细菌病毒的遗传分析ppt课件

合集下载

细菌的遗传分析 ppt课件

细菌的遗传分析  ppt课件
指在hfr??f杂交中把接合中的细菌在不同时间取样搅拌中断杂交分析受体菌基因型以hfr基因出现在f中的先后为顺序以转移的时间分钟为图距单位进行基因作图的方法不同时间取样搅拌中断杂交分析受体菌基因型以hfr基因出现在f中的先后为顺序以转移的时间分钟为图距单位进行基因作图的方法
第六节 细菌的遗传分析
微生物作为遗传研究材料的优越性
ppt课件
15
按照细菌出现感受态的方式,可把转 化分为三种类型
自然转化(naturally occuring transformation):细 菌自发地出现感受态,如肺炎链球菌,流感嗜血杆菌, 枯草杆菌等。 人 工 诱 导 的 感 受 态 (artificially induced competence) :如 Ca2+ 诱导的大肠杆菌等发生的转 化。 原生质体转化(protoplast transformation):将DNA 分 子 连 同 PEG 一 同 加 入 原 生 质 体 , 造 成 细 胞 摄 取 DNA 。 还 可 以 用 电 穿 孔 法 (electroporation) 代 替 PEG , 用 高 压 脉 冲 电 流 在 细 胞 膜 上 击 成 小 孔 , 使 DNA 分子通过小孔而导入细胞,又称为电转化。可 适用于多种细菌,放线菌和真核细胞的转化。

结果与结论:
仍然出现原养型菌落。 从而表明互养并非原养型菌落出现的原因,而可能发生 了遗传重组。
ppt课件 26
转化作用及其排除

Lederberg 和 Tatum 曾 把 品系 A 的培养液经加热灭 菌,加入到 B 品系的培养 物中,未得到原养型菌落; 表明原养型菌落可能不是 由转化作用产生。 戴维斯(Dawis, 1950) 的 U 型管试验(结果没有得到原 养型细菌); 实验结论:细胞直接接触 是原养型细菌产生的必要 条件。 ppt课件

10细菌和病毒的遗传-性导、转导

10细菌和病毒的遗传-性导、转导


如果研究三因子转导(three-factor transduction),只需分析一个实 验的结果就可以推出三个基因的次序。
普遍性转导

例如:供体基因型a+b+c+,受体的基因型为a- b- c- 。 供体用P1噬菌体感染,P1的后代再用来感染受体细胞,
然后把受体细胞接种在选择培养基上。

如果通过中断杂交已知三个基因中的一个如a不在中 间,就可对a+进行选择,即在对a+进行选择的选择培 养基上,把可以生长的a+细胞选出来。然后,再把被 选择的受体细胞重复接种在其他对b+或c+进行选择的 选择培养基上,检查a+细胞是否同时具有b+和c+。
突变子和重组子都是一个核苷酸对或者碱基对(bp)。所
以基因内每个碱基均可能发生突变,任意两个碱基间均能 发生交换重组
噬菌体突变型的互补试验
属于同一基因(功能单位)还是两个基因突变产生的呢
p59
对于两个独立起源的、表型相似的隐性突变,如何判定是 在二倍体生物中,可以建立双突变杂合体。双突变体杂合 体有两种形式:顺式(cis)和反式(trans)
普遍性转导
最少的一类转导体应当代表最难于转导的情况,
这种转导体是同时发生交换次数最多的一类。
这种转导子的基因排列应为两边是供体基因,而
中间为受体基因。
假定由实验得到的最少的转导体类别为a+b+c- ,
那么就可以确定,这三个基因的正确次序应当是 acb或bca,而不是abc。
普遍性转导

如λ的DNA,既可以以自主的状态存在,也可以整合在细菌染色 体中。这种有两种状态的遗传因子叫做附加体(episome)。

细菌和病毒的遗传学分析

细菌和病毒的遗传学分析
gal
用不同的Hfr菌株进行中断杂交实验所作出的大肠杆菌基因连锁图,其基因向F-细胞转移的顺序大不相同。
重组作图
01
当转移时间间隔在两分钟之内, 如已知lac与ade紧密连锁,距离约为1分钟,中断杂交作图就不可靠,须用传统的重组作图(recombination mapping)
01
不用亲本类型 两对基因间的交换频率,必须在形成部分二倍体的条件下,计算重组率。 部分二倍体如果不发生重组,无法鉴别。 接合重组不产生相反的重组类型
低频重组与高频重组
高频重组(High frequence recombination, Hfr)
F因子整合到了细菌染色体上,与F-细胞接合后将供体染色体的一部分或全部传递给F-受体,当供体和受体的等位基因带有不同的遗传标记时,可观察到它们之间发生重组,频率可达到10-2以上,称为高频重组品系(菌株)
杂合DNA复制后,形成一个亲代类型的DNA和一个重组类型的DNA并导致转化细胞的形成与表达。
转化的进程
4 共转化与遗传图谱绘制
共转化:供体的一条DNA片段上的两个基因同时转换的现象。 利用共同转化绘制细菌连锁遗传图谱的基本原理: 相邻基因发生共同转化的概率与两者的距离间成正向关系,基因间距离越近,发生共同转化的频率越高,反之越低。 因此可能通过测定两基因共同转化的频率来指示基因间的相对距离。
数理与生物工程学院
单击添加副标题
遗 传 学
单击添加副标题
第七章细菌和病毒的遗传学分析
目录
1
2
二 细菌的接合与染色体作图
1.接合现象的发现
细菌的接合首先是莱德伯格( Lederberg )和塔特姆( Tatum )在1946大肠杆菌杂交试验中发现的。

6第六章细菌和噬菌体的遗传-PPT课件

6第六章细菌和噬菌体的遗传-PPT课件

(1)F-×F+
杂交时,F+的性纤毛在二者间形成接合管→F+中 的F质粒在O点处切开,以O为先导,F拖后,按 滚环复制的方式拷贝并转移到F-中→产生两个 F+→F+的染色体几乎没有进入F-→两种细菌的染 色体未发生重组。 O F F质粒
染 色 体
F质粒
接合
F+ F-
(2)Hfr× F-
杂交时,Hfr细菌的性纤毛在二者间形成接合 管→结合态的F质粒在O点处切开,形成两端- 一端为O点,一端为基因F→以O为先导,F拖后, 按滚环复制方式向F-转移→进入F-的Hfr菌染 色体上的基因与F-染色体间发生交换重组→重 组频率高于游离态1000倍,因此称高频重组菌 株。
·
这种通过不同时间分别阻断细菌的有性接合, 从而确定细菌染色体上的基因距离的方法,称 细菌阻断交配基因作图法。
3、重组方式
接合时,供体染色体片段(外基因子)进 入受体细胞→同受体染色体的同源区段 (内基因子)进行配对→形成部分二倍体 →发生交换重组: 单交换→产生不平衡的线性染色体 双交换→有活性的重组体和线性片段(在 细胞分裂中丢失。
第六章 细菌和病毒的遗传重组
第一节 第二节 细菌的遗传基础和遗传分析 噬菌体的遗传基础和和遗传分析
第一节 细菌的遗传基础和遗传分析
一、细菌的遗传基础
原核生物 真核生物
裸露的DNA分子 DNA呈环状 单倍体,基因单个存 在
DNA与蛋白质结合成染色体 DNA呈线状 二倍体,常染色体上基因成 对
(一)细菌细胞
整合过程 O F F质粒
主染色体
整合过程 O F F质粒 O F
a bHfr细菌 d
e
根据F因子,细菌分为: 雌性细菌(受体细菌,F-)-不含F因子,表面无性 纤毛。

细菌及病毒的遗传分析h

细菌及病毒的遗传分析h

trp2+ his2+ tyr1+转化trp2- his2- tyr1- 实验 trp2 34 his2 13 tyr1
Hfr菌株在切除F因子时发生错误切除,分离出一个携带F因子和部分宿主染色体基因的遗传因子,这种带有宿主染色体基因的F因子称为F΄因子。
T2噬菌体的基因重组
将两种不同的T2突变体进行杂交,对其杂交子代进行重组分析 杂交方法: 将Ttor和Ttos两种大肠杆菌细胞混合 同时接种高浓度的T2噬菌体的h-r+和h+r-两种突变体,保证绝大多数细菌都被一个以上噬菌体感染 两种不同的噬菌体DNA可能在宿主细胞内进行重组,从而产生非亲本型子代h+r+和h-r-。 亲本型 重组型
F因子在杂交中的行为——接合过程
(三)中断杂交实验作图
中断杂交实验作图
1分钟≈20%的重组值
二、转化
转化(transformation):指某些细菌(或其它生物)能通过其细胞膜摄取周围介质中的DNA片段,并将此外源DNA片段整合到自己染色体组中的过程。 (一)转化的过程 非感受态细胞 外源DNA被洗掉了 转化因子 感受态细胞 外源DNA仍与细胞结合 整合 吸收 整合 供体单链DNA进入受体细胞后与受体染色体的某一部分联会,并进一步置换受体的对应染色体区段的过程。
第十章 细菌及病毒的遗传分析(2h)
1
第一节 细菌和病毒遗传研究的意义
2
第二节 噬菌体的基因重组
3
第三节 细菌基因重组
4
本章要求
5
思考题
繁殖世代所需时间短;
易于管理和进行化学分析;
便于研究基因的作用;
便于研究基因的突变;
遗传物质较简单,便于用作研究基因结构、功能及调控机制的材料。

遗传学_ 细菌和病毒的遗传分析_

遗传学_ 细菌和病毒的遗传分析_

1180 + 418 + 685 +107 +11940 +3660
100% = 2390 100% =13% 17990
trp2
tyr
34
his2
13 tyr1
his
40
trp
八、转导(transduction)
⚫ 普遍性转导(Generalized transduction)
转导是以噬菌 体为媒介,将 外源基因携带 入细菌,使受 体细胞发生遗 传重组的方式。
a、b间发生交换
单性状的转化子
a、b间不发生交换
双性状的转化子
七、转化作图的原理
细菌两连锁基因的交换率
=
单性状转化子的数 单性状转化子数+共转化的转化子数
100%
表7-1 枯草芽孢杆菌trp2+ his2+ tyr1+(供体)× trp2- his2- tyr1-(受体)的转化实验 座位转化子类型
噬菌体的遗传分析
一、细菌和病毒的遗传分析
7-1 T4噬菌体的电镜照片
二、病毒对遗传学研究的贡献
1952年 Hershey & Chase的同位素示踪试验
证明T4病毒的遗传物质 是脱氧核糖核酸(DNA) 【1969年诺贝尔奖】
二、病毒对遗传学研究的贡献
1956年Fraemkel Conrat的烟草花叶病毒的重建试验
滑,可致病)
粗糙型R菌株 (无荚膜,菌落粗
糙,不致病)
三、转化现象的发现——Griffth的肺炎双球菌实验
IIR菌株不致病 IIIS菌株致病
灭活的IIIS菌株不致病 灭活的IIIS菌株的某种物 质使IIR菌株发生性状改 变,变成致病的IIIS菌株

医学课件第7章细菌的遗传分析

医学课件第7章细菌的遗传分析
5
第二节 大肠杆菌的突变型及筛选
一、大肠杆菌的突变类型
1. 合成代谢功能的突变型(anabolic function mutants) •合成代谢功能(anabolic functions):野生型(wild type)在基本培养基上具有合成所有代谢和生长所 必需的有机物的功能。 •营养缺陷型(auxotroph):野生型品系的某个必需 基因发生突变,导致不能完成一个特定的生化反 应,从而阻碍整个合成代谢功能的实现。
In 1953, W. Hayes isolated another strain demonstrating a similar elevated frequency.
Both strains were designated Hfr, or high-frequency recombination. Because Hfr- cells behave as chromosome donors, they are a special class of F+ cells.
20
F+×F-
Hfr×F-
所有 F+
很少 F+
21
•F因子整合到 细菌染色体
•Hfr与受体细 菌染色体的等 位基因间可以 重组(10-2)
22
很少 Hfr×F-
F+ ?
Hfr细胞和F-细胞之间的接合,一般很少有整条Hfr染色 体转入F-细胞(pilus容易断裂),因此:
F-细胞得到的只是部分F因子,其余部分依赖于整条 Hfr染色体的转移。这样在Hfr×F-杂交后代大多数重 组子仍为F-
41
a+b+c+ in cross 1 << a+b+c+ in cross 2

第七章 细菌作图正稿ppt课件

第七章 细菌作图正稿ppt课件
控机制比较方便。细菌和病毒均只有一条染色体(DNA or RNA),不必通过复杂的化学分析就可对基因结构和功能 进行精细的研究; ➢ 便于研究基因的突变,它们是单倍体,所有的突变都能 立即表现出来,没有显性掩盖隐性的问题,也不存在分 离问题。且数量庞大,频率很低的突变都能检测到;
➢ 便于研究基因的作用。代谢作用旺盛,能在短时间内积 累大量代谢产物,便于对其本身及其产物进行化学分析;
复制、转录与蛋白质的合成:侵染后,细菌的DNA合成停
止,mRNA和蛋白质的合成也中止.噬菌体双链DNA 解螺旋,以 本身DNA的(+)、(-)链为模板,在寄主RNA聚合酶催化作用 下,复制形成噬菌体mRNA,翻译而形成噬菌体所需酶类, 复制出 子代病毒±DNA,合成病毒蛋白质。
装配:从头部→尾部→头与尾部的装配→总装
弧形霍乱菌
菌落
• 特点
单细胞生长速度快,单倍体,环状裸露双链DNA(基 因带或主染色体)。无性繁殖(无丝分裂),易培养, 易突变。
• 菌落:
单个微生物生长繁殖到一定程度可以形成肉眼可见 的、有一定形态结构的子细胞生长群体.
2、细菌细胞与真核细胞的基本差异
➢ 细菌无真正的细胞核:没有界限分明的细胞核, 无核膜;
T4噬菌体的形态结构
• 蝌蚪状,由二十面对称的头与螺旋对称的 尾构成。尾管是核心DNA进入宿主细胞的 通道。尾丝和刺突具有吸咐作用。
• 由头部、颈部、中轴、外鞘、基盘、尾丝 组成。双链DNA包裹在头部。
T4噬菌体
T偶列噬菌体侵入大肠杆菌细胞时,其尾丝通过 与宿主细胞的特异性受点上结合而附着在细胞 表面,接着通过尾鞘的收缩将DNA经中空的尾 部注入宿主细胞。DNA进入宿主细胞后,随即 破坏宿主的遗传物质,并借助宿主细胞的代谢 系统合成大量的噬菌体DNA和蛋白质,组装成 许多许多新的噬菌体,最后使宿主细胞裂解, 释放出子代噬菌体。

-3病毒遗传分析共76页

-3病毒遗传分析共76页

-11
+11
λattP
P-GCTTTTTTATACTAA-P’
-152
+82
-GCTTTTTTATACTAA-CGAAAAATATGATT-
B B’ -GCTTT
TTTATACTAA-
-CGAAAAATATG
ATT-
P P’ -GCTTT
TTTATACTAA-
-CGAAAAATATG
ATT-
POP’ BOB’
在感染初期,线状的亲代DNA分子经过几轮DNA 复制产生单位长度再加末端重复的子代分子,接着 子代分子的重复末端之间重组,形成了很长的T2或 T4基因组多连体(conca temers),即串连重复顺序, 它们自身再进行复制而重组形成更长的多连体;
感染后期,子代噬菌体的头部蛋白将这些多连体DNA 分子包装起来,直到完全装满为止,每个噬菌体颗粒能包 装多长的DNA分子取决于壳体本身,通常填滿头部所需的 DNA超过从a到z的一套基因组,对在z后面的基因仍有空 间可以包装,于是又继续包装基因a、b、c,至头部被装 满时将DNA切断,由此可以看到这个病毒粒子是基因a、b、 c冗余的,下一个病毒粒子将接从d起始的DNA分子开始包 装至c,然后继续到d、e、f,这个病毒是d、e、f冗余的, 再下一个病毒粒子从g开始包装,冗余g、h、i基因等等。
第二节 λ噬菌体
一、 噬菌体基因组与原噬菌体
(一) 噬菌体的基因组:由48500bp构成
基因分类
7个(必需基因:相邻)head
11个(必需基因:相邻)tail
噬菌斑形成必需的基因 复制所需基因:O、P
裂解、释放所需基因:S、R
基因
正调控基因:N、Q
附着区:att;

病毒的遗传分析ppt课件

病毒的遗传分析ppt课件

哈工大-遗传学
第五章 病毒的遗传分析
突变位点 在同一顺
反子内
突变位点 不在同一 顺反子内
顺式测验
反式测验
+− ++
当顺式有功能,而反式没有功能时,突变位点突变位点在同一 顺反子内;当顺式有功能,而反式也有功能时,突变位点突变位点在 不同顺反子内。
哈工大-遗传学
第五章 病毒的遗传分析
第五章 病毒的遗传分析
(二)、φX174噬菌体
(1)基因组的结构特点 DNA含有5386个核苷酸,编码总分子量
为25万的11个蛋白质分子。Sanger发现存 在着重叠基因。
哈工大-遗传学
第五章 病毒的遗传分析
(2)φX174噬菌体突变型在遗传学中的应用
互补实验: 两点测交: 三点测交:
哈工大-遗传学
第五章 病毒的遗传分析
3.0% 2.0% 1.5%
(1). a、b、c 三个基因在连锁图上的次序如何?为什么它们 之间的距离不是累加的?
(2). 假定三因子杂交,ab+c × a+bc+, 预期哪两种类型的重 组子频率最低? (3). 计算(2)所假定的三因子杂交中,各重组类型的频率?
哈工大-遗传学
第五章 病毒的遗传分析
野生型重组体。
哈工大-遗传学
第五章 病毒的遗传分析
λ噬菌体基因分为两类:
❖ 噬菌斑形成所必需的基因,在基因组中以大 写字母表示
❖ 噬菌体斑形成非必需的基因,用小写字母或 希腊字母表示
哈工大-遗传学
第五章 病毒的遗传分析
噬菌斑形成所必需的基因
1)A、W、B、C、D、E、F基因是头部形成必需基因 2)Z、U、V、G、T、H、M、L、K、I、J是尾部形成必需基 因 3)O、P是噬菌体复制的必需基因 4)S、R是细菌细胞裂解及子代噬菌体释放的必需基因 5)N、Q是正调节基因,可促进噬菌斑的形成
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F+
变成F-
F+ x F-
70%F-变成F+
F+ x F+
100%F+
四、Hfr品系(高频重组品系)
Hfr与F+、F- 菌株的异同点
F+和F-能杂交,Hfr和F-也能杂交,F-和F-则不能杂交。 F+、Hfr的细胞表面均具有性伞毛,而F- 细胞无。 Hfr经叮啶类化合物、溴化乙锭或丝裂霉素c等处理,性质不变,
第五章 细菌和噬菌体的遗传分析
第一节 细菌和噬菌体的突变型及其识别方法 突变型:带有 突变基因并在表现性上显示出相对差异的个
体。 一、细菌的突变型 1、按营养代谢的正常与否分类 原养型(野生型):这类细菌能在基本培养基上生长,用
“+”表示。 营养缺陷型(突变型):这类细菌需在基本培养基中添加
所需的成分才能生长。 如:大肠杆菌(E.coli)中,苏氨酸野生型 Thr+
比较项目 质粒 附加体 温和性 phage 病毒
独立复制
+
+
+
+
通过细胞间接触 转移
+/-
+/-
+/-
-
整合成为寄主基
因组
-
+
+
-
获得寄主基因组
+
+
+
-
二、细菌的杂交
在E.coli中,有两个营养缺陷型品系 A品系:met- bio- thr+
leu+ thi+
B品系:met+ bio+ thrleu- thi-
而F+则变为F-。 Hfr x F- -------- F-, F+ x F- ----------- F+ 从F+中能得到Hfr,而从F-中不能得到 Hfr
F 和F因子
• F 品系转变成Hfr品系的频率要高于F +品系。
• F 变成Hfr时F 因子整合到相同位点 上,而F+变成Hfr时可整合到不同位点。
伞毛的基因。
按自我复制能力分类 严紧型:这类质粒在寄主体内只产生一个或几个拷贝,它们的复制
与染色体DNA复制相伴随。接合型质粒一般是严紧型质粒。 松弛型:这类质粒在寄主体内可产生10至200个拷贝,它们与染色
体复制不同步。大部分非接合型质粒属于松弛型质粒
质粒、附加体、温和性 phage、病毒特征区别
E.coli Ttor
有噬菌斑
T2h 能作用于 E.coli Ttor E.coli Ttos T2h+只能作用于 E.coli Ttos
E.coli Ttos
第二节 细菌的遗传分析 一、E.coli的结构
质粒(plasmid)
细菌染色体 细胞壁 细胞膜
质粒(plasmid):是指能自我复制,并可在细菌分裂时传递给 子细胞的细菌染色体外的环状DNA分子。 1、质粒存在的状态 独立于细菌染色体外进行遗传
ASr: M-B-抗链霉素突变型 型
ASs: M-B-链霉素敏感
BSr: T-L-B1-抗链霉素突变型 BSs: T-L-B1-链霉素敏
感在型不含链霉素的基本培养基上
在含有链霉素的基本培养基上
正交 ASs x BSr 反交 ASr x BSs
正交 ASs x BSr 反交 ASr x BSs
有原养型出现
原养型菌落出现的可能原因: 细菌之间结合发生重组而形成。 细胞间并没有接合,而是交换了DNA。 细胞间并没有接合,而是通过培养基交换了养料 细胞并没有接合,而是亲本细菌发生了回复突变
A品系
B品系
无菌落


无菌落
基本培养基
基本培养基
三、E.coli的性别
A:M-B-(甲硫氨酸和生物素缺陷型)
B:T-L-B1-(苏氨酸亮氨酸维生素B1缺陷型)
取样时间
重组体基因型测定结果
( m in)
thr+
leu+
azis
tons
lac+
Ttos (对噬菌体T2敏感) 抗噬菌体突变型 如 E.coli的 Tonr (抗噬菌体T1)
Ttor (抗噬菌体T2)
T1 phage
T1 phage
E.coli
Tons
致死
E.coli
Tonr
生长
二、噬菌体的突变型
噬菌斑(plaque):是指由于噬菌体的侵染,使细菌细胞裂解, 在长成的细菌菌落上出现一些圆形而清亮的小洞,这些小洞就是 噬菌斑。
连在细菌染色体上一同遗传
2、质粒的基本功能 自我复制 与细菌染色体连接 感染 3、几种典型的质粒 性因子F 产大肠杆菌素质粒ColE1 抗生素抗性质粒R100 4、质粒的分类
按转移特性分类 接合型:这类质粒一般使细菌细胞有致育性,且在细胞间接触时转
移。 非接合型:这类质粒不能在细胞间转移,其中大部分不具备编码性
苏氨酸缺陷型 Thr-
2、按细菌的抗药性能分类 敏感型(野生型):这类细菌通常会被一定剂量的某种
药物杀死,用“s”表示 抗药型(突变型):这类细菌能够在涂布有一定剂量某
种药物的培养基上生长,用“r”表示 如对青霉素(Penecillin)
敏感型 Pens 抗药型 Penr
3、根据能否抗噬菌体(phage)分类 噬菌体敏感型 如 E.coli的 Tons (对噬菌体T1敏感)
• F ×F-高频传递特定的基因,形成部 分二倍体,而F+×F-产生F+但不转移 任何基因,或以10-7将宿主的基因按顺 序转入受体,受体仍为F-。所转移的基 因是不同的。
五、中断杂交试验和连锁分析作图
中断杂交技术:是指根据供体基因进入受体细胞的顺序和时间 绘制连锁图的技术。
strs Hfr : thr+ leu+ azis tons lac+ gal+ strr F- : thr- leu- azir tonr lacgal-
有原养型出现
有原养型出现
无原养型出现
F-: 相当与雌性动物的E.coli
F+:相当与雄性动物的E.coli
决定E.coli 性别的是一种质粒,即F因子。F因子既可脱离 核染色体组而在细胞质内游离存在,也可插入即整合在染色体组 上。它既可经过接合作用而获得,也可通过叮啶类化合物、溴化 乙锭或丝裂霉素c等的处理,使其DNA的复制受抑制后而从细胞 中消除,它是有关细菌性别的决定者,凡有F因子的细胞,在其 表面均有性伞毛phage 的 r+、r
T2phage
E.coli
E.coli
plaque:小、边缘模糊 r+ plaque:大、边缘清晰 r
2、寄主范围突变型 如T2 phage 的 T2h+、T2h
接种T2h+、
接种T2h、
E.coli Ttor
E.coli Ttor
无噬菌斑
相关文档
最新文档