盾构机液压系统原理[海瑞克]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
盾构机液压系统原理
一.液压系统原理
盾构机的绝大部分工作机构主要由液压系统驱动来完成,液压系统可以说是盾构机的心脏,起着非常重要的作用。这些系统按其机构的工作性质可分为:
1. 盾构机液压推进及铰接系统
2. 刀盘切割旋转液压系统
3. 管片拼装机液压系统
4. 管片小车及辅助液压系统
5. 螺旋输送机液压系统
6. 液压油主油箱及冷却过滤系统
7. 同步注浆泵液压系统
8. 超挖刀液压系统
以上8个系统除同步注浆泵液压系统在1号拖车、超挖刀液压系统在盾壳前体为两个独立的系统外,其余6个液压系统都共用一个油箱,并安装在2号拖车上组成一个液压泵站。有的系统还相互有联系。下面就分别介绍一下以上8个液压系统的作用及工作原理。
(一)盾构机液压推进及铰接系统
1. 盾构机液压推进
(1)盾构机液压推进系统的组成
盾构机液压推进系统由液压泵站,调速、调压机构,换向控制阀组及推进油缸组成,30个油缸分20组均布的安装在盾构中体内圆壁上(见图),并分为上、下、左、右四个可调整液压压力的区域,为盾构机前进提供推进力、推进速度,通过调整四个区域的压力差来实现盾构机的
转弯调向及
纠偏功能。铰接系统的主要作用是减小盾构机转弯或纠偏时的曲率半径
上的直线段,从而减少盾尾与管片、盾体与围岩间的摩擦阻力。
(2)推进系统液压泵站:
推进系统的液压泵站是由一恒压变量泵(1P001)和一定量泵
(1P002)组成的双联泵,功率为75KW,恒压变量泵为盾构的前进提供
恒定的动力。恒压泵的压力可通过油泵上的电液比例溢流阀(A300)调
整,流量在0-q
范围内变化时,调整后的泵供油压力保持恒定。恒压m a x
式变量泵常用于阀控系统的恒压油源以避免溢流损失。
由恒压变量泵输出的高压油分别送达A、B、C、D四组并联的推进方向控制阀组,经过阀组的流量、压力调整和换向后再去控制推进油缸,从而使推进油缸的推进速度、推力大小及方向得到准确控制。因每组油缸的控制原理都一样,下面就以B组中的第一个油缸控制为例,介绍其作用和工作原理。
油泵输出的高压油经高压管路由B组的P口进入,一路径F1(过滤)→A111(流量调整)→A101(压力调整)→经电液换向阀进入推进油缸。缸的快进快退,提高工作效率。A783控制的插装阀。A403为推进油缸底端预卸荷阀。阀组中还有液控单向阀、载荷溢流阀,以及A256压力传感器和油缸行程传感器。四组阀组中的电液换向阀的液控油由定量泵(1P002)经减压阀(1V034)提供。
2. 铰接装置工作模式分三种:
铰接装置的动力来源于推进系统的液压泵站中的定量泵(1P002),铰接装置的加载和卸载由(A349)
两位两通电液阀控制。
(1)铰接回收(PULL或
RETRACTION)模式(减小铰接间
隙),定量泵输送来的高压油从阀
快(2C001)P口进入,此时(H001)
不得电截止,(H002)得电导通,
高压油进入铰接油缸的有杆腔使
铰接油缸回收。
(2)铰接保持(HOLD或FREE)模式(浮动模式),该模式下(H001、H002)都不得电截止。铰接油缸有杆腔的油被封闭,油量保持不变,被
封闭的油在所有相互并联的有杆腔内互相补偿,直线推进时保持铰接间隙,转弯时处于浮动状态。
(3)铰接释放(RELEASE或LOOSE)模式(伸长模式),当(H001)得电导通,(H002)无电截止时,铰接油缸有杆腔的油接通低压,在盾构机推进时,因盾尾的阻力使铰接油缸被拉长,达到增大铰接间隙的目的。该油路中还设有负载溢流阀(V2)、压力传感器(H005)及铰接间隙长度传感器。另外可以通过(2V003、2V004、)的导通和截止达到铰接保持和铰接释放功能。但当(2V003、2V004)两个阀的截止,在铰接油缸有杆腔的压力过高时(盾构机推进时,盾尾如果被卡住),因无压力传感器的压力显示和载荷溢流阀的溢流,可能会使铰接油缸损坏或油管爆裂。
(二)刀盘旋转液压系统
刀盘旋转系统可分为补油回路、主工作回路、外部控制供油泵、主泵外部控制回路、马达外部控制回路。刀盘旋转系统是为刀盘切割岩石或土壤时提供转速和扭矩,要求根据岩石地质的变化转速能够方便的调整。为了得到较大的功率和扭矩,该系统采用3台315KW的双向变量液压泵并联,带动8台双向两速低速大扭矩液压马达。下面分别介绍各回路的作用及工作原理。
补油回路:因主工
作回路是闭式回路,加
之系统功率大,需要进
行补油和散热,所以设
置了一套补油回路对
其进行补油和散热。为
增大散热效率,补油回
路采用了55KW低压大
流量的定量泵来带走
闭式回路中的大量热
量,同时也对其进行了
补油。补油泵从油箱泵
出的油经两个滤清器
(1F001、1F002)进入
3个主泵的E口,并通
过两个单向阀分别对
闭式回路的低压端进行补油,然后经主泵的高压端为液压马达提供动力油。从马达返回的携带热量的低压油又回到主泵,一部分又进入主泵的高压端,一部分经排放阀从主泵的K1口流出,并经一节流阀流回油箱进行冷却。补油回路中还设有蓄能器和压力传感器,蓄能器是保证回路的压力平稳。主工作回路由主泵和液压马达组成,主泵是一315KW的双向变量泵,在主泵的主回路中有补油单向阀、载荷溢流阀、及低压排放阀,主泵的控制回路有主泵斜盘伺服油缸及双向伺服控制阀,司服阀由
外部控制回路调压控制,以便实现换向和无级调速。两个补油单向阀分
别向低压侧进行补油,另一个带弹簧符号的单向阀是当两侧回路都较高或相等时(如:主泵斜盘角度为0时),补油直接通过它,并经节流阀(1Z017)返回油箱。载荷溢流阀当载荷过大时使过高的压力油泄至低压侧,以达到保护系统不受损坏。排放阀用于闭式系统多余的热油经低压侧排放回油箱。节流阀(1Z017)是保证排放出的压力油与油箱之间形成约20bar的压差。
主泵控制回路用于控制其斜盘的±角度,以实现刀盘的正反转及转速的无级调整。外来控制油经换向阀(1V002)到达司服阀的左右端,使司服油缸的无杆腔进油和排油来实现活塞杆的左右移动,从而完成斜