,可得NE=BM,BN=ME=MA+AE,在Rt△BMA中可求得AM 的长,从而可得BN;再由∠CBN=45゜可得CN=BN,进而得CE的长;在Rt△DAE中由三角函数知识可求得DE,根据CD=CE−DE即可求得CD的长.【详解】(1)如图,过点B作BM⊥AE,BN⊥CE,垂足分别为M、N,由题意可知,∠CBN=45°,∠DAE=53°,i=1AB=10米,AE=21米.∵i=1=BMAM=tan∠BAM,∴∠BAM=30°,∴BM=12AB=5(米),即点B距水平地面AE的高度为5米;(2)∵BM⊥AE,BN⊥CE,CE⊥AE,∴四边形BMEN 为矩形,∴NE=BM=5米,BN=ME ,在Rt △ABM 中,∠BAM =30°,∴AM =cos302AB AB °==(米),∴ME =AM+AE =()米=BN ,∵∠CBN =45°,∴CN =BN =()米,∴CE =CN+NE =()米,在Rt △ADE 中,∠DAE =53°,AE =21米,∴DE =AE•tan53°≈21×43=28(米),∴CD =CE ﹣DE =﹣28=2≈6.7(米),即广告牌CD 的高度约为6.7米.【点睛】本题是解直角三角形的应用,考查了矩形的判定与性质,解直角三角形,关键是理解坡度的含义,构造适当的辅助线便于在直角三角形中求得相关线段.7.(2022西工大附中三模)如图,某学校老师们联合组织九年级学生外出开展数学活动,经过某公园时,发现工人们正在建5G 信号柱,于是老师们就带领学生们对信号柱进行测量.已知信号柱直立在地面上,在太阳光的照射下,信号柱影子(折线BCD )恰好落在水平地面和斜坡上,在D 处测得信号柱顶端A 的仰角为30°,在C 处测得信号柱顶端A 的仰角为45°,斜坡与地面成60°角,CD=12米,求信号柱AB 的长度.(结果保留根号)【答案】信号柱AB 的长度为12)+米【解析】【分析】延长AD 交BC 的延长线于G ,过D 作DH BG ⊥于H ,由锐角三角函数定义定义求出CH 、DH 、HG ,设BC x =米,再由锐角三角函数定义求出BG ,然后列出方程,解方程即可.【详解】(方法一)解:过点D 作DE BC ⊥交BC 的延长线于点E ,过点D 作DH AB ⊥交AB 于点H ,又AB BC ⊥,则四边形BEDH 为矩形,在Rt DCE V 中,1260CD DCE =∠=︒,,6CE DE ∴==,,=BH DE ∴=在Rt ABC △中,45ACB =︒∠,∴设==AB BC x ,(6)DH BE BC CE x ∴==++,(AH AB BH x ∴=-=+,在Rt ADH 中,30ADH ∠=︒,3tan 303AH DH ∴︒==,63x x -∴=+,解得:12)x =+.答:信号柱AB的长度为12)+米.(方法二)解:延长AD 交BC 的延长线于G ,过D 作DH BG ⊥于H ,在Rt DHC △中,60,12DCH CD ∠=︒=米,则cos 12cos 606CH CD DCH =⋅∠=⨯︒=(米),sin 12sin 60DH CD DCH =⋅∠=⨯︒=(米),,30DH BG G ⊥∠=︒,18tan 33DH HG G ∴===(米),24CG CH HG ∴=+=(米),设AB x =米,,30,45AB BG G BCA ⊥∠=︒∠=︒,,3tan 33AB BC x BG G ∴====(米),BG BC CG -=,324x -=,解得:312x =+,答:信号柱AB 的长度为312)+米.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的定义,正确作出辅助线构造直角三角形是解题的关键.8.(2021自贡中考)(8分)在一次数学课外实践活动中,小明所在的学习小组从综合楼顶部B 处测得办公楼底部D 处的俯角是53°,从综合楼底部A 处测得办公楼顶部C 处的仰角恰好是30°,综合楼高24米.请你帮小明求出办公楼的高度.(结果精确到0.1,参考数据tan37°≈0.75,tan53°≈1.33,≈1.73)【分析】由题意可知AB =24米,∠BDA =53°,因为tan ∠BDA=,可求出AD ,又由tan30°=,可求出CD ,即得到答案.【解答】解:由题意可知AB =24米,∠BDA =53°,∴tan ∠BDA===1.33,∴AD=≈18.05.∵tan ∠CAD =tan30°===,∴CD =18.05×≈10.4(米).故办公楼的高度约为10.4米.9.(2021威海中考)在一次测量物体高度的数学实践活动中,小明从一条笔直公路上选择三盏高度相同的路灯进行测量.如图,他先在点B 处安置测倾器,于点A 处测得路灯MN 顶端的仰角为10︒,再沿BN 方向前进10米,到达点D 处,于点C 处测得路灯PQ 顶端的仰角为27︒.若测倾器的高度为1.2米,每相邻两根灯柱之间的距离相等,求路灯的高度(结果精确到0.1米).(参考数据:sin100.17︒≈,cos100.98︒≈,tan100.18︒≈,sin 270.45︒=,cos 270.89︒≈,tan 270.51︒≈)【答案】路灯的高度为13.4m .【解析】【分析】延长AC 交PQ 于点E ,交MN 于点F ,由题意可得,AB=CD=EQ=FN=1.2,∠PEC=∠MFA=90°,∠MAF=10°,∠PCE=27°,AC=10,AE=BQ=EF=QN ,设路灯的高度为xm ,则MN=PQ=xm ,MF=PE=x-1.2;在Rt △AFM 中求得 1.2tan10x FA -=︒,即可得 1.22tan10x AE -=︒;在Rt △CEP 中,可得1.2tan 27 1.22tan1001x x -︒=--︒,由此即可求得路灯的高度为13.4m .【详解】延长AC 交PQ 于点E ,交MN 于点F,由题意可得,AB=CD=EQ=FN=1.2,∠PEC=∠MFA=90°,∠MAF=10°,∠PCE=27°,AC=10,AE=BQ=EF=QN ,设路灯的高度为xm ,则MN=PQ=xm ,MF=PE=x-1.2,在Rt △AFM 中,∠MAF=10°,MF=x-1.2,tan MF MAF FA ∠=,∴ 1.2tan10x FA -︒=,∴ 1.2tan10x FA -=︒,∴11 1.2 1.222tan102tan10x x AE AF --==⋅=︒︒;∴CE=AE-AC= 1.22tan10x -︒-10,在Rt △CEP 中,∠PCE=27°,CE= 1.22tan10x -︒-10,tan PE PCE CE∠=,∴1.2tan27 1.22tan11xx-︒=--︒,解得x≈13.4,∴路灯的高度为13.4m.答:路灯的高度为13.4m.【点睛】本题考查了解直角三角形的应用,构造直角三角形,熟练运用三角函数解直角三角形是解决问题的关键.10.(2021枣庄中考)(8分)2020年7月23日,我国首次火星探测“天问一号”探测器,由长征五号遥四运载火箭在中国文昌航天发射场发射成功,正式开启了中国的火星探测之旅.运载火箭从地面O处发射,当火箭到达点A时,地面D处的雷达站测得AD=4000米,仰角为30°.3秒后,火箭直线上升到达点B处,此时地面C处的雷达站测得B处的仰角为45°.O,C,D在同一直线上,已知C,D两处相距460米,求火箭从A到B处的平均速度.(结果精确到1米,参考数据:≈1.732,≈1.414)【分析】在两个直角三角形中求出AO、BO,进而计算出AB,最后求出速度即可.【解答】解:由题意得,AD=4000米,∠ADO=30°,CD=460米,∠BCO=45°,在Rt△AOD中,∵AD=4000米,∠ADO=30°,∴OA=AD=2000(米),OD =AD=2000(米),在Rt△BOC中,∠BCO=45°,∴OB=OC=OD﹣CD=(2000﹣460)米,∴AB=OB﹣OA=2000﹣460﹣2000≈1004(米),∴火箭的速度为1004÷3≈335(米/秒),答:火箭的速度约为335米/秒.11.(2021朝阳中考)一数学兴趣小组去测量一棵周围有围栏保护的古树的高,在G处放置一个小平面镜,当一位同学站在F点时,恰好在小平面镜内看到这棵古树的顶端A的像,此时测得FG=3m,这位同学向古树方向前进了9m后到达点D,在D处安置一高度为1m的测角仪CD,此时测得树顶A的仰角为30°,已知这位同学的眼睛与地面的距离EF=1.5m,点B,D,G,F在同一水平直线上,且AB,CD,EF均垂直于BF,求这棵古树AB的高.(小平面镜的大小和厚度忽略不计,结果保留根号)【考点】解直角三角形的应用﹣仰角俯角问题.【专题】图形的相似;解直角三角形及其应用;运算能力;推理能力;应用意识.【答案】(8+4)m.【分析】过点C作CH⊥AB于点H,则CH=BD,BH=CD=1m,由锐角三角函数定义求出BD=CH=AH,再证△EFG∽△ABG,得=,求出AH=(8+4)m,即可求解.【解答】解:如图,过点C作CH⊥AB于点H,则CH=BD,BH=CD=1m,由题意得:DF=9m,∴DG=DF﹣FG=6(m),在Rt△ACH中,∠ACH=30°,∵tan∠ACH==tan30°=,∴BD=CH=AH,∵EF⊥FB,AB⊥FB,∴∠EFG=∠ABG=90°.由反射角等于入射角得∠EGF=∠AGB,∴△EFG∽△ABG,∴=,即=,解得:AH=(8+4)m,∴AB=AH+BH=(8+4)m,即这棵古树的高AB为(8+4)m.12.(2021宿迁中考)一架无人机沿水平直线飞行进行测绘工作,在点P处测得正前方水平地面上某建筑物AB的顶端A的俯角为30°,面向AB方向继续飞行5米,测得该建筑物底端B的俯角为45°,已知建筑物AB的高为3米,求无人机飞行的高度(结果精确到12≈1.414,3≈=1.732).【答案】无人机飞行的高度约为14米.【解析】【分析】延长PQ ,BA ,相交于点E ,根据∠BQE =45°可设BE =QE =x ,进而可分别表示出PE =x +5,AE =x -3,再根据sin ∠APE =AE PE ,∠APE =30°即可列出方程353x x -=+,由此求解即可.【详解】解:如图,延长PQ ,BA ,相交于点E ,由题意可得:AB ⊥PQ ,∠E =90°,又∵∠BQE =45°,∴BE =QE ,设BE =QE =x ,∵PQ =5,AB =3,∴PE =x +5,AE =x -3,∵∠E =90°,∴sin ∠APE =AE PE ,∵∠APE =30°,∴sin30°=35x x -=+x =7+≈14,答:无人机飞行的高度约为14米.【点睛】本题考查解直角三角形的应用-俯角仰角问题,难度适中,要求学生能借助其关系构造直角三角形并解直角三角形.13.(2021湘潭中考)万楼是湘潭历史上的标志性建筑,建在湘潭城东北、湘江的下游宋家桥.万楼的外形设计既融入了皇家大院、一类寺庙的庄严典雅,也吸收了江南民居诸如马头墙、猫拱背墙、灰瓦等特色,而最为独特的还是万楼“九五至尊”的结构.某数学小组为了测量万楼主楼高度,进行了如下操作:用一架无人机在楼基A 处起飞,沿直线飞行120米至点B ,在此处测得楼基A 的俯角为60°,再将无人机沿水平方向向右飞行30米至点C ,在此处测得楼顶D 的俯角为30°,请计算万楼主楼AD 的高度.(结果保留整数,≈1.41,≈1.73)【考点】解直角三角形的应用.【专题】解直角三角形及其应用;推理能力;模型思想.【答案】万楼主楼AD 的高度约为52米.【分析】由题意可得在Rt △ABE 中和Rt △CDE 中,AB =120米,∠ABE =60°,∠DCE =30°,CE =BE+CB ,根据解直角三角形在在Rt △ABE 中,可计算出BE 和AE 的长度,在Rt △CDE 中,可计算出AD 的长度,由AD =AE ﹣AD 计算即可得出答案.【解答】解:由题意可得,在Rt △ABE 中,∵AB =120米,∠ABE =60°,∴BE ===60(米),AE =sin60°•AB =(米),在Rt △CDE 中,∵∠DCE =30°,CE =BE+CB =60+30=90(米),∴DE =tan30°•CE ==30(米),∴AD =AE ﹣AD =60=30≈52(米).答:万楼主楼AD 的高度约为52米.14.(2022绥化中考)如图所示,为了测量百货大楼CD 顶部广告牌ED 的高度,在距离百货大楼30m 的A 处用仪器测得30DAC ∠=︒;向百货大楼的方向走10m ,到达B 处时,测得48EBC ∠=︒,仪器高度忽略不计,求广告牌ED 的高度.(结果保留小数点后一位)1.732≈,sin 480.743︒≈,cos 480.669︒≈,tan 48 1.111︒≈)【答案】4.9m【解析】【分析】先求出BC 的长度,再分别在Rt △ADC 和Rt △BEC 中用锐角三角函数求出EC 、DC ,即可求解.【详解】根据题意有AC=30m ,AB=10m ,∠C=90°,则BC=AC -AB=30-10=20,在Rt △ADC 中,tan 30tan 30DC AC A =⨯∠=⨯=o ,在Rt △BEC 中,tan 20tan 48EC BC EBC =⨯∠=⨯o ,∴20tan 48DE EC DC =-=⨯-o即20tan 4820 1.11110 1.732 4.9DE =⨯-⨯-⨯=o 故广告牌DE 的高度为4.9m .【点睛】本题考查了解直角三角形的应用,掌握锐角三角函数的性质是解答本题的关键.。
解直角三角形与几何综合(压轴题专项)—2023-2024学年九年级数学下册(浙教版)(解析版)
解直角三角形与几何综合【典例1】如图,在Rt△AEB中,∠AEB=90°,点C在线段BE的延长线上,过点C作CD∥AB,连接AD,再过点A作AF⊥CD于点F;(1)如图1,连接EF,若∠BAE=30°,∠D=45°,DF=6,AE=4,求线段EF的长;(2)如图2,在线段CE上取一点H,连接AH、DH,当AH平分∠BHD,∠ABH=∠DAH时,求证:DH=HC+ 2HE.(3)如图3,在(2)的条件下,连接ED,若AE=12,BE=4,当(ED+DF)取得最小值时,请直接写出线段AH的长.(1)过点E作EM⊥AF于M,利用勾股定理可得EM=√AE2−AM2=2√3,EF=√EM2+MF2=2√7;(2)连接AC,过A作AW⊥HD于,则有∠AWH=∠AWD=90°,可证Rt△AHE≌Rt△AHW(HL),则HE=HW,然后可得A、H、C、D四点共圆,则可证△AEC≌△AWD(AAS),进而问题可求证;(3)在线段EB上截取EG=EH,延长AF交BC的延长线于M,连接AG,AC,DM,可证得△AEG≌△AEH(SAS),,利用解直角三角形可得EM=36,再由勾股定理可得AM=△AGC≌△AHD(SAS),设∠BAE=α,则tanα=13√AE2+EM2=12√10,作点E关于DM的对称点E′,连接EE′,DE′,EE′交DM于P,则DE=DE′,由于ED+ DF=DE′+DF≥EF,故当且仅当E′、D、F三点共线时,ED+DF=EF为最小值,过点E′作E′N⊥BC于N,过点D作DK⊥CM于K,应用解直角三角形即可求得答案.(1)解:过点E作EM⊥AF于M,如图1,则∠AME=∠EMF=90°,∵AF⊥CD,CD∥AB,∴∠BAF=∠AFD=90°,∵∠BAE=30°,∴∠EAM=60°,∴∠AEM=30°,∵AE=4,AE=2,∴AM=12在Rt△AEM中,EM=√AE2−AM2=√42−22=2√3,在Rt△ADF中,∠D=45°,DF=6,∴AF=DF=6,∴MF=AF−AM=6−2=4,在Rt△EMF中,EF=√EM2+MF2=√(2√3)2+42=2√7,∴线段EF的长为2√7;(2)证明:连接AC,过A作AW⊥HD于W,如图2,则∠AWH=∠AWD=90°,∵∠AEB=90°,∴∠AEH=90°,∵AH平分∠BHD,AE⊥HB,AW⊥HD,∴AE=AW,在Rt△AHE和Rt△AHW中,{AH=AHAE=AW,∴Rt△AHE≌Rt△AHW(HL),∴HE=HW,∵CD∥AB,∴∠ABH+∠BCD=180°,∵∠ABH=∠DAH,∴∠DAH+∠BCD=180°,∵∠DAH与∠BCD在DH异侧,∴A、H、C、D四点共圆,∴∠ACH=∠ADW,∵AE=AW,∠AEC=∠AWD=90°,∴△AEC≌△AWD(AAS),∴EC=WD,∴DH=HW+WD=HE+EC=HE+HE+HC,即DH=HC+2HE;(3)解:如图3,在线段EB上截取EG=EH,延长AF交BC的延长线于M,连接AG,AC,DM,则CG=HC+2HE,由(2)得DH=HC+2HE,∴CG=DH,在△AEG和△AEH中,{EG=EH∠AEG=∠AEH=90°AE=AE,∴△AEG≌△AEH(SAS),∴AG=AH,∠AGC=∠AHE,∵AH平分∠BHD,∴∠AHE=∠AHD,∴∠AGC=∠AHD,∴△AGC≌△AHD(SAS),∴AC=AD,∵AF⊥CD,∴DF=CF,∴DM=CM,设∠BAE=α,则tanα=BEAE =412=13,∵∠BAE+∠MAE=∠AME+∠MAE=90°,∴∠AME=∠BAE=α,∴AEEM =tanM=13,∴EM=3AE=3×12=36,∴AM=√AE2+EM2=√122+362=12√10,如图4,作点E关于DM的对称点E,连接EE′,DE′,EE′交DM于P,则DE=DE′,∴ED+DF=DE′+DF≥E′F,当且仅当E′、D、F三点共线时,ED+DF=EF为最小值,过点E′作E′N⊥BC于N,过点D作DK⊥CM于K,则∠AMD=∠CE′E=∠CE′N=∠CDK=∠AME=α,设CF=DF=x,则FM=CFtanα=3x,∴CM=√CF2+FM2=√x2+(3x)2=√10x,∵sin∠DCK=DKCD =FMCM,即DK2x=√10x,∴DK=3√105x,∵cos∠DCK=CKCD =CFCM,即CK2x=√10x,∴CK=√105x,∴MK=CM−CK=√10x−√105x=4√105x,∴tan2α=DKMK =3√105x4√105x=34,∴PEPM =tan2α=34,设PE=3y,则PM=4y,∵PE2+PM2=EM2,∴(3y)2+(4y)2=362,∴y=365(负值舍去),∴PE=3×365=1085,PM=4×365=1445,∴EE′=2PE=2165,∵sin2α=ENEE′=PEEM,即EN2165=108536,∴EN=64825,∴MN=EM−EN=36−64825=25225,∴E′N=ENtan2α=6482534=86425,∴CN=E′N⋅tanα=86425×13=28825,∴CM=CN+MN=28825+25225=1085,∴FM=CM⋅cosα=1085×3√1010=162√1025,CF=13FM=54√1025,∴AF=AM−FM=12√10−162√1025=138√1025,在Rt△ADF中,AD=√AF2+DF2=(138√1025)+(54√1025)=12√615,∵∠DAH=∠ABH=∠MAE,∴∠DAH−∠MAH=∠MAE−∠MAH,即∠DAF=∠HAE,∴cos∠DAF=cos∠HAE,∴AFAD =AEAH,即138√102512√615=12AH,∴AH=12√61023.1.(2023·辽宁·中考真题)△ABC是等边三角形,点E是射线BC上的一点(不与点B,C重合),连接AE,在AE的左侧作等边三角形AED,将线段EC绕点E逆时针旋转120°,得到线段EF,连接BF.交DE于点M.(1)如图1,当点E为BC中点时,请直接写出线段DM与EM的数量关系;(2)如图2.当点E在线段BC的延长线上时,请判断(1)中的结论是否成立?若成立,请写出证明过程;若不成立,请说明理由;(3)当BC=6,CE=2时,请直接写出AM的长.【思路点拨】(1)可证得∠BAD=∠BAE=30°,进一步利用等腰三角形的三线合一得出结果;(2)连接BD、DF,可证明△BAD≌△CAE,从而∠ABD=∠ACE=120°,BD=CE,进而得出∠DBE=60°,从而得出∠DBE+∠BEF=60°+120°=180°,从而BD∥EF,结合BD=EF得出四边形BDFE是平行四边形,从而得出DM=EM;(3)分为两种情形∶当点E在BC的延长线上时,作AG⊥BC于G,可得出CG=3,AG=3√3,从而EG=CG+ CE=3+2=5,进而得出AE=2√13,进一步得出结果;当点E在BC上时,作AG⊥BC于G,可得出EG=1,AE=2√7,进一步得出结果.【解题过程】(1)解∶∵△ABC是等边三角形,点E是BC的中点,∠BAC,∴∠BAC=60°,∠BAE=12∴∠BAE=30°,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAD=∠DAE−∠BAE=60°−30°=30°,∴∠DAE=∠BAE,∴DM=EM;(2)解:如图l,DM=EM仍然成立,理由如下∶连接BD、DF,∵△ABC和△ADE是等边三角形,∴∠ABC=∠BAC=∠DAE=∠ACB=60°,AB=AC,AD=AE,∴∠BAC−∠DAC=∠DAE−∠DAC,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE=180°−∠ACB=120°,BD=CE,∴∠DBE=∠ABD−∠ABC=120°−60°=60°,∴∠DBE+∠BEF=60°+120°=180°,∴BD∥EF,∵CE=EF,∴BD =EF ,∴四边形BDFE 是平行四边形,∴DM =EM ;(3)解:如图2,当点E 在BC 的延长线上时,作AG⟂BC 于G ,∵∠ACB =60°,∴CG =AC ⋅cos60°=12AC =3,AG =AC ⋅sin60°=√32AC =3√3,∴EG =CG +CE =3+2=5,∴AE =√AC 2+EC 2=√(3√3)2+52=2√13.由(2)知∶DM =EM ,∴AM ⊥DE ,∴∠AME =90°,∴∠AED =60°,∴AM =AE ⋅sin60°=2√13×√32=√39,如图3,当点E 在BC 上时,作AG ⊥BC 于G ,由上知∶AG =3√3,CG =3,∴EG =CG −CE =3−2=1,∴AE=√AG2+EG2=√(3√3)2+12=2√7,∴AM=2√7×√32=√21,综上所述∶AM=√39或√21.2.(22·23下·安徽·专题练习)在△ABC中,∠ACB=90°,ACBC=m,D是边BC上一点,将△ABD沿AD折叠得到△AED,连接BE.(1)特例发现:如图1,当m=1,AE落在直线AC上时.①求证:∠DAC=∠EBC;②填空:CDCE的值为;(2)类比探究:如图2,当m≠1,AE与边BC相交时,在AD上取一点G,使∠ACG=∠BCE,CG交AE于点H.探究CGCE的值(用含m的式子表示),并写出探究过程;(3)拓展运用:在(2)的条件下,当m=√22,D是BC的中点时,若EB⋅EH=6,求CG的长.【思路点拨】(1)①由折叠知,∠AFB=90°=∠ACB,再由等角的余角相等,即可得出结论;②由①知,∠DAC=∠EBC,再判断出AC=BC,进而用ASA判断出,△ACD≌△BCE,即可得出结论;(2)同(1)①的方法,即可得出结论;(3)先判断出DF是△BCE的中位线,得出DF∥CE,进而得出∠BEC=∠BFD=90°,∠AGC=∠ECG,∠GAH=∠CEA,再判断出AG=CE,设CG=x,则AG=√2x,BE=2x,得出AG=CE进而用AAS判断出△AGH≌△ECH,得出GH=12x,再用勾股定理求出AH=32x,即可得出结论.【解题过程】(1)如图1,延长AD交BE于F,由折叠知,∠AFB=90°=∠ACB,∴∠DAC+∠ADC=∠BDF+∠EBC=90°,∵∠ADC=∠BDF,∴∠DAC=∠EBC;②由①知,∠DAC=∠EBC,∵m=1,∴AC=BC,∵∠ACD=∠BCE,∴△ACD≌△BCE(ASA),∴CD=CE,=1,∴CDCE故答案为1.(2)如图2,延长AD交BE于F,由(1)①知,∠DAC=∠EBC,∵∠ACG=∠BCE,∴△ACG∽△BCE,∴CGCE =ACBC=m;(3)由折叠知,∠AFB=90°,BF=FE,∵点D是BC的中点,∴BD=CD,∴DF是△BCE的中位线,∴DF∥CE,∴∠BEC=∠BFD=90°,∠AGC=∠ECG,∠GAH=∠CEA,由(2)知,△ACG∽△BCE,∴∠AGC=∠BEC=90°,ACCD =AC12BC=2m=√2,∴CGAG =tan∠GAC=DCAC=1√2,设CG=x,则AG=√2x,BE=2x,∴AG=CE,∴△AGH≌△ECH(AAS),∴AH=EH,GH=CH,∴GH=12x,在Rt△AGH中,根据勾股定理得,AH=√AG2+GH2=32x,∵EB⋅EH=6,∴2x⋅32x=6,∴x=√2或x=−√2(舍),即CG=√2.3.(22·23·濮阳·一模)数学活动课上,老师组织数学小组的同学们以“正方形折叠”为主题开展数学活动.【动手实践】(1)如图(1),已知正方形纸片ABCD,数学小组将正方形纸片沿过点A的直线折叠,使点B落在正方形ABCD的内部,点B的对应点为点M,折痕为AE,再将纸片沿过点A的直线折叠使AD与AM重合,折痕为AF,易知点E、M、F共线,则∠EAF=°,EF、BE、DF三条线段的关系为;【拓展应用】(2)解决下面问题:①如图(2)作FN⊥AE于点N,交AM于点P,求证:△ANP≌△FNE;②如图(3),数学小组在图(1)的基础上进行如下操作:将正方形纸片沿EF继续折叠,点C的对应点为点N,他们发现,当点E的位置不同时,点N的位置也不同,若点N恰好落在△AEF边上,AB=3,请直接写出此时BE的长度.【思路点拨】∠BAD=45°.由∠AME=(1)根据折叠的性质可得∠EAM=∠EAB,∠FAM=∠FAD,由此可得∠EAF=12∠B=90°,∠AMF=∠D=90°可得E、M、F三点共线.又由ME=BE,MF=DF可得EF=BE+DF.(2)①由∠ANF=90°,∠EAF=45°可得∠AFN=45°,于是可得AN=FN,由“同角的余角相等”可得∠EAM=∠NFE,最后根据角边角即可证明△ANP≌△FNE.②分两种情况:当点N落在AE上时,当点N落在AF上时,分别利用三角函数解直角三角形即可求得BE的长.【解题过程】(1)∵四边形ABCD是正方形,∴∠BAD=∠B=∠D=90°,AB=AD.∵△ABE沿AE折叠后得△AME,△ADF沿AF折叠后得△AMF,∴△AME≌△ABE,△AMF≌△ADF,∴∠EAM=∠EAB,∠FAM=∠FAD,∠BAD=45°,∴∠EAM+∠FAM=∠EAB+∠FAB=12即∠EAF=45°.∵∠AME=∠B=90°,∠AMF=∠D=90°,∴∠AME+∠AMF=180°.∴E、M、F三点共线.∵ME=BE,MF=DF,∴ME+MF=BE+DF,∴EF=BE+DF.故答案为:45,EF=BE+DF.(2)①∵FN⊥AE,∴∠ANF=∠FNE=90°.∵∠EAF=45°,∴∠AFN=45°,∴AN=FN.∵△AEM中,∠AME=90°,∴∠EAM+∠AEM=90°.∵△FNE中,∠FNE=90°,∴∠NFE+∠AEM=90°,∴∠EAM=∠NFE.在△ANP和△FNE中,{∠NAP=∠NFEAN=FN∠ANP=∠FNE,∴△ANP≌△FNE(ASA).②如图,当点N落在AE上时,∵四边形ABCD是正方形,∴∠C=∠B=∠D=∠BAD=90°.由折叠的性质可得∠AEB=∠AEM=∠CEF,∵∠AEB+∠AEM+∠CEF=180°,∴∠AEB=∠AEM=∠CEF=60°.∵AB=3,∴BE=ABtan∠AEB =ABtan60°=√3=√3;如图,当N落在AF上时,∵四边形ABCD是正方形,∴∠C=∠B=∠D=∠BAD=90°,由折叠的性质可得∠AFE=∠CFE=∠AFD,又∵∠AFE+∠CFE+∠AFD=180°,∴∠AFE=∠CFE=∠AFD=60°,∴DF=ADtan∠AFD =ADtan60°=3√3=√3,∴CF=CD−DF=3−√3,∴EC=CF⋅tan∠CFE=(3−√3)×√3=3√3−3,∴BE=BC−EC=3−(3√3−3)6−3√3,综上,BE的长为√3或6−3√3.4.(22·23下·泉州·模拟预测)已知:如图1,在矩形ABCD中,AB=4,AD=6,点P是AD的中点,点F是AB上的动点,连接FP并延长交CD的延长线于点M,过点P作PE⊥FM,交直线BC于点E,连接EF.(1)求tan∠PEF的值;(2)如图2,连接EM,点Q是EM的中点.①当∠AFP=2∠BEF时,求PQ的长;②点F从A点运动到B点的过程中,求点Q经过的路径长.【思路点拨】(1)作PG⊥BC于点G,由四边形ABCD是矩形,点P是AD的中点,得∠A=∠B=∠PGB=90°,PA=PD=1 2AD=3,可证明△APF∽△GPE,则tan∠PEF=PFPE=PAPG=34;(2)①作EF的垂直平分线KN交BE于点N,连接FN,则∠BEF=∠NFE,所以∠BNF=2∠BEF,则∠AFP=∠BNF,可证明∠NFP=∠EPM=90°,则FN∥PE,所以∠BEF=∠NFE=∠PEF,则BF=PF,由勾股定理得32+(4−PF)2=PF2,求得PF=258,则FE=12524,再证明PF=PM,则PQ=12FE=12548;②作PG⊥BC于点G,连接AG、PC,取PC的中点I,连接IQ,可证明PC∥AG,则∠DPI=∠PAG,再证明△PFE∽△PAG,得∠PFE=∠PAG,可推导出∠DPI=∠MPQ,则∠IPQ=∠DPM=∠APF,再证明△PIQ∽△PAF,则∠PIQ=∠PAF=90°,可知点Q在线段PC的垂直平分线上运动,延长IQ、PD交于点L,当点F从点A运动到点B,则点Q从点I运动到点L,由ILPI =tan∠DPI=tan∠PAG=PGPA=43,求得IL=43PI=103,则点Q经过的路径长是103.【解题过程】(1)解:作PG⊥BC于点G∵四边形ABCD是矩形,AB=4,AD=6,点P是AD的中点,∴∠A=∠B=∠PGB=90°,PA=PD=12AD=3,∴四边形ABGP是矩形,∴PG=AB=4,∠APG=90°,∵PE⊥FM,交直线BC于点E,∴∠FPE=90°,∴∠APF=∠GPE=90°−∠FPE,∵∠A=∠PGE=90°,∴△APF∽△GPE,∴tan∠PEF=PFPE =PAPG=34,∴tan∠PEF的值是34;(2)解:①作EF的垂直平分线KN交BE于点N,连接FN,则EN=FN,如图2所示:∴∠BEF=∠NFE,∴∠BNF=∠BEF+∠NFE=2∠BEF,∵∠AFP=2∠BEF,∴∠AFP=∠BNF,∴∠AFP+∠BFN=∠BNF+∠BFN=90°,∴∠NFP=∠EPM=90°,∴FN∥PE,∴∠BEF=∠NFE=∠PEF,∵BF⊥EB,PF⊥EP,∴BF=PF,∵AP2+AF2=PF2,AF=4−BF=4−PF,∴32+(4−PF)2=PF2,解得PF=258,设PF=3m,则PE=4m,由3m=258得m=2524,∴FE=√PF2+PE2=√(3m)2+(4m)2=5m=5×2524=12524,∵AF∥DM,∴PFPM =PAPD=1,∴PF=PM,∵点P是FM的中点,点Q是EM的中点,∴PQ=12FE=12×12524=12548,∴PQ的长是12548;②作PG⊥BC于点G,连接AG、PC,取PC的中点I,连接IQ,如图3所示:∵BC=AD=6,GB=PA=3,∴CG=BC−GB=6−3=3=∵CG∥AP,∴四边形APCG是平行四边形,∴PC∥AG,∴∠DPI=∠PAG,∵PFPE =PAPG,∴PFPA =PEPG,∴△PFE∽△PAG,∴∠PFE=∠PAG,∴∠DPI=∠PFE,∵∠MPQ=∠PFE,∴∠DPI=∠MPQ,∴∠DPI−∠DPQ=∠MPQ−∠DPQ,∴∠IPQ=∠DPM=∠APF,∵PC=AG=√PA2+PG2=√32+42=5,∴PI=12PC=12×5=52,∴PIPA =523=56,∵FEPF =53,FE=2PQ,∴2PQPF =53,∴PQPF =56=PIPA,∴△PIQ∽△PAF,∴∠PIQ=∠PAF=90°,∴点Q在线段PC的垂直平分线点上运动,延长IQ、PD交于点L,当点F从点A运动到点B,则点Q从点I运动到点L,∵ILPI =tan∠DPI=tan∠PAG=PGPA=43,∴IL=43PI=43×52=103,∴点Q经过的路径长是103.5.(2023·江苏镇江·中考真题)【发现】如图1,有一张三角形纸片ABC,小宏做如下操作:(1)取AB,AC的中点D,E,在边BC上作MN=DE;(2)连接EM,分别过点D,N作DG⊥EM,NH⊥EM,垂足为G,H;(3)将四边形BDGM剪下,绕点D旋转180°至四边形ADPQ的位置,将四边形CEHN剪下,绕点E旋转180°至四边形AEST的位置;(4)延长PQ ,ST 交于点F .小宏发现并证明了以下几个结论是正确的: ①点Q ,A ,T 在一条直线上; ②四边形FPGS 是矩形; ③△FQT≌△HMN ;④四边形FPGS 与△ABC 的面积相等. 【任务1】请你对结论①进行证明.【任务2】如图2,在四边形ABCD 中,AD∥BC ,P ,Q 分别是AB ,CD 的中点,连接PQ .求证:PQ =12(AD +BC ). 【任务3】如图3,有一张四边形纸ABCD ,AD∥BC ,AD =2,BC =8,CD =9,sin∠DCB =45,小丽分别取AB ,CD 的中点P ,Q ,在边BC 上作MN =PQ ,连接MQ ,她仿照小宏的操作,将四边形ABCD 分割、拼成了矩形.若她拼成的矩形恰好是正方形,求BM 的长. 【思路点拨】(1)由旋转的性质得对应角相等,即∠ABC =∠QAD ,∠ACB =∠TAE ,由三角形内角和定理得∠ABC +∠BAC +∠ACB =180°,从而得∠QAD +∠BAC +∠TAE =180°,即Q ,A ,T 三点共线;(2)梯形中位线的证明问题常转化为三角形的中位线问题解决,连接AQ 并延长,交BC 的延长线于点E ,证明△ADQ≌△ECQ ,可得AQ =EQ ,AD =CE ,由三角形中位线定理得PQ =12BE =12(AD +BC );(3)过点D 作DR ⊥BC 于点R ,由DC =9,sin∠DCB =45得DR =365,从而得S 梯形ABCD =12×(2+8)×365=36,由【发现】得S 正方形GEST =S 梯形ABCD ,则GE =6,PE =3,由【任务2】的结论得PQ =5,由勾股定理得EQ =4.过点Q 作QH ⊥BC ,垂足为H .由CQ=92及sin∠DCB =45得QH =185,从而得CH =2710,证明△PEQ∽△QHM ,得HM =245,从而得BM =BC −HM −CH =12.【解题过程】 [任务1]证法1:由旋转得,∠QAD =∠ABC ,∠TAE =∠ACB . 在△ABC 中,∠ABC +∠BAC +∠ACB =180°, ∴∠QAD +∠BAC +∠TAE =180°, ∴点Q ,A ,T 在一条直线上.证法2:由旋转得,∠QAD =∠ABC ,∠TAE =∠ACB .∴AQ∥BC,AT∥BC.∴点Q,A,T在一条直线上.[任务2]证明:如图1,连接AQ并延长,交BC的延长线于点E.∵AD∥BC,∴∠DAQ=∠E.∵Q是CD的中点,∴DQ=CQ.在△ADQ和△ECQ中,{∠DAQ=∠E,∠AQD=∠EQC, DQ=CQ,∴△ADQ≌△ECQ(AAS).∴AQ=EQ,AD=CE.又∵P是AB的中点,∴AP=BP,∴PQ是△ABE的中位线,∴PQ=12BE=12(CE+BC),∴PQ=12(AD+BC).[任务3]的方法画出示意图如图2所示.由【任务2】可得PQ ∥BC ,PQ =12(AD +BC )=12×(2+8)=5. 过点D 作DR ⊥BC ,垂足为R . 在Rt △DCR 中,sin∠DCB =DR CD ,∴DR =CD ⋅sin∠DCB =9×45=365.∴S 正方形GEST =S 梯形ABCD =12×(2+8)×365=36,∴GE =6,PE =3.在Rt △PEQ 中,由勾股定理得EQ =√PQ 2−PE 2= √52−32=4. 过点Q 作QH ⊥BC ,垂足为H . ∵Q 是CD 的中点, ∴CQ =12CD =12×9=92.在Rt △QHC 中,sin∠DCB =QH CQ,∴QH =CQ ⋅sin∠DCB =92×45=185.又由勾股定理得CH =√CQ 2−QH 2=√(92)2−(185)2=2710.由PQ ∥BC ,得∠PQE =∠QMH . 又∵∠PEQ =∠QHM =90°, ∴△PEQ∽△QHM . ∴PE QH =EQ HM ,即3185=4HM ,∴HM =245.∴BM =BC −HM −CH =8−245−2710=12.6.(23·24九年级上·江苏无锡·阶段练习)【基本图形】(1)如图1,在矩形ABCD 中,CE ⊥BD 于点H ,交AD于点E.求证:CEBD =CDBC;【类比探究】(2)如图2,在四边形ABCD中,∠A=∠B=90°,AD=4,BC=9,CD=7.E是边AB上的一动点,过点C作CG⊥ED,交ED的延长线于点G,交AD的延长线于点F.试探究CFDE是否为定值?若是,请求出CFDE的值;若不是,请说明理由;【拓展延伸】(3)如图3,在Rt△ABD中,∠BAD=90°,将△ABD沿BD翻折得到△CBD,点E,F分别在边AB,AD上,连接CF,DE.若∠AED=∠AFC,且CFDE =35,则ADAB的值为______(直接写出结果).【思路点拨】(1)证明△CED∽△BDC,利用相似三角形的性质即可证明CEBD =CDBC;(2)过点C作CH⊥AF交AF延长线于点H,首先证明四边形ABCH为矩形,易得AB=CH,BC=AH,再证明△DEA∽△CFH,由相似三角形的性质可得CFDE =CHAD,然好由勾股定理解得CH=2√6,即可证明CFDE=CHAD=√62,即可获得答案;(3)过点C作CG⊥AD于点G,交BD于点H,作HM⊥CD于点M,证明CG∥AB,易得∠ABD=∠GHD,再证明△AED∽△GFC,由相似三角形的性质可得CFDE =CGAD=35,由折叠的性质可得AD=CD,∠ADB=∠CDB,设GC=3x,则AD=CD=5x,由勾股定理可得DG=√CD2−CG2=4x,然后由角平分线的性质定理可得HG=HM,结合S△HDG+S△CHD=S△CDG,可求得HG=4x3,然后可推导tan∠ABD=tan∠DHG=DGHG=3,即可获得ADAB得值.【解题过程】解:(1)∵四边形ABCD为矩形,∴∠ADC=∠DCB=90°,∵CE⊥BD,∴∠DBC+∠BCH=∠BCH+∠ECD=90°,∴∠DBC=∠ECD,∴△CED∽△BDC,∴CE BD =CDBC;(2)CFDE是否为定值,如下图,过点C作CH⊥AF交AF延长线于点H,∴∠A=∠B=∠H=90°,∴四边形ABCH为矩形,∴AB=CH,BC=AH,∵∠GFD=∠HFC,∠GDF=∠ADE,又∵∠GFD+∠GDF=∠HFC+∠HCF,∴∠ADE=∠HCF,∵∠A=∠H,∴△DEA∽△CFH,∴CF DE =CHAD,∵BC=9,CD=7,AD=4,∴DH=AH−AD=BC−AD=5,∴CH=√CD2−DH2=2√6,∴CF DE =CHAD=2√64=√62,∴CF DE 为定值√62;(3)如下图,过点C作CG⊥AD于点G,交BD于点H,作HM⊥CD于点M,∴∠CGF=∠A=90°,∴CG∥AB,∴∠ABD=∠GHD,∵∠AED=∠AFC,∠CGF=∠A,∴△AED∽△GFC,∴CF DE =CGAD=35,∵将△ABD沿BD翻折得到△CBD,∴AD=CD,∠ADB=∠CDB,设GC=3x,则AD=CD=5x,∴DG=√CD2−CG2=4x,∵HG⊥AD,HM⊥CD,∠ADB=∠CDB,∴HG=HM,∵S△HDG+S△CHD=S△CDG,即12×4x×HG+12×5x×HM=12×3x×4x,∴HG=4x3,∴tan∠ABD=tan∠DHG=DGHG =4x43x=3,∴ADAB=3.7.(21·22九年级下·辽宁盘锦·期中)如图,在矩形ABCD中,AB=3,BC=5,BE平分∠ABC交AD于点E.连接CE,点F是BE上一动点,过点F作FG∥CE交BC于点G.将△BFG绕点B旋转得到△BF′G′,(1)如图1,连接CG′,EF′,求证:△BEF′∽△BCG′;(2)当点G′恰好落在直线AE上时,若BF=3,求EG′的值;(3)如图3,连接GG′,当GG′与BE交于点F时,猜想FG与FG′的数量关系,并证明.【思路点拨】(1)平行得到△BFG∽△BEC,得到BFBE =BGBC,旋转得到BF=BF′,BG=BG′,∠GBF=∠G′BF′,进而得到BF′BE =BG′BC,∠FBF′=∠GBG′,即可得证;(2)分点G′在线段AE和在线段EA的延长线上,两种情况进行讨论求解;(3)过点F作FH⊥BG于点H,过点B作BP⊥GG′于点P,易得BH=FH,根据矩形的性质,平行线的性质,得到∠FGB=∠ECB=∠CED,进而得到tan∠FGB=tan∠CED=CDDE =32,cos∠FGB=cos∠CED=EDCE=2√1313,推出tan∠FGB=FHGH =32,cos∠FGB=PGBG=2√1313,设FH=3a,HG=2a,分别求出FG,FG′,即可得解.【解题过程】(1)证明:∵FG∥CE,∴△BFG∽△BEC,∴BF BE =BGBC,∵将△BFG绕点B旋转得到△BF′G′,∴BF=BF′,BG=BG′,∠GBF=∠G′BF′,∴BF′BE =BG′BC,∠FBF′=∠GBG′,∴BF′BG′=BEBC,∴△BEF′∽△BCG′;(2)解:∵矩形ABCD中,AB=3,BC=5,∴AD∥BC,∠A=∠ABC=90°,∴∠AEB=∠EBC,∵BE 平分∠ABC , ∴∠ABE =∠EBC =45°, ∴∠ABE =∠AEB =45°, ∴AE =AB =3,BE =3√2, 由(1)知:BFBE =BGBC ,即:3√2=BG 5,∴BG =5√22, ∴BG ′=BG =5√22, ①当点G ′在线段AE 上时,在Rt △BAG ′中,AG ′=√G ′B 2−AB 2=√142, ∴EG ′=AE −AG ′=3−√142; ②当点G ′在线段EA 的延长线上时,在Rt △BAG ′中,AG ′=√G ′B 2−AB 2=√142, ∴EG ′=AE +AG ′=3+√142;综上:EG ′=3−√142或3+√142; (3)FGFG ′=137;证明如下:过点F 作FH ⊥BG 于点H ,过点B 作BP ⊥GG ′于点P ,由(2)知,∠FBC =45°,AE =3, ∴BH =FH , ∵矩形ABCD ,∴AD ∥BC,AD =BC =5,CD =AB =3,∠D =90°, ∴DE =5−3=2,∠CED =∠ECB ,∴CE=√DE2+CD2=√13,∵FG∥CE,∴∠FGB=∠ECB=∠CED,∴tan∠FGB=tan∠CED=CDDE =32,cos∠FGB=cos∠CED=EDCE=2√1313,∴tan∠FGB=FHGH =32,cos∠FGB=PGBG=2√1313,设FH=3a,HG=2a,则:FG=√FH2+HG2=√13a,BH=FH=3a,∴BG=BH+HG=5a,∴PG=10√1313a,∵旋转,∴BG=BG′,∴GG′=2PG=20√1313a,∴FG′=GG′−FG=7√1313a,∴FG FG′=√13a7√13a13=137.8.(21·22下·沧州·二模)如图1,在一平面内,线段AB=20,M,N是线段AB上两点,且AM=BN=2,点C从点M开始向终点N AC,BC为边在线段AB同侧作等边△ACD和等边△BCE,设AC=x.(1)直接写出CD和BE位置关系:______;(2)如图2,连接AE,BD,求证:AE=BD;(3)如图3,点G,点H分别是CD,BE的中点,①求当x为何值时,线段GH取得最小值?最小值是多少?②当线段GH取得最小值此时,求△ACE的面积;(4)如图4,设DE的中点为P,则点P移动路径的长为______.【思路点拨】(1)根据平行线的判定即可;(2)证明△ACE≌△DCB(SAS)即可;(3)①连接AG并延长交直线BE于F,连接CH、CF,先证明四边形CGFH是矩形,得FC=GH,当FC⊥AB 时GH最小即可,②过E作EK⊥AB于K,∠ECB=60°,再根据三角函数及三角形的面积公式即可;(4)以点A为原点,直线AB为x轴,过点A垂直于直线AB的直线为y轴,建立平面直角坐标系,过点D作DG⊥AC于点G,过点E作EH⊥AC于点H,再表示出点P的坐标即可.【解题过程】(1)解:在等边△ACD和等边△BCE中,∴∠ACD=∠B=60°,∴CD∥BE.故答案为:平行.(2)解:∵△ACD和△BCE是等边三角形,∴AC=CD,CE=CB,∠ACD=∠BCE=60°,∴∠ACD+∠DCE=∠BCE+∠DCE,即:∠ACE=∠DCB,∴△ACE≌△DCB(SAS),∴AE=BD;(3)解:①连接AG并延长交直线BE于F,连接CH、CF,∵△ACD和△BCE是等边三角形,∴∠ACD=∠B=60°,∴CD∥BE,∴∠DCH=∠CHB,∵点G,点H分别是CD,BE的中点,∴∠AGC=∠CHE=∠CHB=90°,∠BAF=30°∴∠CGF=∠AGC=∠DCH=90°,∴∠CGF=∠CHE=∠DCH=90°,∴四边形CGFH是矩形,∴FC=GH,∴当FC⊥AB时GH最小,在△ABF中,AF=ABsin60°=在△AFC中,AC=AFcos30°=15,FC=AF⋅sin30°=5√3,∵2≤AC≤18,∴当x=15时,线段GH取得最小值,最小值是5√3;②过E作EK⊥AB于K,∠ECB=60°,在△CEK中,∠ECB=60°,CB=AB−AC=5,EK=CE⋅sin60°=5√3,2∴S △ACE =12⋅AC ⋅EK =754√3;(4)解:如图,以点A 为原点,直线AB 为x 轴,过点A 垂直于直线AB 的直线为y 轴,建立平面直角坐标系,过点D 作DG ⊥AC 于点G ,过点E 作EH ⊥AC 于点H ,则M(2,0),B(20,0),N(18,0),C(x,0), AC =x,BC =20−x ,∵△ACD,△BCE 均为等边三角形,∴∠DAC =∠ECH =60°,AG =12AC =x2,CH =12BC =20−x 2,∴AH =AC +CH =x +20−x 2=x2+10,∴DG =OG ⋅tan60°=x 2×√3=√3x2,EH =CH ⋅tan60°=(10−x2)×√3=−√3x2+10√3,∴D(x 2,√3x 2),E(x2+10,−√3x 2+10√3),则DE 的中点为P 的坐标为P(x2+5,5√3)(2≤x ≤18), ∵P 的纵坐标为定值,即点P 在平行于x 轴的直线上运动, x =2时,P 1(6,5√3), x =18时,P 2(14,5√3),点P 移动路径的长为P 1P 2=14−6=8, 故答案为:8.9.(23·24九年级上·吉林长春·阶段练习)如图①,在▱ABCD 中,∠A =60°,AB =4,AD =6,点E 在边BC 上,且BE =2,动点P 从点E 出发,沿折线EB −BA −AD 以每秒2个单位长度的速度运动.作∠PEQ =60°,EQ 交边AD 或边DC 于点Q ,连接PQ .当点Q 与点C 重合时,点P 停止运动.设点P 的运动时间为t 秒.(t >0)(1)当点P和点B重合时,线段PQ的长为______;(2)当点Q和点D重合时,求tan∠PQE.(3)如图②,当点Q在边DC上运动时,证明:PD=CQ.(4)作点E关于直线PQ的对称点F,连接PF、QF,当四边形EPFQ和▱ABCD重叠部分图形为轴对称四边形时,直接写出t的值.【思路点拨】(1)首先证明四边形ABEQ是平行四边形,取QE中点M,连接BM,则△AQP是直角三角形,利用勾股定理解题即可;(2),过点D作DN⊥BC于点N,在Rt△QNC中,CN=2,EN=2,在Rt△QCN中,利用勾股定理求出QN= 2√3,然后根据tan∠PQE=tan∠QEC=DN解题即可;EN(3)连接DE,过点D作DG⊥BC于点G,利用ASA证明△PED≌△QEC解题即可;(4)当Q点位于CD中点时.四边形EPFQ与ABCD重叠部分四边形为轴对称四边形,根据题意求出t的值.【解题过程】(1))解: ∵四边形ABCD是平行四边形,∴AQ∥BE,∴∠A+∠ABC=180°,∵∠A=60°,∴∠ABC=120°,又∵∠PEQ=60°,∴∠ABE+∠PEQ=180°,∴AB∥QE,∴四边形ABEQ是平行四边形.∴QE=AB=4,AQ=BE=2,取QE中点M,连接BM,∴QM=ME=2,又∵∠PEQ=60°,∴△BME是等边三角形,∴QM=BM=ME,∴∠MBE=60°,∴∠MQP=∠QPM=30°,∴∠QPE=90°,∵AQ∥BE,∴∠AQP=90°,∴△AQP是直角三角形,∴在Rt△AQP中QP=√AB²−AQ²=√42−22=2√3,∴当P点和B点重合时,PQ的长为2故答案为:2√3;(2))解:∴四边形ABCD是平行四边形. ∴AD∥BC,∠A=∠C=60°∴∠PQE=∠QEC∵BC=AD=6,BE=2.∴CE=4如图2,过点D作DN⊥BC于点N,在Rt△QNC中,∠QNC=90°,∠C=60°∴∠NQC=30°∴CN=12CD=12×4=2,∴EN=EC−CN=4−2=2∴在Rt△QCN中,∴QN=√CQ²−CN²=√42−22=2√3,∴tan∠PQE=tan∠QEC=DNEN =2√32=√3,∴当Q点和D点重合时,tan∠PQE=√3;(3)证明:连接DE,过点D作DG⊥BC于点G,如图3由(2)知EC=CD=4,∠C=60°,∴△CDE是等边三角形∴DE=EC=CD=4又∵四边形ABCD是平行四边形.∴∠ADC=120°又∵∠PEQ=60°,∠DEC=∠C=∠EDC=60°,∴∠PED+∠DEQ=∠QEC+∠DEQ,∴∠PDE=∠QCE=60°,∠PED=∠QEC,∴△PED≌△QEC(ASA),∴PD=QC,(4)解:由题意得,当Q点位于CD中点时.四边形EPFQ与ABCD重叠部分四边形为轴对称四边形.理由如下:如图4,连接DE,由(3)知△CDE是等边三角形,∵Q点为CD的中点,∴QD=QC=1CD=22∴QE⊥CD,∴∠CQE=90°,又∵∠C=60°∴∠CEQ=30°∴∠PEQ=60°∴∠PEC=90°∴PE⊥BC,又∵AD∥BC,∴PE⊥AD∴DE=4,PE=2√3,PD=2,∴PD=QD,∴Rt△PDE≌Pt△QDE(HL).∴四边形EPFQ与ABCD的重叠部分为EPDQ为轴对称四边形,∴P点的运动轨迹为EB+BA+AP=2+4+4=10,∵P点的速度为2个单位长度每秒,∴2t=10∴t=5∴t的值为5.10.(21·22·武汉·模拟预测)问题背景:如图(1),在四边形ABCD中,P是BC上一点,∠ABC=∠BCD=∠APD,求证:△ABP∽△PCD;尝试运用:如图(2),D,E,F三点分别在等边△ABC边BC,AB,AC上,∠ABC=∠EDF,BD=CD.已知BC=4,设EF=x,△DEF的面积为y,求y关于x的函数关系式(不求自变量x的取值范围);拓展创新:如图(3),D是等边△ABC边BC上一点,连接AD,E是AD上一点,CD=2BD,∠BEC=120°,请用一个等式直接写出BE与CE的数量关系.【思路点拨】问题背景:如图(1),根据三角形相似的判定定理:两角对应相等的两个三角形相似证明即可;尝试运用:过点D分别作DG⊥AB,DH⊥AC,垂足分别为G,H,如图所示,D,E,F三点分别在等边ΔABC边BC,AB,AC上,∠ABC=∠EDF,BD=CD.已知BC=4,设EF=x,ΔDEF的面积为y,根据相似三角形判定与性质,再结合解直角三角形即可得到答案;拓展创新:将ΔBCE绕点C顺时针旋转60°,作DF∥CE,如图所示,可得DF∥CE∥AE′,证得△BDF∽△BCE,设BE=m,EC=x,可得EF的长,由△DFE∽△AE′E,利用相似三角形的性质可得结果.【解题过程】问题背景:证明:如图所示:∵∠ABC=∠APD,∴∠BAP+∠BPA=∠CPD+∠BPA,∴∠BAP=∠CPD,又∵∠ABP=∠PCD,∴△ABP∽△PCD;尝试运用:解:过点D分别作DG⊥AB,DH⊥AC,垂足分别为G,H,如图所示:∵△ABC是等边三角形,∠ABC=∠EDF,∴∠ABC=∠EDF=∠C=60°,由(1)知△BDE∽△CFD,∴BECD =DEFD,∵BD=CD,∴BEBD =DEFD,又∵∠ABC=∠EDF,∴△BDE∽△DFE,∴∠BED=∠DEF,∴DG=DH,在Rt△BDG中,∠ABC=60°,BD=2,则sinB=DGBD =DG2,即DG=2×√32=√3,∴DH=√3,∴y=√32x;拓展创新:解:CE=√2BE.将△BCE绕点C顺时针旋转60°,作DF∥CE,如图所示:∵将△BCE绕点C顺时针旋转60°得到△ACE′,∴BE=AE′,∠AE′C=120°,CE=CE′,∵DF∥CE,∠BEC=120°,∴∠CEE′=60°,∴△CEE′为等边三角形,∴∠CE′E=60°,EE′=CE,∴∠AE′B=60°,∴CE∥AE′,∵DF∥CE,∴DF∥AE′,∴△BDF∽△BCE,∴BFBE =DFCE=BDBC=13,设BE=m,∴BF=13m,EF=23m,设CE=x,∴DF=x3,∵△DFE∽△AE′E,∴EFEE′=DFAE′,∴23mx=13xm,∴x2=2m2,∵x>0,m>0,∴x=√2m,∴EC=√2BE.11.(22·23·信阳·三模)综合与实践【问题情境】在△ABC中,AB=AC,∠BAC=α,点D为BC边上一动点(不与B,C重合),连接AD,以AD为始边顺时针作∠ADE=β(α+β=180°),DF平分∠ADE.【初步探究】(1)如图1,DE与AC的延长线交于点E,若α=60°,β=120°,CD=2BD,则BDCF的值为_____,∠CDF与∠E的数量关系是_________.【类比探究】(2)如图2,DE与AC的延长线交于点E,若α=β=90°,CD=2BD,求出BDCF的值及∠CDF与∠E的数量关系.【拓展应用】(3)如图3,DE与AC交于点E,α=β=90°,∠CAD=15°,AB=6√2,将△ADF绕点在平面内自由旋转,当B,A,F三点共线时,直接写出AFBD的值.【思路点拨】(1)可证得△ABD∽△DCF,从而BDCF =ABCD,进而得出BDCF=32,由∠BAD+∠DAE=60°可得出∠CDF=∠E;(2)可证得△ABD∽△DCF,从而得出BDCF =ABCD,进而得出BDCF=3√24,根据∠BAD+∠DAE=90°可推出∠CDF=∠E;(3)作AH⊥BC于H,作AR⊥DF,交DF的延长线于R,解直角三角形ABH求得AH=6,解Rt△ADH求得AD的值,解Rt△ADR求得AR和BR的值,解Rt△ARF求得AF和RF,进而求得AF,当F在BA的延长线上时,解Rt△DFX求得FX和DX的值,解Rt△ADX求得BD,进一步得出结果;当F在AB上时,作DV⊥AB于V,同样的方法得出结果.【解题过程】解:(1)∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAD+∠ADB=120°,∵∠ADF=12∠ADE=60°,∴∠DB+∠CDE=120°,∴∠BAD=∠CDF,∴△ABD∽△DCF,∴BDCF =ABCD,∵CD=2BD,∴AB=BC=32CD,∴BDCF =32,∵∠BAD+∠DAE=60°,∴∠CDF+60°−∠E=60°,∴∠CDF=∠E,故答案为:32,相等;(2)∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,∴∠BAD+∠ADB=135°,∵∠ADF=12∠ADE=45°,∴∠DB+∠CDE=135°,∴∠BAD=∠CDF,∴△ABD∽△DCF,∴BDCF =ABCD,∵CD=2BD,∴BC=32CD,∵AB=√22BC,∴BDCF =3√24,∵∠BAD+∠DAE=90°,∴∠CDF+90°−∠E=90°,∴∠CDF=∠E;(3)如图1,作AH⊥BC于H,作AR⊥DF,交DF的延长线于R,∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,BH=CH,∴AH=√22AB=6,在Rt△ADH中,∠ADH=∠DAC+∠C=60°,AH=6,∴AD=6 sin60°=4√3,在Rt△ADR中,AD=4√3,∠ADF=45°,∴AR=DR=√22AD=2√6,在Rt△ARF中,AR=2√6,∠AFR=∠DAC+∠ADF=15°+45°=60°,∴AF=2√6 sin60°=√6√32=4√2,RF=2√6=√6√3=2√2,∴AF=2FR=DF=DR−RF=2√6−2√2,如图2,当F在BA的延长线上时,作DX⊥AF于X,在Rt△DFX中,DF=2√6−2√2,∠DFX=60°,∴FX=12DF=√6−√2,DX=DF⋅sin60°=3√2−√6,在Rt△ADX中,BX=AB+AF+FX=6√2+4√2+√6−√2=9√2+√6,DX=3√2−√6,∴BD=√(9√2+√6)2+(3√2−√6)2=2√48+6√3,∴ AFBD =√22√48+6√3=√24+3√324+3√3,如图3,当F在AB上时,作DV⊥AB于V,由上知:FV=√6−√2,DV=3√2−√6,∴BV=AB−AF−FV=6√2−4√2−(√6−√2)=3√2−√6,∴BD=√2BV=√2(3√2−√6),∴AFBD =√2√2(3√2−√6)=3√2+√63,综上所述: AFBD =√24+3√324+3√3或3√2+√63.12.(23·24九年级上·辽宁沈阳·阶段练习)在平面直角坐标系中,已知点A(0,6),点B在线段AO上,且AB=2BO,若点P在x轴的正半轴上,连接BP,过点P作PQ⊥PB.(1)如图1,点E是射线PQ上一点,过点E作EC⊥x轴,垂足为点C.①点B的坐标__________.②求证:△BOP∼△PCE;(2)在(1)的条件下,如图2,若点C坐标为(8,0).过点A作DA⊥y轴,且和CE的延长线交于点D.若点C关于直线PQ的对称点C′正好落在线段AD上.连接PC,则点P的坐标__________.(3)如图3,若∠BPO=60°,点E在直线PQ上,EC⊥x轴,垂足为点C.若以点E,P,C为顶点的三角形和△BPE相似,请直接写出点E的坐标__________.【思路点拨】(1)①根据OA=6,AB=2OB求解即可.②根据两角对应相等,两三角形相似证明即可.(2)如图2中, 过点C′作C′G⊥OC于G, 延长PB交DA的延长线于F.设OP=x,则PC=4−x.在Rt△EBC′中,根据C′P2=PG2+C′G2,构建方程求解即可.(3)如图3中, 由题意∠PBQ=∠ECP=90°, 分四种情形, 当∠PE1B=30°时, 以点E,P,C为顶点的三角形和△BPE相似, 当∠PBE2=30°时, 以点E,P,C为顶点的三角形和△BPE相似, 当∠PE3B=30°时, 以点E,P,C 为顶点的三角形和△BPE相似,当∠PBE4=30°时, 以点E,P,C为顶点的三角形和△BPE相似, 分别求解即可.【解题过程】(1)①∵A(0,6),∴OA=6,∵AB=2BO,∴AB=4, OB=2,∴B(0,1);故答案为:(0,1)②证明: 如图1中,∵PQ⊥PB,EC⊥OC,∴∠ECP=∠BPE=∠POB=90°,∴∠OPB+∠EPC=90°,∠EPC+∠CEP=90°,∴∠OPB=∠PEC,∴△BOP∽△PCE.(2)如图2中, 过点C′作C′G⊥OC于G, 延长PB交DA的延长线于F.设OP=x, 则PC=4−x.∵AF∥OP,∴∠F=∠BPO,∠FAB=∠BOP,∴△FBA∽△PBO,∴FAOP =ABOB=2,∴AF=2x,∵∠EPC+∠OPB=90°,∠EPC′+∠C′PF=90°∵∠EPC=∠EPC′,∴∠C′PF=∠OPB,∵∠OPB=∠F,∴∠F=∠C′PF,∴C′F=C′P=PC=8−x,∴AC′=8−3x,∴C′D=3x,∴PG=PC−CG=8−4x,在Rt△EBC′中,∵C′P2=PG2+C′G2,∴(8−x)2=(8−4x)2+62,解得x=65或x=2,∴P(65,0) 或(2,0).故答案为:(65,0) 或(2,0);(3)如图3中,∵OB=2,∠POB=90°,∠OPB=60°,∴∠PBO=30°,∴OP=OB⋅tan30°=2√33,PB=2OP=4√33,∵∠BPQ=90°,∴∠QPC=30°,∵∠PBQ=∠ECP=90°,∴当∠PE1B=30°时, 以点E,P,C为顶点的三角形和△BPE相似,∴PE1=√3PB=4,∴E1C=12PE1=2,PC=2√3∴OC=8√33,∴E1(8√33,2),当∠PBE2=30°时, 以点E,P,C为顶点的三角形和△BPE相似,,同法可得E2(4√33,23).当∠PE3B=30°时, 以点E,P,C为顶点的三角形和△BPE相似,同法可得E3(−4√33,−2).当∠PBE4=30°时, 以点E,P,C为顶点的三角形和△BPE相似,同法可得E4(0,−23).综上所述,满足条件的点E的坐标为(8√33,2)或(4√33,23)或(−4√33,−2)或(0,−23).13.(23·24·全国·专题练习)(1)如图①,在矩形ABCD的AB边上取一点E,将△ADE沿DE翻折,使点A落在BC上A′处,若AB=6,BC=10,求AEEB的值;(2)如图②,在矩形ABCD的BC边上取一点E,将四边形ABED沿DE翻折,使点B落在DC的延长线上B′处,若BC⋅CE=24,AB=6,求BE的值;(3)如图③,在△ABC中,∠BAC=45°,AD⊥BC,垂足为点D,AD=10,AE=6,过点E作EF⊥AD交AC于点F,连接DF,且满足∠DFE=2∠DAC,直接写出BD+53EF的值.【思路点拨】(1)由矩形性质和翻折性质、结合勾股定理求得A′B=2,设AE=A′E=x则BE=AB−AE=6−x,Rt△A′BE中利用勾股定理求得x=103,则AE=103,BE=6−103=83,进而求解即可;(2)由矩形的性质和翻折性质得到∠EBC=∠BDA,证明△EBC∽△BDA,利用相似三角形的性质求得BC= 4,则BD=10,在Rt△ABD中,利用勾股定理求得AD=8,进而求得BC=8,CE=3可求解;(3)证明△AEF∽△ADC得到CD=53EF,则BD+53EF=BD+CD=BC;设EF=3k,CD=5k,过点D作DH⊥AC于H,证明△CHD≌△FHD(ASA)得到DF=CD=5k,在Rt△EFD中,由勾股定理解得k=1,进而可求得AC=5√5.过B作BG⊥AC于G,证明∠CBG=∠CDH=∠DAC,则sin∠CBG=sin∠DAC=√55,cos∠CBG=cos∠DAC=2√55,再证明AG=BG,在Rt△BCG中利用锐角三角函数和AG+CG=BG+CG= AC,求得BC,即可求解.【解题过程】解:(1)∵四边形ABCD是矩形,∴AD=BC=10,CD=AB=6,∠A=∠B=∠C=90°,由翻折性质得AD=A′D=10,AE=A′E,在Rt△A′CD中,A′C=√A′D2−CD2=√102−62=8,∴A′B=BC−AC=2,。
正弦定理余弦定理综合应用解三角形经典例题(学生)
1, b
2 , cosC
1
.
4
(Ⅰ)求 ABC 的周长;(Ⅱ)求 cos A C 的值 .
【解题思路】本小题主要考查三角函数的基本公式和余弦定理,同时考查基本运算能力
【注】常利用到的三角公式两角和与差的正弦、余弦、正切公式及倍角公式:
sin
sin cos cos sin 令
sin 2 2sin cos
【解题思路】判定三角形形状时,一般考虑两个方向进行变形:
(1)一个方向是边,走代数变形之路,通常是正、余
弦定理结合使用; ( 2)另一个方向是角,走三角变形之路 .通常是运用正弦定理
【解析】
.
【思考】判断三角形形状时一般从角入手,利用三角形内角和定理,实施关于三角形内角的一些变形公式
.
【例 9】 . 在△ ABC中,在
tan 2
2 tan 1 tan2
【例 4】( 2010 重庆文数) 设 ABC 的内角 A、 B、 C 的对边长分别为 a 、 b 、 c , 且 3 b 2 +3 c2 -3 a2 =4 2 b c .
2sin( A )sin( B C )
( Ⅰ ) 求 sinA 的值; ( Ⅱ ) 求
4
【例 6】( 2009 全国卷Ⅰ理)在 ABC 中,内角 A、 B、 C 的对边长分别为 a 、 b 、 c ,已知 a 2 c2 2b ,且 sin A cosC 3cos Asin C , 求 b
【解题思路】对已知条件 (1) a 2 c 2 2b 左侧是二次的右侧是一次的 , 可以考虑余弦定理;而对已知条件 (2) sin AcosC 3cos A sin C , 化角化边都可以。
(边角转化的重要工具 )
正弦定理余弦定理综合应用_解三角形经典例题(老师)
222cos 2b c a A bc +-= 222c o s 2a c b B ac +-= 222c o s 2a b c C ab +-=二、方法归纳(1) (1)已知两角已知两角A 、B 与一边a ,由A +B +C =π及sin sin sin a b cA B C ==,可求出角C ,再求b 、c .(2) (2)已知两边已知两边b 、c 与其夹角A ,由a 22=b 22+c 22-2b c cosA ,求出a ,再由余弦定理,求出角B 、C .(3) (3)已知三边已知三边a 、b 、c,由余弦定理可求出角A 、B 、C .(4) (4)已知两边已知两边a 、b 及其中一边的对角A ,由正弦定理sin sin a bA B =,求出另一边b 的对角B ,由C =π-(A +B ),求出c ,再由sin sin a c A C =求出C ,而通过sin sin a bA B =求B 时,可能出一解,两解或无解的情况时,可能出一解,两解或无解的情况a =b sinA 有一解有一解 b >a >b sinA 有两解有两解 a ≥b 有一解有一解 a >b 有一解三、课堂精讲例题问题一:利用正弦定理解三角形 【例1】在ABC D 中,若5b =,4B pÐ=,1sin 3A =,则a = .523一、知识梳理1.内角和定理:在ABC D 中,A B C ++=p ;sin()A B +=sin C ;cos()A B +=cos C -面积公式:111sin sin sin 222ABCSab Cbc Aac BD ===在三角形中大边对大角,反之亦然. 2.正弦定理:在一个三角形中,各边和它的所各边和它的所对角对角的正弦的比相等. 形式一:RCc Bb Aa2sin sin sin ===(解三角形的重要工具) 形式二:ïîïíì===CR c B R b AR a sin 2sin 2sin 2 (边角转化的重要工具) 形式三:::sin :sin :sin a b c A B C = 形式四:sin ,sin ,sin 222abc A B C RRR ===3.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角夹角的余弦的积的两倍.. 形式一:2222cos a b c bc A =+- 2222c o s b c a c a B =+- 2222cos c a b ab C =+-(解三角形的重要工具) 形式二:sinA=b B a sin =245sin 3°=23, 则A 为6060°或°或120120°°.①当A=60A=60°时,°时,°时,C=180C=180C=180°°-(A+B)=75-(A+B)=75°°,c=B Cb sin sin =°°45sin 75sin 2=°°+°45sin )3045sin(2=226+.②当A=120A=120°时,°时,°时,C=180C=180C=180°°-(A+B)=15-(A+B)=15°°,c=B C b sin sin =°°45sin 15sin 2=°°-°45sin )3045sin(2=226-. 故在△故在△ABC ABC 中,中,A=60A=60A=60°°,C=75,C=75°°,c=226+或A=120A=120°°,C=15,C=15°°, c =226-. 【思考】从所得到式子看,为什么会有两解:sinA 只有2x p=一解。
2024届新高考数学复习:专项(解三角形的综合运用大题)历年好题练习(附答案)
2024届新高考数学复习:专项(解三角形的综合运用大题)历年好题练习1.[2023ꞏ新课标Ⅰ卷]已知在△ABC中,A+B=3C,2sin (A-C)=sin B.(1)求sin A;(2)设AB=5,求AB边上的高.2.△ABC中,sin2A-sin2B-sin2C=sin B sin C.(1)求A;(2)若BC=3,求△ABC周长的最大值.3.[2023ꞏ新课标Ⅱ卷]记△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC面积为3,D为BC的中点,且AD=1.(1)若∠ADC=π3,求tan B;(2)若b2+c2=8,求b,c.4.[2022ꞏ新高考Ⅰ卷,18]记△ABC的内角A,B,C的对边分别为a,b,c,已知cos A 1+sin A=sin 2B1+cos 2B.(1)若C=2π3,求B;(2)求a2+b2c2的最小值.5.[2023ꞏ全国乙卷(理)]在△ABC 中,已知∠BAC =120°,AB =2,AC =1. (1)求sin ∠ABC ;(2)若D 为BC 上一点,且∠BAD =90°,求△ADC 的面积.6.[2023ꞏ河北石家庄模拟]在①cos C =217 ,②a sin C =c cos ⎝⎛⎭⎫A -π6 ,这两个条件中任选一个,补充在下面问题中的横线处,并完成解答.问题:△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,B =π3 ,D 是边BC 上一点,BD =5,AD =7,且________,试判断CD 和BD 的大小关系________.注:如果选择多个条件分别解答,按第一个解答计分.7.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin B -sin C )2=sin 2A -sin B sin C . (1)求A ;(2)若2 a +b =2c ,求sin C .8.[2022ꞏ全国乙卷(理),17]记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin C sin (A -B )=sin B sin (C -A ).(1)证明:2a 2=b 2+c 2;(2)若a =5,cos A =2531 ,求△ABC 的周长.参考答案1.答案解析:方法一 (1)在△ABC 中,A +B =π-C ,因为A +B =3C ,所以3C =π-C ,所以C =π4 . 因为2sin (A -C )=sin B ,所以2sin (A -π4 )=sin (3π4 -A ),展开并整理得2 (sin A -cos A )=22 (cos A +sin A ), 得sin A =3cos A ,又sin 2A +cos 2A =1,且sin A >0,所以sin A =31010 .(2)由正弦定理BCsin A =AB sin C ,得BC =AB sin C ×sin A =522×31010 =35 ,由余弦定理AB 2=AC 2+BC 2-2AC ꞏBC cos C ,得52=AC 2+(35 )2-2AC ꞏ35 cos π4 , 整理得AC 2-310 AC +20=0, 解得AC =10 或AC =210 ,由(1)得,tan A =3>3 ,所以π3 <A <π2 ,又A +B =3π4 ,所以B >π4 ,即C <B ,所以AB <AC ,所以AC =210 ,设AB 边上的高为h ,则12 ×AB ×h =12 ×AC ×BC sin C ,即5h =210 ×35 ×22 ,解得h =6,所以AB 边上的高为6.方法二 (1)在△ABC 中,A +B =π-C ,因为A +B =3C ,所以3C =π-C ,所以C =π4 . 因为2sin (A -C )=sin B ,所以2sin (A -C )=sin [π-(A +C )]=sin (A +C ),所以2sin A cos C -2cos A sin C =sin A cos C +cos A sin C , 所以sin A cos C =3cos A sin C , 易得cos A cos C ≠0,所以tan A =3tan C =3tan π4 =3,又sin A >0,所以sin A =332+12 =31010 . (2)由(1)知sin A =31010 ,tan A =3>0,所以A 为锐角,所以cos A =10,所以sin B =sin (3π4 -A )=22 (cos A +sin A )=22 ×(1010 +31010 )=255 ,由正弦定理AC sin B =ABsin C ,得AC =AB ꞏsin Bsin C =5×25522=210 ,故AB 边上的高为AC ×sin A =210 ×31010 =6.2.答案解析:(1)由正弦定理和已知条件得BC 2-AC 2-AB 2=AC ꞏAB .① 由余弦定理得BC 2=AC 2+AB 2-2AC ꞏAB cos A .②由①②得cos A =-12 .因为0<A <π,所以A =2π3 .(2)由正弦定理及(1)得AC sin B =AB sin C =BCsin A =23 ,从而AC =23 sin B ,AB =23 sin (π-A -B )=3cos B -3 sin B .故BC +AC +AB =3+3 sin B +3cos B =3+23 sin ⎝⎛⎭⎫B +π3 . 又0<B <π3 ,所以当B =π6 时,△ABC 周长取得最大值3+23 . 3.答案解析:(1)因为D 为BC 的中点,所以S △ABC =2S △ADC =2×12 ×AD ×DC sin ∠ADC =2×12 ×1×DC ×32 =3 , 解得DC =2,所以BD =DC =2,a =4.因为∠ADC =π3 ,所以∠ADB =2π3 .在△ABD 中,由余弦定理,得c 2=AD 2+BD 2-2AD ꞏBD cos ∠ADB =1+4+2=7,所以c =7 .在△ADC 中,由余弦定理,得b 2=AD 2+DC 2-2AD ꞏDC ꞏcos ∠ADC =1+4-2=3,所以b =3 .在△ABC 中,由余弦定理,得cos B =c 2+a 2-b 22ac =7+16-32×4×7=5714 ,所以sin B =1-cos 2B =2114 .(2)因为D 为BC 的中点,所以BD =DC .因为∠ADB +∠ADC =π,所以cos ∠ADB =-cos ∠ADC ,则在△ABD 与△ADC 中,由余弦定理,得AD 2+BD 2-c 22AD ꞏBD =-AD 2+DC 2-b 22AD ꞏDC , 得1+BD 2-c 2=-(1+BD 2-b 2),所以2BD 2=b 2+c 2-2=6,所以BD =3 ,所以a =23 .在△ABC 中,由余弦定理,得cos ∠BAC =b 2+c 2-a 22bc =8-122bc =-2bc ,所以S △ABC =12 bc sin ∠BAC =12 bc 1-cos 2∠BAC=12 bc 1-⎝⎛⎭⎫-2bc 2=12 b 2c 2-4 =3 ,解得bc =4.则由⎩⎪⎨⎪⎧bc =4b 2+c 2=8 ,解得b =c =2. 4.答案解析:(1)由已知条件,得sin 2B +sin A sin 2B =cos A +cos A cos 2B .所以sin 2B =cos A +cos A cos 2B -sin A sin 2B =cos A +cos (A +2B )=cos [π-(B +C )]+cos [π-(B +C )+2B ]=-cos (B +C )+cos [π+(B -C )]=-2cos B cos C ,所以2sin B cos B =-2cos B cos C , 即(sin B +cos C )cos B =0.由已知条件,得1+cos 2B ≠0,则B ≠π2 ,所以cos B ≠0,所以sin B =-cos C =12 .又0<B <π3 ,所以B =π6 .(2)由(1)知sin B =-cos C >0,则B =C -π2 ,所以sin A =sin (B +C )=sin (2C -π2 )=-cos 2C .由正弦定理,得a 2+b 2c 2 =sin 2A +sin 2B sin 2C =cos 22C +cos 2Csin 2C =(1-2sin 2C )2+(1-sin 2C )sin 2C =2+4sin 4C -5sin 2C sin 2C=2sin 2C +4sin 2C -5≥22sin 2C ꞏ4sin 2C -5=42 -5,当且仅当sin 2C =22 时,等号成立,所以a 2+b 2c 2 的最小值为42 -5. 5.答案解析:(1)如图,由余弦定理得BC 2=AB 2+AC 2-2AB ꞏAC ꞏcos ∠BAC =22+12+2×2×1×12 =7,得BC =7 .方法一 由正弦定理ACsin ∠ABC =BC sin ∠BAC ,得sin ∠ABC =1×327=2114 .方法二 由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ꞏBC =4+7-12×2×7 =5714 , 所以sin ∠ABC =1-cos 2∠ABC =21 .(2)方法一 由sin ∠ABC =2114 ,得tan ∠ABC =35 ,又tan ∠ABC =DA AB =DA 2 ,所以DA =235 ,故△ADC 的面积为12 DA ꞏAC ꞏsin (120°-90°)=12 ×235 ×1×12 =3 .方法二 △ABC 的面积为12 AC ꞏAB ꞏsin ∠BAC =12 ×1×2×32 =32 ,S △ADC S △BAD=12AC ꞏAD ꞏsin ∠CAD12AB ꞏAD ꞏsin ∠BAD =sin 30°2×sin 90° =14 ,故△ADC 的面积为15 S △ABC =15 ×3 =3.6.答案解析:设AB =x ,在△ABD 中由余弦定理可得:49=x 2+25-2ꞏx ꞏ5ꞏcos π3 =x 2+25-5x , 即x 2-5x -24=0,解得x =8. 方案一 选条件①.由cos C =217 得sin C =277 , ∵A +B +C =π,∴sin A =sin (B +C )=32 ×217 +12 ×277 =5714 ,在△ABC 中由正弦定理可得:BC 5714 =8277,解得:BC =10,∴CD =BD =5. 方案二 选条件②.由正弦定理可得:a =2R sin A ,c =2R sin C ,代入条件a sin C =c cos ⎝⎛⎭⎫A -π6 得:sin A sin C =sin C ꞏ⎝⎛⎭⎫32cos A +12sin A =32 cos A sin C +12 sin A sin C ,∴12 sin A sin C =3cos A sin C ,因为A 为三角形内角,所以tan A =3 ,故A =π3 , 所以△ABC 为等边三角形,所以BC =8,∴CD =3,所以CD <BD .7.答案解析:(1)由已知得sin 2B +sin 2C -sin 2A =sin B sin C ,故由正弦定理得b 2+c 2-a 2=bc .由余弦定理得cos A =b 2+c 2-a 22bc =12 . 因为0°<A <180°,所以A =60°.(2)由(1)知B =120°-C ,由题设及正弦定理得2 sin A +sin (120°-C )=2sin C ,即62 +3 cos C +12 sin C =2sin C ,可得cos (C +60°)=-2.由于0°<C <120°,所以sin (C +60°)=22 ,故 sin C =sin (C +60°-60°)=sin (C +60°)cos 60°-cos (C +60°)sin 60°=6+2 .8.答案解析:(1)证明:∵sin C sin (A -B )=sin B sin (C -A ),∴sin C sin A cos B -sin C cos A sin B =sin B sin C cos A -sin B cos C sin A , ∴sin C sin A cos B =2sin B sin C cos A -sin B cos C sin A . 由正弦定理,得ac cos B =2bc cos A -ab cos C .由余弦定理,得a 2+c 2-b 22 =b 2+c 2-a 2-a 2+b 2-c 22. 整理,得2a 2=b 2+c 2.(2)由(1)知2a 2=b 2+c 2.又∵a =5,∴b 2+c 2=2a 2=50.由余弦定理,得a 2=b 2+c 2-2bc cos A ,即25=50-5031 bc ,∴bc =312 .∴b +c =b 2+c 2+2bc =50+31 =9, ∴a +b +c =14.故△ABC 的周长为14.。
2024年高考复习数学知识点+题型14+4类解三角形大题综合
题型144类解三角形大题综合(双正弦及双余弦、周长及面积类最值、边长和差、积商类最值、图形类解三角形综合)技法01双正弦及双余弦模型例1.(2023·江苏·高三专题练习)如图,在ABC 中,角,,A B C 的对边分别为,,a b c .已知()cos cos cos 0b c A a B a C +--=.(1)求角A ;(2)若D 为线段BC 延长线上一点,且,34CAD BD CD π∠==,求tan ACB ∠.(1)3A π=(2)设ACB α∠=,在ABD △和ACD 中,由正弦定理可得(),2sin sinsin sin 4343BD AD CD ADπππππαα==-⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭于是()2sin sin 3sin sin 434BD CD παπαπππ⎛⎫⋅- ⎪⋅-⎝⎭=⎛⎫+ ⎪⎝⎭,又3BD CD =,则()3sinsin 42sin sin 343ππαπππα-=⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭,,tan 9α∴=--;综上,3A π=,tan 9α=--(2022秋·安徽合肥·高三统考期末)1.在ABC 中,点D 在BC 上,满足AD =BC ,sin sin AD BAC AB B ∠=.(1)求证:AB ,AD ,AC 成等比数列;(2)若2BD DC =,求cos B .(2023·全国·模拟预测)2.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c,cos cos A C =D 是边BC 上的一点,且sin sin 32BAD CAD b c a∠∠+=.(1)求证:3aAD =;(2)若2CD BD =,求cos ADC ∠.(2023·湖南娄底·高三涟源市第一中学校联考阶段练习)3.在ABC 中,角,,A B C 的对边分别为,,a b c ,且满足2cos 2sin sin C Ca b b A=+.(1)求角B 的大小;(2)若8,b D =为边AC 的中点,且83BD =,求ABC 的面积.技法02周长及面积类最值问题例2-1.(2023·江苏南京·南京师大附中校考模拟预测)已知a 、b 、c 分别为ABC 的三个内角A 、B 、C 的对边长,2a =,且(2)(sin sin )b A B +-=(sin sin )c B C +.(1)求角A 的值;(2)求ABC面积的取值范围.(1)2π3A =.(2)由正弦定理,可知sin sin sin 3b c a B C A ===,11sin sin sin 22S bc A B C A B C==22sin sin sin cos cos sin 2sin cos sin 333333πB B B B B B B B ππ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭1sin 2cos 2)2cos 2233223363B B B B B ⎫π⎛⎫=--=+-=+-⎪ ⎪⎪⎝⎭⎝⎭,∵π0,3B ⎛⎫∈ ⎪⎝⎭,∴526πππ,66B ⎛⎫+∈ ⎪⎝⎭,∴3S ⎛∈ ⎝⎦.例2-2.(2023·云南·校联考模拟预测)ABC 的内角,,A B C 的对边分别为,,a b c ,且sinsin 2B Cc a C +=.(1)求角A ;(2)若a =ABC 周长的取值范围.(1)以3A π=.(2)由(1)知π3A =,又a =2sin sin b c B C ===,则2sin ,2sin b B c C ==,2sin 2sin a b c B C∴++=+32sin 2sin 3B B π⎛⎫=+++ ⎪⎝⎭3132sin 2cos sin 22B B B ⎛⎫=+++ ⎪ ⎪⎝⎭32sin 3cos sin B B B =+++33sin 3cos B B=++π323sin 6B ⎛⎫=++ ⎪⎝⎭,2πππ5π0,,,3666B B ⎛⎫⎛⎫∈∴+∈ ⎪ ⎪⎝⎭⎝⎭ (π1πsin ,1,23sin 3,23626B B ⎛⎫⎛⎤⎛⎫⎤∴+∈+∈⎪ ⎪⎥⎦⎝⎭⎝⎦⎝⎭(23,33a b c ⎤∴++∈⎦(2023·全国·模拟预测)4.在锐角ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,)22232sin a b c bc A +-=.(1)求22sin cos A B +的取值范围;(2)若D 是AB 边上的一点,且:1:2AD DB =,2CD =,求ABC 面积的最大值.(2023·湖北武汉·华中师大一附中校考模拟预测)5.已知ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,若满足(sin 2cos cos )sin sin 0a A B C b A C -+=.(1)求角A 的大小;(2)若2a =,求ABC 面积的取值范围.(2023·陕西咸阳·校考模拟预测)6.已知锐角ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,若)2223sin sin sin sin sin sin 2A B C A B C =+-.(1)求sin C ;(2)若3c =ABC 周长的取值范围.技法03边长和差、积商类最值问题例3-1.(2023·安徽合肥·合肥市第七中学校考三模)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c,且cos b aA A c++=.(1)求角C ;(2)设BC 的中点为D,且AD =2+a b的取值范围.【详解】(1)ABC中,cos b aA A c+=,由正弦定理得sin sin cos sin B AA A C++=.所以sin cos sin sin sin C A A C B A =+,即()sin cos sin sin sin sin cos sin cos sin C A A C A C A A C C A A =++=++,sin sin cos sin A C A C A =+;又()0,πA ∈,则sin 0A ≠cos 1C C -=,则有π1sin 62C ⎛⎫-= ⎪⎝⎭,又因为()0,πC ∈,则ππ66C -=,即π3C =;(2)设CAD θ∠=,则ACD 中,由π3C =可知2π0,3θ⎛⎫∈ ⎪⎝⎭,由正弦定理及AD =2π2πsin sin sin 33CD AC ADθθ===⎛⎫- ⎪⎝⎭,所以2sin CD θ=,2π2sin 3AC θ⎛⎫=- ⎪⎝⎭,所以2ππ24sin 4sin 6sin 36a b θθθθθ⎛⎫⎛⎫+=+-=+=+⎪ ⎪⎝⎭⎝⎭,由2π0,3θ⎛⎫∈ ⎪⎝⎭可知,ππ5π,666θ⎛⎫+∈ ⎪⎝⎭,π1sin ,162θ⎛⎫⎛⎤+∈ ⎪ ⎥⎝⎭⎝⎦,所以(2a b +∈.即2+a b的取值范围(.例3-2.(2023·湖南长沙·长郡中学校联考模拟预测)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin tan cos cos C BA C B+=+.(1)求A 的值;(2)若ABC 是锐角三角形,求22b bc a -的取值范围.【详解】(1)因为sin sin tan cos cos C BA C B+=+,所以sin cos sin cos cos sin cos sin A C A B A C A B +=+,即()()sin sin A C B A -=-,所以A C B A -=-或()()πA C B A -+-=(舍去).所以A C B A -=-,结合πA B C ++=,得π3A =.(2)由(1)得:()())22222222sin sin sin 442πsin sin sin sin sin sin sin 3334141sin sin sin sin cos 3232411cos2341cos 1233b bc B B C B B C B B B a A B B B B B B B B B B B ⎡⎤--⎛⎫==-=-⋅- ⎪⎢⎥⎝⎭⎣⎦⎡⎤⎫⎡⎤=-⋅+=-⋅⎢⎥⎪⎢⎥⎪⎢⎥⎝⎭⎣⎦⎣⎦⎡⎤=--⎢⎥⎣⎦=-++2π1cos 2333B ⎛⎫=--+ ⎪⎝⎭.因为ABC 是锐角三角形,所以B ,C 均为锐角,即π02B <<,2ππ032C B <=-<,所以ππ62B <<,所以π2π20,33B ⎛⎫-∈ ⎪⎝⎭,2π112cos 2,33333B ⎛⎫⎛⎫--+∈- ⎪ ⎪⎝⎭⎝⎭,所以22b bca -的取值范围是12,33⎛⎫- ⎪⎝⎭.(2023·辽宁·辽宁实验中学校考模拟预测)7.如图,在平面凸四边形ABCD 中,CD DB ⊥,1CD =,DB =2DA =.(1)若60DAB ∠=︒,求cos ACB ∠;(2)求222AB BC AC ++的取值范围.(2023·江苏·金陵中学校联考三模)8.已知()sin ,cos a x x ωω=,()cos b x x ωω= ,其中0ω>,函数()f x a b ⎛⎫=⋅- ⎪ ⎪⎝⎭的最小正周期为π.(1)求函数()f x 的单调递增区间;(2)在锐角ABC 中,角A ,B ,C 所对的边分别是a ,b ,c,且满足22A f ⎛⎫= ⎪⎝⎭,求a b 的取值范围.(2023·湖北恩施·校考模拟预测)9.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,ABC ∠的平分线BD 交AC 于点D .(1)从下面三个条件中任选一个作为已知条件,求ABC ∠的大小.①2(cos )b C a c -=;②2sin cos a c A b A +=+;③cos cos a c ABC b C c +∠=-.(2)若2AD CD =,求BDAB BC+的取值范围.技法04图形类解三角形综合例4.(2023·湖南郴州·校联考模拟预测)如图,在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,π22cos 3a b c B ⎛⎫+=- ⎪⎝⎭,角C 的平分线交AB 于点D ,且BD =AD =(1)求ACB ∠的大小;(2)求CD .【详解】(1)由正弦定理π22cos 3a b c B ⎛⎫+=- ⎪⎝⎭得1sin 2sin 2sin cos sin 22A B ACB B B ∠⎛⎫+=+ ⎪ ⎪⎝⎭,即sin 2sin sin cos sin A B ACB B ACB B ∠∠+=,因为()sin sin sin cos cos sin A B ACB B ACB B ACB ∠∠∠=+=+,所以sin cos 2sin sin B ACB B ACB B ∠∠+=,因为sin 0B ≠,所以cos 2ACB ACB ∠∠+=,即πsin 16ACB ∠⎛⎫-= ⎝⎭,因为0πACB <∠<,所以ππ62ACB ∠-=,所以2π3ACB ∠=.(2)已知角C 的平分线交AB 于点D ,且BD =,AD =在ACD 中,由正弦定理得sin sin AD ACACD ADC=∠∠,在BCD △中,由正弦定理得sin sin BD BCBCD BDC=∠∠,因为ACD BCD ∠=∠,πADC BDC ∠+∠=,所以sin sin ,sin sin ACD BCD ADC BDC ∠=∠∠=∠,所以12AD AC BD BC ==.设,2AC x BC x ==,由余弦定理得2222cos BC AC AB BC AC ACB +-=⨯⨯∠,即(22214222x x x x ⎛⎫+-=⋅⋅⋅- ⎪⎝⎭,解得3x =,因为ACB ACD BCD S S S =+△△△,所以1113636222222CD CD ⨯⨯⨯=⨯⨯+⨯⨯⨯,解得2CD =.(2023·山东潍坊·统考二模)10.在四边形ABCD 中,π2BAD ∠=,π3ACD ∠=,AD =S 为ABC 的面积,且2S BC =⋅.(1)求角B ;(2)若1cos 2D =,求四边形ABCD 的周长.(2023·广西·统考模拟预测)11.如图,在ABC 中,内角,,A B C 的对边分别为,,a b c ,过点A 作AD AB ⊥,交线段BC 于点D ,且,3AD DC a ==,sin sin sin sin b C a A b B c C =--.(1)求BAC ∠;(2)求ABC 的面积.(2023·山东淄博·统考二模)12.如图所示,BD 为平面四边形ABCD 的对角线,设1AB =,sin ,ABD ADB BCD ∠∠= 为等边三角形,记()0πBAD θθ∠=<<.(1)当BD =θ的值;(2)设S为四边形ABCD的面积,用含有 的关系式表示S,并求S的最大值.参考答案:1.(1)证明见解析(2)cos B =【分析】(1)由正弦定理得AD BC AB AC ⋅=⋅,再由AD BC =,得到2AD AB AC =⋅,即得证;(2)记A ,B ,C 的对边分别为a ,b ,c ,由(1)得2a bc =,设ADB α∠=,在△ABD 与△ACD 中,分别使用余弦定理,解方程组可求出32b c =或13b c =,依题意排除13b c =,利用余弦定理即可求出cos B .【详解】(1)在ABC 中,由正弦定理得:sin sin BC ACBAC B=∠①,由已知得:sin sin AD BAC AB B ⋅∠=⋅②,由①②联立得:AD BC AB AC ⋅=⋅,因为AD BC =,所以2AD AB AC =⋅.故AB ,AD ,AC 成等比数列;(2)在△ABC 中,记A ,B ,C 的对边分别为a ,b ,c ,故AD BC a ==,由(1)知:2a bc =③,在△ABD 中,设ADB α∠=,由已知得23BD a =,由余弦定理得:2222cos AB AD BD AD BD ADB =+-⋅∠,即222244cos 93c a a a α=+-④,在△ACD 中,设πADC α∠=-,由已知得13CD a =,由余弦定理得:2222cos AC AD CD AD CD ADC =+-⋅∠,222212cos 93b a a a α=++⑤,由⑤+④×2整理得:2221123c b a +=⑥,由③⑥联立整理得:2261130b bc c -+=,解得:32b c =或13b c =,当13b c =时,由2a bc =可求得3a =,所以a b c +<故舍去,当32b c =时,由2a bc =可求得2a =,满足a cb +>,在△ABC中,由余弦定理得2222223924cos .2c c ca cb B ac +-+-=综上:cos B =2.(1)详见解析;(2)1314【分析】(1)先利用余弦定理由cos cos A C =得到5π6A =,再利用正弦定理由sin sin 32BAD CAD b c a ∠∠+=即可求得3a AD =;(2)先利用余弦定理求得c a ⎧=⎪⎨=⎪⎩,进而利用余弦定理求得13cos 14ADC ∠=【详解】(1)在ABC中,cos cos A C =则22222222b c a ab bc a b c +-⨯=-+-整理得222b c a -=+,则222cos 22b c a A bc +-==-又0πA <<,则5π6A =在ACD 中,由正弦定理得sin sin CAD C CD AD ∠=,则sin sin CD CCAD AD⋅∠=在BAD 中,由正弦定理得sin sin BAD BBD AD∠=,则sin sin BD B BAD AD ⋅∠=则sin sin sin sin BAD CAD BD B CD Cb c AD b AD c ∠∠⋅⋅+=+=⋅⋅()11sin sin 132222BD CD a BD A CD AAD a AD aAD aAD a AD a+⨯⨯⋅⋅=+====⋅⋅⋅⋅则3aAD =(2)由2CD BD =,可得21,33CD a BD ==,又3a AD =则22222221113333cos ,cos 1211223333a ab a a cADC ADB a a a a ⎛⎫⎛⎫⎛⎫⎛⎫+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∠=∠=⨯⨯⨯⨯由cos cos 0ADC ADB ∠+∠=可得2222222111333301211223333a ab a ac a a a a ⎛⎫⎛⎫⎛⎫⎛⎫+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭+=⨯⨯⨯⨯,解之得2222a b c-=又5π6A =,则2223a b c bc =+,由22222223a b c a b c bc ⎧-=⎪⎨=++⎪⎩,可得37c ba b⎧⎪⎨=⎪⎩则222222215713339cos 1241427339a ab b b ADC a a b ⎛⎫⎛⎫+-⨯- ⎪ ⎪⎝⎭⎝⎭∠===⨯⨯⨯3.(1)2π3(2)4039【分析】(1)由正弦定理边角互化得22s co sin i s sin n C B A C =+,再结合正弦和角公式得1cos 2B =-,进而可得答案;(2)根据余弦定理,结合cos cos 0CDB ADB ∠+∠=得224169a c +=,进而根据余弦定理得1609ac =,再计算面积即可.【详解】(1)解:因为2cos 2sin sin C Ca b b A=+,所以i 2n co n s s in s 2s n in s i si C C B A A B =+,即22s co sin i s sin n C B A C =+,因为()sin sin sin cos cos sin A B C B C B C =+=+,所以s 2s co s sin c sin 2o 2cos in s in C C B B B C C +=+,即02n co si i s n s B C C +=,因为()0,π,sin 0C C ∈≠,所以1cos 2B =-,因为()0,πB ∈,所以2π3B =.(2)解:如图,因为8,b D =为边AC 的中点,且83BD =,所以222222843cos 82243c DA DB c ADB DA DB ⎛⎫+- ⎪+-⎝⎭∠==⋅⋅⨯⨯,222222843cos 82243a CD DB a CDB CD DB ⎛⎫+- ⎪+-⎝⎭∠==⋅⋅⨯⨯,因为πADB CDB ∠+∠=,所以cos cos 0CDB ADB ∠+∠=,即222222884433088242433c a ⎛⎫⎛⎫+-+- ⎪ ⎪⎝⎭⎝⎭+=⨯⨯⨯⨯,整理得224169a c +=,因为2222cos b a c ac B =+-,即416649ac =+,解得1609ac =,所以,ABC的面积为11160sin 229S ac B ==⨯4.(1)17,44⎛⎫⎪⎝⎭(2)2【分析】(1)利用正余弦定理对已知等式化简可得tan C C ,再利用三角函数恒等变换公式可得22πsin cos 1cos 226A B B ⎛⎫+=+- ⎪⎝⎭,然后求出角B 的范围,再利用余弦函数的性质可得结果;(2)根据题意可得1233CD CB CA =+,两边平方化简后再利用基本不等式可求出ab 的最大值,从而可求出ABC 面积的最大值.【详解】(1)2222sin a b c bc A +-=,)22222cos 2sin a b a b ab C bc A +--+=,整理得到:cos 2sin C bc A =cos sin C c A =,cos sin sin A C C A =,而A 为三角形内角,故sin 0A >,sin C C =,故tan C =C 为锐角三角形内角,故π3C =.()221sin cos 1cos 2cos 22A B B A +=+-12π1cos 2cos 223B B ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦14π1cos 2cos 223B B ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦13π1cos 2sin 21cos 222226B B B ⎛⎫⎛⎫=++=+- ⎪ ⎪ ⎪⎝⎭⎝⎭,因为三角形为锐角三角形,故π022ππ032B B ⎧<<⎪⎪⎨⎪<-<⎪⎩,故ππ62B <<,故ππ5π2666B <-<,故πcos 2262B ⎛⎫<-< ⎪⎝⎭,故2217sin cos 44A B <+<.(2)由题设可得2BD DA =,故()2CD CB CA CD -=- ,整理得到:1233CD CB CA =+,故222144999CD CB CA CB CA =++⋅ ,即22144149992a b ab =++⨯,整理得到:223642426a b ab ab ab ab =++≥+=,当且仅当a b ==()max 6ab =.故三角形面积的最大值为162⨯=5.(1)π2(2)(]0,1【分析】(1)根据正弦定理和三角恒等变换化简等式,可以得到角π2A =.(2)根据勾股定理,由基本不等式得到两直角边积的最值即可.【详解】(1)由正弦定理知,sin (sin 2cos cos )sin sin sin 0A A B C B A C -+=,∵()0,πA ∈,∴sin 0A ≠,∴sin 2cos cos sin sin 0A B C B C -+=,化简得sin 2cos cos sin sin cos()cos()sin 2πA B C B C B C πA A ⎛⎫=-=+=-=- ⎪⎝⎭,(0,π)A ∈ ,22πA A π∴+-=(其中2πA A 2=-舍去),即π2A =.(2)由(1)知2A π=,则2224b c a +==,那么ABC 的面积221124b c S bc +=≤=(当且仅当b c =,则ABC 面积的取值范围为(]0,1.6.(2)(3【分析】(1)由已知及正弦定理角化边,再利用余弦定理,可求出tan C ,由已知条件得出角C 的范围,进而求出角C 即可以求出sin C 的值.(2)由c ,sin C 的值,利用正弦定理求出,a b ,进而表示出三角函数的周长,利用三角形的内角和定理及两角和与差的正弦公式化为一个角的正弦函数,利用正弦函数的性质确定出周长的取值范围.【详解】(1)由()222sin sin sin sin sin sin 2A B C A B C =+-及正弦定理,得)222sin 2ab C a b c =+-即sin cos ab C C =.所以tan C =C 为锐角,得π3C =,所以sin C =(2)由2sin cR C==1R =.∴ABC 得周长()()2sin sin 2sin sin a b c R A B A B =++=+=+2π2sin 2sin 2sin 2sin 3A B A A ⎛⎫=++- ⎪⎝⎭π3sin 6A A A ⎛⎫=+=+ ⎪⎝⎭,因为π0,2A ⎛⎫∈ ⎪⎝⎭,2ππ0,32A ⎛⎫-∈ ⎪⎝⎭,所以ππ,62A ⎛⎫∈ ⎪⎝⎭,ππ2π,633A ⎛⎫+∈ ⎪⎝⎭,所以(π36A ⎛⎫+++ ⎪⎝⎭,即(3a b c ++=.所以ABC周长的取值范围为(3.7.(1)cos 14ACB ∠=(2)(1620)-【分析】(1)先利用余弦定理得到1AB =,根据边的关系得到AB ⊥DB ,进而得出∠ABC =120°,再利用余弦定理即可求解;(2)设∠ADB =θ,利用余弦定理分别求出22,AB AC ,相加后整理变形得到关于角θ的三角函数,利用正弦函数的图象和性质即可求解.【详解】(1)在△ABD 中,因为DB =,DA =2,∠DAB =60°,由余弦定理得222222cos60AB AB =+-⨯⨯︒,解得1AB =,由222AB DB DA +=,得AB ⊥DB ,此时Rt △CDB ≌Rt △ABD ,可得∠ABC =120°.在△ABC 中,AB =1,BC =2,由余弦定理得22212212cos1207AC =+-⨯⨯⨯︒=,解得AC =所以22cos14ACB ∠=.(2)设∠ADB =θ,由题意可知02πθ<<,在△ABD 中,由余弦定理得22222274AB θθ=+-⨯⨯=-,在△ACD 中,2ADC πθ∠=+,由余弦定理得22221221cos 54sin 2AC πθθ⎛⎫=+-⨯⨯⨯+=+ ⎪⎝⎭,在BCD △中,因为CD DB ⊥,所以2BC ==,所以2222754sin 2168sin 3AB BC AC πθθθ⎛⎫++=-+++=+- ⎪⎝⎭,因为02πθ<<,所以336πππθ-<-<,1sin 232πθ⎛⎫-<-< ⎪⎝⎭,所以222AB BC AC ++的取值范围是()1620-.8.(1)单调递增区间为5πππ,π1212k k ⎡⎤-+⎢⎥⎣⎦,k ∈Z(2)a b ∈⎝【分析】(1)根据向量数量积的坐标表示可知()sin 23f x x πω⎛⎫=+ ⎪⎝⎭,由最小正周期为π可得1ω=,即可知()sin 23f x x π⎛⎫=+ ⎪⎝⎭,再利用三角函数单调性即可求得()f x 的单调递增区间为5πππ,π1212k k ⎡⎤-+⎢⎥⎣⎦,k ∈Z ;(2)根据三角形形状可得ππ62B <<,再由正弦定理得sin sin a A b B =,又1sin ,12B ⎛⎫∈ ⎪⎝⎭,所以2a b ∈⎝.【详解】(1)因为(sin ,cos )a x x ωω=,(cos )b x x ωω= ,则1a =,(sin ,cos )(cos ,)a b x x x x ωωωω⋅=⋅2sin cos x x x ωωω=1sin 2cos 2222x x ωω=+πsin 232x ω⎛⎫=+ ⎪⎝⎭,故2()sin 23f x a b a b a b x πω⎛⎫⎛⎫=⋅=⋅=⋅=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,因为()f x 最小正周期为π,所以2ππ2T ω==,所以1ω=,故()sin 23f x x π⎛⎫=+ ⎪⎝⎭,由πππ2π22π232k x k -+≤+≤+,k ∈Z ,解得5ππππ1212k x k -+≤≤+,k ∈Z ,所以()f x 的单调递增区间为5πππ,π1212k k ⎡⎤-+⎢⎥⎣⎦,k ∈Z .(2)由(1)及22A f ⎛⎫= ⎪⎝⎭,即ππsin 2sin 2332A A ⎛⎫⎛⎫⨯+=+ ⎪ ⎪⎝⎭⎝⎭,又π0,2A ⎛⎫∈ ⎪⎝⎭,所以π2π33A +=,解得π3A =,又ABC 为锐角三角形,即π02π02B C ⎧<<⎪⎪⎨⎪<<⎪⎩,即π02π0π2B B A ⎧<<⎪⎪⎨⎪<--<⎪⎩,解得ππ62B <<;由正弦定理得sin sin 2sin a A b B B==,又ππ62B <<,则1sin ,12B ⎛⎫∈ ⎪⎝⎭,所以2a b ∈⎝.9.(1)三个条件任选其一都有2π3ABC ∠=(2)40,9⎛⎫ ⎪⎝⎭【分析】(1)利用正弦定理化边为角,再对等式进行化简,进而根据ABC ∠的取值范围求出其大小.(2)运用角平分线的条件求出AB AD BC CD=,然后利用面积公式求出BDAB BC +的取值范围.【详解】(1)选①,因为2(cos )b C a c -=,所以cos 2ca b C +=.由正弦定理得sin sin sin cos 2CA ABC C +=∠.即sin sin()sin cos 2CABC C ABC C ∠++=∠,故sin sin cos 02CC ABC +∠=,因为(0,π)ABC ∠∈,(0,π)C ∈,所以sin 0C ≠,所以1cos 2ABC ∠=-,所以2π3ABC ∠=.选②,由2sin cos a c A b A ++及正弦定理,得2sin sin sin sin cos A C ABC A ABC A +=∠+∠,即2sin sin()sin sin cos A A ABC ABC A ABC A ++∠=∠+∠,2sin sin cos cos sin sin sin cos A A ABC A ABC ABC A ABC A +∠+∠=∠+∠,所以2sin sin sin cos A ABC A A ABC =∠-∠.因为(0,π)A ∈,所以sin 0A ≠,所以π2cos 2sin 6ABC ABC ABC ⎛⎫=∠-∠=∠- ⎪⎝⎭,即πsin 16ABC ⎛⎫∠-= ⎪⎝⎭.又(0,π)ABC ∠∈,所以ππ62ABC ∠-=,所以2π3ABC ∠=.选③,由cos cos a c ABC b C c +∠=-及正弦定理,得sin sin cos sin cos sin A C ABC ABC C C +∠=∠-,sin()sin cos sin cos cos sin sin cos ABC C C ABC ABC C ABC C C ABC∠++∠=∠+∠+∠sin cos sin ABC C C=∠-即2cos sin sin ABC C C ∠=-.因为(0,π)C ∈,所以sin 0C ≠,所以1cos 2ABC ∠=-.又(0,π)ABC ∠∈,所以2π3ABC ∠=.(2)因为BD 平分ABC ∠,所以ABD CBD ∠=∠,在ABD △中,sin sin AD ABABD ADB=∠∠,即sin sin AD ABD AB ADB ∠=∠,在BCD △中,sin sin CD BC CBD BDC=∠∠,即sin sin CD CBDBC BDC ∠=∠,因为πADB BDC ∠+∠=,所以sin sin ADB BDC ∠=∠,所以AD CDAB BC =,所以2AB AD BC CD==,故3BD BD AB BC BC =+.因为1sin 2ABC S AB BC ABC =⋅⋅∠△,1sin 2ABD S AB BD ABD =⋅⋅∠△,23ABD ABC S AD S AC ==△△,所以sin 2sin 3BD ABD BC ABC ⋅∠=⋅∠,又2ABCABD ∠∠=,所以4sincos 2sin 422cos 323sin 3sin 22ABC ABCBD ABCABC ABCABC BC ∠∠∠∠===∠∠.又(0,π)ABC ∠∈,所以π0,22ABC ∠⎛⎫∈ ⎪⎝⎭,所以cos (0,1)2ABC∠∈,所以40,3BD BC ⎛⎫∈ ⎪⎝⎭,40,39BD BC ⎛⎫∈ ⎪⎝⎭,即BD AB BC +的取值范围为40,9⎛⎫⎪⎝⎭.10.(1)2π3(2)2+【分析】(1)根据三角形面积公式及数量积的定义化简方程可得tan B ,即可得解;(2)求出π3D =,再由正弦定理求出AB =BC =1,即可得解.【详解】(1)由2S BC =⋅,在ABC中得12sin cos 2AB BC B AB BC B ⨯⨯=⨯,即sin B B =,可得tan B =因为()0,πB ∈,所以2π3B =.(2)由()1cos ,0,π2D D =∈,所以π3D =,所以ABC为等边三角形,π3AC CAD ∠==,所以ππ,66BAC ACB ∠∠==,由正弦定理知sin sin AC ABB ACB∠=,得1sin 21sin AC ACB AB BCB ∠⋅===,故四边形ABCD的周长为2+.11.(1)2π3【分析】(1)根据题意,由正弦定理得到222b c a bc +-=-,再结合余弦定理,即可求解;(2)由(1)求得π6DAC ∠=,再由AD DC =,得到π6C ∠=,利用正弦定理求得b c ==结合面积公式,即可求解.【详解】(1)解:因为sin sin sin sin b C a A b B c C =--,由正弦定理得222bc a b c =--,即222b c a bc +-=-,又由余弦定理得2221cos 222b c a bc BAC bc bc +--∠===-,因为(0,π)BAC ∠∈,所以2π3BAC ∠=,(2)解:因为AD AB ⊥,所以π2BAD ∠=,由(1)知,2π3BAC ∠=,所以2πππ326DAC ∠=-=,又因为AD DC =,所以π6C DAC ∠=∠=,在ABC 中,由正弦定理sin sin a c BAC C=∠,所以13sin 2sin a C c BAC ⨯=∠又因为2πππ36B C ∠=--=∠,所以b c ==所以ABC的面积为112πsin 2234S bc BAC =∠=⨯=.12.(1)5π6;(2)π3S θ⎛⎫=- ⎪⎝⎭【分析】(1)利用正弦定理及余弦定理结合条件即得;(2)利用余弦定理及三角形面积公式可表示出四边形ABCD 的面积,然后根据三角函数的性质即得.【详解】(1)在ABD △中,因为sin ABD ADB ∠∠=,由正弦定理,所以AD =,由余弦定理,得222cos 2AB AD BD AB AD θ+-==⋅其中0πθ<<,故5π6θ=;(2)在ABD △中,因为1,AB AD BAD ∠θ===,所以由余弦定理可得24BD θ=-,因为BCD △为等边三角形,所以)234cos 442BCD S BD θθ==-= ,因为ABD S θ=,所以四边形ABCD的面积为3πsin cos 223ABD BCD S S S θθθ⎛⎫=+=+=-+ ⎪⎝⎭,因为0πθ<<,所以ππ2π333θ-<-<,故当5π6θ=时,πsin 3θ⎛⎫- ⎪⎝⎭取得最大值1,即S的最大值为。
最全面的解三角形讲义
解三角形【高考会这样考】1.考查正、余弦定理的推导过程.2.考查利用正、余弦定理判断三角形的形状. 3.考查利用正、余弦定理解任意三角形的方法.4.考查利用正弦定理、余弦定理解决实际问题中的角度、方向、距离及测量问题.基础梳理1.正弦定理:a sin A =b sin B =csin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ; (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题.2.余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3.面积公式:S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r .4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则A 为锐角A 为钝角或直角图形关系 式 a <b sin A a =b sin A b sin A <a <b a ≥b a >b a ≤b解的 个数无解 一解 两解 一解 一解 无解5.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等. 6.实际问题中的常用角 (1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)). (2)方位角指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图(2)). (3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等. (4)坡度:坡面与水平面所成的二面角的度数.考向探究题型一 正弦余弦定理运用【例题1】在△ABC 中,已知a=3,b=2,B=45°,求A 、C 和c. 【例题2】 在△ABC 中,a 、b 、c 分别是角A ,B ,C 的对边,且C B cos cos =-ca b+2.(1)求角B 的大小;(2)若b=13,a+c=4,求△ABC 的面积.【例题3】 (14分)△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2-a 2+bc=0. (1)求角A 的大小;(2)若a=3,求bc 的最大值; (3)求cb C a --︒)30sin(的值.【变式】1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c=2,b=6,B=120°,则a= .2.(1)△ABC 中,a=8,B=60°,C=75°,求b; (2)△ABC 中,B=30°,b=4,c=8,求C 、A 、a.3.在△ABC 中,A=60°,AB=5,BC=7,则△ABC 的面积为 .4.已知△ABC 中,三个内角A ,B ,C 的对边分别为a,b,c,若△ABC 的面积为S ,且2S=(a+b )2-c 2,求tanC 的值.5. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c.若(3b-c )cosA=acosC ,则cosA= .6. 在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tanB=3ac ,则角B 的值为 . 7. 在△ABC 中,内角A 、B 、C 对边的边长分别是a 、b 、c.已知c=2,C=3π. (1)若△ABC 的面积等于3,求a 、b 的值; (2)若sinC+sin(B-A)=2sin2A,求△ABC 的面积. 题型二 判断三角形形状【例题】在△ABC 中,a 、b 、c 分别表示三个内角A 、B 、C 的对边,如果(a 2+b 2)sin (A-B )=(a 2-b 2)sin (A+B ),判断三角形的形状.【变式】 已知△ABC 的三个内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等差数列,且2cos2B-8cosB+5=0,求角B 的大小并判断△ABC 的形状. 题型三 测量距离问题 【例题】如图所示,为了测量河对岸A ,B 两点间的距离,在这岸定一基线CD ,现已测出CD =a 和∠ACD =60°,∠BCD =30°,∠BDC =105°,∠ADC =60°,试求AB 的长.【变式】 如图,A ,B ,C ,D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶,测量船于水面A 处测得B 点和D 点的仰角分别为75°,30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.试探究图中B 、D 间距离与另外哪两点间距离相等,然后求B ,D 的距离. 题型四 测量高度问题【例题】如图,山脚下有一小塔AB ,在塔底B 测得山顶C 的仰角为60°,在山顶C 测得塔顶A 的俯角为45°,已知塔高AB =20 m ,求山高CD .【变式】如图所示,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,现测得∠BCD =α,∠BDC =β,CD =s ,并在点C 测得塔顶A 的仰角为θ,求塔高AB . 题型五 正、余弦定理在平面几何中的综合应用【例题】如图所示,在梯形ABCD 中,AD ∥BC ,AB =5,AC =9,∠BCA =30°,∠ADB =45°,求BD 的长. 【变式】 如图,在△ABC 中,已知∠B =45°,D 是BC 边上的一点,AD =10,AC =14,DC =6,求AB 的长.巩固训练1.在△ABC 中,若2cosBsinA=sinC,则△ABC 一定是 三角形.2.在△ABC 中,A=120°,AB=5,BC=7,则CB sin sin 的值为 .3.已知△ABC 的三边长分别为a,b,c,且面积S △ABC =41(b 2+c 2-a 2),则A= .4.在△ABC 中,BC=2,B=3π,若△ABC 的面积为23,则tanC 为 .5.在△ABC 中,a 2-c 2+b 2=ab,则C= .6.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则C= .7.在△ABC 中,角A ,B ,C 所对的边分别为a,b,c ,若a=1,b=7,c=3,则B= . 8.某人向正东方向走了x 千米,他右转150°,然后朝新方向走了3千米,结果他离出发点恰好3千米,那么x 的值是 .9.下列判断中不正确的结论的序号是 . ①△ABC 中,a=7,b=14,A=30°,有两解 ②△ABC 中,a=30,b=25,A=150°,有一解 ③△ABC 中,a=6,b=9,A=45°,有两解 ④△ABC 中,b=9,c=10,B=60°,无解10. 在△ABC 中,角A ,B ,C 所对的边分别为a,b,c ,并且a 2=b(b+c). (1)求证:A=2B ;(2)若a=3b,判断△ABC 的形状. 11. 在△ABC 中,cosB=-135,cosC=54.(1)求sinA 的值;(2)△ABC 的面积S △ABC =233,求BC 的长.12.已知a 、b 、c 是△ABC 的三边长,关于x 的方程ax 2-222b c - x-b=0 (a >c >b)的两根之差的平方等于4,△ABC 的面积S=103,c=7. (1)求角C ; (2)求a ,b 的值. 13. 在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知a+b=5,c=7,且4sin 22B A +-cos2C=27.(1)求角C 的大小; (2)求△ABC 的面积.14.(人教A 版教材习题改编)如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( ). A .50 2 m B .50 3 m C .25 2 m D.2522 m15.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为( ). A .α>β B .α=β C .α+β=90° D .α+β=180° 16.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( ). A .北偏东15° B .北偏西15° C .北偏东10° D .北偏西10°17.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ). A .5海里 B .53海里C .10海里 D .103海里18.海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C 间的距离是________海里.19.如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里,当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里.问:乙船每小时航行多少海里? 参考答案例题答案题型一 正弦、余弦定理 【例题1】 解 ∵B=45°<90°且asinB <b <a,∴△ABC 有两解.由正弦定理得sinA=b B a sin =245sin 3︒ =23, 则A 为60°或120°.①当A=60°时,C=180°-(A+B)=75°, c=BCb sin sin =︒︒45sin 75sin 2=︒︒+︒45sin )3045sin(2=226+.②当A=120°时,C=180°-(A+B)=15°, c=B C b sin sin =︒︒45sin 15sin 2=︒︒-︒45sin )3045sin(2=226-. 故在△ABC 中,A=60°,C=75°,c=226+或 A=120°,C=15°,c=226-. 【例题2】 解(1)由余弦定理知:cosB=ac b c a 2222-+,cosC=ab c b a 2222-+.将上式代入C B cos cos =-ca b+2得:ac b c a 2222-+·2222cb a ab -+=-c a b +2 整理得:a 2+c 2-b 2=-ac∴cosB=acb c a 2222-+=ac ac2- =-21∵B 为三角形的内角,∴B=32π.(2)将b=13,a+c=4,B=32π代入b 2=a 2+c 2-2accosB,得b 2=(a+c)2-2ac-2accosB ∴b 2=16-2ac ⎪⎭⎫ ⎝⎛-211,∴ac=3.∴S △ABC =21acsinB=433. 【例题3】解(1)∵cosA=bca cb 2222-+=bc bc2-=-21, 又∵A ∈(0°,180°),∴A=120°.(2)由a=3,得b 2+c 2=3-bc,又∵b 2+c 2≥2bc (当且仅当c=b 时取等号),∴3-bc ≥2bc(当且仅当c=b 时取等号). 即当且仅当c=b=1时,bc 取得最大值为1.(3)由正弦定理得:===CcB b A a sin sin sin 2R, ∴CR B R C A R c b C a sin 2sin 2)30sin(sin 2)30sin(--︒=--︒=C B C A sin sin )30sin(sin --︒ =CC C C sin )60sin()sin 23cos 21(23--︒- C C C C sin 23cos 23)sin 43cos 43--==21【变式】1.22. 解(1)由正弦定理得BbA a sin sin =. ∵B=60°,C=75°,∴A=45°,∴b=︒︒⨯=45sin 60sin 8sin sin A B a =46. (2)由正弦定理得sinC=430sin 8sin ︒=b B c =1. 又∵30°<C <150°,∴C=90°.∴A=180°-(B+C)=60°,a=22b c -=43. 3. 1034. 解 依题意得absinC=a 2+b 2-c 2+2ab, 由余弦定理知,a 2+b 2-c 2=2abcosC. 所以,absinC=2ab(1+cosC), 即sinC=2+2cosC,所以2sin2C cos 2C =4cos 22C 化简得:tan 2C=2.从而tanC=2tan 12tan22C C -=-34. 5.336. 3π或32π7. 解 (1)由余弦定理及已知条件,得a 2+b 2-ab=4.又因为△ABC 的面积等于3, 所以21absinC=3,所以ab=4. 联立方程组⎪⎩⎪⎨⎧==-+,4,422ab ab b a 解得⎩⎨⎧==22b a .(2)由题意得sin(B+A)+sin(B-A)=4sinAcosA,即sinBcosA=2sinAcosA, 当cosA=0时,A=2π,B=6π,a=334,b=332. 当cosA ≠0时,得sinB=2sinA,由正弦定理得b=2a,联立方程组⎪⎩⎪⎨⎧==-+,2,422a b ab b a 解得⎪⎪⎩⎪⎪⎨⎧==.334332b ,a所以△ABC 的面积S=21absinC=332. 题型二 判断三角形形状【例题】 解方法一 已知等式可化为a 2[sin (A-B )-sin (A+B )]=b 2[-sin (A+B )-sin(A-B)] ∴2a 2cosAsinB=2b 2cosBsinA 由正弦定理可知上式可化为:sin 2AcosAsinB=sin 2BcosBsinA ∴sinAsinB(sinAcosA-sinBcosB)=0 ∴sin2A=sin2B,由0<2A,2B <2π 得2A=2B 或2A=π-2B, 即A=B 或A=2π-B,∴△ABC 为等腰或直角三角形. 方法二 同方法一可得2a 2cosAsinB=2b 2sinAcosB 由正、余弦定理,可得a 2b bca cb 2222-+= b 2a ac b c a 2222-+∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2)即(a 2-b 2)(a 2+b 2-c 2)=0 ∴a=b 或a 2+b 2=c 2∴△ABC 为等腰或直角三角形.【变式】 解 方法一 ∵2cos2B-8cosB+5=0, ∴2(2cos 2B-1)-8cosB+5=0. ∴4cos 2B-8cosB+3=0, 即(2cosB-1)(2cosB-3)=0.解得cosB=21或cosB=23(舍去).∴cosB=21. ∵0<B <π,∴B=3π.∵a ,b ,c 成等差数列,∴a+c=2b. ∴cosB=acbc a 2222-+=acc a c a 2)2(222+-+=21, 化简得a 2+c 2-2ac=0,解得a=c. 又∵B=3π,∴△ABC 是等边三角形. 方法二 ∵2cos2B-8cosB+5=0, ∴2(2cos 2B-1)-8cosB+5=0. ∴4cos 2B-8cosB+3=0, 即(2cosB-1)(2cosB-3)=0.解得cosB=21或cosB=23(舍去). ∴cosB=21,∵0<B <π,∴B=3π,∵a,b,c 成等差数列,∴a+c=2b. 由正弦定理得sinA+sinC=2sinB=2sin 3π=3. ∴sinA+sin ⎪⎭⎫⎝⎛-A 32π=3, ∴sinA+sin A cos 32π-cos A sin 32π=3. 化简得23sinA+23cosA=3,∴sin ⎪⎭⎫ ⎝⎛+6πA =1. ∴A+6π=2π,∴A=3π, ∴C=3π,∴△ABC 为等边三角形.题型三 测量距离问题【例题】解 在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC =60°,所以AC =a .∵∠BCD =30°,∠BDC =105°∴∠CBD =45°在△BCD 中,由正弦定理可得BC =a sin 105°sin 45°=3+12a .在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A ,B 两点之间的距离为AB =AC 2+BC 2-2AC ·BC ·cos 30°=22a . 【变式】解 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,所以CD =AC =0.1 km.又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD =BA . 又∵∠ABC =15°在△ABC 中,AB sin ∠BCA =ACsin ∠ABC ,所以AB =AC sin 60°sin 15°=32+620(km),同理,BD =32+620(km).故B 、D 的距离为32+620 km.题型四 测量高度问题【例题】解 如图,设CD =x m , 则AE =x -20 m , tan 60°=CD BD,∴BD =CD tan 60°=x 3=33x (m).在△AEC 中,x -20=33x , 解得x =10(3+3) m .故山高CD 为10(3+3) m. 【变式】解 在△BCD 中,∠CBD =π-α-β, 由正弦定理得BC sin ∠BDC =CDsin ∠CBD ,所以BC =CD sin ∠BDCsin ∠CBD =s ·sin βsin α+β在Rt △ABC 中,AB =BC tan ∠ACB =s tan θsin βsin α+β.题型五 正、余弦定理在平面几何中的综合应用 【例题】解 在△ABC 中,AB =5,AC =9,∠BCA =30°. 由正弦定理,得AB sin ∠ACB =ACsin ∠ABC,sin ∠ABC =AC ·sin ∠BCA AB =9sin 30°5=910.∵AD ∥BC ,∴∠BAD =180°-∠ABC , 于是sin ∠BAD =sin ∠ABC =910.同理,在△ABD 中,AB =5,sin ∠BAD =910,∠ADB =45°,由正弦定理:AB sin ∠BDA =BDsin ∠BAD,解得BD =922.故BD 的长为922.【变式】解 在△ADC 中,AD =10,AC =14,DC =6,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC=100+36-1962×10×6=-12,∴∠ADC =120°,∴∠ADB =60°.在△ABD 中,AD =10,∠B =45°,∠ADB =60°, 由正弦定理得AB sin ∠ADB =ADsin B,∴AB =AD ·sin ∠ADB sin B =10sin 60°sin 45°=10×3222=5 6巩固训练1. 等腰;2.53;3. 45°;4. 33;5. 60°;6. 45°或135°;7. 65π; 8. 3或23;9. ①③④10.(1)证明 因为a 2=b(b+c),即a 2=b 2+bc, 所以在△ABC 中,由余弦定理可得,cosB=acb c a 2222-+=ac bc c 22+=a cb 2+=ab a 22=b a 2=BA sin 2sin , 所以sinA=sin2B,故A=2B. (2)解 因为a=3b,所以ba=3, 由a 2=b(b+c)可得c=2b,cosB=ac b c a 2222-+=22223443b b b b -+=23,所以B=30°,A=2B=60°,C=90°. 所以△ABC 为直角三角形.11. 解 (1)由cosB=-135,得sinB=1312, 由cosC=54,得sinC=53.所以sinA=sin(B+C)=sinBcosC+cosBsinC=6533. (2)由S △ABC =233,得21×AB×AC×sinA=233. 由(1)知sinA=6533,故AB×AC=65.又AC=CB AB sin sin ⨯=1320AB,故1320AB 2=65,AB=213. 所以BC=CA AB sin sin ⨯=211.12. 解 (1)设x 1、x 2为方程ax 2-222b c -x-b=0的两根,则x 1+x 2=ab c 222-,x 1·x 2=-a b .∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=222)(4a b c -+ab4=4. ∴a 2+b 2-c 2=ab. 又cosC=abc b a 2222-+=ab ab 2=21, 又∵C ∈(0°,180°),∴C=60°. (2)S=21absinC=103,∴ab =40 ……① 由余弦定理c 2=a 2+b 2-2abcosC, 即c 2=(a+b)2-2ab(1+cos60°). ∴72=(a+b)2-2×40×⎪⎭⎫⎝⎛+211.∴a+b=13.又∵a >b ……②∴由①②,得a=8,b=5.13. 解 (1)∵A+B+C=180°,由4sin 22B A +-cos2C=27, 得4cos 22C-cos2C=27,∴4·2cos 1C +-(2cos 2C-1)=27,整理,得4cos 2C-4cosC+1=0,解得cosC=21, ∵0°<C <180°,∴C=60°.(2)由余弦定理得c 2=a 2+b 2-2abcosC, 即7=a 2+b 2-ab,∴7=(a+b)2-3ab , 由条件a+b=5,得7=25-3ab,ab=6, ∴S △ABC =21absinC=21×6×23=233. 14.解析 由正弦定理得AB sin ∠ACB =ACsin B ,又∵B =30°∴AB =AC ·sin ∠ACBsin B =50×2212=502(m).答案 A15.解析 根据仰角与俯角的定义易知α=β. 答案 B 16.解析 如图. 答案 B17.解析 如图所示,依题意有∠BAC =60°,∠BAD =75°,所以∠CAD =∠CDA =15°,从而CD =CA =10(海里),在Rt △ABC 中,得AB =5(海里),于是这艘船的速度是50.5=10(海里/时). 答案 C18.解析 由正弦定理,知BC sin 60°=ABsin 180°-60°-75.解得BC =56(海里).答案 5 619.如图,连接A 1B 2由已知A 2B 2=102,A 1A 2=302×2060=102,∴A 1A 2=A 2B 2.又∠A 1A 2B 2=180°-120°=60°, ∴△A 1A 2B 2是等边三角形,∴A 1B 2=A 1A 2=10 2.由已知,A 1B 1=20, ∠B 1A 1B 2=105°-60°=45°,(8分) 在△A 1B 2B 1中,由余弦定理得B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45°=202+(102)2-2×20×102×22=200, ∴B 1B 2=10 2.因此,乙船的速度为10220×60=302(海里/时).(12分)11。
2023年中考数学高频考点突破——解直角三角形的实际应用
2023年中考数学高频考点突破——解直角三角形的实际应用1.在修建某高速公路的线路中需要经过一座小山.如图,施工方计划从小山的一侧C处沿AC方向开挖隧道到小山的另一侧D(A,C,D三点在同一直线上)处.为了计算隧道CD的长,现另取一点B,测得∠CAB=30°,∠ABD=105°,AC=1km,AB=4km.求隧道CD的长.2.如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路.现新修一条路AC到公路l.小明测量出∠ACD=31°,∠ABD=45°,BC=50m.请你帮小明计算他家到公路l的距离AD的长度?(精确到0.1m;参考数据tan31°≈0.60,sin31°≈0.51,cos31°≈0.86).3.如图为住宅区内的两幢楼,它们的高AB=CD=30m,两楼间的距离AC=24m,现需了解甲楼对乙楼采光的影响情况.当太阳光与水平线的夹角为30°时,求甲楼的影子在乙楼上有多高?4.如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B 点;当它靠在另一侧墙上时,梯子的顶端在D点.已知∠BAC=60°,∠DAE=45°,点D到地面的垂直距离DE=3米.求点B到地面的垂直距离BC.5.如图,身高1.6m的小丽用一个两锐角分别为30°和60°的三角尺测量一棵树的高度,已知她与树之间的距离为6m,那么这棵树高大约高多少米?(结果精确到0.1m,其中小丽眼睛距离地面高度近似为身高)6.如图,同学们利用所学知识去测量三江源某河段某处的宽度.小宇同学在A处观测对岸点C,测得∠CAD=45°,小英同学在距点A处60米远的B点测得∠CBD=30°,请根据这些数据算出河宽(精确到0.01米,≈1.414,≈1.732).7.小明想利用所学数学知识测量学校旗杆高度,如图,旗杆的顶端垂下一绳子,将绳子拉直钉在地上,末端恰好在C处且与地面成60°角,小明拿起绳子末端,后退至E处,并拉直绳子,此时绳子末端D距离地面1.6m且绳子与水平方向成45°角.求旗杆AB 的高度和小明后退的距离EC.(参考数据:≈1.41,≈1.73,结果精确到0.1m)8.给窗户装遮阳棚,其目的为最大限度的遮挡夏天炎热的阳光,又能最大限度的使冬天温暖的阳光射入室内,现请你为我校新建成的高中部教学楼朝南的窗户设计一个直角形遮阳篷BCD,如图,已知窗户AB高度为h=2米,本地冬至日正午时刻太阳光与地面的最小夹角α=32°,夏至日正午时刻太阳光与地面的最大夹角β=79°,请分别计算直角形遮阳篷BCD中BC、CD的长(结果精确到0.1米,tan32°≈0.62,tan79°≈5.14)9.如图,秋千链子AB的长度为3m,静止时的秋千踏板(厚度忽略不计)距地面DE为0.5m,秋千向两边摆动时,若最大摆角(摆角指秋千链子与铅垂线的夹角)约为53°,求秋千踏板与地面的最大距离.(sin53°≈0.80,cos53°≈0.60)10.如图分别是某型号跑步机的实物图和示意图,已知踏板CD长为2米,支架AC长为0.8米,CD与地面的夹角为12°,∠ACD=80°,(AB∥ED),求手柄的一端A离地的高度h.(精确到0.1米,参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)11.如图,厂房屋顶人字架的跨度BC=10m.D为BC的中点,上弦AB=AC,∠B=36°,求中柱AD和上弦AB的长(结果保留小数点后一位).参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73.12.如图,一条河的两岸l1,l2互相平行,在一次综合实践活动中,小颖去测量这条河的宽度,先在对岸l1上选取一个点,然后在河岸l2时选择点B,使得AB与河岸垂直,接着沿河岸l2走到点C处,测得BC=60米,∠BCA=62°,请你帮小颖算出河宽AB (结果精确到1米).(参考数据:sin62°≈0.88,cos62°≈0.47,tan62°≈1.88)13.为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:≈1.41,≈1.73,结果保留整数)14.2015年4月25日14时11分,尼泊尔发生8.1级地震,震源深度20千米.中国救援队火速赶往灾区救援,探测出某建筑物废墟下方点C处有生命迹象.在废墟一侧某面上选两探测点A、B,AB相距2米,探测线与该面的夹角分别是30°和45°(如图).试确定生命所在点C与探测面的距离.(参考数据≈1.41,≈1.73)15CD的高度为2米,支架BC的长为4米,且与地面成30°角,吊绳AB与支架BC的夹角为80°,吊臂AC与地面成70°角,求吊车的吊臂顶端A点距地面的高度是多少米?(精确到0.1米)(参考数据:sin10°=cos80°=0.17,cos10°=sin80°=0.98,sin20°=cos70°=0.34,tan70°=2.75,sin70°=0.94)16.如图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4米,AB=6米,中间平台宽度DE=1米,EN、DM、CB为三根垂直于AB的支柱,垂足分别为N、M、B,∠EAB=31°,DF⊥BC于F,∠CDF=45°.求DM和BC的水平距离BM的长度.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)17.如图1,滨海广场装有风能、太阳能发电的风光互补环保路灯,灯杆顶端装有风力发电机,中间装有太阳能板,下端装有路灯.该系统工作过程中某一时刻的截面图如图2,已知太阳能板的支架BC垂直于灯杆OF,路灯顶端E距离地面6米,DE=1.8米,∠CDE=60°.且根据我市的地理位置设定太阳能板AB的倾斜角为43°.AB=1.5米,CD=1米,为保证长为1米的风力发电机叶片无障碍安全旋转,对叶片与太阳能板顶端A的最近距离不得少于0.5米,求灯杆OF至少要多高?(利用科学计算器可求得sin43°≈0.6820,cos43°≈0.7314,tan43°≈0.9325,结果保留两位小数)18.北京时间2015年04月25日14时11分,尼泊尔发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作.如图,某探测队在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米.参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)19.如图所示,我市某中学课外活动小组的同学利用所学知识去测量釜溪河沙湾段的宽度.小宇同学在A处观测对岸C点,测得∠CAD=45°,小英同学在距A处50米远的B处测得∠CBD=30°,请你根据这些数据算出河宽.(精确到0.01米,参考数据≈1.414,≈1.732)20.如图,这是一把可调节座椅的侧面示意图,已知头枕上的点A到调节器点O处的距离为80cm,AO与地面垂直,现调整靠背,把OA绕点O旋转35°到OA′处,求调整后点A′比调整前点A的高度降低了多少厘米(结果取整数)?(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)参考答案与试题解析1.【解答】解:过点B作BE⊥AD于点E,如图所示:在Rt△ABE中,AB=4km,∠CAB=30°,∠AEB=90°,∴BE=AB=2km,AE===2km,∠ABE=180°﹣30°﹣90°=60°,∴∠DBE=∠ABD﹣∠ABE=105°﹣60°=45°.在Rt△BDE中,∠BED=90°,∠DBE=45°,∴DE=BE=2km,∴AD=AE+DE=(2+2)km,∴CD=AD﹣AC=2+2﹣1=(2+1)km.答:隧道CD的长为(2+1)km.2.【解答】解:∵∠2=45°∠3=90°∴∠4=45°∴∠2=∠4即BD=AD设BD=AD=xm,∵AC=50m∴CD=(x+50)m,在Pt△ACD中tan C=,10x=6x+3004x=300x≈75.0.答:AD的长度为75.0m.3.【解答】解:过点B作BF交CD于F,过点F作FE⊥AB于点E,∵太阳光与水平线的夹角为30°,∴∠BFE=30°,∵AC=EF=24m,∴BE=EF•tan30°=24×=8(m),∴CD﹣BE=(30﹣8)m.答:甲楼的影子在乙楼上的高度约为(30﹣8)m.4.【解答】解:在Rt△DAE中,∵∠DAE=45°,∴∠ADE=∠DAE=45°,AE=DE=3.∴AD2=AE2+DE2=(3)2+(3)2=36,∴AD=6,即梯子的总长为6米.∴AB=AD=6.在Rt△ABC中,∵∠BAC=60°,∴∠ABC=30°,∴AC=AB=3,∴BC2=AB2﹣AC2=62﹣32=27,∴BC==3m,∴点B到地面的垂直距离BC=3m.5.【解答】解:由题意得:AD=6m,在Rt△ACD中,tan A==∴CD=2(m),又AB=1.6m∴CE=CD+DE=CD+AB=2+1.6≈5.1(m).答:树的高度约为5.1米.6.【解答】解:过C作CE⊥AB于E,设CE=x米,在Rt△AEC中:∠CAE=45°,AE=CE=x在Rt△BCE中:∠CBE=30°,BE=CE=x,∴x=x+60解之得:x=30+30≈81.96.答:河宽约为81.96米.7.【解答】解:设绳子AC的长为x米;在△ABC中,AB=AC•sin60°,过D作DF⊥AB于F,如图:∵∠ADF=45°,∴△ADF是等腰直角三角形,∴AF=DF=x•sin45°,∵AB﹣AF=BF=1.6,则x•°﹣x•sin45°=1.6,解得:x=10,∴AB=10×sin60°≈8.7(m),EC=EB﹣CB=x•cos45°﹣x•cos60°=10×﹣10×≈2.1(m)答:旗杆AB的高度为8.7m,小明后退的距离为2.1m.8.【解答】解:根据内错角相等可知,∠BDC=α,∠ADC=β.在Rt△BCD中,tanα=.①在Rt△ADC中,tanβ=.②由①、②可得:.把h=2,tan32°≈0.62,tan79°≈5.14代入上式,得BC≈0.3(米),CD≈0.4(米).所以直角遮阳篷BCD中BC与CD的长分别是0.3米和0.4米.9.【解答】解:设秋千链子的上端固定于A处,秋千踏板摆动到最高位置时踏板位于B 处.过点A,B的铅垂线分别为AD,BE,点D,E在地面上,过B作BC⊥AD于点C.在Rt△ABC中,AB=3,∠CAB=53°,∵cos53°=,∴AC=3cos53°≈3×0.6=1.8(),∴CD≈3+0.5﹣1.8=1.7(m),∴BE=CD≈1.7(m),答:秋千摆动时踏板与地面的最大距离约为1.7m.10.【解答】解:过C点作FG⊥AB于F,交DE于G.∵CD与地面DE的夹角∠CDE为12°,∠ACD为80°,∴∠ACF=∠FCD﹣∠ACD=∠CGD+∠CDE﹣∠ACD=90°+12°﹣80°=22°,∴∠CAF=68°,在Rt△ACF中,CF=AC•sin∠CAF≈0.744m,在Rt△CDG中,CG=CD•sin∠CDE≈0.42m,∴h=0.42+0.74=1.156≈1.2(米),答:手柄的一端A离地的高度h约为1.2m.11.【解答】解:∵AB=AC,D为BC的中点,BC=10米,∴DC=BD=5米,∵AB=AC,D为BC的中点,∴AD⊥BC.在Rt△ADB中,∠B=36°,∴tan36°=,即AD=BD•tan36°≈3.7(米).cos36°=,即AB=≈6.2(米).答:中柱AD(D为底边BC的中点)为3.7米和上弦AB的长为6.2米.12.【解答】解:在Rt△ABC中,BC=60米,∠BCA=62°,可得tan∠BCA=,即AB=BC•tan∠BCA=60×1.88≈113(米),则河宽AB为113米.13.【解答】解:如图,过点C作CD⊥AB于点D,设CD=x米.∵在直角△ACD中,∠CAD=30°,∴AD==x.同理,在直角△BCD中,BD==x.又∵AB=30米,∴AD+BD=30米,即x+x=10.解得x=13.答:河的宽度的13米.14.【解答】解:过C作CD⊥,设CD=x米,∵∠ABE=45°,∴∠CBD=45°,∴DB=CD=x米,∵∠CAD=30°,∴AD=CD=x米,∵AB相距2米,∴x﹣x=2,解得:x=+1≈2.73,答:命所在点C与探测面的距离2.73米.15.【解答】解:由题可知:如图,BH⊥HE,AE⊥HE,CD=2米,BC=4米,∠BCH=30°,∠ABC=80°,∠ACE=70°∵∠BCH+∠ACB+∠ACE=180°∴∠ACB=80°∵∠ABC=80°∴∠ABC=∠ACB∴AB=AC过点A作AM⊥BC于M,∴CM=BM=2(米),∵在Rt△ACM中,CM=2米,∠ACB=80°∴∠ACB=cos80°≈0.17∴AC==(米),∵在Rt△ACE中,AC=米,∠ACE=70°∴∠ACE=sin70°≈0.94∴AE=×0.94=≈11.1(米),∴AE+CD=13.1(米),故可得点A到地面的距离为13.1米.16.【解答】解:设BM=x米.∵∠CDF=45°,∠CFD=90°,∴CF=DF=x米,∴BF=BC﹣CF=(4﹣x)米.∴EN=DM=BF=(4﹣x)米.∵AB=6米,DE=1米,BM=DF=x米,∴AN=AB﹣MN﹣BM=(5﹣x)米.在△AEN中,∠ANE=90°,∠EAN=31°,∴EN=AN•tan31°.即4﹣x=(5﹣x)×0.6,∴x=2.5,答:DM和BC的水平距离BM的长度为2.5米.17.【解答】解:过E作EG⊥地面于G,过D作DH⊥EG于H,∴DF=HG,在R t△ABC中,AC=AB•sin∠B=1.5×sin43°=1.5×0.682≈1.023米,∵∠CDE=60°,∴∠EDH=30°,∴EH=DE=0.9米,∴DF=GH=EG﹣EH=6﹣0.9=5.1米,∴OF=OA+AC+CD+DF=1.5+1.023+1+5.1=8.623m.答:灯杆OF至少要8.63m.18.【解答】解:作CD⊥AB交AB延长线于D,设CD=x米.Rt△ADC中,∠DAC=25°,所以tan25°==0.5,所以AD==2x.Rt△BDC中,∠DBC=60°,由tan60°==,解得:x≈3.所以生命迹象所在位置C的深度约为3米.19.【解答】解:过C作CE⊥AB于E,设CE=x米,在Rt△AEC中:∠CAE=45°,AE=CE=x在Rt△BCE中:∠CBE=30°,BE=CE=x,∴x=x+50解之得:x=25+25≈68.10.答:河宽为68.30米.20.【解答】解:如图,根据题意OA=OA′=80cm,∠AOA′=35°,作A′B⊥AO于B,∴OB=OA′•cos35°=80×0.82≈65.6cm,∴AB=OA﹣OB=80﹣65.6=14.4cm.答:调整后点A′比调整前点A的高度降低了14厘米.。
2024年高考数学总复习第四章《三角函数解三角形》解三角形的实际应用
2024年高考数学总复习第四章《三角函数、解三角形》§4.7解三角形的实际应用最新考纲能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.测量中的有关几个术语术语名称术语意义图形表示仰角与俯角在目标视线与水平视线所成的角中,目标视线在水平视线上方的叫做仰角,目标视线在水平视线下方的叫做俯角方位角从某点的指北方向线起按顺时针方向到目标方向线之间的夹角叫做方位角.方位角θ的范围是0°≤θ<360°方向角正北或正南方向线与目标方向线所成的锐角,通常表达为北(南)偏东(西)α例:(1)北偏东α:(2)南偏西α:坡角与坡比坡面与水平面所成二面角的度数叫坡度,θ为坡角;坡面的垂直高度与水平长度之比叫坡比,即i =hl=tan θ概念方法微思考在实际测量问题中有哪几种常见类型,解决这些问题的基本思想是什么?提示实际测量中有高度、距离、角度等问题,基本思想是根据已知条件,构造三角形(建模),利用正弦定理、余弦定理解决问题.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°.(×)(2)俯角是铅垂线与视线所成的角,其范围为0,π2.(×)(3)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.(√)(4)方位角大小的范围是[0,2π),方向角大小的范围一般是0,π2√)题组二教材改编2.如图所示,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出A ,C 的距离为50m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为________m.答案502解析由正弦定理得AB sin ∠ACB=ACsin B ,又B =30°,∴AB =AC sin ∠ACBsin B=50×2212=502(m).3.如图,在山脚A 测得山顶P 的仰角为30°,沿倾斜角为15°的斜坡向上走a 米到B ,在B处测得山顶P 的仰角为60°,则山高h =______米.答案22a 解析由题图可得∠PAQ =α=30°,∠BAQ =β=15°,在△PAB 中,∠PAB =α-β=15°,又∠PBC =γ=60°,∴∠BPA =(90°-α)-(90°-γ)=γ-α=30°,∴在△PAB 中,a sin 30°=PBsin 15°,∴PB =6-22a ,∴PQ =PC +CQ =PB ·sin γ+a sin β=6-22a ×sin 60°+a sin 15°=22.题组三易错自纠4.要测量底部不能到达的电视塔AB 的高度,在C 点测得塔顶A 的仰角是45°,在D 点测得塔顶A 的仰角30°,并测得水平面上的∠BCD =120°,CD =40m ,则电视塔的高度为()A .102mB .20mC .203mD .40m答案D解析设电视塔的高度为x m ,则BC =x ,BD =3x .在△BCD 中,由余弦定理得3x 2=x 2+402-2×40x ×cos 120°,即x 2-20x -800=0,解得x =-20(舍去)或x =40.故电视塔的高度为40m.5.在某次测量中,在A 处测得同一半平面方向的B 点的仰角是60°,C 点的俯角是70°,则∠BAC =________.答案130°解析60°+70°=130°.6.海上有A ,B ,C 三个小岛,A ,B 相距53海里,从A 岛望C 和B 成45°视角,从B 岛望C 和A 成75°视角,则B ,C 两岛间的距离是________海里.答案52解析由题意可知∠ACB =60°,由正弦定理得AB sin ∠ACB =BC sin ∠BAC ,即53sin 60°=BCsin 45°,得BC =52.题型一测量距离问题1.(2018·长春检测)江岸边有一炮台高30m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距____m.答案103解析如图,OM =AO tan 45°=30(m),ON =AO tan 30°=33×30=103(m),在△MON 中,由余弦定理得MN =900+300-2×30×103×32=300=103(m).2.如图,A ,B 两点在河的同侧,且A ,B 两点均不可到达,要测出A ,B 的距离,测量者可以在河岸边选定两点C ,D ,若测得CD =32km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,则A ,B 两点间的距离为________km.答案64解析∵∠ADC =∠ADB +∠CDB =60°,∠ACD =60°,∴∠DAC =60°,∴AC =DC =32km.在△BCD 中,∠DBC =45°,由正弦定理,得BC =DC sin ∠DBC ·sin ∠BDC =32sin 45°·sin 30°=64(km).在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC cos 45°=34+38-2×32×64×22=38.∴AB =64km.∴A ,B 两点间的距离为64km.3.如图,为了测量两座山峰上P ,Q 两点之间的距离,选择山坡上一段长度为3003m 且和P ,Q 两点在同一平面内的路段AB 的两个端点作为观测点,现测得∠PAB =90°,∠PAQ =∠PBA =∠PBQ =60°,则P ,Q 两点间的距离为________m.答案900解析由已知,得∠QAB =∠PAB -∠PAQ =30°.又∠PBA =∠PBQ =60°,∴∠AQB =30°,∴AB =BQ .又PB 为公共边,∴△PAB ≌△PQB ,∴PQ =PA .在Rt △PAB 中,AP =AB ·tan 60°=900,故PQ =900,∴P ,Q 两点间的距离为900m.思维升华求距离问题的两个策略(1)选定或确定要创建的三角形,首先确定所求量所在的三角形,若其他量已知则直接求解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.题型二测量高度问题例1(2018·福州测试)如图,小明同学在山顶A 处观测到一辆汽车在一条水平的公路上沿直线匀速行驶,小明在A 处测得公路上B ,C 两点的俯角分别为30°,45°,且∠BAC =135°,若山高AD =100m ,汽车从B 点到C 点历时14s ,则这辆汽车的速度约为________m/s.(精确到0.1,参考数据:2≈1.414,5≈2.236)答案22.6解析因为小明在A 处测得公路上B ,C 两点的俯角分别为30°,45°,所以∠BAD =60°,∠CAD =45°,设这辆汽车的速度为v m/s ,则BC =14v ,在Rt △ADB 中,AB =ADcos ∠BAD =AD cos 60°=200.在Rt △ADC 中,AC =AD cos ∠CAD =100cos 45°=100 2.在△ABC 中,由余弦定理,得BC 2=AC 2+AB 2-2AC ·AB ·cos ∠BAC ,所以(14v )2=(1002)2+2002-2×1002×200×cos 135°,所以v =50107≈22.6,所以这辆汽车的速度约为22.6m/s.思维升华(1)高度也是两点之间的距离,其解法同测量水平面上两点间距离的方法是类似的,基本思想是把要求的高度(某线段的长度)纳入到一个可解的三角形中.(2)在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易搞错.跟踪训练1如图所示,在山顶铁塔上B 处测得地面上一点A 的俯角为α,在塔底C 处测得A 处的俯角为β.已知铁塔BC 部分的高为h ,则山高CD =____________.答案h cos αsin βsin (α-β)解析由已知得∠BCA =90°+β,∠ABC =90°-α,∠BAC =α-β,∠CAD =β.在△ABC 中,由正弦定理得AC sin ∠ABC =BCsin ∠BAC,即AC sin (90°-α)=BC sin (α-β),∴AC =BC cos αsin (α-β)=h cos αsin (α-β).在Rt △ACD 中,CD =AC sin ∠CAD =AC sin β=h cos αsin βsin (α-β).故山高CD 为h cos αsin βsin (α-β).题型三角度问题例2如图所示,一艘巡逻船由南向北行驶,在A 处测得山顶P 在北偏东15°(∠BAC =15°)的方向,匀速向北航行20分钟后到达B 处,测得山顶P 位于北偏东60°的方向,此时测得山顶P 的仰角为60°,已知山高为23千米.(1)船的航行速度是每小时多少千米?(2)若该船继续航行10分钟到达D 处,问此时山顶位于D 处南偏东多少度的方向?解(1)在△BCP 中,由tan ∠PBC =PCBC,得BC =PCtan ∠PBC =2,在△ABC 中,由正弦定理得BC sin ∠BAC =AB sin ∠BCA,即2sin 15°=ABsin 45°,所以AB =2(3+1),故船的航行速度是每小时6(3+1)千米.(2)在△BCD 中,BD =3+1,BC =2,∠CBD =60°,则由余弦定理得CD =6,在△BCD 中,由正弦定理得CD sin ∠DBC =BCsin ∠CDB,即6sin 60°=2sin ∠CDB ,所以sin ∠CDB =22,所以,山顶位于D 处南偏东45°的方向.思维升华解决测量角度问题的注意事项(1)首先应明确方位角和方向角的含义.(2)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步.(3)将实际问题转化为可用数学方法解决的问题后,注意正弦、余弦定理的“联袂”使用.跟踪训练2如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离相等,灯塔A 在观察站C 的北偏东40°的方向上,灯塔B 在观察站C 的南偏东60°的方向上,则灯塔A 在灯塔B 的______的方向上.答案北偏西10°解析由已知得∠ACB =180°-40°-60°=80°,又AC =BC ,∴∠A =∠ABC =50°,60°-50°=10°,∴灯塔A 位于灯塔B 的北偏西10°的方向上.1.(2018·武汉调研)已知A ,B 两地间的距离为10km ,B ,C 两地间的距离为20km ,现测得∠ABC =120°,则A ,C 两地间的距离为()A .10kmB .103kmC .105kmD .107km答案D解析如图所示,由余弦定理可得AC 2=100+400-2×10×20×cos 120°=700,∴AC =107.2.如图所示,在坡度一定的山坡A 处测得山顶上一建筑物CD 的顶端C 对于山坡的斜度为15°,向山顶前进100m 到达B 处,又测得C 对于山坡的斜度为45°,若CD =50m ,山坡对于地平面的坡度为θ,则cos θ等于()A.32B.22C.3-1D.2-1答案C解析在△ABC 中,由正弦定理得AB sin 30°=ACsin 135°,∴AC =100 2.在△ADC 中,AC sin (θ+90°)=CDsin 15°,∴cos θ=sin(θ+90°)=AC ·sin 15°CD=3-1.3.一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是()A .102海里B .103海里C .203海里D .202海里答案A解析如图所示,易知,在△ABC 中,AB =20,∠CAB =30°,∠ACB =45°,根据正弦定理得BC sin 30°=ABsin 45°,解得BC =10 2.4.如图,两座相距60m 的建筑物AB ,CD 的高度分别为20m ,50m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角为()A .30°B .45°C .60°D .75°答案B解析依题意可得AD =2010,AC =305,又CD =50,所以在△ACD 中,由余弦定理得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD =(305)2+(2010)2-5022×305×2010=600060002=22,又0°<∠CAD <180°,所以∠CAD =45°,所以从顶端A 看建筑物CD 的张角为45°.5.(2018·郑州质检)如图所示,测量河对岸的塔高AB 时可以选与塔底B 在同一水平面内的两个测点C 与D ,测得∠BCD =15°,∠BDC =30°,CD =30,并在点C 测得塔顶A 的仰角为60°,则塔高AB 等于()A .56B .153C .52D .156答案D解析在△BCD 中,∠CBD =180°-15°-30°=135°.由正弦定理得BC sin 30°=CDsin 135°,所以BC =15 2.在Rt △ABC 中,AB =BC tan ∠ACB =152×3=15 6.故选D.6.(2018·广州模拟)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高是60m ,则河流的宽度BC 等于()A .240(3+1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m答案C解析如图,∠ACD =30°,∠ABD =75°,AD =60m ,在Rt △ACD 中,CD =AD tan ∠ACD =60tan 30°=603(m),在Rt △ABD 中,BD =AD tan ∠ABD =60tan 75°=602+3=60(2-3)m ,∴BC =CD -BD =603-60(2-3)=120(3-1)m.7.(2018·哈尔滨模拟)如图,某工程中要将一长为100m ,倾斜角为75°的斜坡改造成倾斜角为30°的斜坡,并保持坡高不变,则坡底需加长________m.答案1002解析设坡底需加长x m ,由正弦定理得100sin 30°=xsin 45°,解得x =100 2.8.如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向沿直线CB 前往B 处救援,则cos θ的值为________.答案2114解析在△ABC 中,AB =40,AC =20,∠BAC =120°,由余弦定理得BC 2=AB 2+AC 2-2AB ·AC ·cos 120°=2800,得BC =207.由正弦定理,得AB sin ∠ACB =BC sin ∠BAC,即sin ∠ACB =AB BC ·sin ∠BAC =217.由∠BAC =120°,知∠ACB 为锐角,则cos ∠ACB =277.由θ=∠ACB +30°,得cos θ=cos(∠ACB +30°)=cos ∠ACB cos 30°-sin ∠ACB sin 30°=2114.9.(2018·青岛模拟)一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时________海里.答案10解析如图所示,依题意有∠BAC =60°,∠BAD =75°,所以∠CAD =∠CDA =15°,从而CD =CA =10,在Rt △ABC 中,得AB =5,于是这艘船的速度是50.5=10(海里/时).10.(2018·泉州质检)如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,且小区里有一条平行于AO 的小路CD .已知某人从O 沿OD 走到D 用了2分钟,从D 沿DC 走到C 用了3分钟.若此人步行的速度为每分钟50米,则该扇形的半径为______米.答案507解析如图,连接OC ,在△OCD 中,OD =100,CD =150,∠CDO =60°.由余弦定理得OC 2=1002+1502-2×100×150×cos 60°=17500,解得OC =507.11.如图,在山底A 点处测得山顶仰角∠CAB =45°,沿倾斜角为30°的斜坡走1000米至S 点,又测得山顶仰角∠DSB =75°,则山高BC 为______米.答案1000解析由题图知∠BAS =45°-30°=15°,∠ABS =45°-(90°-∠DSB )=30°,∴∠ASB =135°,在△ABS 中,由正弦定理可得1000sin 30°=AB sin 135°,∴AB =10002,∴BC =AB 2=1000.12.如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sin α的值.解(1)依题意知,∠BAC =120°,AB =12,AC =10×2=20,∠BCA =α.在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos ∠BAC=122+202-2×12×20×cos 120°=784,解得BC =28.所以渔船甲的速度为BC 2=14(海里/时).(2)在△ABC 中,因为AB =12,∠BAC =120°,BC =28,∠BCA =α,由正弦定理,得AB sin α=BC sin 120°,即sin α=AB sin 120°BC =12×3228=3314.13.如图,在水平地面上有两座直立的相距60m 的铁塔AA 1和BB 1.已知从塔AA 1的底部看塔BB 1顶部的仰角是从塔BB 1的底部看塔AA 1顶部的仰角的2倍,从两塔底部连线中点C 分别看两塔顶部的仰角互为余角,则从塔BB 1的底部看塔AA 1顶部的仰角的正切值为________;塔BB 1的高为________m.答案1345解析设从塔BB 1的底部看塔AA 1顶部的仰角为α,则AA 1=60tan α,BB 1=60tan 2α.∵从两塔底部连线中点C 分别看两塔顶部的仰角互为余角,∴△A 1AC ∽△CBB 1,∴AA 130=30BB 1,∴AA 1·BB 1=900,∴3600tan αtan 2α=900,∴tan α=13,tan 2α=34,则BB 1=60tan 2α=45.14.如图,据气象部门预报,在距离某码头南偏东45°方向600km 处的热带风暴中心正以20km/h 的速度向正北方向移动,距风暴中心450km 以内的地区都将受到影响,求该码头将受到热带风暴影响的时间.解记现在热带风暴中心的位置为点A ,t 小时后热带风暴中心到达B 点位置,在△OAB 中,OA =600,AB =20t ,∠OAB =45°,根据余弦定理得OB 2=6002+400t 2-2×600×20t ×22,令OB 2≤4502,即4t 2-1202t +1575≤0,解得302-152≤t ≤302+152,所以该码头将受到热带风暴影响的时间为302+152-302-152=15(h).15.某舰艇在A 处测得一艘遇险渔船在其北偏东40°的方向距离A 处10海里的C 处,此时得知,该渔船正沿南偏东80°的方向以每小时9海里的速度向一小岛靠近,若舰艇的时速为21海里,求舰艇追上渔船的最短时间.解如图所示,设舰艇追上渔船的最短时间是t 小时,经过t 小时渔船到达B 处,则舰艇也在此时到达B 处.在△ABC 中,∠ACB =40°+80°=120°,CA =10,CB =9t ,AB =21t ,由余弦定理得(21t )2=102+(9t )2-2×10×9t ×cos 120°,即36t 2-9t -10=0,解得t =23或t =-512(舍).所以=23.16.如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C ,现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50m /min.在甲出发2min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再匀速步行到C .假设缆车匀速直线运动的速度为130m/min ,山路AC 长为1260m ,经测量得cos A =1213,sin B =6365.(1)问乙出发多少min 后,乙在缆车上与甲的距离最短?(2)为使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度应控制在什么范围内?解(1)∵cos A =1213,sin B =6365,∴sin A =513,cos B =-1665,∴sin C =sin(A +B )=45,在△ABC 中,由正弦定理AC sin B =AB sin C,得AB =1040m ,设乙出发t min 后,甲、乙距离为d ,由余弦定理得d 2=(130t )2+(100+50t )2-2×130t ×(100+50t )×1213,即d 2=200(37t 2-70t +50)=20037+62537.∵0≤t ≤1040130,即0≤t ≤8,∴当t =3537时,即乙出发3537min 后,乙在缆车上与甲的距离最短.(2)∵sin A =513,∴由正弦定理,得BC sin A =AC sin B ,即BC 513=12606365,∴BC =500m.乙从B 出发时,甲已经走了50(2+8+1)=550(m),还需走710m 才能到达C .设乙的步行速度为v m/min ,则|500v-71050|≤3,故-3≤500v -71050≤3,解得125043≤v ≤62514.故为使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度应控制在125043,62514范围内.。