重要极限的证明_1

合集下载

两个重要极限的证明

两个重要极限的证明

两个重要的极限1.证明:0sin lim 1x x x→= 证明:如图(a )作单位圆。

当0<x<2π时,显然有ΔOAD 面积<扇形OAD 面积<ΔOAB 面积。

即111sin 222x x <<tgx ,sinx<x<tgx 。

除以sinx ,得到11sin cos x x x<< 或sin 1cos x x x >>。

(1) 由偶函数性质,上式对02x π-<<时也成立。

故(1)式对一切满足不等式0||2x π<<的x 都成立。

由0lim x →cosx=1及函数极限的迫敛性定理立刻可得0lim x →sin 1x x=。

函数f(x)=sin x x的图象如图(b )所示。

2.证明:1lim(1)n n n →∞+存在。

证明:先建立一个不等式,设b>a>0,于是对任一自然数n 有 11(1)n n n b a n b b a++-<+-或11(1)()n n n b a n b b a ++-<+-,整理后得不等式1[(1)]n n a b n a nb +>+-。

(1) 令a=1+11n +,b=1+1n ,将它们代入(1)。

由于11(1)(1)(1)(1)11n a nb n n n n +-=++-+=+, 故有111(1)(1)1n n n n ++>++,这就是说1{(1)}n n+为递增数列。

再令a=1,b=1+12n代入(1)。

由于11(1)(1)(1)22n a nb n n n +-=+-+=,故有111(1)22n n >+,12(1)2n n >+。

不等式两端平方后有214(1)2n n >+,它对一切自然数n 成立。

联系数列的单调性,由此又推得数列1{(1)}n n +是有界的。

于是由单调有界定理知道极限1lim(1)n n n→∞+是存在的。

重要极限的证明

重要极限的证明

1.求证:sin(π/(2n+1))sin(2π/(2n+1))sin(3π/(2n+1))……sin(nπ/(2n+1))=√(2n +1)/2^n,Sol:复数方法:复数方程 z^(2n+1)=1的根是 a1,a2,a3,...,a(2n),1。

其中,ak=cos(2kπ/(2n+1))+i sin(2kπ/(2n+1)),k=1,2,...,2n。

所以,ak=(a1)^k所以,z^(2n+1)-1=(z-a1)(z-a2)...(z-a(2n))(z-1),即(z-a1)(z-a2)...(z-a(2n))=(z^(2n+1)-1)/(z-1)=z^(2n)+z^(2n-1)+...+z+1。

两边令z=1,并取模,则:|1-a1|×|1-a2|×......×|1-a2n|=2n+1.........(*)因为,|1-ak|=√|(cos(2kπ/(2n+1))-1))+i sin(2kπ/(2n+1))|=2×sin(kπ/(2n+1)),所以由(*)式得:2^n×sin(π/(2n+1))sin(2π/(2n+1))sin(3π/(2n+1))……sin(nπ/(2n+1))=2n+1。

所以,sin(π/(2n+1))sin(2π/(2n+1))sin(3π/(2n+1))……sin(nπ/(2n+1))=√(2n+1)/2^n2.三角函数求证:sin(π/(2n+1))sin(2π/(2n+1))sin(3π/(2n+1))……sin(nπ/(2n+1))=√(2n +1)/2^n.证:sin(π/(2n+1))sin(2π/(2n+1))sin(3π/(2n+1))........sin(nπ/(2n+1))=√(2n +1)/2^n设Z=cos2π/(2n+1)+ isin2π/(2n+1)则x^(2n+1)=1的根为1,z,...z^2n得x^2n+...+x+1=(x-z)(x-z^2)...(x-z^2n)2n+1=|(1-z)||(1-z^2)|...|(1-z^2n)| (1)又|(1-z^k)|=2sinkπ/(2n+1) (2)|1-z^k| = |1-(cos(2kπ/(2n+1)) +sin(2kπ/(2n+1)) )|=|1-cos(2kπ/(2n+1))) -sin(2kπ/(2n+1)) )|=√((1-2cos(2kπ/(2n+1)) +cos^2 (2kπ/(2n+1))) + sin^2 (2kπ/(2n+1))) =√(2-2cos(2kπ/(2n+1)) )=√(4sin^2(kπ/(2n+1))=2sin(kπ/(2n+1)故2n+1 =( n(π/(2n+1)). n(2π/(2n+1)) n(3π/(2n+1))........ n(2nπ/(2n+1)) 两边开方,得sin(π/(2n+1))sin(2π/(2n+1))sin(3π/(2n+1))........sin(nπ/(2n+1)) =√(2n+1) / 2^n另外那个类似,可以尝试自己证一下.3.为什么sinπ/n+sin2π/n......+sin(n-1)π/n=cotπ/2n?解:2 sin [π/(2n)]·sin(π/n)= cos [π/n -π/(2n)]- cos [π/n +π/(2n)]= cos [π/(2n)]- cos [3π/(2n)]2 sin [π/(2n)]·sin(2π/n)= cos [2π/n -π/(2n)]- cos [2π/n+π/(2n)]= cos [3π/(2n)]- cos[5π/(2n)]2 sin [π/(2n)]·sin(3π/n)= cos [3π/n -π/(2n)]- co s [3π/n +π/(2n)]= cos [5π/(2n)]- cos [7π/(2n)]……2 sin [π/(2n)]·sin[(n-1)π/n]= cos [(n-1)π/n -π/(2n)]- cos [(n-1)π/n +π/(2n)]= cos [(2n-3)π/(2n)]- cos [(2n-1)π/(2n)]故:2 sin [π/(2n)] ·{sin(π/n)+sin(2π/n)+......+sin[(n-1)π/n]}= cos [π/(2n)]- cos [(2n-1)π/(2n)]= cos [π/(2n)]- cos [π-π/(2n)]=2 cos [π/(2n)]故:sin(π/n)+sin(2π/n)+......+sin[(n-1)π/n]= cos[π/(2n)]/ sin[π/(2n)]= cot [π/(2n)]4.级数sin n/(n+1)收敛还是发散,如果收敛,是绝对收敛还是条件收敛,为什么? Sol:收敛,Dirichlet 判别法.这是最典型的一个用Dirichlet 判别法判别收敛的例子.sinn 的部分和=[sin1/2(sin1+sin2+...+sinn)]/sin1/2(积化和差公式)=[cos1/2-cos(2n+1)/2)]/sin1/2,于是有界,1/(n+1)单调递减趋于0,收敛.不绝对收敛.|sinn/(n+1)|>=sin^2n/(n+1)=[1-cos(2n)]/2(n+1).类似用Dirichl et 判别法知道级数cos2n/(n+1)收敛,但级数1/(n+1)发散,于是易知不绝对收敛.建议记住这个典型例子.12122ln ln ...ln lim .2ln ln ln ...ln n ln 2ln 1:ln 2ln =ln 2o n n n n x no n n n n c c c I nn c c c n n sol n n n n nI →∞+++=+++-≤==-求5.求sin π/n*sin2π/n*…*sin(n-1)π/n 的值,用复数思想6.三角函数连乘(正弦)求证:sin[π/(2n+1)]*sin[2π/(2n+1)]*sin[3π/(2n+1)]*……*sin[nπ/(2n+1)]=(根号下2n-1)/2^nSol:7.证一般项级数∑sin√(n^2+1)π条件收敛Sol:∵sin√(n²+1)π=[(-1)^n]sin[√(n²+1)π-nπ]=[(-1)^n]sin[√(n²+1)-n]π=[(-1)^n]sin{1/[√(n²+1)+n]}πlim(n→∞)[sin{1/[√(n²+1)+n]}π]/(1/n)=lim(n→∞)nπ/[√(n²+1)+n]=π/2∴∑sin{1/[√(n²+1)+n]}与∑1/n有相同的敛散性,即∑sin{1/[√(n²+1)+n]}π发散lim(n→∞)sin{1/[√(n²+1)+n]}π=0,且sin{1/[√[(n+1)²+1]+(n+1)]}π≤sin{1/[√(n ²+1)+n]}π由莱布尼兹判别法知lim[(-1)^n]sin{1/[√(n²+1)+n]}π收敛∴原级数条件收敛其他回答:sin√(n^2+1)π=(-1)^n sin(√(n^2+1)π+nπ)再利用分子有理化可得:(-1)^n sin(π/[根号(n^2+1)+n])利用 Dirichlet判别法可知级数收敛。

极限存在准则 两个重要极限

极限存在准则 两个重要极限

y 2.594 2.705 2.7169 2.71815 2.71827 …
x -10 -100 -1000 -10000
y 2.88 2.732 2.720
2.7183
y


1

1 x
x
的值无限接近于一个常数
-100000 … 2.71828 …
e 2.718281828459045
xn

a xn

a
xn1 xn
1(1 2
a xn2
)

1 2
(1
a) a
1
∴数列单调递减有下界,
故极限存在,

lim
n
xn

A
则由递推公式有 A 1 ( A a ) 2A
A a
x1 0,
xn 0, 故
lim
n
xn

a
三、 两个重要极限
证: 当
x(0,

a 2a
lim
n
xn

lim
n
2 xn1
a2 2 a
a2 a 2 0
a2
备用题
1.设
xn1

1 2 ( xn

a xn
)(
n

1
,
2
,
) , 且 x1 0 ,
a0, 求
lim
n
xn
.
利用极限存在准则
解:
1
a
xn1 2 ( xn xn )
令z=1/x, 则x→∞时, z→0,
由此可得:
1
1
lim(1 z)z lim(1 x)x = e

《重要极限》课件

《重要极限》课件

重要极限的推导过程
极限的定义:极限是函数在某点附近的变化趋势 重要极限的定义:重要极限是指在数学分析中具有特殊意义的极限 重要极限的推导:通过数学分析中的极限理论,推导出重要极限的公式 重要极限的证明:通过数学分析中的极限理论,证明重要极限的公式是正确的
重要极限的证明方法
极限的定义:极限是函数在某点附近的变化趋势 极限的性质:极限具有保号性、有界性、单调性等性质 极限的证明方法:可以通过极限的定义、性质、定理等来证明 重要极限的证明:例如,可以通过洛必达法则、泰勒公式等方法来证明重要极限
极限的保号性:如 果函数f(x)在x0的某 个去心邻域内单调 递减,且f(x0) < 0, 则f(x)在x0的某个去 心邻域内极限小于0。
极限的保号性:如 果函数f(x)在x0的某 个去心邻域内单调 递增,且f(x0) = 0, 则f(x)在x0的某个去 心邻域内极限等于0。
极限的保号性:如 果函数f(x)在x0的某 个去心邻域内单调 递减,且f(x0) = 0, 则f(x)在x0的某个去 心邻域内极限等于0。

概率论与数理 统计:重要极 限在概率论与 数理统计中用 于计算概率分
布和统计量
线性代数:重 要极限在线性 代数中用于求 解线性方程组
和矩阵运算
复变函数论: 重要极限在复 变函数论中用 于求解复变函 数的极限和积

重要极限的进一步研究与展望
重要极限的推广: 将重要极限推广 到更广泛的函数 和极限形式
利用重要极限证明不等式
重要极限的定义:lim(x→0)sin(x)/x=1
利用重要极限证明不等式:lim(x→0)sin(x)/x>1 证明过程:利用重要极限的定义,将sin(x)/x替换为1,得到 lim(x→0)sin(x)/x>1 结论:利用重要极限可以证明不等式lim(x→0)sin(x)/x>1

第一重要极限证明

第一重要极限证明

第一重要极限证明极限是微积分中的重要概念之一,它在数学和科学中具有广泛的应用。

而第一重要极限证明则是极限理论中最基础的证明之一。

本文将从人类视角出发,详细描述第一重要极限的证明过程,使读者能够更好地理解并感受这一数学原理的美妙。

我们先来介绍一下第一重要极限的概念。

在微积分中,当自变量趋向于某个特定值时,函数的极限就是函数在该特定值附近的行为。

第一重要极限是指当自变量趋向于某个常数a时,函数f(x)的极限。

具体来说,如果对于任意给定的正数ε,存在一个正数δ,使得当0 < |x - a| < δ时,有|f(x) - L| < ε成立,那么我们就说函数f(x)在x趋近于a时的极限为L。

接下来,我们将通过一个实例来说明第一重要极限的证明过程。

考虑函数f(x) = 2x + 1,我们需要证明当x趋近于2时,函数f(x)的极限为5。

我们给定一个任意的正数ε,我们需要找到一个正数δ,使得当0 < |x - 2| < δ时,有|f(x) - 5| < ε成立。

我们可以先尝试通过代入一些近似值来判断可能的δ的取值范围。

当我们令x = 1.9时,可以得到f(1.9) = 2(1.9) + 1 = 3.8 + 1 = 4.8,而当x = 2.1时,可以得到f(2.1) = 2(2.1) + 1 = 4.2 + 1 = 5.2。

可以看出,当x在1.9和2.1之间时,f(x)的值在4.8和5.2之间变化。

根据这一观察,我们可以猜测当0 < |x - 2| < 0.1时,有|f(x) - 5| < 0.2成立。

接下来,我们需要证明这一猜测的正确性。

假设存在一个正数δ,使得当0 < |x - 2| < δ时,有|f(x) - 5| < 0.2成立。

我们可以取δ = 0.1,根据我们的猜测,这个δ是满足条件的。

现在,我们可以证明当0 < |x - 2| < 0.1时,有|f(x) - 5| < 0.2成立。

高等数学 第1章 第七节 极限存在准则 两个重要极限

高等数学 第1章 第七节 极限存在准则  两个重要极限


lim
n
x n1
lim n
6 xn ,
A
6 A,
解得 A 3或A 2,(舍去)
lim n
xn
3.
14
3.两个重要极限的应用
例6: 求 lim tan x 1
x0 x
可作为公式
lim
x
s
in u x ux
1
lim ux 0
x
解: lim tan x lim sin x 1 lim sin x lim 1 11 1 x0 x x0 x cos x x0 x x0 cos x
1 n2 1
n2
1
22
n2
1
n2
n n2 1
,
1
lim 1 0, n 2n
lim n n n2 1
lim n
n
1
1
由夹逼定理知:
n2
0 0, 10
lim n
n
1 2
1
n2
1 22
n2
1 n2
存在, 且
lim n
n
1 2
1
n2
1
22
n2
1
n2
0.
8
例2 用夹逼准则证明:
lim sin x 1.
1yn xn zn n 1,2,3,,
2
lim
n
yn
a,
lim
n
z
n
a,
则数列x
n




在,

lim
n
xn
a.
准则1 若
1当x
U
x

极限存在准则两个重要极限公式

极限存在准则两个重要极限公式

夹逼准则不仅说明了极限存在,而且给出了求极限的
方法.下面利用它证明另一个重要的
极限公式: lim sin x 1 x0 x
证:

x
(
0
,
2
)
时,
BD
1x
oC
A
△AOB 的面积<圆扇形AOB的面积<△AOD的面积

1 2
sin
x
1 2
x
1 2
tan
x
亦故即有
1sin sxinxxxctoa1snxx
1. 单调有界准则
数列 xn : 单调增加 x1 x2 xn xn1 ,
单调减少 x1 x2 xn xn1 ,
准则I 单调有界数列必有极限 单调上升有上界数列必有极限
说 明: 单调下降有下界数列必有极限 (1) 在收敛数列的性质中曾证明:收敛的数列一定 有界,但有界的数列不一定收敛.
1
1 1 n1 n 1
1 yn1
由于数列 yn 是单调增加的,所以数列 zn 是单调减少的.

xn
1
1
n
n
1
1
ห้องสมุดไป่ตู้n1
n
zn
z1
4
则 2 xn 4. 综上,根据极限存在准则Ⅰ可知,数列是
收敛的.
2023年12月9日星期六
4
目录
上页
下页
返回
通常用字母 e 来表示这个极限,即
lim
n
1
1
n
)
( n 1, 2,
), 且
x1 0,
a0,

lim
n
xn
.
利用极限存在准则

极限存在准则与两个重要极限

极限存在准则与两个重要极限

100 000 2.718 27 100 000 2.718 30
1 000 000 2.718 28 1 000 000 2.718 28
e e
1.2 准则Ⅱ与第二个重要极限
因此,
lim
x
1
1 x
x
e

e 是无理数,它的值是 2.718 28 .在 1.1 中提到的指数函数 y ex 及自然对数 y ln x 中的
(2) lim g(x) lim h(x) A ,
xx0
xx0
则有 lim f (x) A . xx0
1.1 准则Ⅰ与第一个重要极限
作为准则Ⅰ及准则Ⅰ'的应用,下面证明一个重要极限: lim sin x 1 . x0 x
证明 在图所示的单位圆中,设圆心角 BOA x , AD 切圆 O 于 A , 且与 OB 延长线相交于 D ,于是有
3 1
x 1
1
lim
x 1
3
x
2x 1
2x
lim
x
2x 2x
3 1
lim
x
1 1
3
x
2x
1 x 2x
1
3
e2
1
e2
e.
1.7 无穷小阶的比较
在 1.4 节中我们已经知道,两个无穷小的和、差及乘积仍是无穷小.但是关于两
个无穷小的商却会出现不同的情况.例如,当 x 0 时,2x , x2 ,sin x 都是无穷小
an1
1
n
1
n1
1
1
1
21!1
n
1
1
1 3!
1
1 n
1

两个重要极限-4分析

两个重要极限-4分析

第二个重要极限
总结词
该极限描述了当x趋近于无穷大时,(1+1/x)的x次方的极限值也等于自然常数e。
详细描述
这个极限也与自然对数的底数e有关,它帮助我们理解概率和统计学中的一些概 念,例如二项分布和泊松分布。通过这个极限,我们可以推导出一些重要的数 学公式和定理。
两个重要极限的应用
01
描述连续复利
详细描述
在一些实际问题中,我们可能会遇到一些数学模型,这些模型中会涉及到两个重要极限。通过利用这两个极限, 我们可以求解这些数学模型,从而得到实际问题的解决方案。例如,在经济学中,我们可能会遇到一些涉及到利 率和时间变化的数学模型,利用两个重要极限可以求解这些模型。
THANKS
感谢观看
局部保号性
如果函数在某点的极限存在且不为0,则在该点 附近函数具有相同的符号。
极限的分类
数列的极限
数列是一种特殊的函数,数列的 极限定义与函数的极限定义类似。
一致收敛与发散
对于函数序列,如果存在一个数 列的极限,使得函数的极限值等 于该数列的极限值,则称该函数 序列一致收敛;否则称该函数序 列发散。
无穷小与无穷大
当函数的极限为0时,称该函数为 无穷小;当函数的极限为无穷时, 称该函数为无穷大。
02
两个重要极限
第一个重要极限
总结词
该极限描述了当x趋近于0时,(1+x)的1/x次方的极限值等于 自然常数e。
详细描述
这个极限在数学和科学中非常重要,因为e是自然对数的底数 ,与许多数学公式和自然现象有关。通过这个极限,我们可 以理解指数增长和复利等概念。
$L$,则称$L$为$f(x)$在$x=a$处的极限。
符号表示
03

数学分析3.4两个重要的极限

数学分析3.4两个重要的极限

第三章函数极限4 两个重要的极限一、证明:limx→0sin xx=1.证:∵sinx<x<tanx(0<x<π2),∴1<xsin x<1cos x(0<x<π2),∴cosx<sin xx<1(0<x<π2),又cos-x=cosx,sin−x−x =sin xx,∴对0<|x|<π2,有cosx<sin xx<1.由limx→0cosx=1,根据极限的迫敛性,limx→0sin xx=1.例1:求limx→πsin x π−x.解:令t=π-x,则sinx=sin(π-t)=sint,且当x→π时,t→0,∴limx→πsin xπ−x=limt→0sin tt=1.例2:求limx→01−cos xx2.解:limx→01−cos xx2=limx2→012sin x2x22=12,二、证明limx→∞1+1xx=e.证:设f(x)=1+1n+1n, g(x)=1+1nn+1, n≤x<n+1, n=1,2,…,则f(x)递增且有上界,g(x)递减且有下界,∴limx→+∞f x与limx→+∞g x都存在,取{x n}={n},由归结原则得lim x→+∞f x=limn→+∞1+1n+1n=e,limx→+∞g x=limn→+∞1+1nn+1=e,又1+1n+1<1+1x≤1+1n,则1+1n+1n<1+1xx<1+1nn+1,根据迫敛性定理得limx→+∞1+1xx= e.设x=-y,则1+1x x=1−1y−y=1+1y−1y,且当x→-∞,y→+∞,从而有lim x→−∞1+1xx=limy→+∞1+1y−1y−1·1+1y−1=e.∴limx→∞1+1xx=e.注:e的另一种形式:lima→01+a1a=e.证:令a=1x ,则当a→0时,1x→∞,∴lima→01+a1a=lim1x→∞1+1xx=e.例3:求limx→01+2x1x.解:limx→01+2x1x=lim12x→∞1+2x12x2=e2.例4:求limx→01−x1x.解:limx→01−x1x=lim−1x→∞1[1+(−x)]−1x=1e.例5:求limn→∞1+1n−1n2n.解:1+1n −1n2n<1+1nn→e(n→∞),又当n>1时有1+1n −1n2n=1+n−1n2n2n−1−nn−1≥1+n−1n2n2n−1−2→e(n→∞,即n−1n2→0).由迫敛性定理得:limn→∞1+1n−1n2n=e.习题1、求下列极限: (1)lim x →0sin 2x x;(2)limx →0sin x 3 (sin x)2;(3)lim x →π2cos xx −π2;(4)limx →0tan x x;(5)limx →0tan x −sin xx 3;(6)limx →0arctan xx;(7)lim x →+∞x sin 1x;(8)limx →asin 2 x −sin 2 ax −a;(9)limx → x +1−1(10)limx →0 1−cos x 21−cos x.解:(1)limx →0sin 2x x=lim2x →02sin 2x 2x=2;(2)lim x →0sin x 3(sin x)2=limx →0 x 3sin x 3x 3(sin x )2=limx 3→0sin x 3x3·lim x 2→0xsin x 2·lim x →0x =0; (3)lim x →π2cos x x −π2=lim x −π2→0−sin x −π2x −π2= -1;(4)limx →0tan x x=limx →0sin x x·limx →01cos x=1;(5)lim x →0tan x −sin xx 3=limx →0sinx 1cos x −1x 3=limx →0sin x·1−cos xcos x x 3=limx →02sinx 2cos x 2·2 sin x 2 2cos xx3=limx →04 sinx 2 3·cos x2cos x x3=limx →0sin x 2 3·cos x2cos x 2 x 23=lim x2→0sinx 2x 23·lim x 2→0cosx 22lim x →0cos x =12;(6)令arctan x=y ,则x=tany ,且x →0时,y →0, ∴limx →0arctan xx=limy →0ytan y =limy →0cos ysin y y=1;(7)lim x →+∞x sin 1x =lim 1x→0sin1x1x =1;(8)lim x →asin 2 x −sin 2 ax −a =limx →a sin x −sin a (sin x+sin a)x −a=limx →a2cosx +a 2 sin x −a2x −a·2sin a=limx −a2→0sinx −a2x −a 2·cos a ·2sin a= sin2a ;(9)limx →x +1−1lim x →0( x+1+1)sin 4xx=8lim4x →0sin 4x 4x=8;(10)lim x →0 1−cos x 21−cos x=limx →0 2sin x 222 sin x 22= 2limx →0sinx 22 x 22 sinx 2x 22= 2.2、求下列极限:(1)limx→∞1−2x−x;(2)limx→01+ax1x(a为给定实数);(3)limx→01+tan x cot x;(4)limx→01+x1−x1x;(5)limx→+∞3x+23x−12x−1;(6)limx→+∞1+αxβx(α,β为给定实数)解:(1)limx→∞1−2x−x=lim−x2→∞1+1−x2−x22=e2;(2)limx→01+ax1x=lima x→01+ax1axa=e a;(3)limx→01+tan x cot x=limtan x→01+tan x1tan x=e;(4)limx→01+x1−x1x=limx→01+x1x1−x1x=limx→01+x1xlim−x→0[1+−x]1−x−1=e2;(5)limx→+∞3x+23x−12x−1=limx→+∞1+33x−16x−33=lim33x−1→0+1+33x−123x−1−13=lim33x−1→0+1+33x−123x−13lim33x−1→0+1+33x−113=e2;(6)limx→+∞1+αxβx=limx→+∞1+αxαβxα=limαx→0+1+αxxααβ=eαβ.3、证明:limx→0limn→∞cos xcos x2cos x22…cos x2n=1.证:∵cos xcos x2cos x22…cos x2n=2n+1cos xcos x2cos x22…cos x2nsin x2n2n+1sin x2n=sin 2x2n+1sin x2n=sin 2x2xsin x2nx2n=x2nsin x2n·sin 2x2x;∴当x≠0时,limn→∞ cos xcos x2cos x22…cos x2n=limx2n→0x2nsin x2n·sin 2x2x=sin 2x2x;lim x→0limn→∞cos xcos x2cos x22…cos x2n=lim2x→0sin 2x2x=1.当x=0时,cos xcos x2cos x22…cos x2n=1,∴limx→0limn→∞cos xcos x2cos x22…cos x2n=1.4、利用归结原则计算下列极限:(1)limn→∞n sinπn;(2)limn→∞1+1n+1n2n.解:(1)∵limx→∞x sinπx=limx→∞sinπxπx·x=limπx→0sinπxπx·limx→∞x=0根据归结原则,limn→∞n sinπn=0.(2)∵当x>0时,1+1x +1x2x>1+1xx→e(x→+∞),又1+1x +1x2x=1+x+1x2x2x+1+xx+1<1+x+1x2x2x+1→e(x→+∞,即x+1x2→0),∴limx→+∞1+1x+1x2x=e根据归结原则,limn→∞1+1n+1n2n=e.。

重要极限

重要极限

x 1 1 sin 7 x
(2)lim
x 0
x 0
(1 x ) tan
x
2
(3) lim
x sin x x sin x
x 0
(4) lim
x sin x x sin x
5
x
三、利用等价无穷小代换求极限
1、定理:设 f ( x) ~ g ( x) , lim g ( x)h( x) A, 则
22
2
例9
连续复利问题
将 本 金 A 0 存 入 银 行 , 年 利 率 为 r, 则 一 年 后 本 息 之 和 为 A 0 ( 1 r ) . 如 果 年 利 率 仍 为 r, 半 年 计 一 次 但 利 息 ,且 利 息 不 取 , 前 期 的 本 息 之 和 作 为 下 期 的 本 金 再 计算以 后的利 息,这 样利息 又生利 息,由 于半年 的利率为
1 n 1
2

1 n 2
2

1 n n
2
1 n n
2
).

n n n
2

n
1 n 1
2

1 1
1

n n 1
2
,
又 lim
n
n n
2
lim
n
1 n
1,
lim
n n 1
2
n
lim
n
1
1 n
2
1,
由夹逼定理得
1 n n
sin x ~ x , tan x ~ x,
1 cos x ~
e x
1 2
x , arcsin x ~ x, arctan x ~ x,

两个重要极限证明过程

两个重要极限证明过程

两个重要极限证明过程嘿,咱今天来聊聊两个重要极限证明过程哈!这可是数学里相当关键的玩意儿呢!先来说说第一个重要极限,那就是当 x 趋近于 0 的时候,sinx/x 的极限等于 1。

你想想看,这就好像是一场追逐游戏,sinx 和 x 在趋近于0 的道路上你追我赶。

为啥这个极限是 1 呢?咱可以通过巧妙的构造和分析来搞明白。

咱可以画个单位圆呀,在圆上找个角度对应的弧长和对应的弦长,然后比较比较。

这不就发现,当角度很小的时候,弧长和弦长几乎差不多嘛!这就好比你走在路上,离得近的时候看两根线好像都重合了一样。

这样不就慢慢能理解为啥 sinx/x 在 x 趋近于 0 的时候极限是 1了嘛!再讲讲第二个重要极限,就是当 x 趋近于无穷大的时候,(1+1/x)^x 的极限等于 e。

哎呀呀,这个可有点神奇呢!就好像一个东西在不断地变化、成长。

咱可以通过一些计算和推导来搞清楚。

你就想啊,随着x 越来越大,那个式子里面的 1/x 就越来越小,但是经过那么一运算,最后竟然趋近于一个固定的值 e!这就好像你看着一颗小种子,一点点长大,最后变成了一棵大树,多奇妙呀!这两个重要极限证明过程可不简单呐,就像爬山一样,得一步步往上爬,一点点去理解。

它们在数学里的作用可大了去了,好多问题都得靠它们来解决呢!你要是不把它们搞清楚,那数学的大门可就没那么容易进咯!比如说在求一些极限的时候,你一下子就想到这两个重要极限,然后就像找到了钥匙一样,“咔嚓”一下门就开了。

如果没有它们,那可就像在黑暗里摸索,找不到方向啦!而且呀,这两个重要极限还和好多其他的数学知识紧密相连呢!就像一张大网,它们就是网上的关键节点。

你掌握了它们,就能把这张网织得更结实,更完整。

所以啊,大家可得好好去研究研究这两个重要极限证明过程,别嫌麻烦,别嫌困难。

等你真的搞懂了,你就会发现数学的世界原来这么精彩,这么有趣!就像打开了一扇通往奇妙世界的大门,里面有无尽的宝藏等你去挖掘呢!加油吧!。

两个重要极限的证明

两个重要极限的证明

两个重要极限的证明两个重要极限的证明两个重要极限的证明那么,数列的极限存在,且。

证明:因为,所以对,当时,有,即,对,当时,有,即,又因为,所以当时,有,即有: ,即,所以。

准则I′如果函数满足下列条件:当时,有。

当时,有。

那么当时,的极限存在,且等于。

第一个重要极限:作为准则I′的应用,下面将证明第一个重要极限: 。

证明:作单位圆,如下图: 设为圆心角,并设见图不难发现: ,即: ,即,当改变符号时,及1的值均不变,故对满足的一切,有。

又因为,所以而,证毕。

【例1】。

【例2】。

【例3】。

【例4】。

准则?:单调有界数列必有极限如果数列满足: ,就称之为单调增加数列;若满足: ,就称之为单调减少数列;同理亦有严格单增或单减,以上通称为单减数列和严格单减数列。

如果,使得: ,就称数列为有上界;若,使得: ,就称有下界。

准则?′:单调上升,且有上界的数列必有极限。

准则?″: 单调下降,且有下界的数列必有极限。

注1:由前已知,有界数列未必有极限,若加单调性,就有极限。

2:准则?,?′,?″可推广到函数情形中去,在此不一一陈述了。

第二个重要极限:作为准则?的一个应用,下面来证明极限是不存在的。

先考虑取正整数时的情形: 对于,有不等式: ,即: ,即: 现令,显然,因为将其代入,所以,所以为单调数列。

又令,所以,即对,又对所以{ }是有界的。

由准则?或?′知存在,并使用来表示,即注 1:关于此极限存在性的证明,书上有不同的方法,希望同学自己看!2:我们可证明: ,具体在此不证明了,书上也有,由证明过程知: 。

3:指数函数及自然对数中的底就是这个常数。

【例1】【例2】【例3】【例4】二、课堂练习:三、布置作业:。

d2_3两个重要极限

d2_3两个重要极限

1 3n ⋅ 2 = lim n →∞ 1 3 3n sin x 例6 求 lim x
x →0 2

1 − cos x lim x →0 x2
x 2 sin 2 = lim 2 x→0 x
2
2 x x sin sin 1 1 2 2 = 1 = lim = lim 2 x →0 x 2 2 x →0 x 2 2 2
24
xk = 2 + xk −1 < 2 + 2 = 2
再证该数列单调. 用数学归纳法: 再证该数列单调. 用数学归纳法: x2 = 2 + 2 > 2 = x1 ,
xk +1 = 2 + xk > 2 + xk −1 = xk 证得数列 {xn } 单调有界,故极限存在. 设 lim xn = a 单调有界,故极限存在.
5 3
15
练习一
sin x − 1 1. lim x →1 x −1
2
(
)
sin (sin x ) 2. lim x →0 x
=1
16
=2
提高题目
1 + sin x − 1 − sin x 例11求极限 lim 求极限 x →0 x
17
2.
1 lim 1 + = e x →∞ x
∆DOC的面积
1 1 1 即 2 sin x < 2 x < 2 tan x
即 sin x < x < tan x,
8
Q0 < x < ,∴sin x > 0, sin x < x < tan x 2 sin x (1) ∴ cosx < < 1, x

高等数学教案(极限部分)4 极限存在准则与两个重要极限

高等数学教案(极限部分)4 极限存在准则与两个重要极限
lim xn = 0
n →∞
8
如右图, 当 n > N 0 = 5 , 数列 x n = 右图
ln n n
2
有界、 有界、
但收敛很慢. 单调递减有极限, 单调递减有极限 且 lim xn = 0, 但收敛很慢 n →∞
2 1.5 1 0.5
2000
4000
6000
8000
10000
9

2 1.5 1 0.5 -1 -0.5 -1 1
o 函数图形如上, 函数图形如上 它在 ( − 1, 3) 有界且分段单调, 有界且分段单调,
请观察函数在每一点的单侧极限都存在, 请观察函数在每一点的单侧极限都存在 如
x → 2− 0
x 2 − 1 x ∈ [−1, 0) x ∈ [0,1) 2x f ( x) = , −2 x + 4 x ∈ [1, 2) 0.8 x − 1 x ∈ [2, 3)
101520253002040608如左图数列有界20004000600080001000005如右图数列有界它在有界且分段单调函数图形如上请观察函数在每一点的单侧极限都存在10505数列单调下降有下设其极限值为a存在所以120204060802040608证明重要极限1如图先考虑一个很明显的几何事实
1 − cos x lim , 2 x →0 x
1 1 = ⋅1⋅1 = 2 2
15

x tan x 1 x2 1 x sin x lim = lim ⋅ 2 ⋅ x →0 2 − 2cos x 2 x →0 1 − cos x x cos x
1 x 1 1 sin x 1 = lim ⋅ ⋅ = ⋅ 2 ⋅1⋅ = 1 2 x →0 1 − cos x x cos x 2 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重要极限的证明
重要极限的证明极限是ea0在n比较大时,(1 (1-a)/n)^n=原式=(1 1/n)^n取极限后,e》=原式的上极限》=原式的下极限》=e^(1-a)由a的任意性,得极限为e利用极限存在准则证明:(1)当x趋近于正无穷时,(Inx/x^2)的极限为0;(2)证明数列{Xn},其中a0,Xo0,Xn=[(Xn-1) (a/Xn-1)]/2,n=1,2,…收敛,并求其极限。

1)用夹逼准则:x大于1时,lnx0,x^20,故lnx/x^20且lnx1),lnx/x^2(x-1)/x^2.而(x-1)/x^2极限为0故(Inx/x^2)的极限为02)用单调有界数列收敛:分三种情况,x0=√a时,显然极限为√ax0√a时,Xn-X(n-1)=[-(Xn-1) (a/Xn-1)]/20,单调递减且Xn=[(Xn-1) (a/Xn-1)]/2√a,√a为数列下界,则极限存在.设数列极限为A,Xn和X(n-1)极限都为A.对原始两边求极限得A=[A (a/A)]/2.解得A=√a同理可求x0√a时,极限亦为√a综上,数列极限存在,且为√(一)时函数的极限:以时和为例引入.介绍符号: 的意义, 的直观意义.定义( 和. )几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义.例1验证例2验证例3验证证……(二)时函数的极限:由考虑时的极限引入.定义函数极限的“ ”定义.几何意义.用定义验证函数极限的基本思路.例4 验证例5 验证例6验证证由=为使需有为使需有于是, 倘限制, 就有例7验证例8验证( 类似有(三)单侧极限:1.定义:单侧极限的定义及记法.几何意义: 介绍半邻域然后介绍等的几何意义.例9验证证考虑使的2.单侧极限与双侧极限的关系:Th类似有: 例10证明: 极限不存在.例11设函数在点的某邻域内单调. 若存在, 则有= §2 函数极限的性质(3学时)教学目的:使学生掌握函数极限的基本性质。

教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。

教学重点:函数极限的性质及其计算。

教学难点:函数极限性质证明及其应用。

教学方法:讲练结合。

一、组织教学:我们引进了六种极限: , .以下以极限为例讨论性质. 均给出证明或简证.二、讲授新课:(一)函数极限的性质:以下性质均以定理形式给出.1.唯一性:2.局部有界性:3.局部保号性:4.单调性( 不等式性质):Th 4若和都存在, 且存在点的空心邻域,使,都有证设= ( 现证对有)註:若在Th 4的条件中, 改“ ”为“ ”, 未必就有以举例说明.5.迫敛性:6.四则运算性质:( 只证“ ”和“ ”)(二)利用极限性质求极限:已证明过以下几个极限:(注意前四个极限中极限就是函数值)这些极限可作为公式用. 在计算一些简单极限时, 有五组基本极限作为公式用,我们将陆续证明这些公式.利用极限性质,特别是运算性质求极限的原理是:通过有关性质, 把所求极限化为基本极限,代入基本极限的值, 即计算得所求极限.例1( 利用极限和)例2例3註:关于的有理分式当时的极限.例4 [ 利用公式]例5例6例7
感谢您的阅读,欢迎下载使用。

相关文档
最新文档