高一数学寒假作业参考答案

合集下载

高一数学(必修一)寒假作业1Word版含答案

高一数学(必修一)寒假作业1Word版含答案

高一数学(必修一)寒假作业1一、选择题,每小题只有一项是正确的。

1.已知全集{}1,2,3,4U =,集合{}{}1,2,2A B == ,则∁U (A ∪B ) =( )A .{}134,,B .{}34,C . {}3D . {}4 2.已知集合A ={x|a -1≤x≤a+2},B ={x|3<x <5},则使A ⊇B 成立的实数a 的取 值范围是 ( )A.{a|3<a≤4}B.{a|3≤a≤4}C. {a|3<a <4}D.φ3.函数 的定义域为M , 的定义域为N ,则M ∩N =( )A .[-2,+∞)B .[-2,2)C .(-2,2)D .(-∞,2) 4.下列式子中成立的是 ( ) A.1122log 4log 6< B. 0.30.311()()23> C. 3.4 3.511())22<( D.32log 2log 3> 5.下列函数是偶函数的是 ( )A. 2lg y x =B. 1()2xy = C. 21y x =- ,(11]x ∈- D. 1y x -=6.已知函数()2030x x x fx x log ,,⎧>=⎨≤⎩, 则14f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值是( )A .9B .19 C .9- D .19- 7.下列各个对应中,构成映射的是( )8.设()f x 是定义在R 上的偶函数,对任意的x R ∈,都有(2)(2)f x f x -=+,且当[2,0]x ∈-时,1()()12x f x =-,则在区间(2,6]-内关于x 的方程2()log (2)0f x x -+=的零点的个数是( )A .1B .2C .3D .49.若函数()(1)(0x x f x k a a a -=-->且1)a ≠在R 上既是奇函数,又是减函数,则()log ()a g x x k =+的图象是( )二、填空题10.函数32,1()log 1x x f x x x ⎧≤=⎨>⎩,,则(f f =__________11.若}4,3,2,2{-=A ,},|{2A t t x xB ∈==,用列举法表示B 。

高一数学寒假作业补充练习答案

高一数学寒假作业补充练习答案

高一年级数学寒假作业一答案解析一、单项选择题:本小题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合 U = R ,集合{}2|320A x x x =-+>,则U C A =( ) A. (1,2) B. [1,2 ] C. (-2,-1 ) D. [ -2,-1] 【答案】B ;【解析】因为A ()(),12,=-∞+∞,U = R ,所以U C A =[ 1,2] .2. 设13331log ,4,log 24a b c ===,则a ,b ,c 的大小关系为( ).A. c >a> bB. b> a> cC. c> b> aD. b> c> a 【答案】D ;【解析】0,1,01a b c <><<,所以 b> c> a .3. 如图,已知点 C 为△OAB 边AB 上一点,且AC=2CB ,若存在实数m ,n ,使得OC mOA nOB =+,则m- n 的值为( ).A.13-B. 0C.13D.23【答案】A ;【解析】由等和线定理,易得1233OC OA OB =+,所以m- n =13-.4.已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象如图所示,则ϕ的值为( ). A.6πB.6π- C.4π- D.4π【答案】D ;【解析】由图可知,322T π=,所以223T πω==,所以()22sin 3f x x ϕ⎛⎫=+ ⎪⎝⎭,又因为328f π⎛⎫=⎪⎝⎭,所以232382k ππϕπ⨯+=+,解得()24k k Z πϕπ=+∈,因为2πϕ<,所以4πϕ=.5. 函数()2211log 113xx f x x -⎛⎫=+- ⎪+⎝⎭的定义域是 ( ) A. [1,+∞ ) B. (0,1) C. (-1,0 ] D. (−∞ −1] 【答案】C ;【解析】由对数的真数大于 0 ,与二次根式非负,得101x x ->+且21103x⎛⎫-≥ ⎪⎝⎭, 解得11x -<<且x ≤0,所以定义域为 (-1,0 ].6. 设a ,b 是实数,已知角θ的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (a ,1 ),B(-2,b ),且1sin 3θ=,则ab的值为( ). A. -4 B.-2 C. 4 D. ±4 【答案】A ;【解析】由三角函数的定义,221314a b==++,且a< 0,解得2,222b a ==-4a b=-. 7. 函数()2sin2xy x x R =∈的图象大致为( ).【答案】D ;【解析】由该函数为奇函数,排除选项 A ,B ,由2x π=时,函数值为 0,可排除选项C ,故选D .8. 若函数()()lg 12f x x =-+,则对于任意的()12,1,x x ∈+∞,()()122f x f x +与122x x f +⎛⎫ ⎪⎝⎭的大小关系是( ).A.()()122f x f x +≥122x x f +⎛⎫ ⎪⎝⎭B.()()122f x f x +≤122x x f +⎛⎫⎪⎝⎭C.()()122f x f x +=122x x f +⎛⎫⎪⎝⎭D.不确定【答案】B ;【解析】观察图象,可得函数“凹凸性”如图,故选 B .二、多项选择题:本小题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9. 下列计算结果为有理数的有( ).A.23log 3log 2⋅B. lg2 +lg5C.1ln22e - D.5sin6π 【答案】ABCD ;【解析】23log 3log 21⋅=;lg2+ lg5=1;1ln220e -=;51sin62π=, 故选 ABCD .10. 对于定义在 R 上的函数()f x ,下列判断错误的有( ). A.若()()22f f ->,则函数()f x 是 R 的单调增函数 B.若()()22f f -≠,则函数()f x 不是偶函数 C.若()00f =,则函数()f x 是奇函数D.函数()f x 在区间 (−∞,0]上是单调增函数,在区间 (0,+∞)上也是单调增函数,则()f x 是 R 上的单调增函数【答案】ACD ;【解析】A 选项,由()()22f f ->,则()f x 在 R 上必定不是增函数; B 选项,正确;C 选项,()2f x x =,满足()00f =,但不是奇函数;D 选项,该函数为分段函数,在 x =0 处,有可能会出现右侧比左侧低的情况,故错误.11. 设 a 为实数,则直线y =a 和函数41y x =+的图象的公共点个数可以是( ). A. 0 B. 1 C. 2 D. 3 【答案】ABC ;【解析】41y x =+是偶函数,且在 [0,+∞ ) 上递增,画出草图,可知y=a 与该函数的交点个数可能为 0,1,2.12. 设函数()f x 的定义域为D ,若对于任意x ∈D ,存在y ∈D 使()()2f x f y C-=(C 为常数)成立,则称函数()f x 在D 上的“半差值”为C .下列四个函数中,满足所在定义域上“半差值”为1的函数是( ). A.()31y x x R =+∈ B. ()2x y x R =∈C. ()()ln 0,y x x =∈+∞ D. y=sin2x+1( x ∈R) 【答案】AC ;【解析】即对任意定义域中的 x ,存在 y ,使得f(y)=f(x)-2;由于AC 值域为R ,故满足;对于B ,当x=0时,函数值为1,此时不存在自变量y ,使得函数值为-1,故B 不满足;对于D ,当2x π=-时,函数值为−1,此时不存在自变量y ,使得函数值为−3,故D 不满足,所以选AC .三、填空题:本小题共4小题,每小题5分,共20分.13. 设m 为实数,若函数()22f x x mx =+-在区间 (−∞,2)上是单调减函数,则m 的取值围是. 【答案】m ≤−4;【解析】()f x 为开口向上的二次函数,对称轴为直线2mx =-,要使得函数在(−∞,2)上递减,则22m-≥,解得4m ≤-. 14. 把函数sin 23y x π⎛⎫=-⎪⎝⎭图象上每一点的横坐标变为原来的 2 倍(纵坐标不变),得到图象为1C ;再把1C 上每一点的纵坐标变为原来的2倍(横坐标不变),得到图象为2C ,则2C 对应的解析式为. 【答案】2sin 3y x π⎛⎫=-⎪⎝⎭【解析】1C :sin 3y x π⎛⎫=-⎪⎝⎭,2C :2sin 3y x π⎛⎫=-⎪⎝⎭.15. 若()()cos ,1,2cos ,2sin AB AC θθθ=-=,其中θ∈[0,π],则BC 的最大值为. 【答案】3;【解析】()cos ,2sin 1,BC AC AB θθ=-=+所以()2222cos 2sin 13sin 4sin 2,BC θθθθ=++=++因为[]0,θπ∈,令[]sin 0,1t θ=∈,所以22342,BC t t =++所以当t=1时,取最大值 9,所以BC 的最大值为 3.16. 已知函数()22,1,1x x f x x x -≥⎧=⎨<⎩,那么()()3f f =;若存在实数 a ,使得()()()f a f f a =,则a 的个数是.【答案】 1 ;4; 【解析】()()()311;ff f =-=令()f a t =,即满足()f t t =,①t=1,即a=±1时,经检验,均满足题意;②t <1,即 −1 <a <1或 a >1时,()2f t t =,由2t t =,解得t =0或1(舍去);再由()0t f a ==解得a = 0或 2 ;③t > 1,即a < − 1时,()2f t t =-,由t=2−t ,解得 t = 1 (舍去); 综上所述:共有 4 个 a .四、解答题:本小题共6小题,共70分.解答应写出应写出文字说明、证明过程或演算步骤. 17. (10 分)设 t 为实数,已知向量()()1,2,1,.a b t ==- ⑴若 t = 3,求a b +和a b -的值;⑵若向量a b +与3a b -所成角为 135° ,求 t 的值.【答案】⑴a b += 5,5a b -=;⑵ t = 2;【解析】⑴当 t = 3时,()1,3b =-,()0,5a b +=,()2,1a b -=- 所以a b += 5,5a b -=; ⑵()0,2a b t +=+,()34,23a b t -=-,()()(3223cos135232a b a b t t a b a bt +⋅-+-===-+⋅-+, 平方化简得:23440t t --=,解得1222,.3t t ==- 经检验,当23t =-时,夹角为 45° 舍去,故 t = 2. 18. (12 分)设实数 x 满足 sinx+ cos x= c ,其中 c 为常数. ⑴ 当时,求44sin cos x x +的数值;⑵ 求值:()33443cos cos 2sin cos x x x xππ⎛⎫+++ ⎪⎝⎭-(用含 c 的式子表示). 【答案】⑴12;⑵212c c +;【解析】⑴,平方得: 1+ 2sinx cosx = 2,所以sinx cosx=12; ()24422221sin cos sin cos 2sin cos 2x x x x x x +=+-=; (2)()()()33334422223cos cos sin cos 1sin cos 2sin cos sin cos sin cos sin cos x x x x x x x x x xx x x x ππ⎛⎫+++ ⎪-+⎝⎭==-+-+ 由sinx+ cos x= c ,所以平方得:1+ 2sinx cosx = 2c ,sinx cosx =212c -所以原式=221122c c c c++=. 19. (12 分)设 a 为正实数.如图,一个水轮的半径为a m ,水轮圆心 O 距离水面2am ,已知水轮每分钟逆时针转动 5 圈.当水轮上的点 P 从水中浮现时(即图中点0P )开始计算时间.⑴ 将点 P 距离水面的高度 h(m )表示为时间 t(s)的函数; ⑵ 点 P 第一次达到最高点需要多少时间.【答案】⑴sin ,0;662a h a t t ππ⎛⎫=-+≥⎪⎝⎭⑵ 4s ;【解析】⑴ 如图,以水轮圆心 O 为原点,与水面平行的直线为 x 轴建立直 角坐标系.当t= 0时,点 P 的坐标为3,2a ⎫-⎪⎪⎝⎭,角度为6π-;根据水轮每分钟逆时针转动 5 圈,可知水轮转动的角速度为6πrad / s,所以 t 时刻,角度为66t ππ-;根据三角函数定义,可得sin ,0;662a h a t t ππ⎛⎫=-+≥⎪⎝⎭⑵ 当32a h =时,sin 166t ππ⎛⎫-= ⎪⎝⎭,所以2662t k ππππ-=+,解得t=4+12k ()k N ∈,所以当k= 0时, t = 4,即第一次达到最高点时需要 4s . 20. (12 分)设向量()11,a x y =,()22,b x y =,其中0a ≠. ⑴ 若//a b ,求证:12210x y x y -=; ⑵ 若12210x y x y -=,求证://a b .【解析】()11,a x y =,()22,b x y =,其中0a ≠,所以11,x y 不全为 0,不妨设10x ≠; ⑴ 如果//a b ,则存在实数λ,使得b a λ= ,即()()()221111,,,x y x y x y λλλ==,所以2121x x y y λλ=⎧⎨=⎩,则()()122111110x y x y x y x y λλ-=-=⑵ 反之,如果12210x y x y -=,因为10x ≠,所以()()22221222111111,,,,x xx y y x y x y x y x x x ⎛⎫=== ⎪⎝⎭ , 令21x x λ=,则b a λ=,所以//a b . 21. (12 分)⑴ 运用函数单调性定义,证明:函数()31f x x x=-在区间 (0,+∞)上是单调减函数;⑵ 设 a 为实数, 0 <a < 1 ,若 0 <x < y ,试比较33y x a a -和4334x y x y a a ++-的大小,并说明理由.【答案】⑴ 答案见解析;⑵33y x a a -<4334x y x y a a ++- 【解析】⑴ 对任意的()12,0,x x ∈+∞,且12x x <,()()()()()222121211212213333121211x x x x x x f x f x x x x x x x x x -++⎛⎫⎛⎫-=---=+- ⎪ ⎪⎝⎭⎝⎭因为210,x x ->22332121120,0x x x x x x ++>>,所以()()120f x f x ->,即()()12f x f x > ,所以函数()f x 在区间 (0,+∞) 上是单调减函数;⑵ 因为 0<a<1,所以()x g x a =在R 上是单调减函数, 因为 0< x< y ,所以 0<3x<3y , 0< 4x+ 3y<3x+4y , 所以()()33330y x g y g x a a <⇒-< ,且()()4334g x y g x y +>+⇒43340x y x y a a ++->, 所以33y x a a -<4334x y x y a a ++-. 22. (12 分) ⑴ 已知函数()()11,1x f x x x R x -=≠-∈+,试判断函数()f x 的单调性,并说明理由;⑵ 已知函数()()1lg1,1x g x x x R x -=≠±∈+. (i )判断()g x 的奇偶性,并说明理由;(ii )求证:对于任意的x ,y ∈R ,且x ≠±1 ,y ≠±1,xy ≠−1都有()()1x y g x g y g xy ⎛⎫++= ⎪+⎝⎭①.【答案】⑴()f x 在(−∞,−1)和(-1,+∞)上单调递增;⑵答案见解析; 【解析】⑴ 对任意的()12,,1x x ∈-∞-,且12x x <, 则()()()()()12121212122111111x x x x f x f x x x x x ----=-=++++, 因为()()12120,110x x x x -<++>,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在区间(−∞,−1)上是单调递增,同理可得()f x 在区间(-1,+∞)上单调递增;⑵(i )()g x 的定义域为()()(),11,11,-∞--+∞,对任意的()()(),11,11,x ∈-∞--+∞,有()()(),11,11,x -∈-∞--+∞,且()()1111lglg lg lg101111x x x x g x g x x x x x ⎛⎫------+-=+=⋅== ⎪+-++-+⎝⎭, 所以()g x 为奇函数,又()()22g g ≠-,所以()g x 不是偶函数; (ii )对于任意的x,y ∈R ,且x ≠±1 ,y ≠±1,xy ≠−1,因为()()111111lg lg lg lg 111111x y x y x y g x g y x y x y x y ⎛⎫------+=+=⋅=⋅ ⎪++++++⎝⎭, 所以111lg lg lg 1111x yx y x y xy xyg x y xy x y xy xy+-⎛⎫++--+=== ⎪+++++⎝⎭++()()1111x y g x g y x y --⋅=+++; 高一年级数学寒假作业二答案解析一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

高一数学(必修一)寒假作业

高一数学(必修一)寒假作业

高一数学(必修一)寒假作业一、选择题:(每题5分,满分60分) 1、下列四个集合中,是空集的是( )A }33|{=+x xB },,|),{(22R y x x y y x ∈-=C },01|{2R x x x x ∈=+-D }0|{2≤x x2.设A={a ,b},集合B={a+1,5},若A∩B={2},则A ∪B= ( )A 、{1,2}B 、{1,5}C 、{2,5}D 、{1,2,5} 3.函数21)(--=x x x f 的定义域为 ( )A 、[1,2)∪(2,+∞)B 、(1,+∞)C 、[1,2)D 、[1,+∞) 4.设f ,g 都是由A 到A 的映射,其对应法则如下表(从上到下):则与)]1([g f 相同的是 ( ) A .)]3([f gB .)]2([f gC .)]4([f gD .)]1([f g5、下图是指数函数○1x a y =、○2 x b y =、○3 x c y =、○4 x d y =的图象,则d c b a ,,,与1的大小关系是( )A .b a d c <<<<1B .a b c d <<<<1C .a b d c <<<<1D .b a d c <<<<16.函数y= | lg (x-1)| 的图象是 ( )7. 已知3.0log 2=a ,3.02=b ,2.03.0=c ,则c b a ,,三者的大小关系是 ( ) A 、c b a >> B 、c a b >> C 、a c b >> D 、a b c >>8.函数y=ax 2+bx+3在(]1,-∞-上是增函数,在[)+∞-,1上是减函数,则 ( ) A 、b>0且a<0 B 、b=2a<0 C 、b=2a>0 D 、a ,b 的符号不定9.函数]1,0[在xa y =上的最大值与最小值的和为3,则=a ( )A 、21 B 、2 C 、4 D 、41表1 映射f 的对应法则 原像 1 2 3 4 像 3 4 2 1表2 映射g 的对应法则原像 1 2 3 4 像 4 3 1 210.设⎭⎬⎫⎩⎨⎧----∈3,2,1,21,31,21,1,2,3α,则使αx y =为奇函数且在(0,+∞)上单调递减的α值的个数为 ( )A 、1B 、2C 、3D 、411.已知实数00a b ≥≥,且1a b +=,则2211a b +++()()的取值范围为 ( )A .9[5]2,; B .9[2∞,+); C .9[0]2,; D .[05],。

2023年高一数学寒假作业答案

2023年高一数学寒假作业答案

2023年高一数学寒假作业答案新的学期即将来临,在剩下的美好的寒假时光,我们要认真完成自己的寒假作业,那么高一数学寒假作业答案有哪些呢下面是小编给大家整理的2023年高一数学寒假作业答案,欢迎大家来阅读。

高一数学寒假作业答案一、1~5 CABCB6~10 CBBCC11~12 BB二、13 ,14 (1) ;(2){1,2,3} N; (3){1} ;(4)0 ;15 -116.略。

三、17 .{0.-1,1};18.略;19. (1) a2-4b=0 (2) a=-4, b=320.略.p2一.1~5 C D B B D6~10 C C C C A11~12 B B二. 13. (1,+∞) 14.13 15 16,三.17.略18、略。

19.解:⑴ 略。

⑵略。

20.略。

p3一、选择题:1.B2.C3.C4.A5.C6.A7.A8.D9.A 10.B 11.B 12.C二、填空题:13. 14. 12 15. ; 16.4-a,三、解答题:17.略18.略19.解:(1)开口向下;对称轴为 ;顶点坐标为 ;(2)函数的值为1;无最小值;(3)函数在上是增加的,在上是减少的。

20.Ⅰ、Ⅱ、p4一、1~8 C B C D A A C C 9-12 B B C D二、13、[—,1] 14、 15、 16、x 2或0三、17、(1)如图所示:(2)单调区间为, .(3)由图象可知:当时,函数取到最小值18.(1)函数的定义域为(—1,1)(2)当a 1时,x (0,1) 当019. 略。

p5一、1~8 C D B D A D B B9~12 B B C D13. 19/6 14. 15. 16.17.略。

20. 解:p7一、选择题:1.D2. C3.D4.C5.A6.C7.D8. A9.C 10.A 11.D 1.B二、填空题13.(-2,8),(4,1) 14.[-1,1] 15.(0,2/3)∪(1,+∞) 16.[0.5,1)17.略 18.略19.略。

高一数学寒假作业详细答案

高一数学寒假作业详细答案

高一数学寒假作业1参考答案(1)集合与函数1~9. D D C C B A D B B 10. 1; 11.4x x --. 12.12; 13.4231,,,c c c c 14.52a b -= 15.解:由AB B =,得B A ⊆.当B =∅时,有:231m m -≥+,解得14m ≤. 当B ≠∅时,如右图数轴所示,则23121317m m m m -<+⎧⎪-≥-⎨⎪+≤⎩,解得124m <≤.综上可知,实数m 的取值范围为2m ≤. 16.解:(Ⅰ)当a =0时,函数2()()||1()f x x x f x -=-+-+=,此时()f x 为偶函数. 当a ≠0时,2()1f a a =+,2()2||1f a a a -=++,()()f a f a -≠.此时函数f (x )为非奇非偶函数.(Ⅱ)当x ≥a 时,函数2213()1()24f x x x a x a =+-+=+-+.若a ≤-12,则函数()f x 在[,)a +∞上的最小值为13()24f a -=-.若a >-12,则函数()f x 在[,)a +∞上单调递增,从而,函数()f x 在[,)a +∞上的最小值为f (a )=a 2+1.综上,当a ≤-12时,函数f (x )的最小值是34-a . 当a >-12时,函数f (x )的最小值是a 2+1.17.解:(Ⅰ)x =234时,22121133236242424211log log log 4log 4log 2log 442369x x ---===-⨯=-. (Ⅱ)122242224111log log (log log 4)(log log 2)(2)()(32)42222x x y x x t t t t ==--=--=-+.∵ 2≤x ≤4, ∴ 222log 2log log 4x ≤≤,即[1,2]t ∈.∴ 21(32),[1,2]2y t t t =-+∈.18.解:(1)∵ f (-x )=-f (x ),∴111222111log log log 111ax ax x x x ax +--=-=----. ∴1111ax x x ax+-=---,即(1)(1)(1)(1)ax ax x x +-=-+-,∴a =-1. (2)由(1)可知f (x )=121log 1x x +-122log (1)1x =+-(x >1) 记u (x )=1+21x -,由定义可证明u (x )在(1,)+∞上为减函数, ∴ f (x )=121log 1x x +-在(1,)+∞上为增函数.(3)设g (x )=121log 1x x +--1()2x .则g (x )在[3,4]上为增函数. ∴g (x )>m 对x ∈[3,4]恒成立,∴m <g (3)=-98.高一寒假作业2——函数的应用答案一、 选择题BAADC DDAC 二、 填空题10. (16,)+∞ 11. 1 12. 3 13. ⎪⎭⎫⎢⎣⎡+∞,23lg 14. 7- 三、 解答题15.证明:(I )因为(0)0,(1)0f f >>,所以0,320c a b c >++>.由条件0a b c ++=,消去b ,得0a c >>;由条件0a b c ++=,消去c ,得0a b +<,20a b +>. 故21ba-<<-. (II )抛物线2()32f x ax bx c =++的顶点坐标为23(,)33b ac b a a--, 在21b a -<<-的两边乘以13-,得12333b a <-<. 又因为(0)0,(1)0,f f >>而22()0,33b ac acf a a+--=-< 所以方程()0f x =在区间(0,)3b a -与(,1)3ba-内分别有一实根.故方程()0f x =在(0,1)内有两个实根.16.解:设水塔进水量选择第n 级,在t 时刻水塔中的水容量y 等于水塔中的存水量100吨加进水量nt 10吨,减去生产用水t 10吨,在减去工业用水t W 100=吨,即t t nt y 1001010100--+=(160≤<t );若水塔中的水量既能保证该厂用水,又不会使水溢出,则一定有3000≤<y .即30010010101000≤--+<t t nt , 所以1102011010++≤<++-tt n t t 对一切(]16,0∈t 恒成立. 因为272721110110102≤+⎪⎪⎭⎫ ⎝⎛--=++-t t t , 4194141120110202≥-⎪⎪⎭⎫ ⎝⎛+=++t t t ,所以41927≤≤n ,即4=n . 即进水选择4级.高一寒假作业3——必修1综合一、选择题 DADAB DC二、填空题8.21.09 9.14元 10.-1 11.三.解答题12.(1)a=3,b=1 (2) [2,14] 13.解:(1)∵f(t)=34+a ·2-t ×100%(t 为学习时间),且f(2)=60%,则34+a ·2-2×100%=60%,可解得a =4. ∴f(t)=34+a ·2-t ×100%=34(1+2-t )×100%(t ≥0),∴f(0)=34(1+1)×100%=38=37.5%.f(0)表示某项学习任务在开始学习时已掌握的程度为37.5%. (2)令学习效率指数1()2t f t y -=,t ∈(1,2), 即1()322(21)t t f t y -==+,因32(21)ty =+在(0,+∞)上为减函数. t ∈(1,2) ∴31,102y ⎛⎫∈ ⎪⎝⎭.故所求学习效率指数的取值范围是31,102⎛⎫ ⎪⎝⎭14.15.(3)f(x)=x 2-ax +2,x ∈[a ,a +1],其对称轴为x =a 2.①当a 2≤a ,即a ≥0时,函数f(x)min =f(a)=a 2-a 2+2=2.若函数f(x)具有“DK ”性质,则有2≤a 总成立,即a ≥2. ②当a<a2<a +1,即-2<a<0时,f(x )min =f(a 2)=-a24+2.若函数f(x)具有“DK ”性质,则有-a24+2≤a 总成立,解得a ∈∅.③当a2≥a +1,即a ≤-2时,函数f(x)的最小值为f(a +1)=a +3.若函数f(x)具有“D K ”性质,则有a +3≤a ,解得a ∈∅.综上所述,若f(x)在[a ,a +1]上具有“DK ”性质,则a 的取值范围为[2,+∞).高一数学寒假作业(4)——立体几何答案1. 解析:选B. 由正视图与俯视图可知小正方体最多有7块,故体积最多为7 cm3 2.解析:选D.设直观图中梯形的上底为x ,下底为y ,高为h .则原梯形的上底为x ,下底为y ,高为22h ,故原梯形的面积为4.3.解析:选D.设正方形ABCD 的对角线AC 、BD 相交于点E ,沿AC 折起后,依题意得:当BD =a 时,BE ⊥DE ,∴DE ⊥面ABC ,∴三棱锥D -ABC 的高为DE =22a ,∴V D -ABC =13·12a 2·22a =212a 3.4.解析:选B.有2条:A 1B 和A 1C 1,故选B.5.解析:选D.在A 图中分别连接PS 、QR ,易证PS ∥QR ,∴P 、S 、R 、Q 共面;在C 图中分别连接PQ 、RS ,易证PQ ∥RS ,∴P 、Q 、R 、S 共面.如图,在B 图中过P 、Q 、R 、S 可作一正六边形,故四点共面,D 图中PS 与RQ 为异面直线,∴四点不共面,故选D.6.解析:选B.如图所示,连结AC 交BD 于O 点,易证AC ⊥平面DD 1B 1B ,连结B 1O ,则∠CB 1O 即为B 1C 与对角面所成的角,设正方体棱长为a ,则B 1C =2a ,CO =22a ,∴sin ∠CB 1O =12.∴∠CB 1O =30°.7.答案:①或③ 解析:根据直线与平面平行的性质和平面与平面平行的性质知①③满足条件,在条件②下,m ,n 可能平行,也可能异面.8.答案:3∶1解析:设圆锥底面半径为r ,则母线长为2r ,高为3r ,∴圆柱的底面半径为r ,高为3r ,∴S 圆柱侧S 圆锥侧=2πr ·3r πr ·2r = 3.9.答案:9π2解析:由题意,三角形DAC ,三角形DBC 都是直角三角形,且有公共斜边.所以DC 边的中点就是球心(到D 、A 、C 、B 四点距离相等),所以球的半径就是线段DC 长度的一半,V =43πR 3=9π2.10.答案:①解析:由公理4知①正确;当a ⊥b ,b ⊥c 时,a 与c 可以相交、平行,也可以异面,故②不正确;当a 与b 相交,b 与c 相交时,a 与c 可以相交、平行,也可以异面,故③不正确; a ⊂α,b ⊂β,并不能说明a 与b “不同在任何一个平面内”,故④不正确; 当a ,b 与c 成等角时,a 与b 可以相交、平行,也可以异面,故⑤不正确. 11. 解:(1)证明:因为侧面BCC 1B 1是菱形,所以B 1C ⊥BC 1.又B 1C ⊥A 1B ,且A 1B ∩BC 1=B ,所以B 1C ⊥平面A 1BC 1.又B 1C ⊂平面AB 1C ,所以平面AB 1C ⊥平面A 1BC 1.(2)设BC 1交B 1C 于点E ,连结DE ,则DE 是平面A 1BC 1与平面B 1CD 的交线.因为A 1B ∥平面B 1CD ,所以A 1B ∥DE .又E 是BC 1的中点,所以D 为A 1C 1的中点, 即A 1D ∶DC 1=1.12. 解:(1)证明:连接BD ,∵ABCD 为正方形,∴BD ⊥AC ,又SD ⊥底面ABCD ,∴SD ⊥AC ,∵BD ∩SD =D , ∴AC ⊥平面SDB ,∵BP ⊂平面SDB ,∴AC ⊥BP .(2)当P 为SD 的中点时,连接PN ,则PN ∥DC 且PN =12DC .∵底面ABCD 为正方形,∴AM ∥DC 且AM =12DC ,∴四边形AMNP 为平行四边形,∴AP ∥MN . 又AP ⊄平面SMC ,∴AP ∥平面SMC .(3)V B -NMC =V N -MBC =13S △MBC ·12SD =13·12·BC ·MB ·12SD =16×1×12×12×2=112. 高一数学寒假作业(5)参考答案1、B 2.A 3.B 4. C 5、B 6、A 7、①④ 8、13:9、(1)(2)(4) 10、2+611、(1)∵B 1D ⊥平面ABC ,AC ⊂平面ABC ,∴B 1D ⊥AC . 又∵BC ⊥AC ,B 1D ∩BC =D , ∴AC ⊥平面BB 1C 1C .(2)⎭⎬⎫AB 1⊥BC 1AC ⊥BC 1AB 1与AC 相交⇒⎭⎬⎫BC 1⊥平面AB 1C B 1C ⊂平面AB 1C ⇒BC 1⊥B 1C ,∴四边形BB 1C 1C 为菱形,∵∠B 1BC =60°,B 1D ⊥BC 于D ,∴D 为BC 的中点.连接A 1B ,与AB 1交于点E ,在三角形A 1BC 中,DE ∥A 1C , ∴A 1C ∥平面AB 1D . 12、(1)解:在四棱锥P ABCD -中,因PA ⊥底面ABCD ,AB ⊂平面ABCD ,故PA AB ⊥. 又AB AD ⊥,PAAD A =,从而AB ⊥平面PAD .故PB 在平面PAD 内的射影为PA ,从而APB ∠为PB 和平面PAD 所成的角. 在Rt PAB △中,AB PA =,故45APB =∠.所以PB 和平面PAD 所成的角的大小为45.(2)证明:在四棱锥P ABCD -中,因PA ⊥底面ABCD ,CD ⊂平面ABCD ,故CD PA ⊥. 由条件CD AC ⊥,PAAC A =,CD ∴⊥面PAC .又AE ⊂面PAC ,AE CD ∴⊥.由PA AB BC ==,60ABC =∠,可得AC PA =.E 是PC 的中点,AE PC ∴⊥,A BCDPE MPC CD C ∴=.综上得AE ⊥平面PCD .(3)解:过点E 作EM PD ⊥,垂足为M ,连结AM .由(2)知,AE ⊥平面PCD ,AM 在平面PCD 内的射影是EM ,则AM PD ⊥.(三垂线定理)因此AME ∠是二面角A PD C --的平面角.由已知,得30CAD =∠.设AC a =,得PA a =,3AD a =,3PD a =,2AE a =. 在Rt ADP △中,AM PD ⊥,AD PA PD AM ⋅=⋅∴,则a a aa PDAD PA AM 772321332=⋅=⋅=.在Rt AEM △中,414sin ==∠AM AE AME . 高一数学寒假作业(6)——直线与圆答案1——6 C C D D B B7. [-2,2] 8. ①⑤ 9. (-∞,4)10.3+11.[解析]∵AB 所在直线的方程为3x -4y -4=0,且AD 与AB 垂直,∴直线AD 的斜率为-43. 又点N 在直线AD 上,∴直线AD 的方程为y -13=-43(x +1),即4x +3y +3=0. 由⎩⎨⎧3x -4y -4=04x +3y +3=0,解得点A 的坐标为(0,-1). 又两条对角线交于点M ,∴M 为矩形ABCD 的外接圆的圆心.而|MA |=⎝ ⎛⎭⎪⎫0-122+(-1-0)2=52,∴外接圆的方程为⎝ ⎛⎭⎪⎫x -122+y 2=54.12.[解析] 当0≤x ≤10时,直线过点O (0,0),A (10,20),∴k OA =2010=2, ∴此时直线方程为y =2x ;当10<x ≤40时,直线过点A (10,20),B (40,30),此进k AB =30-2040-10=13,∴此时的直线方程为y -20=13(x -10),即y =13x +503;当x >40时,由题意知,直线的斜率就是相应放水的速度,设进水的速度为v 1,放水的速度为v 2,在OA 段时是进水过程,∴v 1=2.在AB 段是既进水又放水的过程,由物理知识可知,此时的速度为v 1+v 2=13,∴2+v 2=13.∴v 2=-53. ∴当x >40时,k =-53. 又过点B (40,30),∴此时的直线方程为y =-53x +2903.令y =0得,x =58,此时到C (58,0)放水完毕.综上所述:y =⎩⎪⎨⎪⎧2x ,0≤x ≤1013x +503,10<x ≤40-53x +2903,40<x ≤58.高一数学期末复习答案1--8 DDCBC ADB 9. (3,1) ; 10. 3 ; 11. 370x y --=和1x = 12. 5 ; 13. -314.解:(1)由四边形ABCD 为平行四边形知,AC 中点与BD 中点重合.∵ BD 中点为(11),, ∴ 点C 的坐标(33),. (2)由(11)A --,、(22)B -,知,直线AB 方程为340x y ++=,AB =又点(04)D ,到直线AB 的距离d ==∴ 平行四边形ABCD 的面积16S == 15.解:(1)由内角ABC ∠的平分线所在直线方程为2100x y -+=知,点B 在直线2100x y -+=上,设(210)B m m +,,则AB 中点D 的坐标为2214()22m m ++,. 由AB 边上的中线所在直线方程为250x y +-=知,点D 在直线250x y +-=上, ∴221425022m m +++⨯-= ,解得4m =-. ∴ 点B 的坐标为(42)-,. (2)设点()E a b ,与点(24)A ,关于直线2100x y -+=对称,则AE 中点在直线2100x y -+=上,且直线AE 与直线2100x y -+=垂直.∴ 242100224212a b b a ++⎧⨯-+=⎪⎪⎨-⎪⨯=-⎪-⎩,即220210a b a b -=-⎧⎨+=⎩,解得68a b =-⎧⎨=⎩. ∴ 点E 的坐标为(68)-,.由直线2100x y -+=为内角ABC ∠的平分线所在直线,知点E 在直线BC 上.∴ 直线BC 方程为822(4)6(4)y x --=+---,即3100x y ++=.16.解:因为V 半球=V 圆锥=因为V 半球<V 圆锥所以,冰淇淋融化了,不会溢出杯子.17. 解:(1)证明:设AC 和BD 交于点O ,连PO ,由P ,O 分别是DD 1,BD 的中点,故PO ∥BD 1,∵PO ⊂平面PAC ,BD 1⊄平面PAC ,所以,直线BD 1∥平面PAC .(2)长方体ABCD ﹣A 1B 1C 1D 1中,AB=AD=1,底面ABCD 是正方形,则AC ⊥BD ,又DD 1⊥面ABCD ,则DD 1⊥AC .∵BD ⊂平面BDD 1B 1,D 1D ⊂平面BDD 1B 1,BD ∩D 1D=D ,∴AC ⊥面BDD 1B 1.∵AC ⊂平面PAC ,∴平面PAC ⊥平面BDD 1B 1 .(3)由(2)已证:AC ⊥面BDD 1B 1,∴CP 在平面BDD 1B 1内的射影为OP ,∴∠CPO是CP 与平面BDD 1B 1所成的角. 依题意得,,在Rt △CPO 中,,∴∠CPO=30°∴CP 与平面BDD 1B 1所成的角为30°.18.解:(1)由()0f x ≤的解集为区间[]02,知,0a >,且()(2)f x ax x =-.又2()(2)(1)f x ax x a x a =-=--,0a >,且()f x 在在区间[]03,上的最大值为3, ∴ (3)33f a ==,1a =. ∴ 2()2f x x x =-.(2)① 20m -<≤或94m =-;924m -<≤-. ② 3 (3)设2()()(1)1(1)1g x f x x x x x x =--=--=--,0x 是方程()1f x x =-在区间0313()28x ∈,内的解. 由331()10222g =⨯-<,13135()10888g =⨯->,25259()10161616g =⨯-<知, 02513()168x ∈,.∵ 132510.181616-=<,∴ 方程()1f x x =-在区间0313()28x ∈,内的一个近似解为2516.友情提示:部分文档来自网络整理,供您参考!文档可复制、编辑,期待您的好评与关注!。

2022高一数学寒假作业答案最新10篇

2022高一数学寒假作业答案最新10篇

2022高一数学寒假作业答案最新10篇寒假是同学们所期待的,在寒假不能光顾着玩,因为要按时完成布置的寒假作业,遇到不会做的题目可以借鉴答案,那么寒假作业答案你知道吗?下面我为大家收集整理了2022高一数学寒假作业答案最新10篇,欢迎阅读与借鉴!高一数学寒假作业答案1参考答案题号 1 2 3 4 5 6 7 8 9 10 11 12答案 D D D A D D B C A C B C13. ; 14. 4 ; 15. 0.4; 16. ②③17.(1)∵A中有两个元素,∴关于的方程有两个不等的实数根,∴,且,即所求的范围是,且 ;……6分(2)当时,方程为,∴集合A= ;当时,若关于的方程有两个相等的实数根,则A也只有一个元素,此时 ;若关于的方程没有实数根,则A没有元素,此时,综合知此时所求的范围是,或 .………13分18 解:(1) ,得(2) ,得此时,所以方向相反19.解:⑴由题义整理得 ,解方程得即的不动点为-1和2. …………6分⑵由 = 得如此方程有两解,则有△=把看作是关于的二次函数,则有解得即为所求. …………12分20.解: (1)常数m=1…………………4分(2)当k0时,直线y=k与函数的图象无交点,即方程无解;当k=0或k 1时, 直线y=k与函数的图象有唯一的交点,所以方程有一解;当0所以方程有两解.…………………12分21.解:(1)设,有, 2取,则有是奇函数 4(2)设,则,由条件得在R上是减函数,在[-3,3]上也是减函数。

6当x=-3时有最大值 ;当x=3时有最小值,由,,当x=-3时有最大值6;当x=3时有最小值-6. 8(3)由,是奇函数原不等式就是 10由(2)知在[-2,2]上是减函数原不等式的解集是 1222.解:(1)由数据表知,(3)由于船的吃水深度为7米,船底与海底的距离不少于4.5米,故在船航行时水深米,令,得 .解得 .取,则 ;取,则 .故该船在1点到5点,或13点到17点能安全进出港口,而船舶要在一天之内在港口停留时间最长,就应从凌晨1点进港,下午17点离港,在港内停留的时间最长为16小时.高一数学寒假作业答案2对数函数及其性质一1.(设a=log54,b=(log53)2,c=log45,则( )A.aC.a解析:选D.a=log541,log531,故b2.已知f(x)=loga|x-1|在(0,1)上递减,那么f(x)在(1,+∞)上( )A.递增无值B.递减无最小值C.递增有值D.递减有最小值解析:选A.设y=logau,u=|x-1|.x∈(0,1)时,u=|x-1|为减函数,∴a1.∴x∈(1,+∞)时,u=x-1为增函数,无值.∴f(x)=loga(x-1)为增函数,无值.3.已知函数f(x)=ax+logax(a0且a≠1)在[1,2]上的值与最小值之和为loga2+6,则a的值为( )A.12B.14C.2D.4解析:选C.由题可知函数f(x)=ax+logax在[1,2]上是单调函数,所以其值与最小值之和为f(1)+f(2)=a+loga1+a2+loga2=loga2+6,整理可得a2+a-6=0,解得a=2或a=-3(舍去),故a=2.4.函数y=log13(-x2+4x+12)的单调递减区间是________.解析:y=log13u,u=-x2+4x+12.令u=-x2+4x+120,得-2∴x∈(-2,2]时,u=-x2+4x+12为增函数,∴y=log13(-x2+4x+12)为减函数.答案:(-2,2]对数函数及其性质二1.若loga21,则实数a的取值范围是( )A.(1,2)B.(0,1)∪(2,+∞)C.(0,1)∪(1,2)D.(0,12)解析:选B.当a1时,loga22;当02.若loga2A.0C.ab1D.ba1解析:选B.∵loga2∴03.已知函数f(x)=2log12x的值域为[-1,1],则函数f(x)的定义域是( )A.[22,2]B.[-1,1]C.[12,2]D.(-∞,22]∪[2,+∞)解析:选A.函数f(x)=2log12x在(0,+∞)上为减函数,则-1≤2log12x≤1,可得-12≤log12x≤12,X k b 1 . c o m解得22≤x≤2.4.若函数f(x)=ax+loga(x+1)在[0,1]上的值和最小值之和为a,则a的值为( )A.14B.12C.2D.4解析:选B.当a1时,a+loga2+1=a,loga2=-1,a=12,与a1矛盾;当0loga2=-1,a=12.5.函数f(x)=loga[(a-1)x+1]在定义域上( )A.是增函数B.是减函数C.先增后减D.先减后增解析:选A.当a1时,y=logat为增函数,t=(a-1)x+1为增函数,∴f(x)=loga[(a-1)x+1]为增函数;当0 ∴f(x)=loga[(a-1)x+1]为增函数.对数函数及其性质三1.(2021年高考全国卷Ⅱ)设a=lge,b=(lg e)2,c=lg e,则( )A.abcB.acbC.cabD.cba解析:选B.∵1∴0∵0又c-b=12lg e-(lg e)2=12lg e(1-2lg e)=12lg e•lg10e20,∴cb,故选B.2.已知0解析:∵00.又∵0答案:33.f(x)=log21+xa-x的图象关于原点对称,则实数a的值为________.解析:由图象关于原点对称可知函数为奇函数,所以f(-x)+f(x)=0,即log21-xa+x+log21+xa-x=0⇒log21-x2a2-x2=0=log21,所以1-x2a2-x2=1⇒a=1(负根舍去).答案:14.函数y=logax在[2,+∞)上恒有|y|1,则a取值范围是________.解析:若a1,x∈[2,+∞),|y|=logax≥loga2,即loga21,∴11,∴a12,∴12答案:125.已知f(x)=(6-a)x-4a(x1)logax (x≥1)是R上的增函数,求a的取值范围.解:f(x)是R上的增函数,则当x≥1时,y=logax是增函数,∴a1.又当x1时,函数y=(6-a)x-4a是增函数.∴6-a0,∴a6.又(6-a)×1-4a≤loga1,得a≥65.∴65≤a6.综上所述,65≤a6.6.解下列不等式.(1)log2(2x+3)log2(5x-6);(2)logx121.解:(1)原不等式等价于2x+305x-602x+35x-6,解得65所以原不等式的解集为(65,3).(2)∵logx121⇔log212log2x1⇔1+1log2x0⇔log2x+1log2x0⇔-1⇔2-10⇔12∴原不等式的解集为(12,1).高一数学寒假作业答案3指数与指数幂的运算一1.将532写为根式,则正确的是( )A.352B.35C.532D.53解析:选D.532=53.2.根式 1a1a(式中a0)的分数指数幂形式为( )A.a-43B.a43C.a-34D.a34解析:选C.1a1a= a-1•(a-1)12= a-32=(a-32)12=a-34.3.(a-b)2+5(a-b)5的值是( )A.0B.2(a-b)C.0或2(a-b)D.a-b解析:选C.当a-b≥0时,原式=a-b+a-b=2(a-b);当a-b0时,原式=b-a+a-b=0.4.计算:(π)0+2-2×(214)12=________.解析:(π)0+2-2×(214)12=1+122×(94)12=1+14×32=118.答案:118对数与对数运算训练二1.logab=1成立的条件是( )A.a=bB.a=b,且b0C.a0,且a≠1D.a0,a=b≠1解析:选D.a0且a≠1,b0,a1=b.2.若loga7b=c,则a、b、c之间满足( )A.b7=acB.b=a7cC.b=7acD.b=c7a解析:选B.loga7b=c⇒ac=7b,∴b=a7c.3.如果f(ex)=x,则f(e)=( )A.1B.eeC.2eD.0解析:选A.令ex=t(t0),则x=lnt,∴f(t)=lnt.∴f(e)=lne=1.4.方程2log3x=14的解是( )A.x=19B.x=x3C.x=3D.x=9解析:选A.2log3x=2-2,∴log3x=-2,∴x=3-2=19.对数与对数运算训练三q.若log2(log3x)=log3(log4y)=log4(log2z)=0,则x+y+z的值为( )A.9B.8C.7D.6解析:选A.∵log2(log3x)=0,∴log3x=1,∴x=3.同理y=4,z=2.∴x+y+z=9.2.已知logax=2,logbx=1,logcx=4(a,b,c,x0且≠1),则logx(abc)=( )A.47B.27C.72D.74解析:选D.x=a2=b=c4,所以(abc)4=x7,所以abc=x74.即logx(abc)=74.3.若a0,a2=49,则log23a=________.解析:由a0,a2=(23)2,可知a=23,∴log23a=log2323=1.答案:14.若lg(lnx)=0,则x=________.解析:lnx=1,x=e.答案:e高一数学寒假作业答案4一、选择题1.已知f(x)=x-1x+1,则f(2)=()A.1B.12C.13D.14【解析】f(2)=2-12+1=13.X【答案】C2.下列各组函数中,表示同一个函数的是()A.y=x-1和y=x2-1x+1B.y=x0和y=1C.y=x2和y=(x+1)2D.f(x)=(x)2x和g(x)=x(x)2【解析】A中y=x-1定义域为R,而y=x2-1x+1定义域为{x|x≠1};B中函数y=x0定义域{x|x≠0},而y=1定义域为R; C中两函数的解析式不同;D中f(x)与g(x)定义域都为(0,+∞),化简后f(x)=1,g(x)=1,所以是同一个函数.【答案】D3.用固定的速度向如图2-2-1所示形状的瓶子中注水,则水面的高度h和时间t之间的关系是()图2-2-1【解析】水面的高度h随时间t的增加而增加,而且增加的速度越来越快.【答案】B4.函数f(x)=x-1x-2的定义域为()A.[1,2)∪(2,+∞)B.(1,+∞)C.[1,2]D.[1,+∞)【解析】要使函数有意义,需x-1≥0,x-2≠0,解得x≥1且x≠2,所以函数的定义域是{x|x≥1且x≠2}.【答案】A5.函数f(x)=1x2+1(x∈R)的值域是()A.(0,1)B.(0,1]C.[0,1)D.[0,1]【解析】由于x∈R,所以x2+1≥1,01x2+1≤1,即0【答案】B二、填空题6.集合{x|-1≤x0或1【解析】结合区间的定义知,用区间表示为[-1,0)∪(1,2].【答案】[-1,0)∪(1,2]7.函数y=31-x-1的定义域为________.【解析】要使函数有意义,自变量x须满足x-1≥01-x-1≠0解得:x≥1且x≠2.∴函数的定义域为[1,2)∪(2,+∞).【答案】[1,2)∪(2,+∞)8.设函数f(x)=41-x,若f(a)=2,则实数a=________.【解析】由f(a)=2,得41-a=2,解得a=-1.【答案】-1三、解答题9.已知函数f(x)=x+1x,求:(1)函数f(x)的定义域;(2)f(4)的值.【解】(1)由x≥0,x≠0,得x0,所以函数f(x)的定义域为(0,+∞).(2)f(4)=4+14=2+14=94.10.求下列函数的定义域:(1)y=-x2x2-3x-2;(2)y=34x+83x-2.【解】(1)要使y=-x2x2-3x-2有意义,则必须-x≥0,2x2-3x-2≠0,解得x≤0且x≠-12,故所求函数的定义域为{x|x≤0,且x≠-12}.(2)要使y=34x+83x-2有意义,则必须3x-20,即x23,故所求函数的定义域为{x|x23}.11.已知f(x)=x21+x2,x∈R,(1)计算f(a)+f(1a)的值;(2)计算f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)的值.【解】(1)由于f(a)=a21+a2,f(1a)=11+a2,所以f(a)+f(1a)=1.(2)法一因为f(1)=121+12=12,f(2)=221+22=45,f(12)=(12)21+(12)2=15,f(3)=321+32=910,f(13)=(13)21+(13)2=110,f(4)=421+42=1617,f(14)=(14)21+(14)2=117,所以f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=12+45+15+910+ 110+1617+117=72.法二由(1)知,f(a)+f(1a)=1,则f(2)+f(12)=f(3)+f(13)=f(4)+f(14)=1,即[f(2)+f(12)]+[f(3)+f(13)]+[f(4)+f(14)]=3,而f(1)=12,所以f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=72.高一数学寒假作业答案51.函数f(x)=x2在[0,1]上的最小值是()A.1B.0C.14D.不存在解析:选B.由函数f(x)=x2在[0,1]上的图象(图略)知, f(x)=x2在[0,1]上单调递增,故最小值为f(0)=0.2.函数f(x)=2x+6,x∈[1,2]x+7,x∈[-1,1],则f(x)的值、最小值分别为()A.10,6B.10,8C.8,6D.以上都不对解析:选 A.f(x)在x∈[-1,2]上为增函数,f(x)max=f(2)=10,f(x)min=f(-1)=6.3.函数y=-x2+2x在[1,2]上的值为()A.1B.2C.-1D.不存在解析:选A.因为函数y=-x2+2x=-(x-1)2+1.对称轴为x=1,开口向下,故在[1,2]上为单调递减函数,所以ymax=-1+2=1.4.函数y=1x-1在[2,3]上的最小值为()A.2B.12C.13D.-12解析:选B.函数y=1x-1在[2,3]上为减函数,∴ymin=13-1=12.5.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L1=-x2+21x和L2=2x,其中销售量(单位:辆).若该公司在两地共销售15辆,则能获得的利润为()A.90万元B.60万元C.120万元D.120.25万元解析:选C.设公司在甲地销售x辆(0≤x≤15,x为正整数),则在乙地销售(15-x)辆,∴公司获得利润L=-x2+21x+2(15-x)=-x2+19x+30.∴当x=9或10时,L为120万元,故选C.6.已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,则f(x)的值为()A.-1B.0C.1D.2解析:选C.f(x)=-(x2-4x+4)+a+4=-(x-2)2+4+a.∴函数f(x)图象的对称轴为x=2,∴f(x)在[0,1]上单调递增.又∵f(x)min=-2,∴f(0)=-2,即a=-2.f(x)max=f(1)=-1+4-2=1.高一数学寒假作业答案6一、选择题1.已知f(x)=x-1x+1,则f(2)=()A.1B.12C.13D.14【解析】f(2)=2-12+1=13.X【答案】C2.下列各组函数中,表示同一个函数的是()A.y=x-1和y=x2-1x+1B.y=x0和y=1C.y=x2和y=(x+1)2D.f(x)=x2x和g(x)=x x 2【解析】A中y=x-1定义域为R,而y=x2-1x+1定义域为{x|x≠1};B中函数y=x0定义域{x|x≠0},而y=1定义域为R; C中两函数的解析式不同;D中f(x)与g(x)定义域都为(0,+∞),化简后f(x)=1,g(x)=1,所以是同一个函数.【答案】D3.用固定的速度向如图2-2-1所示形状的瓶子中注水,则水面的高度h和时间t之间的关系是()图2-2-1【解析】水面的高度h随时间t的增加而增加,而且增加的速度越来越快.【答案】B4.函数f(x)=x-1x-2的定义域为()A.[1,2)∪(2,+∞)B.(1,+∞)C.[1,2]D.[1,+∞)【解析】要使函数有意义,需x-1≥0,x-2≠0,解得x≥1且x≠2,所以函数的定义域是{x|x≥1且x≠2}.【答案】A5.函数f(x)=1x2+1(x∈R)的值域是()A.(0,1)B.(0,1]C.[0,1)D.[0,1]【解析】由于x∈R,所以x2+1≥1,01x2+1≤1,即0【答案】B二、填空题6.集合{x|-1≤x0或1【解析】结合区间的定义知,用区间表示为[-1,0)∪(1,2].【答案】[-1,0)∪(1,2]7.函数y=31-x-1的定义域为________.【解析】要使函数有意义,自变量x须满足x-1≥01-x-1≠0解得:x≥1且x≠2.∴函数的定义域为[1,2)∪(2,+∞).【答案】[1,2)∪(2,+∞)8.设函数f(x)=41-x,若f(a)=2,则实数a=________.【解析】由f(a)=2,得41-a=2,解得a=-1.【答案】-1三、解答题9.已知函数f(x)=x+1x,求:(1)函数f(x)的定义域;(2)f(4)的值.【解】(1)由x≥0,x≠0,得x0,所以函数f(x)的定义域为(0,+∞).(2)f(4)=4+14=2+14=94.10.求下列函数的定义域:(1)y=-x2x2-3x-2;(2)y=34x+83x-2.【解】(1)要使y=-x2x2-3x-2有意义,则必须-x≥0,2x2-3x-2≠0,解得x≤0且x≠-12,故所求函数的定义域为{x|x≤0,且x≠-12}.(2)要使y=34x+83x-2有意义,则必须3x-20,即x23,故所求函数的定义域为{x|x23}.11.已知f(x)=x21+x2,x∈R,(1)计算f(a)+f(1a)的值;(2)计算f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)的值.【解】(1)由于f(a)=a21+a2,f(1a)=11+a2,所以f(a)+f(1a)=1.(2)法一因为f(1)=121+12=12,f(2)=221+22=45,f(12)=1221+122=15,f(3)=321+32=910,f(13)=13 21+132=110,f(4)=421+42=1617,f(14)=1421+ 142=117,所以f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=12+45+15+910+ 110+1617+117=72.法二由(1)知,f(a)+f(1a)=1,则f(2)+f(12)=f(3)+f(13)=f(4)+f(14)=1,即[f(2)+f(12)]+[f(3)+f(13)]+[f(4)+f(14)]=3,而f(1)=12,所以f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=72.高一数学寒假作业答案7一、选择题(每小题4分,共16分)1.(2021•济南高一检测)若圆(x-3)2+(y+5)2=r2上有且仅有两个点到直线4x-3y-2=0的距离为1,则半径长r的取值范围是()A.(4,6)B.[4,6)C.(4,6]D.[4,6]【解析】选A.圆心(3,-5)到直线的距离为d==5,由图形知42.(2021•广东高考)垂直于直线y=x+1且与圆x2+y2=1相切于第一象限的直线方程是()A.x+y-=0B.x+y+1=0C.x+y-1=0D.x+y+=0【解析】选A.由题意知直线方程可设为x+y-c=0(c0),则圆心到直线的距离等于半径1,即=1,c=,故所求方程为x+y-=0.3.若曲线x2+y2+2x-6y+1=0上相异两点P,Q关于直线kx+2y-4=0对称,则k的值为()A.1B.-1C.D.2【解析】选D.由条件知直线kx+2y-4=0是线段PQ的中垂线,所以直线过圆心(-1,3),所以k=2.4.(2021•天津高一检测)由直线y=x+1上的一点向(x-3)2+y2=1引切线,则切线长的最小值为()A.1B.2C.D.3【解题指南】切线长的平方等于直线上的点到圆心的距离的平方减去半径的平方,所以当直线上的点到圆心的距离最小时,切线长最小.【解析】选C.设P(x0,y0)为直线y=x+1上一点,圆心C(3,0)到P点的距离为d,切线长为l,则l=,当d最小时,l最小,当PC垂直于直线y=x+1时,d最小,此时d=2,所以lmin==.二、填空题(每小题5分,共10分)5.(2021•山东高考)圆心在直线x-2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得的弦的长为2,则圆C的标准方程为________.【解题指南】本题考查了直线与圆的位置关系,可利用圆心到直线的距离、弦长一半、半径构成直角三角形求解.【解析】设圆心,半径为a.由勾股定理得+=a2,解得a=2.所以圆心为,半径为2,所以圆C的标准方程为+=4.答案:+=4.6.已知圆C:x2+y2=1,点A(-2,0)及点B(2,a),从A 点观察B点,要使视线不被圆C挡住,则a的取值范围是____________.【解析】由题意可得∠TAC=30°,BH=AHtan30°=.所以,a的取值范围是∪.答案:∪三、解答题(每小题12分,共24分)7.(2021•江苏高考)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l 上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程.(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a 的取值范围.【解题指南】(1)先利用题设中的条件确定圆心坐标,再利用直线与圆相切的几何条件找出等量关系,求出直线的斜率.(2)利用MA=2MO确定点M的轨迹方程,再利用题设中条件分析出两圆的位置关系,求出a的取值范围.【解析】(1)由题设知,圆心C是直线y=2x-4和y=x-1的交点,解得点C(3,2),于是切线的斜率必存在.设过A(0,3)的圆C的切线方程为y=kx+3,由题意得,=1,解得k=0或-,故所求切线方程为y=3或3x+4y-12=0.(2)因为圆心C在直线y=2x-4上,设C点坐标为(a,2a-4),所以圆C的方程为(x-a)2+[y-2(a-2)]2=1.设点M(x,y),因为MA=2MO,所以=2,化简得x2+y2+2y-3=0,即x2+(y+1)2=4,所以点M在以D(0,-1)为圆心,2为半径的圆上.由题意知,点M(x,y)在圆C上,所以圆C与圆D有公共点,则2-1≤CD≤2+1,即1≤≤3.由5a2-12a+8≥0,得a∈R;由5a2-12a≤0,得0≤a≤.所以圆心C的横坐标a的取值范围为.8.已知圆的圆心在x轴上,圆心横坐标为整数,半径为3.圆与直线4x+3y-1=0相切.(1)求圆的方程.(2)过点P(2,3)的直线l交圆于A,B两点,且|AB|=2.求直线l的方程.【解析】(1)设圆心为M(m,0),m∈Z,因为圆与直线4x+3y-1=0相切,所以=3,即|4m-1|=15,又因为m∈Z,所以m=4.所以圆的方程为(x-4)2+y2=9.(2)①当斜率k不存在时,直线为x=2,此时A(2,),B(2,-),|AB|=2,满足条件.②当斜率k存在时,设直线为y-3=k(x-2)即kx-y+3-2k=0,设圆心(4,0)到直线l的距离为d,所以d==2.所以d==2,解得k=-,所以直线方程为5x+12y-46=0.综上,直线方程为x=2或5x+12y-46=0.【变式训练】(2021•大连高一检测)设半径为5的圆C 满足条件:①截y轴所得弦长为6.②圆心在第一象限,并且到直线l:x+2y=0的距离为.(1)求这个圆的方程.(2)求经过P(-1,0)与圆C相切的直线方程.【解析】(1)由题设圆心C(a,b)(a0,b0),半径r=5,因为截y轴弦长为6,所以a2+9=25,因为a0,所以a=4.由圆心C到直线l:x+2y=0的距离为,所以d==,因为b0,所以b=1,所以圆的方程为(x-4)2+(y-1)2=25.(2)①斜率存在时,设切线方程y=k(x+1),由圆心C到直线y=k(x+1)的距离=5.所以k=-,所以切线方程:12x+5y+12=0.②斜率不存在时,方程x=-1,也满足题意,由①②可知切线方程为12x+5y+12=0或x=-1.高一数学寒假作业答案81.函数f(x)=x2在[0,1]上的最小值是()A.1B.0C.14D.不存在解析:选B.由函数f(x)=x2在[0,1]上的图象(图略)知, f(x)=x2在[0,1]上单调递增,故最小值为f(0)=0.2.函数f(x)=2x+6,x∈[1,2]x+7,x∈[-1,1],则f(x)的值、最小值分别为()A.10,6B.10,8C.8,6D.以上都不对解析:选 A.f(x)在x∈[-1,2]上为增函数,f(x)max=f(2)=10,f(x)min=f(-1)=6.3.函数y=-x2+2x在[1,2]上的值为()A.1B.2C.-1D.不存在解析:选A.因为函数y=-x2+2x=-(x-1)2+1.对称轴为x=1,开口向下,故在[1,2]上为单调递减函数,所以ymax=-1+2=1.4.函数y=1x-1在[2,3]上的最小值为()A.2B.12C.13D.-12解析:选B.函数y=1x-1在[2,3]上为减函数,∴ymin=13-1=12.5.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L1=-x2+21x和L2=2x,其中销售量(单位:辆).若该公司在两地共销售15辆,则能获得的利润为()A.90万元B.60万元C.120万元D.120.25万元解析:选C.设公司在甲地销售x辆(0≤x≤15,x为正整数),则在乙地销售(15-x)辆,∴公司获得利润L=-x2+21x+2(15-x)=-x2+19x+30.∴当x=9或10时,L为120万元,故选C.6.已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,则f(x)的值为()A.-1B.0C.1D.2解析:选C.f(x)=-(x2-4x+4)+a+4=-(x-2)2+4+a.∴函数f(x)图象的对称轴为x=2,∴f(x)在[0,1]上单调递增.又∵f(x)min=-2,∴f(0)=-2,即a=-2.f(x)max=f(1)=-1+4-2=1.高一数学寒假作业答案91.函数f(x)=x的奇偶性为()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数解析:选D.定义域为{x|x≥0},不关于原点对称.2.下列函数为偶函数的是()A.f(x)=|x|+xB.f(x)=x2+1xC.f(x)=x2+xD.f(x)=|x|x2解析:选D.只有D符合偶函数定义.3.设f(x)是R上的任意函数,则下列叙述正确的是()A.f(x)f(-x)是奇函数B.f(x)|f(-x)|是奇函数C.f(x)-f(-x)是偶函数D.f(x)+f(-x)是偶函数解析:选D.设F(x)=f(x)f(-x)则F(-x)=F(x)为偶函数.设G(x)=f(x)|f(-x)|,则G(-x)=f(-x)|f(x)|.∴G(x)与G(-x)关系不定.设M(x)=f(x)-f(-x),∴M(-x)=f(-x)-f(x)=-M(x)为奇函数.设N(x)=f(x)+f(-x),则N(-x)=f(-x)+f(x).N(x)为偶函数.4.奇函数f(x)在区间[3,7]上是增函数,在区间[3,6]上的值为8,最小值为-1,则2f(-6)+f(-3)的值为()A.10B.-10C.-15D.15解析:选C.f(x)在[3,6]上为增函数,f(x)max=f(6)=8,f(x)min=f(3)=-1.∴2f(-6)+f(-3)=-2f(6)-f(3)=-2×8+1=-15.5.f(x)=x3+1x的图象关于()A.原点对称B.y轴对称C.y=x对称D.y=-x对称解析:选A.x≠0,f(-x)=(-x)3+1-x=-f(x),f(x)为奇函数,关于原点对称.6.如果定义在区间[3-a,5]上的函数f(x)为奇函数,那么a=________.解析:∵f(x)是[3-a,5]上的奇函数,∴区间[3-a,5]关于原点对称,∴3-a=-5,a=8.答案:87.已知函数f(x)=ax2+bx+c(a≠0)是偶函数,那么g(x)=ax3+bx2+cx()A.是奇函数B.是偶函数C.既是奇函数又是偶函数D.是非奇非偶函数解析:选 A.g(x)=x(ax2+bx+c)=xf(x),g(-x)=-x•f(-x)=-x•f(x)=-g(x),所以g(x)=ax3+bx2+cx是奇函数;因为g(x)-g(-x)=2ax3+2cx不恒等于0,所以g(-x)=g(x)不恒成立.故g(x)不是偶函数.8.奇函数y=f(x)(x∈R)的图象点()A.(a,f(-a))B.(-a,f(a))C.(-a,-f(a))D.(a,f(1a))解析:选C.∵f(x)是奇函数,∴f(-a)=-f(a),即自变量取-a时,函数值为-f(a),故图象点(-a,-f(a)).9.f(x)为偶函数,且当x≥0时,f(x)≥2,则当x≤0时()A.f(x)≤2B.f(x)≥2C.f(x)≤-2D.f(x)∈R解析:选B.可画f(x)的大致图象易知当x≤0时,有f(x)≥2.故选B.高一数学寒假作业答案101.{x|x=2或x=10}{x|x3或x=7}{x|2=10}C B D2.a=1m=1{0,-1/3,-1/2}第二页1.(3/2,+∞)BB2.01CC第三页1.-14BB2.MnCA第四页1.略变式1:-1/5变式2:不会变式3:D2. (1)略(2)偶函数变式1: a=-1 b=0变式2: C变式3: √2/2第五页1.图象略减 [-3,-2), [0,1), [3,6) 增 [-2,0), [1,3)Fmax=f(3)=4 Fmin=f(6)=-5增(-∞, -1],(0,1] 减(1,+∞)①②2. (1)b^2-4ac0a0c0(2)b^2-4ac0a0c0变式1第六页1. B2. A3. ③4. a^3×π/25. (1)过N在平面PDC内作NQ垂直于PD,连接AQ略证明(2)s=1×1×1×1/3=1/36.Ⅰ由题可得D(0,1)由两点式得 3x+y-=0Ⅱ BC所在直线方程为 x-y+1=0A到BC距离为 2√2第七页1.C2.A3.A4.D5.4-4/3π6.∵CF:CB=CE:CA=1:2∴E(0,3/2) F(2,7/2)∴由两点式得L方程为 x-y+3/2=0第八页1.A2.不会3.D4.0或15.S=a×b×√2/2×3=3√2/2ab6.略第九页第十页均为课本必修2上得例题(略)2022高一数学寒假作业答案最新10篇。

高一年级数学寒假作业参考答案

高一年级数学寒假作业参考答案

1.集合、一元二次不等式一.填空题:本大题共10小题,每小题5分,共50分.1{}5,4,2 2{}4 3.{}5,4,3,2,0 4.{}R 5,1,3x x x x ∈≠-≠-≠ 5.4≥a 6.6 7.{}6,4,2 8.[]0,1- 9.⎪⎭⎫⎝⎛--31,21 10.[)6,2 二.解答题:本大题共4小题,共50分,解答时应写出文字说明、证明过程或演算步骤. 11.解:(1)A B ={x |1<x <3}; (2)C R (A B )=x x x ≤≥{| 13}或;(3)()AC B R =}12|{>-≤x x x 或.12.解:1013⎧⎫-⎨⎬⎩⎭,,.13.解:14.解:已知不等式可化为2(1)(12)0x m x -+-<.设2()(1)(12)f m x m x =-+-,这是一个关于m 的一次函数(或常数函数), 从图象上看,要使()0f m <在22m -≤≤时恒成立,其等价条件是:22(2)2(1)(12)0,(2)2(1)(12)0,f x x f x x ⎧=-+-<⎪⎨-=--+-<⎪⎩ 即222230,2210.x x x x ⎧+->⎪⎨--<⎪⎩解得1122x -+<<.所以,实数x 的取值范围是⎝⎭.2.函数的基本概念一.填空题:本大题共10小题,每小题5分,共50分.1.2()43f x x x =-+ 2.4 3.[0,3] 4. [1,1]- 5. [2,1)(1,2]-6. [2,6]7. (3,]+∞8. -19. 左移12,上移1个单位 10. 15[,)8+∞ 二.解答题:本大题共4小题,共50分,解答时应写出文字说明、证明过程或演算步骤.11.解: (1)图略; ---------------------------------------------------------6 (2)当0a <时, 无解; 当0a =时,有两个解;当09a <<时, 有四个解;当9a =时,有三个解; 当9a >时有两个解. ---------------------------------1212.解:2()2f x x x =-对称轴为1x =; (0)(2)0f f ==. -------------------3①当(0,1)m ∈时, 2max min ()(0)0,()()2f x f f x f m m m ====-; -------6②当[1,2]m ∈时,max min ()(0)0,()(1)1f x f f x f ====-; ----------------9③当(2,)m ∈+∞时,2max min ()()2,()(1)1f x f m m m f x f ==-==-. ---1213.解:①二次函数()f x 有(0)1f =,可设2()1f x ax bx =++, ---------------222(1)()[(1)(1)1][1]22f x f x a x b x ax bx ax a b x+-=++++-++=++= -------------------4所以11a b =⎧⎨=-⎩ 所以2()1f x x x =-+. .------------------------------------------8②2()1f x x x =-+对称轴为12x =, ------------------------------------------------10 所以max min 13()(1)3,()()24f x f f x f =-===. -----------------------1214.解:因为(2)1f = 则有212a b=+ ---① ----------------------------------------------3因为()f x x =有唯一解,即xx ax b=+有唯一解---② ------------------------------6(1) 当0b =时,显然0a ≠,由①得1a =,经检验,满足条件. -----------------9 (2) 当0b ≠时,显然以0为根,则1ax b +=仅以0为根, --------------12∴1b =,代入①得,12a =,综上10a b =⎧⎨=⎩ 或者 121a b ⎧=⎪⎨⎪=⎩. --------------143.函数的简单性质一.填空题:本大题共10小题,每小题5分,共50分.1.3a ≤- 2.(,3]-∞- 3.12 4.22()0x x x f x x x x ⎧+>⎪=⎨-+≤⎪⎩ 5. -266. (2,0)(2,)-+∞7. 21x x - 8. -1 9. 0 10. 2816x x -+二.解答题:本大题共4小题,共50分,解答时应写出文字说明、证明过程或演算步骤. 11.解: ∵()f x 是定义在(1,1)-上的奇函数,∴112()()225f f -=-=- ……………..4 ∴------------1212.解: 证明:设 1202x x <<≤,则221212211212121212121244(4)()44()()()x x x x x x x x x x f x f x x x x x x x x x -+----=+-+==…6 ∵ 1202x x <<≤1212120,04,()()0x x x x f x f x -<<<∴->. (10)()f x ∴在区间(0,2]上为减函数. ……………………………….12 13.解: (1) 222130()2103x x x f x x x x ⎧+--≤≤⎪=⎨--<≤⎪⎩ (图略) --------------------4∵ 定义域关于原点对称,∴ 2()()2||1()f x x x f x -=----=,∴()f x 为偶函数. ------------------------------------------------------6 (2)单调减区间为 [3,1],[0,1]--;单调增区间为 [1,0],[1,3]-. ----------------------8 (3) 当30x -≤≤时, min max ()2,()2f x f x =-=当03x <≤时, m i n m a x ()2,()2f x f x =-=.∴ 值域为[2,2]-.-----12 14.解:(1)∵210|2|20x x ⎧-≥⎨+-≠⎩11x x -≤≤⎧⇒⎨≠⎩,∴定义域为[1,0)(0,1]- 关于原点对称. --2∴()f x =,∴()()f x f x -==-,∴()f x 为奇函数.---- ------- ----5 (2) ()f x 在(0,1]上单调递减. -----------------------------------------8 (3) 当[1,0)x ∈-时,()0f x < 所以无解. ---------------------------------10 当(0,1]x ∈时,()1f x > ,即()2f x f >. --------------------12 由(2)知,()f x 在区间(0,1]上单调递减,所以(0,2x ∈. --------------14 4.指数函数,对数函数,幂函数一.填空题:本大题共10小题,每小题5分,共50分.12()2512()25f f ⎧=⎪⎪⎨⎪-=-⎪⎩10a b =⎧⎨=⎩2()1x f x x =+1.2 2.a c b >> 3.}132/{≠>x x x 且 4.12,33⎛⎤⎥⎝⎦5.小, 1/5 6.(1,4) 7.4 8.(,1)-∞ 9.11()()14x g x -=+ 10.)0,2⎛⎫⋃+∞ ⎪ ⎪⎝⎭二.解答题:本大题共4小题,共50分,解答时应写出文字说明、证明过程或演算步骤. 11.解: (1)原式=122232-++⨯=132; (2)∵,3log 2=x ∴23x=, ∴x x xx----222233=()()()33331122339133922x x x x ------==--. 12.解:(1)()f x 的定义域为R ,关于数O 对称,且()()2x xa a f x f x -+-==, ()f x ∴为R 上的偶函数. ()()6f m f m ∴-==.(2)由(1)3f =得16a a +=, 2221111(2)()[()2]1722f a a a a=+=+-= ,2111()(2)224f a a =++=, 又()0f x >,1()2f ∴=13.解:由201x x +≥-解得2x -≤或1x >,于是(,2](1,).A =-∞-+∞()()()2211122.222xxa xa x x a x x a +-->⇔>⇔<+⇔< 所以(,)B a =-∞. 因为,A B B = 所以B A ⊆,所以2a -≤,即a 的取值范围是(],2.-∞- 14.解:(1)因为()f x 是奇函数,且定义域为R ,所以0)0(=f ,∴111201()2222xx a a f x +--=⇒=∴=++ . (2)证明:由(Ⅰ)知11211()22221x x x f x +-==-+++,令21x x <,则21220x x <<,02212>-x x , 2112212222121)()(21x x x x x x x f x f +-=-=->0, 即)()(21x f x f >,∴函数)(x f 在R 上为减函数 .(3) ()f x 是奇函数,因()f x 为减函数,22(2)(2)f t t f k t -<- ,∴2222t t k t ->-,即2320t t k -->对一切R t ∈恒成立,∴14120.3k k ∆=+<⇒<-5.函数与方程、函数模型及应用一.填空题:本大题共10小题,每小题5分,共50分.1.3 2.1和3 3.0 4.720 5.4 6.()1,1- 7.2 8.①④ 9.(1,8.2) 10.①②④⑤二.解答题:本大题共4小题,共50分,解答时应写出文字说明、证明过程或演算步骤.y11.(1)21282y x x =-++,(0,x ∈;(2)2x =时,y 取到最大值10. 12.解:(1)当12-<a即2-<a 时,()()31min +=-=a f x f ,此时,令13-=+a ,解得14-<-=a ,满足题意.(2)当121≤≤-a即22≤≤-a 时,()482min a x f -=,此时,令1482-=-a ,解得32±=a ,不满足题意 . (3)当12>a即2>a 时()()a f x f -==31min ,此时令13-=-a 得4=a ,满足题意.综上,4±=a 为所求的值.13.解:(Ⅰ)依题意[2000400(20)](7),[2000100(20)](7),x x y x x +--⎧=⎨---⎩0202040x x <≤<<∴ 400(25)(7100(40)(7),x x y x x --⎧=⎨--⎩0202040x x <≤<< .此函数的定义域为(0,40).(Ⅱ)22400[(16)81],271089100[(),44x y x ⎧--+⎪=⎨--+⎪⎩0202040x x <≤<< ,当020x <≤,则当16x =时,max 32400y =(元);当2040x <<,则当472x =时,max 27225y =(元);综上可得:当16x =时,该特许专营店获得的利润最大为32400元.14.解:(1)投资封闭式基金的收益与投资额的函数关系为()()081≥=x x x f ;投资开放式基金的收益与投资额的函数关系式为()x x g 21=)0(≥x .(2)设投资封闭式基金x 万元,则投资开放式基金为()x -20万元,共收益y 万元,∴()200202181≤≤-+=x x x y .令[]20,020∈=-t x ,∴220t x -=,∴()32812182022+--=+-=t t t y ,∴2=t 时,,3max =y 此时,16=x . 答:投资封闭式基金16万元,开放式基金4万元时,其收益最大,最大为3万元.6. 函数单元检测一、填空题:本大题共10小题,每小题5分,共50分.1. {}3,42. c b a <<3. 12a ≤4. 1,82⎡⎫⎪⎢⎣⎭5. 2-6. 27. 2103a a ><<或8. 1a >9. 1022x x x ⎧⎫<<>⎨⎬⎩⎭或 10.()()12f x f x ->-二、解答题(本大题共4小题,共计50分,解答时应写出文字说明.证明过程或演算步骤)11.(1)-2; (2)如图;(3)当1x ≤时,由122x x =得:0x =或12x =;当1x >时,由122x x -=得43x =.综上所述:方程的解为140,23x =或.12.解:(1)由()0f x >得:21x <,所以实数x 的取值范围是(),0-∞ ;(2)函数为奇函数,原因如下:1111()()212212x x f x f x -+-=-+-++= 12102112xx x+-=++ 所以()()f x f x -=恒成立. 13.解:(1)由()()022=++-x f x f 得:3311log log 011mx mxx x +-+=---,即:()()()()311log 011mx mx x x +⋅-=+⋅-,所以,21m = .又1m =时,函数表达式无意义,所以1m =-,此时31()log 3x f x x -=-. (2)22()log (13f x x =+-()3,4x ∈时,213y x =+-是减函数,值域为()3,+∞ 所以函数值域为()1,+∞.14.解:(1) 2()21,[2,2]f x x x x =-+-∈-, 最小值为-9; (2) 2a ≤-;(3) g (a )=245; 21; 245; a a a a a a --<-⎧⎪--≤≤⎨⎪-⎩2>2 ; g (a )的最小值为1-.7.任意角的三角函数一.填空题:本大题共10小题,每小题5分,共50分. 1.21-2. 52 3.二或四 4. 5[2,2]()66k k k ππππ++∈Z 5. 34- 6. 23- 7.3- 8.53cos π- 9.34- 10.1529-二.解答题:本大题共4小题,共50分,解答时应写出文字说明、证明过程或演算步骤. 11.解: α2第三,四或y 轴负半轴;2α第一,三象限,3α在第一,二或四象限.12.解:[2,2]()33k k k ππππ-++∈Z ;24(2,2)(2,2)()3333k k k k k ππππππππ-++⋃++∈Z13.解:θ为第二象限角时,cos θ=,tan θ=;θ为第三象限角时,46cos -=θ,315tan -=θ.14.解:54)2cos(=+απ,35-,513.8.三角函数的图像与性质一.填空题:本大题共10小题,每小题5分,共50分. 1.12±2.()42k x k ππ=+∈Z 3.> 4. < 5.5[4,4]()33k k k ππππ-++∈Z6.]49,0[ 7.]2,0[ 8.[2,2]()33k k k ππππ-++∈Z 9.34π10.[- 二.解答题:本大题共4小题,共50分,解答时应写出文字说明、证明过程或演算步骤. 11.解: 略,32;(2,0)()22x k k k ππππ=++∈Z . 12.解:8π. 13.解:5[2,2)()36Z k k k ππππ++∈;)2,1(π.14.解:x x f x x f 2cos )(;32cos )(==.9.三角恒等变换一.填空题:本大题共10小题,每小题5分,共50分.1.①③2.22-3.223 4.53-5.37.13m -≤≤ 8.21 9.510.2 二.解答题:本大题共4小题,共50分,解答时应写出文字说明、证明过程或演算步骤. 11.(1)53- ; (2)10334+. 12.(1)3;2 ; (2)1<m <4.13.(1)2;(2)]284,4(33k k k ππππ⎡++∈⎢⎣Z) .14.(1)tan α=; (2) 3πβ=.。

2023的高一上册数学寒假作业答案

2023的高一上册数学寒假作业答案

2023的高一上册数学寒假作业答案高一上册数学寒假作业答案1单调性检测试题一函数f(x)=9ax2(a0)在[0,3]上的值为( )A.9B.9(1a)C.9aD.9a2解析:选A.x∈[0,3]时f(x)为减函数,f(x)max=f(0)=9.2.函数y=x+1x1的值域为( )A.(∞,2 ]B.(0,2 ]C.[2,+∞)D.[0,+∞)解析:选B.y=x+1x1,∴x+1≥0x1≥0,∴x≥1.∵y=2x+1+x1为[1,+∞)上的减函数,∴f(x)max=f(1)=2且y0.3.函数f(x)=x22ax+a+2在[0,a]上取得值3,最小值2,则实数a为( )A.0或1B.1C.2D.以上都不对解析:选B.由于函数f(x)=x22ax+a+2=(xa)2a2+a+2, 对称轴为x=a,开口方向向上,所以f(x)在[0,a]上单调递减,其值、最小值分别在两个端点处取得,即f(x)max=f(0)=a+2=3,f(x)min=f(a)=a2+a+2=2.故a=1.4.(高考山东卷)已知x,y∈R+,且满意x3+y4=1.则xy的值为________.解析:y4=1x3,∴01x31,0而xy=x•4(1x3)=43(x32)2+3.当x=32,y=2时,xy值为3.答案:3单调性检测试题二1.函数f(x)=x2在[0,1]上的最小值是( )A.1B.0C.14D.不存在解析:选B.由函数f(x)=x2在[0,1]上的图象(图略)知,f(x)=x2在[0,1]上单调递增,故最小值为f(0)=0.2.函数f(x)=2x+6,x∈[1,2]x+7,x∈[1,1],则f(x)的值、最小值分别为( )A.10,6B.10,8C.8,6D.以上都不对解析:选A.f(x)在x∈[1,2]上为增函数,f(x)max=f(2)=10,f(x)min=f(1)=6.3.函数y=x2+2x在[1,2]上的值为( )A.1B.2C.1D.不存在解析:选A.由于函数y=x2+2x=(x1)2+1.对称轴为x=1,开口向下,故在[1,2]上为单调递减函数,所以ymax=1+2=1.4.函数y=1x1在[2,3]上的最小值为( )A.2B.12C.13D.12解析:选B.函数y=1x1在[2,3]上为减函数,∴ymin=131=12.5.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L1=x2+21x和L2=2x,其中销售量(单位:辆).若该公司在两地共销售15辆,则能获得的利润为( )A.90万元B.60万元C.120万元D.120.25万元解析:选C.设公司在甲地销售x辆(0≤x≤15,x为正整数),则在乙地销售(15x)辆,∴公司获得利润L=x2+21x+2(15x)=x2+19x+30.∴当x=9或10时,L为120万元,应选C.6.已知函数f(x)=x2+4x+a,x∈[0,1],若f(x)有最小值2,则f(x)的值为( )A.1B.0C.1D.2解析:选C.f(x)=(x24x+4)+a+4=(x2)2+4+a.∴函数f(x)图象的对称轴为x=2,∴f(x)在[0,1]上单调递增.又∵f(x)min=2,∴f(0)=2,即a=2.f(x)max=f(1)=1+42=1.高一上册数学寒假作业答案2单调性检测试题三1.函数y=2x2+2,x∈N_的最小值是________.解析:∵x∈N_,∴x2≥1,∴y=2x2+2≥4,即y=2x2+2在x∈N_上的最小值为4,此时x=1.答案:42.已知函数f(x)=x26x+8,x∈[1,a],并且f(x)的最小值为f(a),则实数a的取值范围是________.解析:由题意知f(x)在[1,a]上是单调递减的,又∵f(x)的单调减区间为(∞,3],∴1答案:(1,3]3.函数f(x)=_+2在区间[2,4]上的值为________;最小值为________.解析:∵f(x)=_+2=x+22x+2=12x+2,∴函数f(x)在[2,4]上是增函数,∴f(x)m in=f(2)=22+2=12,f(x)max=f(4)=44+2=23.答案:23 124.已知函数f(x)=x2 (12≤x≤1)1x(1求f(x)的、最小值.解:当12≤x≤1时,由f(x)=x2,得f(x)值为f(1)=1,最小值为f(0)=0;当1即12≤f(x)1.综上f(x)max=1,f(x)min=0.5.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金为3600元时,能租出多少辆车?(2)当每辆车的月租金为多少元时,租赁公司的月收益?月收益是多少?解:(1)当每辆车的月租金为3600元时,未租出的车辆数为3600300050=12.所以这时租出了88辆车.(2)设每辆车的月租金为x元.则租赁公司的月收益为f(x)=(100x300050)(x150)x300050×50,整理得f(x)=x250+162x21000=150(x4050)2+307050.所以,当x=4050时,f(x),值为f(4050)=307050.即当每辆车的月租金为4050元时,租赁公司的月收益.月收益为307050元.高一上册数学寒假作业答案3对数与对数运算训练一1.23=18化为对数式为( )A.log182=3B.log18(3)=2C.log218=3D.log2(3)=18解析:选C.依据对数的定义可知选C.2.在b=log(a2)(5a)中,实数a的取值范围是( )A.a5或a2B.2C.2解析:选B.5a0a20且a2≠1,∴23.有以下四个结论:①lg(lg10)=0;②ln(lne)=0;③若10=lgx,则x=10;④若e=lnx,则x=e2,其中正确的选项是( )A.①③B.②④C.①②D.③④解析:选C.lg(lg10)=lg1=0;ln(lne)=ln1=0,故①、②正确;若10=lgx,则x=1010,故③错误;若e=lnx,则x=ee,故④错误.4.方程log3(2x1)=1的解为x=________.解析:2x1=3,∴x=2.答案:2对数与对数运算训练二1.logab=1成立的条件是( )A.a=bB.a=b,且b0C.a0,且a≠1D.a0,a=b≠1解析:选D.a0且a≠1,b0,a1=b.2.若loga7b=c,则a、b、c之间满意( )A.b7=acB.b=a7cC.b=7acD.b=c7a解析:选B.loga7b=c⇒ac=7b,∴b=a7c.3.假如f(ex)=x,则f(e)=( )A.1B.eeC.2eD.0解析:选A.令ex=t(t0),则x=lnt,∴f(t)=lnt.∴f(e)=lne=1.4.方程2log3x=14的解是( )A.x=19B.x=x3C.x=3D.x=9解析:选A.2log3x=22,∴log3x=2,∴x=32=19.5.若log2(log3x)=log3(log4y)=log4(log2z)=0,则x+y+z的值为( )A.9B.8C.7D.6解析:选A.∵log2(log3x)=0,∴log3x=1,∴x=3.同理y=4,z=2.∴x+y+z=9.对数与对数运算训练三1.已知logax=2,logbx=1,logcx=4(a,b,c,x0且≠1),则logx(abc)=( )A.47B.27C.72D.74解析:选D.x=a2=b=c4,所以(abc)4=x7,所以abc=x74.即logx(abc)=74.2.若a0,a2=49,则log23a=________.解析:由a0,a2=(23)2,可知a=23,∴log23a=log2323=1.答案:13.若lg(lnx)=0,则x=________.解析:lnx=1,x=e.答案:e4.方程9x6•3x7=0的解是________.解析:设3x=t(t0),则原方程可化为t26t7=0,解得t=7或t=1(舍去),∴t=7,即3x=7.∴x=log37.答案:x=log375.将以下指数式与对数式互化:(1)log216=4; (2)log1327=3;(3)log3x=6(x0); (4)43=64;(5)32=19; (6)(14)2=16.解:(1)24=16.(2)(13)3=27.(3)(3)6=x.(4)log464=3.(5)log319=2.(6)log1416=2.6.计算:23+log23+35log39.解:原式=23×2log23+353log39=23×3+359=24+27=51.7.已知logab=logba(a0,且a≠1;b0,且b≠1).求证:a=b或a=1b.证明:设logab=logba=k,则b=ak,a=bk,∴b=(bk)k=bk2.∵b0,且b≠1,∴k2=1,即k=±1.当k=1时,a=1b;当k=1时,a=b.∴a=b或a=1b,命题得证.高一上册数学寒假作业答案4一、选择题(每题4分,共16分)1.(2023•济南高一检测)若圆(x3)2+(y+5)2=r2上有且仅有两个点到直线4x3y2=0的距离为1,则半径长r的取值范围是()A.(4,6)B.[4,6)C.(4,6]D.[4,6]【解析】选A.圆心(3,5)到直线的距离为d==5,由图形知42.(2023•广东高考)垂直于直线y=x+1且与圆x2+y2=1相切于第一象限的直线方程是()A.x+y=0B.x+y+1=0C.x+y1=0D.x+y+=0【解析】选A.由题意知直线方程可设为x+yc=0(c0),则圆心到直线的距离等于半径1,即=1,c=,故所求方程为x+y=0.3.若曲线x2+y2+2x6y+1=0上相异两点P,Q关于直线kx+2y4=0对称,则k的值为()A.1B.1C.D.2【解析】选D.由条件知直线kx+2y4=0是线段PQ的中垂线,所以直线过圆心(1,3),所以k=2.4.(2023•天津高一检测)由直线y=x+1上的一点向(x3)2+y2=1引切线,则切线长的最小值为()A.1B.2C.D.3【解题指南】切线长的平方等于直线上的点到圆心的距离的平方减去半径的平方,所以当直线上的点到圆心的距离最小时,切线长最小.【解析】选C.设P(x0,y0)为直线y=x+1上一点,圆心C(3,0)到P点的距离为d,切线长为l,则l=,当d最小时,l最小,当PC垂直于直线y=x+1时,d最小,此时d=2,所以lmin==.二、填空题(每题5分,共10分)5.(2023•山东高考)圆心在直线x2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得的弦的长为2,则圆C的标准方程为________.【解题指南】此题考查了直线与圆的位置关系,可利用圆心到直线的距离、弦长一半、半径构成直角三角形求解.【解析】设圆心,半径为a.由勾股定理得+=a2,解得a=2.所以圆心为,半径为2,所以圆C的标准方程为+=4.答案:+=4.6.已知圆C:x2+y2=1,点A(2,0)及点B(2,a),从A点观看B点,要使视线不被圆C拦住,则a的取值范围是____________.【解析】由题意可得∠TAC=30°,BH=AHtan30°=.所以,a的取值范围是∪.答案:∪三、解答题(每题12分,共24分)7.(2023•江苏高考)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x1上,过点A作圆C的切线,求切线的方程.(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.【解题指南】(1)先利用题设中的条件确定圆心坐标,再利用直线与圆相切的几何条件找出等量关系,求出直线的斜率.(2)利用MA=2MO确定点M的轨迹方程,再利用题设中条件分析出两圆的位置关系,求出a的取值范围.【解析】(1)由题设知,圆心C是直线y=2x4和y=x1的交点,解得点C(3,2),于是切线的斜率必存在.设过A(0,3)的圆C的切线方程为y=kx+3,由题意得,=1,解得k=0或,故所求切线方程为y=3或3x+4y12=0.(2)由于圆心C在直线y=2x4上,设C点坐标为(a,2a4),所以圆C的方程为(xa)2+[y2(a2)]2=1.设点M(x,y),由于MA=2MO,所以=2,化简得x2+y2+2y3=0,即x2+(y+1)2=4,所以点M在以D(0,1)为圆心,2为半径的圆上.由题意知,点M(x,y)在圆C上,所以圆C与圆D有公共点,则21≤CD≤2+1,即1≤≤3.由5a212a+8≥0,得a∈R;由5a212a≤0,得0≤a≤.所以圆心C的横坐标a的取值范围为.8.已知圆的圆心在x轴上,圆心横坐标为整数,半径为3.圆与直线4x+3y1=0相切.(1)求圆的方程.(2)过点P(2,3)的直线l交圆于A,B两点,且|AB|=2.求直线l的方程.【解析】(1)设圆心为M(m,0),m∈Z,由于圆与直线4x+3y1=0相切,所以=3,即|4m1|=15,又由于m∈Z,所以m=4.所以圆的方程为(x4)2+y2=9.(2)①当斜率k不存在时,直线为x=2,此时A(2,),B(2,),|AB|=2,满意条件.②当斜率k存在时,设直线为y3=k(x2)即kxy+32k=0,设圆心(4,0)到直线l的距离为d,所以d==2.所以d==2,解得k=,所以直线方程为5x+12y46=0.综上,直线方程为x=2或5x+12y46=0.【变式训练】(2023•大连高一检测)设半径为5的圆C满意条件:①截y轴所得弦长为6.②圆心在第一象限,并且到直线l:x+2y=0的距离为.(1)求这个圆的方程.(2)求经过P(1,0)与圆C相切的直线方程.【解析】(1)由题设圆心C(a,b)(a0,b0),半径r=5,由于截y轴弦长为6,所以a2+9=25,由于a0,所以a=4.由圆心C到直线l:x+2y=0的距离为,所以d==,由于b0,所以b=1,所以圆的方程为(x4)2+(y1)2=25.(2)①斜率存在时,设切线方程y=k(x+1),由圆心C到直线y=k(x+1)的距离=5.所以k=,所以切线方程:12x+5y+12=0.②斜率不存在时,方程x=1,也满意题意,由①②可知切线方程为12x+5y+12=0或x=1.高一上册数学寒假作业答案51.函数f(x)=x的奇偶性为()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数解析:选D.定义域为{x|x≥0},不关于原点对称.2.以下函数为偶函数的是()A.f(x)=|x|+xB.f(x)=x2+1xC.f(x)=x2+xD.f(x)=|x|x2解析:选D.只有D符合偶函数定义.3.设f(x)是R上的任意函数,则以下表达正确的选项是()A.f(x)f(x)是奇函数B.f(x)|f(x)|是奇函数C.f(x)f(x)是偶函数D.f(x)+f(x)是偶函数解析:选D.设F(x)=f(x)f(x)则F(x)=F(x)为偶函数.设G(x)=f(x)|f(x)|,则G(x)=f(x)|f(x)|.∴G(x)与G(x)关系不定.设M(x)=f(x)f(x),∴M(x)=f(x)f(x)=M(x)为奇函数.设N(x)=f(x)+f(x),则N(x)=f(x)+f(x).N(x)为偶函数.4.奇函数f(x)在区间[3,7]上是增函数,在区间[3,6]上的值为8,最小值为1,则2f(6)+f(3)的值为()A.10B.10C.15D.15解析:选 C.f(x)在[3,6]上为增函数,f(x)max=f(6)=8,f(x)min=f(3)=1.∴2f(6)+f(3)=2f(6)f(3)=2×8+1=15.5.f(x)=x3+1x的图象关于()A.原点对称B.y轴对称C.y=x对称D.y=x对称解析:选A.x≠0,f(x)=(x)3+1x=f(x),f(x)为奇函数,关于原点对称.6.假如定义在区间[3a,5]上的函数f(x)为奇函数,那么a=________.解析:∵f(x)是[3a,5]上的奇函数,∴区间[3a,5]关于原点对称,∴3a=5,a=8.答案:87.已知函数f(x)=ax2+bx+c(a≠0)是偶函数,那么g(x)=ax3+bx2+cx()A.是奇函数B.是偶函数C.既是奇函数又是偶函数D.是非奇非偶函数解析:选 A.g(x)=x(ax2+bx+c)=xf(x),g(x)=x•f(x)=x•f(x)=g(x),所以g(x)=ax3+bx2+cx是奇函数;由于g(x)g(x)=2ax3+2cx不恒等于0,所以g(x)=g(x)不恒成立.故g(x)不是偶函数.8.奇函数y=f(x)(x∈R)的图象点()A.(a,f(a))B.(a,f(a))C.(a,f(a))D.(a,f(1a))解析:选C.∵f(x)是奇函数,∴f(a)=f(a),即自变量取a时,函数值为f(a),故图象点(a,f(a)).9.f(x)为偶函数,且当x≥0时,f(x)≥2,则当x≤0时()A.f(x)≤2B.f(x)≥2C.f(x)≤2D.f(x)∈R解析:选B.可画f(x)的大致图象易知当x≤0时,有f(x)≥2.应选B.。

高一上册数学寒假作业高一上册数学寒假作业及答案

高一上册数学寒假作业高一上册数学寒假作业及答案

高一上册数学寒假作业高一上册数学寒假作业及答案高一上册数学寒假作业|高一上册数学寒假作业及答案高中新生应该根据自己的情况,以及高中阶段多学科知识、综合性强、知识与思维接触广泛的特点,寻找一套有效的学习方法。

今天,我们为全体学生整理了《高中一册数学寒假作业及答案》。

我希望这将有助于你的学习!高一上册数学寒假作业及答案(一)1.[0,1]上函数f(x)=x2的最小值为()a.1b.0c、 14天。

不存在解析:选b.由函数f(x)=x2在[0,1]上的图象(图略)知,F(x)=x2在[0,1]上单调增加,因此最小值为F(0)=02.函数f(x)=2x+6,x∈[1,2]x+7,x∈[-1,1],则f(x)的值、最小值分别为()a、 10,6b。

10,8c.8,6d.以上都不对分析:选择A.f(x)作为x的递增函数∈ [1,2],f(x)max=f(2)=10,f(x)min=f(-1)=63.函数y=-x2+2x在[1,2]上的值为()a、 1b。

二c.-1d.不存在分析:选择A。

因为函数y=-x2+2x=-(x-1)2+1,对称轴是x=1,开口是向下的,所以它是[1,2]上的单调递减函数,所以ymax=-1+2=14.函数y=1x-1在[2,3]上的最小值为()a、 2b。

十二c.13d.-12分析:选择B.函数y=1x-1作为[2,3]上的减法函数,∴ymin=13-1=12.5.一家公司同时在两地销售一辆品牌汽车,利润(单位:万元)分别为L1=-x2+21x和L2=2x,其中销量(单位:辆)如果公司在两地共销售15辆汽车,则可获得的利润为()a.90万元b.60万元c、 120万元d.1225万元解析:选c.设公司在甲地销售x辆(0≤x≤15,x为正整数),则在乙地销售(15-x)辆,∴公司获得利润l=-x2+21x+2(15-x)=-x2+19x+30.∴当x=9或10时,l为120万元,故选c.6.给定函数f(x)=-x2+4x+A,x∈ [0,1],如果f(x)的最小值为-2,则f(x)的值为()a.-1b.0c、 1d。

高一数学寒假作业(一)答案

高一数学寒假作业(一)答案

高一数学寒假作业(一)答案一、选择题:题号答案二、填空题:题号111213 1415答案1158a+4b(-∞(0,1)三、解答题:16.解:(1)原式=222log 2320322[()]log101)3----++ 1921344=--+=- (2)112122()29x x x x --+=++=得17x x -+=1222()249x x x x --+=++=得2247x x -+=原式=47245734-=- 17 解:(1),0,2512cos sin 251cos sin 21)cos (sin 2π<<-==+=+x x x x x x x 又即34tan ,53cos ,54sin -=-==∴x x x(2)x x 33cos sin - =12591。

18 解:(1)由 41(21)(216)0x x ++--≤可化为112168x +≤≤则314x -≤+≤得43x -≤≤故集合{}43A x x =-≤≤ (2) 集合B 为函数的值域B φ∴≠A B B B A =∴⊆ 13141413313m m m m m +≤-⎧⎪∴+≥-≤≤⎨⎪-≤⎩得故实数m 的取值范围为4[1,]319 (1)依题意⎩⎨⎧∈<<---∈≤<--+=++N x x x x N x x x x y ,4020),7)](20(1002000[,207),7)](20(4002000[∴⎪⎩⎪⎨⎧∈<<---∈≤<---=++N x x x N x x x y ,4020],41089)247[(100,207],81)16[(40022, 定义域为{}407<<∈+x N x (2) ∵⎪⎩⎪⎨⎧∈<<---∈≤<---=++N x x x N x x x y ,4020],41089)247[(100,207],81)16[(40022, ∴ 当720x <≤时,则16x =,max 32400y =(元) 当2040x <<时,则23x =或24,max 27200y =(元)综上:当16x =时,该特许专营店获得的利润最大为32400元.20.解:(1)(4)413n f =-=即44,1n n =∴= 4()f x x x∴=-函数定义域为(,0)(0,)-∞+∞ 关于原点对称4()()f x x f x x-=-+=-()f x ∴是奇函数 (2)任取120x x <<则212121212112444()()()f x f x x x x x x x x x x x -=--+=-+-⋅ 120x x << 21120,0x x x x ∴->⋅> 21()()f x f x ∴> ()f x ∴在区间(0,)+∞上单调递增 (3)依题意只需 12max ()()t f x f x ≥-又12max min max 14()()()()3f x f x f x f x -=-=143t ∴≥m i n 143t ∴= 21. (1)证法一:(0)()()f f x f x ⋅=即()[(0)1]0f x f -=又()0f x ≠(0)1f ∴=当0x <时,()1,f x > 0x ->()()(0)1f x f x f ⋅-== 则1()(0,1)()f x f x -=∈ 故对于x R ∈恒有()0f x >证法二:2()()[()]0222x x xf x f f =+=≥ ()f x 为非零函数 ()0f x ∴>(2)令12x x >且12,x x R ∈有1212()()()f x f x x f x ⋅-=, 又210x x -< 即21()1f x x -> 故2211()()1()f x f x x f x =-> 又()0f x > 21()()f x f x ∴> 故()f x 为R 上的减函数(3)21(4)(22)(2)16f f f ==+=⇒故1(2)4f =, 则原不等式可变形为2(22)(2)f x ax f -+≤依题意有 220x ax -≥对[1,1]a ∈-恒成立2220220x x x x x ⎧-≥∴⇒≥⎨+≥⎩或2x ≤-或0x =故实数x 的取值范围为{}(,2]0[2,)-∞-+∞高一数学寒假作业(二)参考答案1-10 BDDBA DDBAA 11.6π 12.⎪⎭⎫⎢⎣⎡2,0π 13.[)9,1- 14.31 15.[)+∞,216.解:{}2,3-=M①当2=a 时,{}2=N ,满足题意;②当2≠a 时,{}a N ,2=,因为M N ⊆,则3-=a . 综上所述:3-2或=a 17.解:1)原式=()()01.0lg 2lg 332lg 35lg 2+++=()()22lg 32lg 12lg 132-++- =22lg 32lg 3322-+- =1 2)原式=165616561656131212131==-ba b a ba b a b a18解:(1)设0==x y ,有0)0(=f ,取x y -=,则有0)0()()(==-+f x f x f )()(x f x f -=-⇒)(x f ∴是奇函数 (2)设21x x <,则012>-x x ,由条件得0)(12<-x x f )()()()()(11121122x f x f x x f x x x f x f <+-=+-=∴∴)(x f 在R 上是减函数,在[-3,3]上也是减函数。

寒假作业含答案

寒假作业含答案

高一寒假作业数学注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.已知集合{}1,2,3A =, ()(){}|120, B x x x x =+−<∈Z ,则A B 等于( )A . {}1B . {}1,2C . {}0,1,2,3D . {}1,0,1,2,3−2.点)在直线:10l ax y −+=上,则直线l 的倾斜角为( )A . 120°B . 60°C .45°D . 30°3.函数()f x =的定义域是( )A . {|23}x x <<B .{|23}x x x <>或C .{|23}x x x ≤≥或D .{|23}x x x <≥或4.一个球被两个平行平面截后所得几何体形如我国的一种民族打击乐器“鼓”,该“鼓”的三视图如图所示,则球的表面积为( ) A . 5π B . 10π C . 20πD .5.设,x y 为正数,且34x y =,当3x py =时,p 的值为( ) A . 3log 4 B . 4log 3 C . 36log 2 D . 3log 26.定义域为D 的奇函数()f x ,当0x >时,()()12f x f ≤=.给出下列命题:①[1,1]D −;②对任意, |()|2x D f x ∈≤;③存在0x D ∈,使得0()0f x =;④存在1x D ∈,使得1()1f x =.其中所有正确的命题的个数为( )A .0B .1C . 2D .37.如图,1111ABCD A B C D −为正方体,下列结论错误..的是( )A . 11BD CB D ∥平面 B . 1AC BD ⊥C . 111AC CBD ⊥平面 D . 异面直线AD 与1CB 所成角为60°8.定义在R 上的偶函数()f x 的图象关于直线1x =对称,当[0,1]x ∈时,()21f x x =−+,设函数|1|1()(13)2x g x x − =−<<,则函数()f x 与()g x 的图象交点个数为( )A . 3B . 4C . 5D . 69.如图1,直线EEEE 将矩形纸AAAAAAAA 分为两个直角梯形AAAAEEEE 和AAAAEEEE ,将梯形AAAAEEEE 沿边EEEE 翻折,如图2,在翻折的过程中(平面AAAAEEEE 和平面AAAAEEEE 不重合),下面说法正确的是( )图1 图2A . 存在某一位置,使得AAAA ∥平面AAAAEEEEB . 在翻折的过程中,AAEE ∥平面AAAAEE 恒成立C . 存在某一位置,使得AAEE ⊥平面AAAAEEEE D.在翻折的过程中,AAEE ⊥平面AAAAEEEE 恒成立10.我国魏晋时期的数学家刘徽创立了割圆术,也就是用内接正多边形去逐步逼近圆,即圆内接正多边形边数无限增加时,其周长就越逼近圆周长,这种用极限思想解决数学问题的方法是数学史上的一项重大成就.现作出圆222x y +=的一个内接正八边形,使该正八边形的其中4个顶点在坐标轴上,则下列4条直线中不是该正八边形的一条边所在直线的为( )A .1)0x y +−−= B .1)0x y += C .1)0x y −+= D .1)0x y −−+=11.设集合{|48}x A x =>,集合2{|210,0}B x x ax a =−−≤>,若A B 中恰含有一个整数,则实数a 的取值范围是( )A .34,43B .41,3C .3,4 +∞D .(1,)+∞12.在直角坐标系内,已知(3,3)A 是C 上一点,折叠该圆两次使点A 分别与圆上不相同的两点(异于点A )重合,两次的折痕方程分别为xx −yy +1=0和xx +yy −7=0,若C 上存在点P ,使90MPN ∠=°,其中M 、N 的坐标分别为(,0)m −、(,0)m ,则m 的最大值为( )A . 4B . 5C . 6D . 7第II 卷(非选择题)二、填空题13.已知过点(1,)A m −和(,5)B m 的直线与310x y −−=平行,则m 的值为______. 14.给定下列四个命题:①过直线外一点可作无数条直线与已知直线平行;②如果一条直线不在这个平面内,那么这条直线就与这个平面平行; ③垂直于同一直线的两条直线可能相交、可能平行也可能异面; ④若两个平面分别经过两条垂直直线,则这两个平面互相垂直。

高一数学寒假作业及答案

高一数学寒假作业及答案

高一数学寒假作业及答案集合及其运算一、填空题:(本大题共10小题,每小题5分,共50分) 1.集合{}5,4,3,2,1=M 的子集个数是 ▲2.如果集合A={x|ax 2+2x +1=0}中只有一个元素,则a 的值是 ▲ 3.设A={x|1<x <2},B={x|x <a}满足A ⊆B ,则实数a 的取值范围是 ▲ 4.满足{1,2,3} ≠⊂M ≠⊂{1,2,3,4,5,6}的集合M 的个数是 ▲5.全集I={0,1,2,3,4},集合A={0,1,2,3},B={2,3,4},则A C I ∪B C I = ▲6.集合A={a 2,a +1,-1},B={2a -1,| a -2 |, 3a 2+4},A ∩B={-1},则a 的值是 ▲ 7.已知集合M={(x ,y)|4x +y=6},P={(x ,y)|3x +2y=7},则M ∩P 等于 ▲ 8.设集合A={x|x ∈Z 且-10≤x ≤-1},B={x|x ∈Z 且|x|≤5 },则A ∪B 中元素的个数为 ▲ 9.集合M={a|a-56∈N ,且a ∈Z},用列举法表示集合M= ▲ 10.设集合A={x|x 2+x -6=0},B={x|mx +1=0},且A ∪B=A ,则m 的取值范围是 ▲ 答案:1. 2.3. 4. 5. 6. 7. 8. 9. 10.二、解答题:(共4题,11题10分,12题12分13、14题14分,共50分) 11.已知集合A ={x |-1<x <3},A ∩B =∅,A ∪B =R ,求集合B .12.已知集合A={-3,4},B={x|x2-2px+q=0},B≠φ,且B⊆A,求实数p,q的值.13.已知集合A={x∈R|x2-2x-8=0},B={x∈R|x2+ax+a2-12=0},B⊆A,求实数a的取值集合.14.集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0(1)若A∩B=A∪B,求a的值;(2)若∅A∩B,A∩C=∅,求a的值.高一数学寒假作业(二)函 数(A )一、填空题:(本大题共10小题,每小题5分,共50分) 1.已知函数5)(-=ax x f ,f(-1)=1,则=)3(f ▲ 2.函数223)(-+=x x x g 的值域为 ▲ 3.把函数x x x f 2)(2-=的图象向左平移1个单位长度,再向下平移2个单位长度,得到函数图象对应解析式为 ▲4.一次函数)(x f ,满足 19))((+=x x f f ,则)(x f = ▲ 5.下列函数:①y=2x +1②y=3x 2+1③y=x2④y=2x 2+x +1,其中在区间(0,+∞)上不是增函数的函数是 ▲ (填序号)6.函数)(x f 的图像与函数g(x)=3-2x 关于坐标原点对称,则=)(x f ▲7. 函数2x x y -=)(R x ∈的递减区间为 ▲8.已知函数f(x)=a-121+x ,若f(x)为奇函数,则a = ▲ 9.得到函数3lg 10x y +=的图像只需把函数lg y x =的图像上所有的点 ▲10.已知二次函数)()(2R x c bx ax x f ∈++=的部分对应值如下表:则函数)(x f 的最 ▲ 值为 ▲答案:1. 2.3. 4. 5. 6. 7. 8. 9. 10.二、解答题:(共4题,11题10分12题12分,13、14题14分,共50分) 11.已知)1(11)(-≠+=x xx f ,)(,2)(2R x x x g ∈+=. (1)求)2(),2(g f 的值;(2)求)]2([g f 的值.12.函数f(x)在其定义域(-1,1)上单调递增,且f(a-1)<f(1-a 2),求a 的取值范围。

高一数学寒假作业答案

高一数学寒假作业答案

高一寒假作业集1参考答案一.选择题1.A2.A3.C4.B5.A6.C 二.填空题7.32 8. 222- 9. ⎪⎭⎫⎝⎛--21,65 三.解答题10.1 11. (1)()2,1 (2)(]⎪⎭⎫⎢⎣⎡+∞⋃-∞-,233, 12. [)+∞+,12作业集2参考答案一.选择题1.A2.B3.D4.C5.B6.D 二.填空题7.2618. 1 9. 2 三.解答题10.(1)1 (2)5 11. (1)略 (2)⎥⎦⎤⎢⎣⎡+-312,322k k ()z k ∈ 12. (1)奇函数(2)单调递增(3)516a ≥-作业集3参考答案一.选择题1.B2.C3.C4.D5.A6.C 二.填空题7.28. 29. 37π 三.解答题10.]2,(--∞ 11.(1)34-;(2)41 12. (1)2±=x ;(2)]1,45[--作业集4参考答案一.选择题1.C2.C3.C4.B5.B6.A二.填空题7.3 8. 9. 三.解答题10.(1)略;(2)),21[)2,(+∞⋃--∞ 11.(1);(2) [13,+∞) 12. (1);(2)最大值为41,最小值为21-作业集5参考答案一.选择题1.B2.C3.B4.A5.D6.C 二.填空题7. 12008. 1a ≤- 9. 18 三.解答题10.(1)5;(2)3.511. (1)3π;(2)等边三角形. 12.(1)R ; (2)31>a (3)3-≥a 作业集6参考答案一.选择题1.C2.A3.C4.B5.A6.D 二.填空题7. 228. 349. 1 三.解答题10.(1) 2323tan()tan(4)tan 6663ππππ-=-==(2) 将sin 2cos x x =代入22sin cos 1x x +=得25cos 1x =21cos 5x ∴=,24sin 5x ∴= 227cos 2sin 5x x ∴-=-11.12DE a b =-;12BF b a=- 12. (1)()2sin(2)6f x x π=+(2)()g x 的单调减区间为[,],63k k k Z ππππ-++∈.2log 23=x ]1,23(),3()0,(+∞⋃-∞π=T作业7答案一、选择题1.D2.D3.C4.A5.D6.C 二、填空题7. 198.(,3]-∞- 9.1-三、解答题10.(1)3 (2)7/4 11.解:πtan 2,02x x =--<<且cos x x ∴== (1)sin cos x x -=-=(2)原式=22(sin )(cos )sin (cos )sin cos x x xx x x-⋅---⋅+=222sin cos sin tan tan 242cos sin cos tan 121x x x x x x x x x ----===--+-++12. 解:(1)()f x A ∈,()g x A ∉.对于()f x A ∈的证明. 任意12,x x R ∈且12x x ≠,22222121212121122212()()2()()222241()04f x f x x x x x x x x x x x f x x ++++-+-=-==-> 即1212()()()22f x f x x xf ++>. ∴()f x A ∈对于()g x A ∉,举反例:当11x =,22x =时,1222()()11(log 1log 2)222g x g x +=+=,122221231()log log log 2222x x g ++==>=,不满足1212()()()22g x g x x xg ++>. ∴()g x A ∉.3-2πφω==,⑵函数2()3xf x ⎛⎫= ⎪⎝⎭,当(0,)x ∈+∞时,值域为(0,1)且21(1)32f =>任取12,(0,)x x ∈+∞且12x x ≠,则121211221221212222222222()()1222()2222333122221222023333233x x x x x x x x x x f x f x x x f +⎡⎤++⎛⎫⎛⎫⎛⎫⎢⎥-=+-⋅ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎧⎫⎡⎤⎡⎤⎡⎤⎪⎪⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥⎢⎥⎢⎥=-⋅⋅+=->⎨⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎪⎪⎣⎦⎣⎦⎣⎦⎩⎭即1212()()()22f x f x x x f ++>. ∴2()3xf x A ⎛⎫=∈ ⎪⎝⎭.说明:本题中()f x 构造类型()x f x a =1(1)2a <<或()kf x x k=+(1)k >为常见.作业8答案一、选择题 1.A 2.A 3. C 4.C 5.D 6.C 二、填空题7. ()12,8 8.1,13⎛⎫⎪⎝⎭9、22sin(2)3y x π=+ 三.解答题10..解:(1)当1a =-时,2()22f x x x =-+在[-5,5]上先减后增 故max min ()max{(5),(5)}(5)37,()(1)1f x f f f f x f =-=-=== (2)由题意,得55a a -≤--≥或,解得(,5][5,)a ∈-∞-+∞.11.解:(1,2)(3,2)(3,22)ka b k k k +=+-=-+ 3(1,2)3(3,2)(10a b -=--=- (1)()ka b +⊥(3)a b -,得()ka b +(3)10(3)4(22)2380,19a b k k k k -=--+=-== (2)()//ka b +(3)a b -,得14(3)10(22),3k k k --=+=- 此时1041(,)(10,4)333ka b +=-=--,所以方向相反。

高一数学寒假作业1及答案

高一数学寒假作业1及答案

(第15题图)寒假作业(1)一、选择题:1.已知MP 、OM 、AT 分别为θ(42ππθ<<)的正弦线、余弦线、正切线,则一定有( )A .MP OM AT << B.OM MP AT <<C.AT OM MP << D.OM AT MP <<2.半径为3cm 的圆中,有一条弧,长度为2πcm ,则此弧所对的圆心角为 ( )A. 30 B .15 C .40 D .203.设34sin ,cos 55αα=-=,那么下列各点在角α终边上的是 ( )A .(3,4)-B .(4,3)-C .(4,3)-D .(3,4)-4.设集合,{|0},A B x x ==>R 则从集合A 到集合B 的映射f 只可能是 ( ) A .||x y x =→ B .xy x 2=→ C .x y x 2log =→ D .22x y x x →=-5.若1tan 2α=-,则2212sin cos sin cos αααα+-的值为 ( ) A .3- B .13- C .13D .36.已知α为第四象限角,则πα-是第几象限角 ( )A.一 B .二 C .三 D .四7.已知函数()sin,()tan()2x f x g x x ππ+==-,则 ( )A .()f x 与()g x 都是奇函数B .()f x 与()g x 都是偶函数C .()f x 是奇函数,()g x 是偶函数D .()f x 是偶函数,()g x 是奇函数8.要得到y=tan2x 的图像,只需把y=tan(2x+6π)的图像 ( )A.向左平移6π个单位 B.向右平移6π个单位C.向左平移12π个单位 D.向右平移12π个单位 9.已知θ为第二象限角,则下列四个值中,一定大于0的是 ( )A. sin 2θ B.cos2θ C.tan2θD.sin2θ10.函数xy a =≠-b(a>0且a 1)的图像不经过第一象限,则 ( )A 、11><-a b 且B 、11<<-a b 且C 、11<≥a b 且D 、11<≤a b 且11.实数x 满足θsin 1log 3+=x ,则|)9||1(|log 2-+-x x 的值为 ( )A .22B .3C .4D .与θ有关12.若函数1()log ()(011a f x a a x =>≠+且)的定义域和值域都是[0,1],则a= ( ) A .12B C .2 D .2二、填空题:13.函数1x sin 2y -=的定义域为_____________________________. 14.函数2sin cos 1y x x =-+15.电流强度I (安培)随时间t I = A sin (ωt+ϕ))0,0(>>A ω则当t = 120716.设)(x f 是定义域为R,且最小正周期为π2的函数,并且 ⎩⎨⎧<<-<≤=)0(cos )0(sin )(x x x x x f ππ则)411(π-f =_______________________.三、解答题:本题17—21小题每题12分,22小题14分,共74分,解答应写出文字说明、证明过程或演算步骤.17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合..18.(12分)(1)已知2tan =α,求)sin()tan()23sin()2cos()sin(αππαπααπαπ----+---的值 (2)已知1cos(75),180903αα+=-<<- 其中,求sin(105)cos(375)αα-+- 的值.19.(12分)如图,在ΔABC 中,D 、E 为边AB 的两个三等分点,CA → =3,CB →=2,试用,表示、CD → 、CE →20.已知函数22sin sin 23cos y x x x =++,求 (1)函数的最小值及此时的x 的集合。

高一数学(必修二)寒假作业(立体几何)Word版含答案

高一数学(必修二)寒假作业(立体几何)Word版含答案

高一数学(必修二)寒假作业(立体几何)第Ⅰ卷(选择题,48分)一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求。

)1.若α、β是不重合的平面,a 、b 、c 是互不相同的空间直线,则下列命题中为真命题的是 ( ) ① 若α//a ,α//b ,则b a // ; ② 若α//c ,α⊥b ,则b c ⊥ ; ③ 若α⊥c ,β//c ,则βα⊥ ;④ 若α⊂b ,α⊂c 且b a ⊥,c a ⊥,则α⊥a A.③④ B. ①② C. ①④ D. ②③2.下列四个命题:①平行于同一平面的两条直线相互平行 ②平行于同一直线的两个平面相互平行 ③垂直于同一平面的两条直线相互平行 ④垂直于同一直线的两个平面相互平行 其中正确的有A .4个 B.3个 C.2个 D.1个3.某几何体的三视图如图所示,则该几何体的体积为( )A 、163πB 、203πC 、403πD 、5π4.已知正四棱锥的各棱棱长都为23,则正四棱锥的外接球的表面积为( ) A .π12B .π36C .π72D .π1085.某几何体的三视图如图所示,则该几何体的体积为A.168π+B.88π+C.1616π+D.816π+6..a ,b 表示空间不重合两直线,α,β表示空间不重合两平面,则下列命题中正确的是( )A.若α⊂a ,β⊂b ,且b a ⊥,则βα⊥B.若βα⊥,α⊂a ,β⊂b 则b a ⊥C.若α⊥a ,β⊥b ,βα//则b a //D.若βα⊥,α⊥a ,β⊂b ,则b a //7.下列命题中为真命题的是( ) A .平行于同一条直线的两个平面平行 B .垂直于同一条直线的两个平面平行C .若—个平面内至少有三个不共线的点到另—个平面的距离相等,则这两个平面平行.D .若三直线a 、b 、c 两两平行,则在过直线a 的平面中,有且只有—个平面与b ,c 均平行.8.如图是一个组合几何体的三视图,则该几何体的体积是 . A 36128π+ B 3616π+ C 72128π+ D 7216π+9.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( ) A .若l m ⊥,m α⊂,则l α⊥ B .若l α⊥,l m //,则m α⊥ C .若l α//,m α⊂,则l m // D .若l α//,m α//,则l m //10.已知某几何体的三视图如右图所示,其中,主(正)视图,左(侧)视图均是由直角三角形与半圆构成,俯视图由圆与内接直角三角形构成,根据图中的数据可得此几何体的 体积为( )16+ (B) 4136π+12+ (D)2132π+11.已知圆柱1OO 底面半径为1,高为π,ABCD 是圆柱的一个轴截面.动点M 从点B 出发沿着圆柱的侧面到达点D ,其距离最短时在侧面留下的曲线Γ如图所示.现将轴截面ABCD 绕着轴1OO 逆时针旋转 (0)θθπ<≤后,边11B C 与曲线Γ相交于点P ,设BP 的长度为()f θ,则()y f θ=的图象大致为( )12.某三棱锥的侧视图和俯视图如图--1所示,则该三棱锥的体积为( )A .4 3B .8 3C .12 3D .243第Ⅱ卷(非选择题,共72分)二、填空题(本大题共4个小题,每小题4分,共16分)13.如图,在三棱柱ABC C B A -111中, F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V _____.14. 已知圆的方程为22680x y x y +--=.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为 .15.如右图为长方体积木块堆成的几何体的三视图,此几何体共由________块木块堆成..ABC1ADE F1B1C16.已知某个几何体的三视图如图(正视图中的弧线是半圆),图中标出的尺(单位:㎝), 可得这个几何体表面是 cm 2。

高一上学期数学寒假作业(含答案)

高一上学期数学寒假作业(含答案)

高一数学寒假作业(必修1、必修2)高一寒假作业第1天 集合1.(2012湖南高考)设集合{1,0,1}M =-,2{}N x x x ==,则MN =( )A .{1,0,1}-B .{0,1}C .{1}D .{0}2.(2012广东高考)设集合{1,2,3,4,5,6}U =,{1,3,5}M =,则U M =ð( ) A .{2,4,6} B .{1,3,5} C .{1,2,4} D .U3.(2012门头沟一模)已知集合2{230}A x x x =--=,那么满足B A ⊆的集合B 有( )A . 1个B . 2个C . 3个D . 4个4.(2012江西高考)若集合{1,1}A =-,{0,2}B =,则集合{,,}z z x y x A y B =+∈∈中的元素的个数为( )A .5B .4C .3D .2 5.(2012四川高考)设集合{,}A a b =,{,,}B b c d =,则A B =( )A .{}bB .{,,}b c dC .{,,}a c dD .{,,,}a b c d 6.(2012顺义二模)已知集合{0,1,3}M =,{}|3,N x x a a M ==∈,则集合M N =( )A .{0}B .{0,1}C . {0,3}D . {1,3} 7.(2012广州二模)已知集合A 满足{1,2}A ⊆,则集合A 的个数为( ) A .4 B .3 C .2 D .18.(2012惠州调研)已知集合{(,)0,,}A x y x y x y R =+=∈,{(,)0,,}B x y x y x y R =-=∈,则集合A B =( )A .)0,0(B .{}0C .{})0,0(D .∅9.(2012汕头质检)已知全集R,U = 集合{}1,2,3,4,5A =,[2,)B =+∞,则图中阴影部分所表示的集合为( )A . {0,1,2}B . {0,1}C . {1,2}D . {1}10.已知集合1,24k M x x k Z ⎧⎫==+∈⎨⎬⎩⎭,1,42k N x x k Z ⎧⎫==+∈⎨⎬⎩⎭,若0x M ∈,则0x 与N 的关系是( )A .0x N ∈B .0x N ∉C . 0x N ∈ 或0x N ∉D .不能确定11.已知集合A ={|25}x x -<≤,}121|{-≤≤+=m x m x B 且A B A =,求实数m 的取值范围.12.设S 为满足下列两个条件的实数所构成的集合:①S 内不含1; ②若a S ∈,则11S a∈- 解答下列问题:(1)若2S ∈,则S 中必有其他两个元素,求出这两个元素; (2)求证:若a S ∈,则11S a-∈; (3)在集合S 中元素的个数能否只有一个?请说明理由.高一寒假作业第2天 函数的概念1.(2012广州一模)函数y =) A .(,1]-∞- B .(,1)-∞- C .[1,)-+∞D .(1,)-+∞2.(2012茂名一模)已知函数2y x x =-的定义域为{0,1,2},那么该函数的值域为( ) A .{0,1,2} B .{0,2}C .1{|2}4y y -≤≤ D .{|02}y y ≤≤3.(2012湛江一模)函数2log (1)y x =-的定义域为( ) A .{|1}x x >B .{|1}x x ≥C .{|12}x x x ≥≠且D .R4.函数222, [0,3],()6, [2,0)x x x f x x x x ⎧-∈⎪=⎨+∈-⎪⎩的值域是( )A .RB .[9,)-+∞C .[8,1]-D .[9,1]-5.(2012海淀二模)函数21,12<≤-+-=x x y 的值域是( )A .(3,0]-B . (3,1]-C . [0,1]D . [1,5)6.(2012江西高考)设函数211()21x x f x x x⎧+≤⎪=⎨>⎪⎩,则=))3((f f ( )A .15 B .3 C .23 D .1397.已知函数f (x )的图象如图所示,则此函数的定义域、值域分别是( )A .(3,3)-,(2,2)-B .[3,3]-,[2,2]-C .[2,2]-,[3,3]-D .(2,2)-,(3,3)-8.(2012朝阳质检)已知x ∈R ,用[]x 表示不超过x 的最大整数,记{}[]x x x =-,若(0, 1)a ∈,则{}a 与1{}2a +的大小关系是( )A .不确定(与a 的值有关)B .{}a <1{}2a +C .{}a =1{}2a +D .{}a >1{}2a +9.(2012广东高考)函数y =的定义域为 . 10.集合}4,3{=A ,}7,6,5{=B ,集合A 到集合B 的映射共有 个.11.已知()f x 是二次函数,若(0)0f =,且(1)()1f x f x x +=++,求函数()f x 的解析式.12.若函数21()2f x x x a =-+的定义域和值域均为[1,](1)b b >,求a 、b 的值.高一寒假作业第3天 函数的单调性1.函数2y x =+在区间[3,0]-上( )A .递减B .递增C .先减后增D .先增后减2.(2012广东高考)下列函数中,在区间(0,)+∞上为增函数的是( ) A .ln(2)y x =+ B.y = C .1()2xy = D .1y x x=+3.(2012肇庆二模)已知()f x 是定义在(0,)+∞上的单调递增函数,且满足(32)(1)f x f -<,则实数x 的取值范围是( )A . (,1)-∞B . 2(,1)3 C .2(,)3+∞ D . (1,)+∞ 4.已知)(x f 在R 上是减函数,若0≤+b a ,则下列正确的是( ) A .)]()([)()(b f a f b f a f +-≤+ B .)()()()(b f a f b f a f -+-≤+ C .)]()([)()(b f a f b f a f +-≥+ D .)()()()(b f a f b f a f -+-≥+ 5.函数322-+=x x y 的单调减区间是( )A .]3,(--∞B .),1[+∞-C .]1,(--∞D .),1[+∞6.(2012烟台质检)定义在R 上的偶函数()f x 满足:对任意的正实数1x ,212()x x x ≠,恒有1212()()0f x f x x x -<-.则( )A .(3)(2)(1)f f f <-<B .(1)(2)(3)f f f <-<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<- 7.函数21()1f x x x =-+的最大值是 ( )A .45B .54C .34D .438.(2012济宁质检)若函数⎪⎩⎪⎨⎧<-≥-=2,1)21(,2,)2()(x x x a x f x 是R 上的单调递减函数,则实数a 的取值范围为( )A .)2,(-∞B .]813,(-∞ C .)2,0( D .)2,813[9.(2012舟山调研)函数1()1f x x =-在[2,3]上的最小值为______,最大值为______. 10.(2012金华质检)函数1y x x =--的单调增区间为________.11.已知函数()y f x =在定义域为[1,1]-是减函数,且(1)(21)f a f a -<-,求a 的取值范围.12.已知函数11()(0,0)f x a x a x=->>. (1)求证:()f x 在(0,)+∞上是单调递增函数;(2)若()f x 在1[,2]2上的值域是1[,2]2,求a 的值.高一寒假作业第4天 奇偶性1.(2012梅州一模)函数3()2f x x =的图象( ) A .关于y 轴对称 B .关于x 轴对称 C .关于直线y x =对称 D .关于原点对称 2.下列函数为偶函数的是( )A .2y x =B .3y x =C .x y e =D .lny =3.(2012广州二模)已知函数()1x x f x e e -=-+ (e 是自然对数的底数),若()2f a =,则()f a -=( )A .3B .2C .1D .04.(2012佛山二模)设函数0()(),0x f x g x x ≥=<⎪⎩ ,若()f x 是奇函数,则(4)g -的值是( )A .2-B .12-C .14- D .2 5.(2012陕西高考)下列函数中,既是奇函数又是增函数的为( )A .1y x =+B .3y x =-C .1y x=D .||y x x = 6.(2012揭阳质检)已知奇函数()f x 在R 上单调递增,且1(21)()02f x f -+<. 则x 的取值范围为( )A .1(,)4-∞B .1(,)4+∞C .3(,)4-∞D .3(,)4+∞7.(2012房山一模)已知函数2221,0()21,0x x x f x x x x ⎧+-≥=⎨--<⎩,则对任意12,x x R ∈,若120x x <<,下列不等式成立的是( ) A .12()()0f x f x +< B . 12()()0f x f x +>C .12()()0f x f x ->D .12()()0f x f x -<8.(2012潍坊联考)奇函数()f x 在(0,)+∞上单调递增,若(1)0f =,则不等式[()()]0x f x f x --<的解集是( )A .(1,0)(1,)-+∞B .(,1)(0,1)-∞-C .(,1)(1,)-∞-+∞D .(1,0)(0,1)-9.(2012重庆高考)函数)4)(()(-+=x a x x f 为偶函数,则实数a = .10.(2012上海高考)已知()y f x =是奇函数,若()()2g x f x =+且(1)1g =,则(1)g -= .11.已知函数2()(0,)af x x x a R x=+≠∈ (1)判断函数()f x 的奇偶性;(2)若()f x 在区间[)+∞,2是增函数,求实数a 的取值范围.12.(2012德州联考)已知函数)(x f 是定义在R 上的单调函数满足(3)2f -=,且对任意的实数R a ∈有0)()(=+-a f a f 恒成立.(1)试判断)(x f 在R 上的单调性,并说明理由; (2)解关于x 的不等式2)2(<-xxf .高一寒假作业第5天 指数与指数函数1.函数21(0,1)x y a a a -=+>≠的图象必经过点( ) A .(0,1) B .(2,1)C .(2,2)D .(1,2)2.(2012广州调研)已知函数1,0,(),0.x x x f x a x -≤⎧=⎨ >⎩若(1)(1)f f =-,则实数a =( )A .1B .2C .3D .43.(2012北京模拟)在同一坐标系中,函数2x y =与1()2xy =的图象之间的关系是( )A .关于y 轴对称B .关于x 轴对称C .关于原点对称D .关于直线y x =对称4.(2012四川高考)函数(0,1)x y a a a a =->≠的图象可能是( )A.C.D.5.(2012房山一模)下列函数中,既是偶函数又在(0,)+∞单调递增的函数是( ) A . 1y x=-B . e x y =C . 23y x =-+ D . cos y x = 6.(2012韶关二模)设 2.52a =,02.5b =, 2.51()2c =,则,,a b c 的大小关系是( )A .a c b >>B .c a b >>C . a b c >>D .b a c >>7. (2012济南质检)设函数2 0()() 0.x x f x g x x ⎧<=⎨>⎩,,,若()f x 是奇函数,则(2)g 的值是( )A. 14-B. 4-C. 14D. 4 8.定义运算, ,a ab a b ≤⎧⊕=⎨,则函数()12xf x =⊕的图象是( )A .B .C .D .9.(2011门头沟一模)已知函数221,0,()2,0.x x f x x x x ⎧-≥=⎨--<⎩,若1)(=a f ,则实数a 的值是 .10.(2012上海高考)已知函数()x af x e -=(a 为常数).若)(x f 在区间),1[+∞上是增函数,则a 的取值范围是 .11.函数()(0,1)x f x a a a =>≠在区间[1,2]上的最大值比最小值大2a,求a 的值.12.设a 是实数,2()()21x f x a x R =-∈+, (1)求a 的值,使函数()f x 为奇函数;(2)试证明:对于任意,()a f x 在R 上为增函数.高一寒假作业第6天 对数与对数函数1.(2012安徽高考)23(log 9)(log 4)⋅=( ) A .14 B . 12C .2D .42.(2012天津高考)已知 1.22a =,0.21()2b -=,52log 2c =,则( )A .c b a <<B .c a b <<C .b a c <<D .b c a <<3.(2012陕西高考)集合{|lg 0}M x x =>,2{|4}N x x =≤,则MN =( )A .(1,2)B .[1,2)C .(1,2]D .[1,2]4. (2012济南质检)若函数()log (1)(0,1)a f x x a a =->≠的图象恒过定点,则定点的坐标为( ) A .(1,0) B . (2,0) C .(1,1) D .(2,1)5.(2012丰台一模)设 4.20.6a =,0.67b =,0.6log 7c =,则a ,b ,c 的大小关系是( )A .c b a <<B .c a b <<C .a c b <<D .a b c <<6.(2012西城二模)已知集合2{|log 1}A x x =<,{|0B x x c =<<,其中0}c >.若AB B =,则c的取值范围是( )A .(0,1]B .[1,)+∞C .(0,2]D .[2,)+∞7.函数2()log (31)x f x =+的值域为( )A .(0,)+∞B .[0,)+∞C .(1,)+∞D .[1,)+∞8.(2012门头沟一模)函数log (0a y x a =>且1)a ≠的图象经过点)1,2(-,函数(0xy b b =>且1)b ≠的图象经过点)2,1(,则下列关系式中正确的是( ) A .22b a > B .ba 22>C . b a )21()21(> D .2121b a >9.(2012江苏高考)函数x x f 6log 21)(-=的定义域为 .10.(2012北京高考)已知函数x x f lg )(=,若1)(=ab f ,则=+)()(22b f a f .11.(2012石景山一模)设函数21,,2()1log ,2x a x f x x x ⎧-+<⎪⎪=⎨⎪≥⎪⎩的最小值为1-,求实数a 的取值范围.12.(2012济南质检)设函数)1ln()(2++=ax x x f 的定义域为A . (1)若1A ∈,3A -∉,求实数a 的范围;(2)若函数=y ()f x 的定义域为R ,求实数a 的取值范围.高一寒假作业第7天 幂函数1.(2012曲阜质检)幂函数()y f x =)的图象经过点1(4,)2,则1()4f =( ) A .1B .2C .3D .42.(2012广州一模)已知幂函数226(57)m y m m x -=-+在区间(0,)+∞上单调递增,则实数m =( ) A .3 B .2 C .2或3 D .2-或3- 3.(2012淄博模拟)若0a <,则下列不等式成立的是 ( ) A .12()(0.2)2a a a >> B .1(0.2)()22aaa >> C .1()(0.2)22a a a >> D .12(0.2)()2aaa >> 4.函数()(1)2f x x α=-+过定点( )A .(1,3)B .(1,2)C .(2,3)D .(0,1)5.(2012济宁质检)设1{1,,1,2,3}2n ∈-,则使得()n f x x =为奇函数,且在(0,)+∞上单调 递减的n 的个数是( )A .1B .2C .3D .46.(2012韶关一模)下列函数在其定义域内既是奇函数又是增函数的是( )A .1y x=- B .3xy = C .13y x = D .lg y x =78.(2012海淀质检)函数1()x f x x+=图象的对称中心为( ) A .(0,0) B .(0,1) C . (1,0) D . (1,1) 9.函数25()3x y x A x -=∈-的值域是[4,)+∞,则集合A = . 10.(2011北京高考)已知函数32,2,()(1), 2.x f x x x x ⎧≥⎪=⎨⎪-<⎩若关于x 的方程()f x k =有两个不同的实根,则实数k 的取值范围是________.11.(2012淮北模拟)已知函数1()f x x -=,若(1)(102)f a f a +<-,求a 的取值范围.12.已知幂函数39* ()m y x m N -=∈的图象关于y 轴对称,且在()0,+∞上单调递减,求满足()()22132m m a a +<-的a 得取值范围.高一寒假作业第8天 函数与方程1.(2012北京高考)函数xx x f )21()(21-=的零点个数为( ) A .0 B .1 C .2 D .32.(2012东莞二模)方程 03log 3=-+x x 的解所在的区间是( ) A . (0,1) B . (1,2) C .(2,3) D . (3,4)3.(2011丰台二模)用max{}a b ,表示a ,b 两个数中的最大数,设22()max{84,log }f x x x x =-+-,若函数()()g x f x kx =-有2个零点,则k 的取值范围是( )A .(0,3)B . (0,3]C . (0,4)D . [0,4]4.函数()2ln f x x x =--在定义域内零点的个数为( )A .0B .1C .2D .35.(2012天津高考)函数22)(3-+=x x f x 在区间(0,1)内的零点个数是( )A .0B .1C .2D .36.(2013揭阳质检)函数()lg 3f x x x =+-的零点所在区间为( ) A .(3,)+∞B .(2,3))C .((1,2)D .(0,1)7.已知1()ln f x x x=-在区间(1,2)内有一个零点0x ,若用二分法求0x 的近似值(精确度0.1),则需要将区间等分的次数为( )A .3B .4C .5D .6 8.(2012汕头一模)已知a 是函数15()5log x f x x =-的零点,若00x a <<,则0()f x 的值( )A .0()0f x =B .0()0f x >C .0()0f x <D .0()f x 的符号不能确定9.已知函数()24f x mx =+,在[2,1]-上存在0x ,使0()0f x =,则实数m 的取值范围是____________.10.(2012朝阳一模)已知函数213(),2,()24log ,0 2.x x f x x x ⎧+≥⎪=⎨⎪ <<⎩若函数()()g x f x k =-有两个不同的零点,则实数k 的取值范围是 .11.(2012西城一模)已知函数12,09,(),20.x x f x x x x ⎧≤≤⎪=⎨+-≤<⎪⎩(1)求()f x 的零点; (2)求()f x 的值域.12.证明方程24xx +=在区间(1,2)内有唯一一个实数解,并求出这个实数解(精确到0.2).高一寒假作业第9天 函数模型及应用1.资费调整后,市话费标准为:通话时间不超过3min 收费0.2元,超过3min 以后,每增加1min 收费0.1元,不足1min 按1min 付费,则通话费s (元)与通话时间(min)t 的函数图象可表示成图中的( )2.(2012浦东质检)某工厂从2006年开始,近八年以来生产某种产品的情况是:前四年年产量的增长速度越来越慢,后四年年产量的增长速度保持不变.则该厂这种产品的年产量y 与时间t 的函数图象可能是3.某商人将彩电先按原价提高40,然后在广告上写上"大酬宾,八折优惠"结果是每台彩电比原价多赚了270元,则每台彩电的原价为 元.4.某工厂12年来某产品总产量s 与时间t (年)的函数关系如图所示,下列四种说法:① 前三年总产量增长的速度越来越快.② 前三年总产量增长的速度越来越慢. ③ 第3年后至第8年这种产品停止生产了. ④ 第8年后至第12年间总产量匀速增加. 其中正确的说法是 .5.某厂有许多形状为直角梯形的铁皮边角料(如图),为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图阴影部分)备用,求截取的矩形面积的最大值.6.(2012山东省实)某民营企业生产甲、乙两种产品,根据市场调查与预测,甲产品的利润与投资成正比,其关系如图①;乙产品的利润与投资的算术平方根成正比,其关系如图②.(1)分别将A、B两产品的利润表示为投资量的函数关系式;(2)该公司已有10万元资金,并全部投入A、B两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?高一寒假作业第10天空间几何体的结构1.下列命题正确的是()A.棱柱的底面一定是平行四边形B.棱锥的底面一定是三角形C.棱台的底面是两个相似的正方形D.棱台的侧棱延长后必交于一点2.一个棱锥的侧面都是正三角形,那么这个棱锥底面多边形边数最多是()A.4B.5C.6D.73.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是()A.30B.45C.60D.904)A.B.C.6D5.(2012温州联考)下图是一个正方体的展开图,将其折叠起来,变成正方体后的图形可能是()6.如图,是一个无盖正方体盒子的表面展开图,A、B、C为其上三点,则在正方体盒子中,∠ABC等于()A.45°B.60°C.90°D.120°72,母线与轴的夹角为030,求圆锥的母线长以及圆锥的高.8.如图,已知三棱柱111ABC A B C 的所有棱长都相等,且侧棱垂直于底面,由B 沿棱柱侧面经过棱1CC到点1A 的最短路线长为1CC 的交点为D .求三棱柱的棱长.高一寒假作业第11天 三视图和直观图1.(2012梅州一模)一个几何体的三视图如图所示,则该几何体的体积为( )A .32aB .36aC .312aD .318a2.(2012浙江高考)已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是( )A .31cmB .32cmC .33cmD .36cm3.(2012汕头质检)如图,一个空间几何体的主视图和俯视图都是边长为1的正方形,侧视图是一个直径为1的圆,那么这个几何体的表面积为( )A .π4B .π3C .π2D .π234.(2012汕头一模)一个体积为( )A .12B .8 C. D.正视图侧视图俯视图侧视图正视图正视图侧视图俯视图主视图侧视图俯视图5.(2012新课标高考)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B . 9C .12D .186.(2012东城二模)若一个三棱柱的底面是正三角形,其正(主)视图如图所示,则它的体积为 ( )AB .2C. D .47.(2012湛江一模)一个几何体的三视图如图所示,正视图是正方形, 俯视图为半圆,侧视图为矩形,则其表面积为( ) A .3π B .4π+ C .42π+ D .43π+8.(2012西城一模)已知正六棱柱的底面边长和侧棱长均为2cm ,其三视图中的俯视图如图所示,则其侧视图的面积是( )A.2 B.2 C .28cm D .24cm侧视图正视图俯视图高一寒假作业第12天空间几何体的表面积与体积1.正三棱柱的高为3,底面边长为2,则它的体积为()A.2B.3CD.2)A.3πB.C.6πD.9π3.已知正方体的外接球的体积是43π,则这个正方体的棱长是()A.3BC.3D4.(2012新课标高考)平面α截球O的球面所得圆的半径为1,球心O到平面α体积为()AB.C.D.5.(2012上海高考)一个高为2的圆柱,底面周长为2π,该圆柱的表面积为______.6.(2012韶关一模)如图BD是边长为3的ABCD为正方形的对角线,将BCD∆绕直线AB旋转一周后形成的几何体的体积等于______.C7.(2012江苏高考)如图,在长方体1111ABCD A B C D -中,3AB AD ==,12AA =,求四棱锥11A BB D D -的体积.8.如图,三棱柱111ABC A B C -中,若E 、F 分别为AB 、AC 的中点,平面11EB C 将三棱柱分成体积为1V 、2V 的两部分,求1V :2V 的值.B 1D AB CC 1D 1A 1ABC A 1B 1C 1E F高一寒假作业第13天 空间点、线、面的位置关系1.如果两条直线,a b 没有公共点,那么,a b 的位置关系是( )A .共面B .平行C .异面D .平行或异面 2.下列说法正确的是( )A .空间中不同三点确定一个平面B .空间中两两相交的三条直线确定一个平面C .梯形确定一个平面D .一条直线和一个点确定一个平面3.已知E ,F ,G ,H 是空间四点,命题甲:E ,F ,G ,H 四点不共面,命题乙:直线EF 和GH 不相交,则甲是乙成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.(2012广州调研)在正四棱锥V ABCD -中,底面正方形ABCD 的边长为1,侧棱长为2,则异面直线VA 与BD 所成角的大小为( )A .6π B .4π C .3π D .2π 5.下列四个命题:①若直线a 、b 是异面直线,b 、c 是异面直线,则a 、c 是异面直线; ②若直线a 、b 相交,b 、c 相交,则a 、c 相交; ③若a ∥b ,则a 、b 与c 所成的角相等; ④若a ⊥b ,b ⊥c ,则a ∥c . 其中真命题的个数是( ) A .4B .3C .2D .16.(2012江门一模)如图是某个正方体的侧面展开图,1l 、2l 是两条侧面对角线,则在正方体中,1l 与2l ( )A .互相平行B .异面且互相垂直C .异面且夹角为3πD .相交且夹角为3πl 2l 17.如图,在正方体1111ABCD A BC D -中,E 是AB 的中点,F 是1A A 的中点,求证: (1)E 、C 、1D 、F 四点共面; (2)CE 、1D F 、DA 三线共点.8.如图所示,平面ABD 平面BCD =BD ,M 、N 、P 、Q 分别为线段AB 、BC 、CD 、DA 上的点,四边形MNPQ 是以PN 、QM 为腰的梯形.证明:三直线BD 、MQ 、NP 共点.D 1C 1B 1A 1FEDCBAQN PMD CBA高一寒假作业第14天 空间中的平行关系1.(2012湛江一模)对两条不相交的空间直线a 和b ,则( ) A .必定存在平面α,使得,a b αα⊂⊂B .必定存在平面α,使得a α⊂,b ∥αC .必定存在直线c ,使得a ∥c ,b ∥cD .必定存在直线c ,使得a ∥c ,b c ⊥2.(2012东莞二模)已知直线l m n ,,及平面α,下列命题中是假命题的是( ) A .若l ∥m ,m ∥n ,则l ∥n B .若l ∥α,n ∥α,则l ∥n C .若l m ⊥,m ∥n ,则l n ⊥ D .若,l n α⊥∥α,则l n ⊥3.(2012四川高考)下列命题正确的是( )A .若两条直线和同一个平面所成的角相等,则这两条直线平行B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行4.(2012全国高考)已知正四棱柱1111ABCD A BC D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为( )A .2BCD .15.(2012梅州一模)如图,在多面体ABCDEFG 中,平面ABC //平面DEFG ,AD ⊥平面DEFG ,AB AC ⊥,ED DG ⊥,EF ∥DG ,且1AC EF ==,2AB AD DE DG ====.(1)求证:BF //平面ACGD ; (2)求三棱锥A BCF -的体积.6.(2012湛江一模)在三棱锥P ABC -中,2PA AC BC ===,PA ⊥平面ABC ,BC AC ⊥,D 、E 分别是PC 、PB 的中点.(1)求证:DE //平面ABC ; (2)求证:AD ⊥平面PBC ; (3)求四棱锥A BCDE -的体积.ACPED EFGABCD高一寒假作业第15天 空间中的垂直关系1.(2012浙江高考)设l 是直线,α,β是两个不同的平面( ) A .若l ∥α,l ∥β,则α∥β B .若l ∥α,l ⊥β,则α⊥β C .若α⊥β,l ⊥α,则l ⊥β D .若α⊥β, l ∥α,则l ⊥β2.(2012东城二模)设n m ,是两条不同的直线,,αβ是两个不重合的平面,那么下面给出的条件中一定能推出m β⊥的是( )A .⊥αβ,且m ⊂αB .m ∥n ,且n ⊥βC .⊥αβ,且m ∥αD .m ⊥n ,且n ∥β3.(2012密云一模)已知α,β是平面,m ,n 是直线,给出下列命题 ①若α⊥m ,β⊂m ,则βα⊥.②若α⊂m ,α⊂n ,m ∥β,n ∥β,则α∥β.③如果,m n αα⊂⊄,m 、n 是异面直线,那么n 与α相交. ④若m αβ=,n ∥m ,且βα⊄⊄n n ,,则n ∥α且n ∥β.其中正确命题的有 .(填命题序号) 4.(2012惠州一模)给定下列四个命题:①若一个平面内的两条直线与另外一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中正确命题的有 .(填命题序号)5.(2012济南一模)如图,四棱锥S ABCD -中,M 是SB 的中点,//AB DC ,BC CD ⊥,SD ⊥平面SAB ,且22AB BC CD SD ===. (1)证明:CD SD ⊥;(2)证明:CM ∥平面SAD .6.(2012济宁质检)如图,四棱锥P ABCD -的底面ABCD 为矩形,且1PA AD ==,2AB =,120PAB ∠=,90PBC ∠=.(1)求证:平面PAD ⊥平面PAB ; (2)求三棱锥D PAC -的体积.ABCDPSABCDM高一寒假作业第16天 空间直角坐标系1.在空间直角坐标系中,P 点坐标为(1,2,3)-,则点P 到xOy 平面的距离为( ) A .1 B .2 C .3 D .142.到(1,0,0)A 的距离除以到(4,0,0)B 的距离的值为12的点(,,)P x y z 的坐标满足( ) A .2224x y z ++= B .22212x y z ++=C .2225()42x y z -++= D .2225()122x y z -++=3.已知点(1,2,11),(4,2,3),(6,1,4)A B C --,则ABC ∆的形状是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰直角三角形4.已知ABC ∆的三个顶点坐标分别为(2,3,1),(4,1,2),(6,3,7)A B C -,则ABC ∆的重心坐标为( ) A .7(6,,3)2 B .7(4,,2)3 C .14(8,,4)3D .7(2,,1)65.在x 轴上与(4,1,7)A -和(3,5,2)B --等距离的点为 .6.已知(3,1,1)A -和(2,4,3)B -,则线段AB 在坐标平面yOz 上的射影长度为 .7.已知(,5,21),(1,2,2)A x x x B x x --+-,求AB 取最小值时x 的值.8.正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 和平面ABEF 互相垂直,点M 在AC 上移动,点N 在BF 上移动,若(0CM BN a a ==<<.(1)求MN 的长;(2)a 为何值时,MN 的长最小?高一寒假作业第17天 直线的方程1.(2012烟台质检)过两点(0,3),(2,1)的直线方程为( )A .30x y --=B .30x y +-=C .30x y ++=D .30x y -+=2.(2012潍坊质检)设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则a 、b 满足( ) A .1a b += B .1a b -= C .0a b += D .0a b -=3.过点(2,1)M 的直线与,x y 轴分别交于,P Q ,若M 为线段PQ 的中点,则这条直线的方程为( ) A .230x y --= B .250x y +-= C .240x y +-= D .230x y -+=4.若直线(23)60t x y -++=不经过第二象限,则t 的取值范围是( ) A .(23, +∞) B .3(,]2-∞ C .3[,)2+∞ D .3(,)2-∞5.倾斜角是直线30x -=的倾斜角的2倍,且过点P 的直线方程是______________.6.若经过点(1,1)P a a -+和(3,2)B a 的直线的倾斜角为锐角,则实数a 的取值范围是 .7.在ABC ∆中,已知点(5,2)A -、(7,3)B ,且边AC 的中点M 在y 轴上,边BC 的中点N 在x 轴上. (1)求点C 的坐标; (2)求直线MN 的方程.8.已知直线l :120()kx y k k R -++=∈. (1)证明直线l 过定点;(2)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,AOB ∆的面积为S ,求S 的最小值并求此时直线l 的方程.高一寒假作业第18天 两直线的位置关系1.与直线032=--y x 相交的直线的方程是( ) A .0624=--y x B .x y 2= C .52+=x y D .32+-=x y2.过点(1,0)且与直线220x y --=平行的直线方程是( ) A .210x y --= B .210x y -+= C .220x y +-= D .210x y +-=3.如果直线013=++y ax 与直线0322=-+y x 互相垂直,那么a 的值等于( ) A .3B .31-C .3-D .314.直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为( ) A .1133y x =-+ B .113y x =-+ C .33y x =- D .113y x =+5.过点(1,2)A ,且在两坐标轴上的截距相等的直线方程为 .6.若y x ,满足01332=--y x ,则22y x +的最小值为 .7.求经过直线1l :250x y +-=与直线2l :3210x y -+=的交点M ,且满足下列条件的方程:(1)与直线012=++y x 平行; (2)与直线012=++y x 垂直.8.已知点(2,1)P -,求:(1)过P 点与原点距离为2的直线l 的方程;(2)过P 点与原点距离最大的直线l 的方程,最大距离是多少?(3)是否存在过P 点与原点距离为3的直线?若存在,求出方程;若不存在,请说明理由. ∴ 过P 点不存在与原点距离为3的直线.高一寒假作业第19天 圆的方程1.圆心为(1,0)-,半径为2的圆的标准方程为( ) A .22(1)4x y ++= B .22(1)4x y +-= C .22(1)4x y ++= D .22(1)4x y -+=2.已知圆:C 22450x y x +--=,点(3,1)P 为弦AB 的中点,则直线AB 的方程是( )A .240x y --=B .40x y +-=C .240x y -+=D .20x y --=3.(2012辽宁高考)将圆222410x y x y +--+=平分的直线是( ) A .10x y +-= B .30x y ++= C .10x y -+= D .30x y -+=4.(2012银川一模)圆心在y 轴上且通过点(3,1)的圆与x 轴相切,则该圆的方程是( ) A .22100x y y ++= B .22100x y y +-= C .22100x y x ++= D .22100x y x +-=5.(2012西城一模)圆22430x y x +-+=的圆心到直线0x =的距离是_____.6.(2012肇庆一模)如果实数,x y 满足等式22(2)3x y -+=,那么xy的最大值是 .7.已知直线l 经过两点(2,1),(6,3).(1)求直线l 的方程;(2)圆C 的圆心在直线l 上,并且与x 轴相切于(2,0)点,求圆C 的方程.8.直角三角形ABC 的顶点坐标(2,0)A -,直角顶点(0,B -,顶点C 在x 轴上. (1)求BC 边所在的直线方程;(2)M 为ABC ∆的外接圆的圆心,求圆M 的方程.高一寒假作业第20天直线与圆的位置关系1.(2012湛江二模)过点(0,2)且与圆221x y +=相切的直线方程为( ) A .2y x =+ B .2y x =±+C .2y +D .2y =+ 2.(2012重庆高考)设,A B 为直线y x =与圆221x y += 的两个交点,则||AB =( )A .1 BC D .23.(2012陕西高考)已知圆22:40C x y x +-=,l 过点(3,0)P 的直线,则( ) A .l 与C 相交 B . l 与C 相切 C .l 与C 相离 D . 以上三个选项均有可能4.(2012石景山一模)直线5x y +=和圆O :2240x y y +-= 的位置关系是( ) A .相离 B .相切 C .相交不过圆心 D .相交过圆心5.(2012东莞一模)从圆22(1)(1)1x y -+-=外一点(2,3)P 向这个圆引切线,则切线长为________.6.(2012北京模拟)若点P 在直线03:1=++y x l 上,过点P 的直线2l 与曲线C :22(5)16x y -+=只有一个公共点M ,则PM 的最小值为________.7.(2012房山一模)直线3y kx =+与圆22(1)(2)4x y -++=相交于N M ,两点,若MN ≥求k 的取值范围.8.(2013珠海一模)已知圆C :012822=+-+y y x ,直线l :02=++a y ax .(1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A 、B 两点,且22=AB 时,求直线l 的方程.高一寒假作业详细答案高一寒假作业第1天 集合1.B 【解析】∵{1,0,1}M =-,{0,1}N =,∴M N ={0,1}.2.A 【解析】U M =ð{2,4,6}.3.D 【解析】2{230}{1,3}A x x x =--==-,B 有∅,{1}-,{3},{1,3}-,共4个.4.C 【解析】∵B y A x ∈∈,,∴当1-=x 时,2,0=y ,此时1,1-=+=y x z , 当1=x 时,2,0=y ,此时3,1=+=y x z , ∴集合{1,1,3}{1,1,3}z z =-=-共三个元素. 5.D6.C 【解析】∵{0,3,9}N =,∴{0,3}M N =.7.A 【解析】集合A 有,{1},{2},{1,2}∅,共4个.8.C9.D 【解析】阴影部分表示()U A B ð,故选D . 10.A【解析】当2,k n n Z =∈时,1,22n N x x n Z ⎧⎫==+∈⎨⎬⎩⎭, 当21,k n n Z =-∈时,1,24n N x x n Z M ⎧⎫==+∈=⎨⎬⎩⎭, ∴M N ,∵0x M ∈,∴0x N ∈.11.【解析】 ∵ A B A =,∴ B A ⊆.(1)当B =∅时,则121m m +>-,解得2m <.(2)当B ≠∅时,则12121512m m m m +≤-⎧⎪-≤ ⎨⎪+>-⎩,解得23m ≤≤. ∴实数m 的取值范围是3m ≤. 12.【解析】(1) ∵2S ∈, ∴112S ∈-,即1S -∈, ∴()111S ∈--,即12S ∈; (2) 证明:∵a S ∈, ∴11S a∈-, ∴111111S a a=-∈--; (3) 集合S 中不能只有一个元素,用反证法证明如下:假设S 中只有一个元素,则有11a a=-,即210a a -+=,该方程没有实数解,∴集合S 中不能只有一个元素.1.D0≠,∴10x +>,解得1x >-.2.B 【解析】当0x =时,0y =;当1x =时,0y =;当2x =时,2y =. 3.A 【解析】由10x ->,解得1x >.4.C 【解析】∵22(1)+1, [0,3],()(3)9, [2,0).x x f x x x ⎧--∈⎪=⎨+-∈-⎪⎩, ∴当[0,3]x ∈时,()f x ∈[3,1]-;当[2,0)x ∈-时,()f x ∈[8,0)-; ∴()f x 的值域为[3,1][8,0)--=[8,1]-.5.B 【解析】∵21,12<≤-+-=x x y ,∴222101y -+<≤-+,即31y -<≤.6.D 【解析】∵32)3(=f ,∴9131941)32()32())3((2=+=+==f f f . 7.B 【解析】由图象可知,该函数的定义域为[3,3]-,值域为[2,2]-.8.A 【解析】当1(0,)2a ∈时,则{}0a a a =-=,111{}0222a a a +=+-=+,∴1{}{}2a a <+. 当1[,1)2a ∈时,则{}0a a a =-=,111{}1222a a a +=+-=-,∴1{}{}2a a >+.9.【答案】[)()1,00,-+∞【解析】由100x x +≥⎧⎨≠⎩,解得10x x ≥-≠且,∴定义域为[1,0)(0,)-+∞.10.9【解析】339⨯=.11.【解析】设2()(0)f x ax bx c a =++≠,∵(0)0f =,∴0c =,∴2()f x ax bx =+.又(1)()1f x f x x +=++.∴22(1)(1)1a x b x ax bx x +++=+++,∴21ax a b x ++=+,∴211a a b =⎧⎨+=⎩,解得1212a b ⎧=⎪⎪⎨⎪=⎪⎩.∴211()22f x x x =+.12.【解析】211()(1)22f x x a =--+的对称轴为1x =.∴[1,]b 为()f x 的单调递增区间. ∴min 1()(1)12f x f a ==-=①,2max 1()()2f x f b b b a b ==-+=② 由①②解得323a b ⎧=⎪⎨⎪=⎩.1.C 2.A 3.B4.D 【解析】∵)(x f 在R 上是减函数,若0≤+b a ,∴a b ≤-,∴()()f a f b ≥-,同理:()()f b f a ≥-, ∴()()()()f a f b f a f b +≥-+-. 5.A6.A 【解析】由1212()()0f x f x x x -<-,则()f x 在(0,)+∞上单调递减,又()f x 是偶函数,∴(2)(2)f f -=,∵03>21>>,∴(3)(2)(1)f f f <-<.7.D 【解析】∵ 221331()244x x x -+=-+≥,∴214()13f x x x =≤-+. 8.B 【解析】220,1()12(2)2a a -<⎧⎪⎨-≥-⎪⎩,解得138a ≤.9.12,1【解析】1()1f x x =-在(1,)+∞上是减函数,∴1()1f x x =-在[2,3]上是减函数, ∴min 1()(3)2f x f ==,max ()(2)1f x f ==.10. (,1]-∞【解析】1,1,121, 1.x y x x x x ≥⎧=--=⎨-<⎩ 作出该函数的图象如图所示.由图象可知,函数的单调增区间是(,1]-∞.11.【解析】∵()y f x =在定义域为[1,1]-是减函数, ∴由(1)(21)f a f a -<-得:1211111211a a a a ->-⎧⎪-≤-≤⎨⎪-≤-≤⎩,解得203a ≤<, ∴a 的取值范围是2[0,)3.12.【解析】 (1)证明:设210x x >>,则12()()f x f x -1212121111()()x x ax a x x x -=---=, 又∵ 210x x >>,∴12120,0x x x x -<>,∴12120x x x x -<,即 12()()f x f x <, ∴()f x 在(0,)+∞上是单调递增函数.(2)∵()f x 在1[,2]2上的值域是1[,2]2,又()f x 在1[,2]2上单调递增, ∴11()22f =,(2)2f =.∴解得25a =.高一寒假作业第4天 奇偶性1.D 2.D 3.D 4.A 5.D6.A 【解析】∵()f x 为奇函数,1(21)()0.2f x f -+<, ∴(21)f x -<1()2f -,∴1212x -<-,解得14x <. 7.D 【解析】∵设0x <,则0x ->,∴22()()2()121()f x x x x x f x -=-+--=--=, 同理:设0x >,()()f x f x -=,∴()f x 为偶函数,图象关于y 轴对称, ∵22()21(1)2f x x x x =+-=+-在[0,)+∞上递增,∵120x x <<,∴1200x x -<-,∴12()()f x f x <.8.D 【解析】∵()f x 为奇函数,∴[()()]0x f x f x --<可化为()0xf x <,如图,根据()f x 的性质可以画出()f x 的草图,因此()010xf x x <⇔-<<,或0x <9.4【解析】()f x 为偶函数,∴(1)(1)f f -=,∴5(1)3(1)a a --+=-+,即4a =. 10.3【解析】由12)1()1(=+=f g ,得1)1(-=f ,∴32)1(2)1()1(=+-=+-=-f f g . 11.【解析】(1)当0=a 时,()2x x f =为偶函数;当0≠a 时,()x f 既不是奇函数也不是偶函数.(2)设212≥>x x ,()()22212121x a x x a x x f x f --+=-[]12121212()x x x x x x a x x -=+-, 由212≥>x x 得()162121>+x x x x ,0,02121><-x x x x要使()x f 在区间[)+∞,2是增函数只需()()021<-x f x f ,即()02121>-+a x x x x 恒成立,则16≤a . 12.【解析】(1))(x f 是R 上的减函数,∵对任意的实数R a ∈有0)()(=+-a f a f 恒成立.∴)(x f 在R 上的奇函数,∴0)0(=f . ∵)(x f 在R 上是单调函数,且(3)(0)f f ->,∴)(x f 在R 上是减函数. (2)∵(3)2f -=,2)2(<-xx f ,∴)3()2(-<-f x xf ,∵)(x f 在R 上是减函数∴32->-x x ,即022>+xx ,解得:1x <-,或0x >, ∴不等式的解集为(,1)(0,)-∞-+∞.高一寒假作业第5天 指数与指数函数1.C 【解析】2x =时,2y =,故图象必经过点(2,2).2.B 【解析】∵(1)f a =,(1)2f -=,(1)(1)f f =-,∴2a =.3.A 【解析】∵1()22x xy -==,∴它与函数2x y =的图象关于y 轴对称.4.C【解析】∵(0,1)x y a a a a =->≠恒过点(1,0),故C 正确. 5.B6.C 【解析】∵1a >,1b =,01c <<,∴a b c >>. 7. A 【解析】21(2)(2)24g f -=--=-=-.8.A 【解析】∵2, 0()12 1 , 0x xx f x x ⎧<=⊕=⎨≥⎩,∴选项A 正确.9. 1±【解析】0211a a ≥⎧⎨-=⎩或2021a a a <⎧⎨--=⎩,解得1a =±.10.【解析】∵)(x f 在区间),1[+∞上是增函数,∴a x t -=在区间[1,)+∞上单调递增,∴1≤a . 11.【解析】当1a >时,()x f x a =在区间[1,2]上为增函数,∴2max ()(2)f x f a ==,min ()(1)f x f a ==.∴22a a a -=,解得0a =(舍去),或32a =. 当01a <<时,()x f x a =在区间[1,2]上为减函数,∴max ()(1)f x f a ==,2min ()(2)f x f a ==. ∴22a a a -=,解得0a =(舍去),或12a =. 综上可知,12a =,或32a =. 12.【解析】(1)∵222()2112xx xf x a a -⋅-=-=-++,由()f x 是奇函数,∴()()0f x f x +-=,即2(12)2012x xa +-=+,∴1a =. (2)证明:设1212,,x x R x x ∈<,则12()()f x f x -1222()()2121x x a a =---++21222121x x =-++12122(22)(21)(21)x x x x -=++, ∵2xy =在R 上是增函数,且12x x <,∴1222x x <即12220x x-<,又∵1210x +>,2210x+>,∴12()()0f x f x -<,即12()()f x f x <. ∵此结论与a 取值无关,∴对于a 取任意实数,()f x 在R 上为增函数.高一寒假作业第6天 对数与对数函数1.D 【解析】23lg9lg 42lg32lg 2log 9log 44lg 2lg3lg 2lg3⨯=⨯=⨯=. 2.A 【解析】∵0.20.2 1.21()222b -==<,∴a b <<1, ∵14log 2log 2log 25255<===c ,∴a b c <<. 3.C 【解析】∵{|lg 0}{|1}M x x x x =>=>,2{|4}{|22}N x x x x =≤=-≤≤,∴(1,2]MN =.4. B 【解析】令11x -=,得2,0x y ==.5.B 【解析】∵01a <<,1b >,0c <,∴c a b <<. 6.D 【解析】∵{|02}A x x =<<,A B B =,∴2c ≥. 7.A 【解析】∵311x+>,∴22()log (31)log 10x f x =+>=. 8.C 【解析】∵1log 21log a a a -=-=,∴12a =,∵12b =,∴2b =,∴b a )21()21(>.9.【解析】∵612log 0x -≥,∴61log 2x ≤,∴12666log log 6log x ≤=0<x10.2【解析】∵x x f lg )(=,∴1)(=ab f ,1lg =ab ,∴2222()()lg lg f a f b a b +=+2(lg lg )2lg 2a b ab =+==. 11.【解析】当12x <时,1()(,)2f x a ∈-+∞, 当12x ≥时,()[1,)f x ∈-+∞, ∵()f x 的最小值为1-,∴1(,)[1,)2a -+∞⊆-+∞∴112a -≥-,即12a ≥-.∴实数a 的取值范围是21-≥a .12.【解析】(1)由题意,得1109310a a ++>⎧⎨-+≤⎩,解得310≥a .∴实数a 的范围为),310[+∞. (2)由题意,得012>++ax x 在R 上恒成立,则042<-=∆a ,解得22<<-a .∴实数a 的范围为(22)-,.高一寒假作业第7天 幂函数1.C 【解析】设()f x x α=,则142α=,∴12α=-,∴12()f x x -=,∴12(2)22f -==.2.A 【解析】由2257160m m m ⎧-+=⎪⎨->⎪⎩,解得3m =.3.B 【解析】∵0a <,a y x =在(0,)+∞上是减函数,∴1(0.2)()22aa a >>.4.C 【解析】令11x -=,得2,3x y == , ∴函数()(1)2f x x α=-+过定点(2,3).5.A 6.C7.B 【解析】先由一个图象的位置特征确定α的大小, 再由此α值判断另一图象位置特征是否合适,可判定选B .8.B 【解析】∵11()1x f x x x+==+,∴对称中心为(0,1). 9.7(3,]2【解析】∵2543x y x -=≥-,∴7203x x -≤-,∴732x <≤. 10.(0,1)【解析】2()f x x=在[2,)+∞上递减,故()(0,1]f x ∈,3()(1)f x x =-在(,2)-∞上递增,故(,1))(f x -∞∈,∵()f x k =有两个不同的实根,∴实数k 的取值范围是(0,1). 11.【解析】由函数1()f x x -=的图象可得,101020a a +<⎧⎨->⎩,或1010201102a a a a +>⎧⎪->⎨⎪+>-⎩,或1010201102a a a a+<⎧⎪-<⎨⎪+>-⎩,∴1a <-或35a <<. 12.【解析】∵函数在()0,+∞上的单调递减,∴390m -<,解得3m <;∵*m N ∈,∴1,2m =.当1m =时,396m -=-,当2m =时,393m -=-, 又函数图象关于y 轴对称,∴39m -是偶数,∴1m =.∵ 12y x =在[0,)+∞上单调递增,∴ 10320321a a a a +≥⎧⎪->⎨⎪->+⎩,解得213a -<≤.∴a 的取值范围是213a -<≤.高一寒假作业第8天 函数与方程1.B 【解析】∵12y x =和1()2xy =的图象只有一个交点,∴零点只有一个,故选B .2.C 【解析】令3()log 3f x x x =+-,∵(2)0f <,(3)0f >,∴(2)(3)0f f ⋅<,故选 C . 3.C 【解析】依题意函数()y f x =与直线y kx =有两个交点.当0k =显然不成立,排除D .其次,二次函数的顶点是(4,12),与原点连线的斜率是3,显然成立,排除A ,B .4.C 【解析】画出函数2y x =-和函数ln y x =的图象有两个交点,则原函数有两个零点. 5.B 【解析】令()0f x =,得322xx =-,∵2x y =和32y x =-的图象的交点有1个, ∵(0)10f =-<,(1)10f =>,∴在区间)1,0(内函数的零点个数为1.6.B 【解析】∵(1)20f =-<,(2)1210f g =-<,(3)130f g =>,∴(2)(3)0f f ⋅<,故选B . 7.B 【解析】1()0.12n<,解得4n ≥.8.C 【解析】∵15()5log x f x x =-在(0,)+∞上为增函数,∵00x a <<,∴0()()0f x f a <=.9.(,2][1,)-∞-+∞【解析】(2)(1)(44)(24)0f f m m -⋅=-++≤,∴1m ≥,或2m ≤-. 10.3(,1)4【解析】当2x ≥时,3()(,1]4f x ∈,当02x <<时,()(,1)f x ∈-∞,∴3(,1)4k ∈.11.【解析】(1)由1209x x ≤≤⎧⎪⎨=⎪⎩,解得0x =;由2200x x x -≤<⎧⎨+=⎩,解得1x =-; ∴()f x 的零点是1-和0.(2)∵当[2,0)x ∈-时,1()[,2]4f x ∈-,当[0,9]x ∈时,()[0,3]f x ∈,∴()f x 的值域是1[,3]4-.12.【解析】设函数()24xf x x =+-,∵(1)10,(2)40f f =-<=>,又∵()f x 是增函数,∴函数()24xf x x =+-在区间[1,2]有唯一的零点,则方程24xx +=在区间(1,2)有唯一一个实数解. 取区间[]1,0作为起始区间,用二分法逐次计算如下由上表可知区间[]1.375,1.5的长度为0.1250.2<, ∴函数)(x f 零点的近似值可取1.375(或1.5).。

浙江省杭州市2023-2024学年高一下学期寒假作业检测(开学考试)数学试卷含答案

浙江省杭州市2023-2024学年高一下学期寒假作业检测(开学考试)数学试卷含答案

杭州钱江学校高一数学寒假作业检测(答案在最后)一、单选题:本题共8小题,每小题5分,共40分.每小题给出的选项中,只有一项是符合题目要求.1.已知集合{}|02A x x =<<,集合{}|11B x x =-<<,集合{}|10C x mx =+>,若()A B C ⊆ ,则实数m 的取值范围为()A.{}|21m m -≤≤ B.1|12m m ⎧⎫-≤≤⎨⎬⎩⎭C.1|12m m ⎧⎫-≤≤⎨⎬⎩⎭D.11|24m m ⎧⎫-≤≤⎨⎬⎩⎭【答案】B 【解析】【分析】求出A ∪B ={x |﹣1<x <2},利用集合C ={x |mx +1>0},(A ∪B )⊆C ,分类讨论,可得结论.【详解】由题意,A ∪B ={x |﹣1<x <2},∵集合C ={x |mx +1>0},(A ∪B )⊆C ,①m <0,x 1m -<,∴1m -≥2,∴m 12≥-,∴12-≤m <0;②m =0时,C =R,成立;③m >0,x 1m ->,∴1m-≤-1,∴m ≤1,∴0<m ≤1,综上所述,12-≤m ≤1,故选:B .【点睛】此题考查了并集及其运算,以及集合间的包含关系,考查分类讨论的数学思想,属于中档题.2.三角函数值1sin ,2sin ,3sin 的大小顺序是A.123sin sin sin >> B.213sin sin sin >>C.132sin sin sin >> D.3 2 1sin sin sin >>【答案】B 【解析】【分析】先估计弧度角的大小,再借助诱导公式转化到090θ<< 上的正弦值,借助正弦函数在090θ<< 的单调性比较大小.【详解】解:∵1弧度≈57°,2弧度≈114°,3弧度≈171°.∴sin 1≈sin 57°,sin 2≈sin 114°=sin 66°.sin 3≈171°=sin 9°∵y =sin x 在090θ<< 上是增函数,∴sin 9°<sin 57°<sin 66°,即sin 2>sin 1>sin 3.故选B .【点睛】本题考查了正弦函数的单调性及弧度角的大小估值,是基础题.3.设a =log 54,b =(log 53)2,c =log 45,则()A.a <c <b B.b <c <aC.a <b <cD.b <a <c【答案】D 【解析】【详解】∵a =log 54<log 55=1,b =(log 53)2<(log 55)2=1,c =log 45>log 44=1,所以c 最大单调增,所以又因为所以b<a 所以b<a<c.故选D .4.已知函数74sin 20,66ππ⎛⎫⎛⎫⎡⎤=+∈ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭y x x 的图象与直线y m =有三个交点的横坐标分别为()123123,,x x x x x x <<,那么1232x x x ++的值是()A.34πB.4π3 C.5π3D.3π2【答案】C 【解析】【分析】先作出74sin 20,66ππ⎛⎫⎛⎫⎡⎤=+∈ ⎪ ⎪⎢⎝⎭⎣⎦⎝⎭y x x 的图像,结合图像利用对称性即可求得结果.【详解】先作出函数74sin 20,66y x x ππ⎛⎫⎛⎫⎡⎤=+∈ ⎪⎪⎢⎥⎝⎭⎣⎦⎝⎭的图象,如图,令4sin 246y x π⎛⎫=+=± ⎪⎝⎭,可得6x π=和23x π=,所以由对称性可得1223242,26333x x x x ππππ+=⨯=+=⨯=,故123523x x x π++=,故选:C.5.设(),0,παβ∈,()5sin 13αβ+=,1tan 22α=,则cos β的值是()A.1665-B.1665C.3365- D.3365【答案】A 【解析】【分析】根据半角公式得出α的正切值,继而得出其正弦值和余弦值,再根据α的取值范围和题意判断出π,π2αβ⎛⎫+∈ ⎪⎝⎭,并得出αβ+的余弦值,最后根据恒等变换公式计算[]cos cos ()βαβα=+-即可.【详解】22tan142tan tan 12231tan 2αααα=⇒==>- ,因为(),0,παβ∈,ππ,42α⎛⎫∴∈ ⎪⎝⎭,且4sin cos 3αα=,又223sin cos 1cos 5ααα+=⇒=,得4sin 5α=.因为()0,πβ∈,则π3π,42αβ⎛⎫+∈⎪⎝⎭,又5sin()132αβ+=<,所以π,π2αβ⎛⎫+∈ ⎪⎝⎭,12cos()13αβ∴+=-,[]16cos cos ()cos()cos sin()sin 65βαβααβααβα=+-=+++=-.故选:A.6.设函数()2sin()f x x ωϕ=+,x R ∈,其中0ω>,||ϕπ<.若5()28f π=,(08f 11π=,且()f x 的最小正周期大于2π,则A.23ω=,12πϕ= B.23ω=,12ϕ11π=-C.13ω=,24ϕ11π=- D.13ω=,724πϕ=【答案】A 【解析】【详解】由题意125282118k k ωππϕπωπϕπ⎧+=+⎪⎪⎨⎪+=⎪⎩,其中12,k k Z ∈,所以2142(2)33k k ω=--,又22T ππω=>,所以01ω<<,所以23ω=,11212k ϕ=π+π,由ϕπ<得12πϕ=,故选A.【考点】求三角函数的解析式【名师点睛】有关sin()y A x ωϕ=+问题,一种为提供函数图象求解析式或某参数的范围,一般先根据图象的最高点或最低点确定A ,再根据周期或12周期或14周期求出ω,最后再利用最高点或最低点坐标满足解析式,求出满足条件的ϕ值,另一种时根据题目用文字形容的函数图象特点,如对称轴或曲线经过的点的坐标,根据题意自己画出图象,再寻求待定的参变量,题型很活,求ω或ϕ的值或最值或范围等.7.设()|31|x f x =-,c b a <<且()()()f c f a f b >>,则下列关系中一定成立的是A .3c >3bB.3b >3aC.3c +3a >2D.3c +3a <2【答案】D 【解析】【分析】画出()|31|x f x =-的图象,利用数形结合,分析可得结果.【详解】作出()131xf x =-的图象,如图所示,要使c b a <<,且()()()f c f a f b >>成立,则有0c <且0a >,313c a ∴<<,()()13,31c a f c f a ∴=-=-,又()()f c f a >,1331c a ∴->-,即332a c +<,故选D.【点睛】通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.8.已知()f x 是偶函数,且()f x 在[0,)+∝上是增函数,若()()12f ax f x +≤-在1,12x ⎡⎤∈⎢⎥⎣⎦上恒成立,则实数a 的取值范围是()A.[﹣2,1] B.[﹣5,0]C.[﹣5,1]D.[﹣2,0]【答案】D 【解析】【分析】利用函数的奇偶性和单调性,可得|ax +1|≤|x ﹣2|对112x ⎡⎤∈⎢⎥⎣⎦恒成立,再分离参数利用函数单调性求最值即可求解【详解】由题意可得|ax +1|≤|x ﹣2|对112x ⎡⎤∈⎢⎥⎣⎦,恒成立,得x ﹣2≤ax +1≤2﹣x 对112x ⎡⎤∈⎢⎥⎣⎦,恒成立,从而3x a x -≥且1x a x -≤对112x ⎡⎤∈⎢⎥⎣⎦,恒成立,又3x y x -=单调递增∴a ≥﹣21xy x-=;单调递减,所以a ≤0,即a ∈[﹣2,0],故选D .【点睛】本题考查的是不等式、函数性质以及恒成立有关的综合类问题.在解答的过程当中充分体现了函数的性质、恒成立的思想以及问题转化的能力,属于中档题.二、多选题:本题共4小题,共20分.每小题给出的选项中,有多项符合题目要求.9.存在函数()f x 满足:对任意x ∈R 都有()A.()sin cos f x x =B.()sin sin 2f x x =C.()cos cos 2f x x =D.()sin sin 3f x x=【答案】CD 【解析】【分析】分别取0x =、x π=可得()01f =、()01f =-,A 错误;同理,取3x π=、23x π=可得(22f =、(22f =-,B 错误;利用三角恒等变换将cos 2x 整理为关于cos x 的二次函数可判断C ;同理可判断D.【详解】A :取0x =时,sin 0,cos 1x x ==,()01f =,取x π=时,sin 0,cos 1x x ==-,()01f =-,故A 不正确;B :取3x π=时,sin ,sin 222x x ==,(22f =,取23x π=时,sin ,sin 222x x ==-,(22f =-,故B 错误;C :()2cos cos 22cos 1f x x x ==-,令cos ,[1,1]t x t =∈-,则()221f t t =-,C 正确;D :()sin sin 3sin(2)sin 2cos cos 2sin f x x x x x x x x==+=+222sin (1sin )(12sin )sin x x x x=⨯-+-⨯3332sin 2sin sin 2sin 3sin 4sin x x x x x x=-+-=-令sin ,[1,1]t x t =∈-,则()334,[1,1]f t t t t =-∈-,D 正确.故选:CD10.下列不等式中,正确的是().A.13π13πtan tan 45< B.ππsincos 57⎛⎫<- ⎪⎝⎭C.ππsin 55> D.ππtan 55>【答案】BC 【解析】【分析】利用诱导公式及三角函数的单调性判断A 、B ,利用三角函数线证明当π02x <<时sin tan <<x x x ,即可判断C 、D.【详解】对于A :13πππtantan 3πtan 1444⎛⎫=+== ⎪⎝⎭,13π2π2πtantan 3πtan 0555⎛⎫=-=-< ⎪⎝⎭,所以13π13πtan tan 45>,故A 错误;对于B :因为ππππ7654<<<,且sin y x =在π0,2⎛⎫ ⎪⎝⎭上单调递增,cos y x =在π0,2⎛⎫⎪⎝⎭上单调递减,所以1πππ2sin sin sin 26542=<<=,又πππcos cos cos 7762⎛⎫-=>= ⎪⎝⎭,所以ππsincos 57⎛⎫<- ⎪⎝⎭,故B 正确;对于C 、D :首先证明当π02x <<时sin tan <<x x x ,构造单位圆O ,如图所示:则()1,0A ,设π0,2POA x ⎛⎫∠=∈ ⎪⎝⎭,则()cos ,sin P x x ,过点A 作直线AT 垂直于x 轴,交OP 所在直线于点T ,由=tan ATx OA,得=tan AT x ,所以()1,tan T x ,由图可知OPA TOA OPA S S S << 扇形,即21111sin 11tan 222x x x ⨯⨯<⨯⨯<⨯⨯,即sin tan <<x x x π02x ⎛⎫<< ⎪⎝⎭,所以ππsin 55>,ππtan 55<,故C 正确,D 错误;故选:BC11.关于函数()|ln |2||f x x =-,下列描述正确的有()A.()f x 在区间(1,2)上单调递增B.()y f x =的图象关于直线2x =对称C.若1212,()(),x x f x f x ≠=则124x x +=D.()f x 有且仅有两个零点【答案】ABD 【解析】【分析】作出函数()f x 的图象,由图象观察性质判断各选项.【详解】根据图象变换作出函数()f x 的图象(()ln 2f x x =-,作出ln y x =的图象,再作出其关于y 轴对称的图象,然后向右平移2个单位,最后把x 轴下方的部分关于x 轴翻折上去即可得),如图,由图象知()f x 在(1,2)是单调递增,A 正确,函数图象关于直线2x =对称,B 正确;12()()f x f x k ==,直线y k =与函数()f x 图象相交可能是4个交点,如图,如果最左边两个交点横坐标分别是12,x x ,则124x x +=不成立,C 错误,()f x 与x 轴仅有两个公共点,即函数仅有两个零点,D 正确.故选:ABD .12.设函数()f x 的定义域为R ,满足()()12f x f x +=,且当(]0,1x ∈时,()()1f x x x =-.若对任意(],x m ∈-∞,都有()89f x ≥-,则实数m 的值可以是()A.94B.73C.52D.83【答案】AB 【解析】【分析】因为(1)2()f x f x +=,可得()2(1)f x f x =-,分段求解析式,结合图象可得.【详解】解:因为(1)2()f x f x +=,()2(1)f x f x ∴=-,函数图象如下所示:(0x ∈ ,1]时,1()(1)[4f x x x =-∈-,0],(1x ∴∈,2]时,1(0x -∈,1],1()2(1)2(1)(2)[2f x f x x x =-=--∈-,0];(2x ∴∈,3]时,1(1x -∈,2],()2(1)4(2)(3)[1f x f x x x =-=--∈-,0],当(2x ∈,3]时,由84(2)(3)9x x --=-解得73x =或83x =,若对任意(x ∈-∞,]m ,都有8()9f x - ,则73m .故选:AB .【点睛】本题考查分段函数的性质的应用,解答的关键是根据函数的性质画出函数图象,数形结合即可得解;三、填空题:本题共4小题,每小题5分,共20分.13.函数()()21256f x log x x =-+-的单调减区间是______.【答案】522,⎛⎫ ⎪⎝⎭【解析】【分析】根据对数函数的定义域及复合函数单调性的判断即可求得单调递减区间.【详解】因为()()21256f x log x x =-+-所以2560x x -+->解得()2,3x ∈因为()12f x log x =为单调递减函数,所以由复合函数单调性判断可知应该取()256f x x x =-+-的单调递增区间,即5,2x ⎛⎫∈-∞ ⎪⎝⎭结合定义域可得函数()()21256f x log x x =-+-的单调减区间是522,⎛⎫⎪⎝⎭【点睛】本题考查了复合函数单调区间的求法,注意对数函数的真数大于0,属于基础题.14.已知0a >,0b >,且111a b +=,则1411a b +--的最小值为___.【答案】4【解析】【分析】由等式111a b +=可得出1a >,1b >以及1a b a =-,代入1411a b +--可得出()14141111a ab a +=+----,利用基本不等式可求得结果.【详解】0a > ,0b >,且111a b +=,得1a >,1b >以及1ab a =-,()14141414111111a a ab a a a ∴+=+=+-≥=------,当且仅当32a =时,等号成立,因此,1411a b +--的最小值为4.故答案为:4.【点睛】本题考查利用基本不等式求最值,解题时注意对定值条件进行化简变形,考查计算能力,属于中等题.15.函数f (x )=log 2(kx 2+4kx +3).①若f (x )的定义域为R ,则k 的取值范围是_____;②若f (x )的值域为R ,则k 的取值范围是_____.【答案】①.[0,34)②.k 34≥【解析】【分析】(1)根据()f x 的定义域为R ,对k 分成0,0,0k k k =><三种情况分类讨论,结合判别式,求得k 的取值范围.(2)当()f x 值域为R 时,由00k >⎧⎨∆≥⎩求得k 的取值范围.【详解】函数f (x )=log 2(kx 2+4kx +3).①若f (x )的定义域为R ,可得kx 2+4kx +3>0恒成立,当k =0时,3>0恒成立;当k >0,△<0,即16k 2﹣12k <0,解得0<k 34<;当k <0不等式不恒成立,综上可得k 的范围是[0,34);②若f (x )的值域为R ,可得y =kx 2+4kx +3取得一切正数,则k >0,△≥0,即16k 2﹣12k ≥0,解得k 34≥.故答案为:(1).[0,34)(2).k 34≥【点睛】本小题主要考查根据对数型复合函数的定义和值域求参数的取值范围,属于中档题.16.函数253sin cos 82y x a x a =+⋅+-在闭区间0,2π⎡⎤⎢⎥⎣⎦上的最大值是1,则=a __________.【答案】32【解析】【分析】令[]cos ,0,1x t t =∈,即求25218y t at a =-++-在[]0,1上的最大值,需要根据对称轴的位置进行分类讨论即可求出结果.【详解】22535sin cos cos cos 82812y x a x a x a x a =+⋅+-=-+⋅+-,令[]cos ,0,1x t t =∈,则25218y t at a =-++-,对称轴2at =,若02a ≤,即0a ≤时,25218y t at a =-++-在0=t 处取得最大值,即51821a -=,解得125a =,与0a ≤矛盾,故不合题意,舍去;若012a <<,即12a <<时,25218y t at a =-++-在2a t =处取得最大值,即25122821a a a a ⎛⎫-+⋅+-= ⎪⎝⎭,即225120a a +-=,解得4a =-或32a =,因为12a <<,所以32a =;若12a ≥,即2a ≥时,25218y t at a =-++-在1t =处取得最大值,即251=1821a a -++-,解得2013a =,与2a ≥矛盾,故不合题意,舍去;综上:32a =.故答案为:32.四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知a ∈R ,集合{}2230A x x x =--≤,{}220B x x ax =--=.(1)若1a =,求A B ⋂;(2)若A B A ⋃=,求实数a 的取值范围.【答案】(1){}2,1-(2)71,3⎡⎤⎢⎥⎣⎦【解析】【分析】(1)首先解一元二次不等式求出集合A ,再根据条件求出集合B ,最后根据交集的定义计算可得;(2)依题意可得B A ⊆,则问题转化为关于x 的方程220x ax --=在区间[]1,3-上有两个不相等的实数根,结合二次函数的性质计算可得.【小问1详解】由2230x x --≤,即()()130x x +-≤,解得13x -≤≤,所以{}{}2230|13A x x x x x =--≤=-≤≤当1a =时{}{}2202,1B x x x =--==-,所以{}2,1A B =- 【小问2详解】因为A B A ⋃=,所以B A ⊆,关于x 的方程220x ax --=,因为280a ∆=+>,所以关于x 的方程220x ax --=必有两个不相等的实数根,依题意关于x 的方程220x ax --=在区间[]1,3-上有两个不相等的实数根,所以()()2213211203320a a a ⎧-<<⎪⎪⎪--⨯--≥⎨⎪--≥⎪⎪⎩,解得713a ≤≤,所以实数a 的取值范围为71,3⎡⎤⎢⎥⎣⎦.18.设集合{}12A x x =-≤≤,{}121B x m x m =-<<+.(1)若B A ⊆,求实数m 的取值范围;(2)若()R B A I ð中只有一个整数2-,求实数m 的取值范围.【答案】(1)(]1,20,2⎡⎤-∞-⎢⎥⎣⎦ ;(2)3,12⎛⎫-- ⎪⎝⎭.【解析】【分析】(1)分B =∅和B ≠∅两种情况讨论,结合B A ⊆列出关于实数m 的不等式(组),解出即可得出实数m 的取值范围;(2)求出集合R A ð,由题意得知B ≠∅,且有1213122213m m m m -<+⎧⎪-≤-<-⎨⎪-<+≤⎩,解该不等式组即可得出实数m 的取值范围.【详解】(1)集合{}12A x x =-≤≤,{}121B x m x m =-<<+.①当B =∅时,121m m -≥+,解得2m ≤-,符合要求;②当B ≠∅时,若B A ⊆,121m m -<+,则12111212m m m m -<+⎧⎪-≥-⎨⎪+≤⎩,解得102m ≤≤.综上,实数m 的取值范围是(]1,20,2⎡⎤-∞-⎢⎥⎣⎦;(2) 集合{}12A x x =-≤≤,{1R A x x ∴=<-ð或}2x >,若()B A R ð中只有一个整数2-,则必有B ≠∅,1213122213m m m m -<+⎧⎪∴-≤-<-⎨⎪-<+≤⎩,解得312m -<<-,因此,实数m 的取值范围是3,12⎛⎫-- ⎪⎝⎭.【点睛】本题考查利用集合的包含关系求参数的取值范围,同时也考查了利用交集与补集的混合运算求参数,解题时要结合题意列出不等式组进行求解,考查分析问题和解决问题的能力,属于中等题.19.设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值;(2)求函数22[()][()]124y f x f x ππ=+++的值域.【答案】(1)3,22ππ;(2)331,122⎡-+⎢⎣⎦.【解析】【分析】(1)由函数的解析式结合偶函数的性质即可确定θ的值;(2)首先整理函数的解析式为()sin y a x b ωϕ=++的形式,然后确定其值域即可.【详解】(1)由题意结合函数的解析式可得:()()sin f x x θθ+=+,函数为偶函数,则当0x =时,()02k k Z πθπ+=+∈,即()2k k Z πθπ=+∈,结合[)0,2θ∈π可取0,1k =,相应的θ值为3,22ππ.(2)由函数的解析式可得:22sin sin 124y x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭1cos 21cos 26222x x ππ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭=+11cos 2cos 2226x x ππ⎡⎤⎛⎫⎛⎫=-+++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦111cos 2sin 2sin 2222x x x ⎛⎫=--- ⎪ ⎪⎝⎭1331cos 2sin 2222x x ⎛⎫=-- ⎪ ⎪⎝⎭31sin 226x π⎛⎫=+- ⎪⎝⎭.据此可得函数的值域为:1,122⎡-+⎢⎣⎦.【点睛】本题主要考查由三角函数的奇偶性确定参数值,三角函数值域的求解,三角函数式的整理变形等知识,意在考查学生的转化能力和计算求解能力.20.已知函数())2πcos 204f x x x ωωω⎛⎫=-++> ⎪⎝⎭的最小正周期是π.(1)求函数()y f x =的单调递增区间;(2)若对任意的π5π,1212x ⎡⎤∈-⎢⎥⎣⎦,都有()2f x m -≤,求m 的取值范围.【答案】(1)62ππ,π,Zπ3k k k ⎡⎤-+-+∈⎢⎥⎣⎦(2)2,0⎤-⎦【解析】【分析】(1)利用二倍角公式及两角和的余弦公式化简,再根据周期公式求出ω,即可得到函数解析式,最后根据余弦函数的性质求出单调递增区间;(2)由x 的取值范围求出π23x +的范围,即可求出()f x 的值域,由()22m f x m -≤≤+恒成立得到关于m 的不等式组,解得即可.【小问1详解】因为()2πcos 24f x x x ωω⎛⎫=-++ ⎪⎝⎭πcos 224x x ωω⎛⎫=+ ⎪⎝⎭πcos 222x x ωω⎛⎫=++ ⎪⎝⎭cos 22x xωω=132cos 2sin 222x x ωω⎛⎫=- ⎪ ⎪⎝⎭π2cos 23x ω⎛⎫=+ ⎪⎝⎭,又0ω>且函数的最小正周期是π,所以2ππ2T ω==,解得1ω=,所以()π2cos 23f x x ⎛⎫=+ ⎪⎝⎭,令Z ππ2π22π,3k x k k -+≤+≤∈,解得2ππππ,Z 36k x k k ≤--+≤+∈,所以函数()y f x =的单调递增区间为62ππ,π,Z π3k k k ⎡⎤-+-+∈⎢⎥⎣⎦.【小问2详解】当π5π,1212x ⎡⎤∈-⎢⎣⎦,则ππ7π2,366x ⎡⎤+∈⎢⎥⎣⎦,所以πcos 21,32x ⎡⎛⎫+∈-⎢ ⎪⎝⎭⎣⎦,则()f x ⎡∈-⎣,因为对任意的π5π,1212x ⎡⎤∈-⎢⎥⎣⎦,都有()2f x m -≤,即对任意的π5π,1212x ⎡⎤∈-⎢⎣⎦,都有()22f x m -≤-≤,即对任意的π5π,1212x ⎡⎤∈-⎢⎣⎦,都有()22m f x m -≤≤+,所以222m m ⎧+≥⎪⎨-≤-⎪⎩20m ≤≤,即m的取值范围为2,0⎤-⎦.21.已知函数()ln (0,e 2.71828e xaf x x a =->=L 为自然对数的底数).(1)当1a =时,判断函数()f x 的单调性和零点个数,并证明你的结论;(2)当[]1,e x ∈时,关于x 的不等式()2ln f x x a >-恒成立,求实数a 的取值范围.【答案】(1)函数()f x 的零点个数为1个,证明见解析(2)()e 1e,∞++【解析】【分析】(1)利用函数单调性证明,再利用零点存在性定理即可知零点个数.(2)将()2ln f x x a >-转化为ln ln e ln e ln a x x a x x -+-+>,构造函数()e xg x x =+,转化为ln ln a x x ->,即ln ln a x x >+,即()max ln ln a x x >+,求解即可.【小问1详解】函数()f x 的定义域为()0,∞+.当1a =时,函数()e1ln x f x x =-在()0,∞+上单调递减,证明如下:任取()12,0,x x ∈+∞,且12x x <,()()12121212211111ln ln ln ln e e e ex x x x f x f x x x x x -=--+=--211221e e ln e e x x x x x x -=+⋅∵120x x <<,∴21211,e e 0x x x x >->,21ln 0xx ∴>∴()()120f x f x ->,即()()12f x f x >.所以函数()e1ln x f x x =-在()0,∞+上单词递减.又1111(1)ln10,(e)ln e 10e e e ex x f f =-=>=-=-<∴()e 1ln xf x x =-在区间()1,e 上存在零点,且为唯一的零点.∴函数()f x 的零点个数为1个【小问2详解】()2ln f x x a >-可化为ln 2ln e xaa x x +>+.可化为ln e ln ln a x a x x x -+->+.可化为ln ln e ln e ln a x x a x x -+-+>.令()e xg x x =+,可知()e x g x x =+在R 单调递增,所以有ln ln a x x ->,即ln ln a x x>+令()ln h x x x =+,可知()ln h x x x =+在(0,)+∞上单调递增.即()ln h x x x =+在[]1,e 上单调递增,max ()(e)ln e e 1eh x h ==+=+e 1max ln ()e 1ln e a h x +∴>=+=,e 1e a +∴>所以实数a 的取值范围是()e 1e,∞++.【点睛】方法点睛:本题考查不等式的恒成立问题,不等式恒成立问题常见方法:①分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);②数形结合(()y f x =图像在()y g x =上方即可);③讨论最值()min 0f x ≥或()max 0f x ≤恒成立.22.已知函数2()|2|f x x x x a =+-,其中a 为实数.(Ⅰ)当1a =-时,求函数()f x 的最小值;(Ⅱ)若()f x 在[1,1]-上为增函数,求实数a 的取值范围;(Ⅲ)对于给定的负数a ,若存在两个不相等的实数12,x x (12x x <且20x ≠)使得12()()f x f x =,求112x x x +的取值范围.【答案】(Ⅰ)12-(Ⅱ)2a ≤-或0a >;(Ⅲ)见解析【解析】【分析】(Ⅰ)由题可知2222,2()22,2x ax x af x x x x a ax x a⎧-≥=+-=⎨<⎩当1a =-时,222,2()2,2x x x f x x x ⎧+≥-=⎨-<-⎩,分别讨论该函数在各段上的最小值和区间端点值,进而求出在整个定义域上的最小值;(Ⅱ)因为()f x 在[1,1]-上为增函数,分0a >,0a =,0a =三种情况讨论即可(Ⅲ)因为a<0,则()f x 在(,)2a -∞上为减函数,在(,)2a +∞上为增函数,所以122ax x <<,令112x x M x +=,分122aa x ≤<,12x a <两种情况具体讨论即可.【详解】解:2222,2()22,2x ax x a f x x x x a ax x a⎧-≥=+-=⎨<⎩(Ⅰ)当1a =-时,222,2()2,2x x x f x x x ⎧+≥-=⎨-<-⎩所以当12x =-时()()2222f x x x x +=≥-有最小值为1122f ⎛⎫-=- ⎪⎝⎭;当2x =-时,由()()22f x x x =-<-得()1242f -=>-,所以当1a =-时,函数()f x 的最小值为12-(Ⅱ)因为()f x 在[1,1]-上为增函数,若0a >,则()f x 在R 上为增函数,符合题意;若0a =,不合题意;若a<0,则12a≤-,从而2a ≤-综上,实数a 的取值范围为2a ≤-或0a >.(Ⅲ)因为a<0,则()f x 在(,)2a -∞上为减函数,在(,)2a +∞上为增函数,所以122ax x <<,令112x x M x +=1、若122a a x ≤<,则12x x a +=,由20x ≠知22a x a <≤-且20x ≠所以121222221x a x a x a x x a x x x -+=+-=--+令()1ag x x a x=--+,则()g x 在,[上为增函数,在)+∞,(-∞上为减函数(1)当4a ≤-时,2a≤a ->,则()g x 在,[上为增函数,在]a -,[2a上为减函数从而当22ax a <<-且20x ≠所以2()1g x a ≥-+或2()1g x a≤--+(2)当41a -<<-时,2a>且a ->,则()g x 在,[,0)2a上为增函数,在]a -上为减函数从而当22ax a <<-且20x ≠所以2()12ag x >+或2()1g x a ≤-+(3)当10a -≤<时,2a >且a -<,则()g x 在(0,]a -,[,0)2a上为增函数,从而当22ax a <<-且20x ≠所以2()12ag x >+或2()22g x a <-2、若12x a <,则2122222ax x ax =-,2212x x x a=-且2x a>-第21页/共21页2222222211222(,22)(11)1x x x x a x a a x a x x x x a+=+=--∞-∈+---因为221a a-≤-+综上所述,当4a ≤-时,112x x x +的取值范围为(,1]1,)a a -∞--+-++∞ ;当41a -<<-时,112x x x +的取值范围为(,1](1,)2a a +-∞--++∞ ;当10a -≤<时,112x x x +的取值范围为(,22)(1,)2a a -∞-++∞ .【点睛】本题考查函数的综合应用,包括求最值,单调性,分类讨论思想等,属于偏难题目.。

【最新】高一数学寒假作业参考答案-实用word文档 (6页)

【最新】高一数学寒假作业参考答案-实用word文档 (6页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==高一数学寒假作业参考答案高一数学寒假作业参考答案一、填空题1.{1,3,7,8} .A∩B={1,3},(A∩B)∪C={1,3,7,8}.2.f(x)=3x-1. 设x+1=t,则x=t-1,∴f(t)=3(t-1)+2=3t-1,∴f(x)=3x-1.3.3. f(4)=2×4-1=7,f(-1)=-(-1)2+3×(-1)=-4,∴f(4)+f(-1)=3.4.[2,+∞) . f(x)=-(x-)2+的增区间为(-∞,],由条件知≥1,∴m≥2.5.-x2+x+1.6.[0,+∞) .7.f(3)0,则f(x2)-f(x1)<0,即f(x2)2>1,∴f(3)8.12. 设两项兴趣小组都参加的有x人,则有(27-x)+(32-x)+x+3=50,x=12。

9.B . A*B的本质就是集合A与B的并集中除去它们的公共元素后,剩余元素组成的集合.因此(A*B)*A是图中阴影部分与A的并集,除去A中阴影部分后剩余部分即B.10. .画出图象可得.11.7-2. 作出F(x)的图象,如图实线部分,由3+2x=x2-2x,得x=2-.故最大值为f(2-)=7-2.12.(0,2] 当a<0时,f(x)在定义域上是增函数,不合题意,∴a>0.由2-ax≥0得,x≤,∴f(x)在(-∞,]上是减函数,由条件≥1,∴013.3800. 由于4000×11%=440>420,设稿费x元,x<4000,则(x-800)×14%=420,∴x=3800(元).14. =-1,或 =2. 依对称轴为与区间[0,1]的位置关系,分三类讨论可得.二、解答题15.(1)因为A∩B≠,所以a<-1或a+3>5,即a<-1或a>2.(2)因为A∩B=A,所以AB,所以a>5或a+3<-1,即a>5或a<-4.16. , 又 (1)当时, ;(2)当时,, ;(3)当时,, .综上知的取值集合是 .17.(1)∵f(x)为二次函数且f(0)=f(2),∴对称轴为x=1.又∵f(x)最小值为1,∴可设f(x)=a(x-1)2+1 (a>0)∵f(0)=3,∴a=2,∴f(x)=2(x-1)2+1,即f(x)=2x2-4x+3.(2)由条件知2a<10,又2a注:本题也可从条件不单调减函数直接得a+1>1,加上前提2a18.如图,剪出的矩形为CDEF,设CD=x,CF=y,则AF=40-y.∵△AFE∽△ACB.∴=即∴=∴y=40-x.剩下的残料面积为:S=×60×40-x·y=x2-40x+1 200=(x-30)2+600∵0∴在边长60cm的直角边CB上截CD=30cm,在边长为40cm的直角边AC上截CF=20cm时,能使所剩残料最少.19.⑴ 奇函数,,即,,,,又,,, .⑵任取,且,在上是增函数.⑶单调减区间为,当时, ;当时, .20.(1)x-2<2x,则或∴x≥2或.(2)F(x)=x-a-ax,∵0∴F(x)=-(a+1)x+a. ∵-(a+1)<0,∴函数F(x)在(0,a]上是单调减函数,∴当x=a时,函数F(x)取得最小值为-a2.(3)F(x)=x-a-ax,当a≤0时,F(x)在[0,+∞)上是单调增函数,∴当x=0时函数F(x)取得最小值为-a;当a>0时,且在0≤x≤a时,F(x)=-(a+1)x+a,-(a+1)<0,f(x)在[0,a]上是单调减函数;在x≥a>0时,F(x)=(1-a)x-a,当a>1时F(x)在[a,+∞)上是单调减函数,故当a>1时函数F(x)在[0,+∞)上是单调减函数,无最小值;当a=1时,F(x)在[a,+∞)上恒有F(x)=-1,故当a=1时函数F(x)在[0,+∞)上的最小值为-1;当0综上所述, 当a≤0时,F(x)在[0,+∞)上取得最小值为-a;当01时函数F(x)无最小值.1.下列命题中正确的是()A.平行的两条直线的斜率一定相等 B.平行的两条直线的倾斜角相等C.斜率相等的两直线一定平行 D.两直线平行则它们在y轴上截距不相等2.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y轴上的截距为,则m,n的值分别为()A.4和3 B.-4和3 C.-4和-3 D.4和-33.直线:kx+y+2=0和:x-2y-3=0, 若,则在两坐标轴上的截距的和()。

高中数学高一上学期寒假作业答案与解析

高中数学高一上学期寒假作业答案与解析

一、选择题 1.【答案】D【解析】因为集合{}1,2,3,4A =,{}1,3,5B =,所以{}1,3A B =I ,故选D . 2.【答案】B【解析】因为{|35}B x x =≤≤,所以{}35B x x x =<>R 或ð,又因为集合{}|24A x x =<<,所以{}45A B x x x =<>R U 或ð,故选B . 3.【答案】B【解析】∵{}{}23030A x x x x x =-->=-<<,{}1B x x =<-,图中阴影部分表示的集合为A B I ,∴{}|31A B x x =-<<-I .故选B . 4.【答案】A【解析】函数()ln 1y x =-的定义域为{}1M x x =<,{}{}2001N x x x x x =-<=<<,结合选项M N N =I 正确,故选A . 5.【答案】D【解析】∵集合{}21A x y x ==-,∴集合A =R ,∵集合{}2B y y x ==,∴集合[)0,B =+∞,∴[)0,A B =+∞I ,故选D . 6.【答案】D【解析】∵{}212,4,2A a a a =+-,且3A -∈,∴243a a +=-或23a -=-. ①当243a a +=-时,即2430a a ++=,解得1a =-或3a =-. 若1a =-,则{}12,3,3A =--,不满足互异性,舍去. 若3a =-,则{}12,3,5A =--,满足题意. ②当23a -=-时,解得1a =-,不合题意.寒假训练01 集合综上3a =-.故选D . 7.【答案】A【解析】{}{}2|3201,2A x x x =-+==,∵A B B =I ,∴B A ⊆, 当B =∅时,20ax -=无解,∴0a =.B ≠∅时,2x a =,∴21a=或22a =,解得:2a =或1a =, 所以,实数a 的值为0a =或1a =或2a =.故选A . 8.【答案】D【解析】解集合A ,得{}1A x x =>,解集合B ,{B y y ==,得{}2B y y =≥,所以{}2U B y y =<ð,所以(){}{}()121,2U A B x x y y =><=I I ð,所以选D . 9.【答案】C【解析】因为集合{}25,35M a a =-+,{}1,3N =,M N ≠∅I , 所以2351a a -+=或2353a a -+=,即2340a a -+=或2320a a -+=, 解2340a a -+=得,此方程无解;解2320a a -+=得,1a =或2a =, 综上,a 的值为1或2,故选C . 10.【答案】B【解析】①若B =∅,则121m m +>-,∴2m <;②若B ≠∅,则m 应满足:12112 215m m m m +≤⎧⎪⎨+>--≤⎪⎩-,解得23m ≤≤,综上得3m ≤,∴实数m 的取值范围是(],3-∞.故答案为B . 11.【答案】D【解析】∵集合(){},|2M x y x y =+=,(){},|4N x y x y =-=,∴()()(){}23,,3,141x y x M N x y x y x y y ⎧⎫⎧⎫+==⎪⎪⎪⎪===-⎨⎬⎨⎬-==-⎪⎪⎪⎪⎩⎭⎩⎭⎧⎧⎨⎨⎩⎩I ,故选D .12.【答案】D【解析】{}{}22021A x x x x x =+-<=-<<,{}21111,0B x x x x x ⎧⎫=>=-<<≠⎨⎬⎩⎭且,则{}|11,0A B x x x =-<<≠I 且,故选D .二、填空题 13.【答案】(],2-∞【解析】由题{}A x x a =<,{}2B x x =<-,且A B =∅I , 当0a ≤时,A =∅,则A B =∅I ;当0a >时,{}{}A x x a A x a x a =<==-<<,{}2B x x =<-,A B =∅I ,则可得02a <≤,故a 的取值范围是(],2-∞.14.【答案】{}1,3-【解析】{}3,1A =-,{}B a =,B ⊂≠A ,则实数a 的值构成的集合是{}1,3-. 15.【答案】{}1,2【解析】根据(){}0,4U A B =I ð知,集合B 有0,4,集合A 没有0,4. 根据()(){}3,5U UA B =I痧可知,集合B 没有3,5,集合A 没有3,5.由于A U ⊆,所以集合{}1,2A =. 16.【答案】1- 【解析】∵若x M ∈,则11M x ∈-;∵4M ∈,则11143M =-∈-; ∵13M -∈,则131413M =∈⎛⎫-- ⎪⎝⎭;∵34M ∈,则14314M =∈-,故134,,34M ⎧⎫=-⎨⎬⎩⎭,集合M 的所有元素之积为134134⎛⎫⨯-⨯=- ⎪⎝⎭,故答案为1-.三、解答题17.【答案】(1){}13A B x x =<<I ;(2){}2m m ≤.【解析】(1)由已知得{}{}101A x x x x =->=>,又{}|13B x x =-<<,∴{}13A B x x =<<I . (2)∵C B B =U ,∴C B ⊆,①当C =∅时,满足C B ⊆,此时21m m ≥-,解得1m ≤. ②当C ≠∅时,由C B ⊆可得211213m m m m <-≥--≤⎧⎪⎨⎪⎩,解得12m <≤,综上可得2m ≤.∴实数m 的取值范围为{}2m m ≤.18.【答案】(1){}|23x x -<≤,{}21x x -<<-;(2){}3a a <. 【解析】(1)由题意得{}{}223013A x x x x x =--≤=-≤≤, ∵{}22B x x =-<<,∴{}23A B x x =-<≤U .又{}13U A x x x =<->或ð,∴(){}21U A B x x =-<<-I ð. (2)∵{}13A x x =-≤≤,{}C x x a =>,A C ≠∅I , ∴3a <,∴实数a 的取值范围是{}3a a <.一、选择题 1.【答案】A【解析】由函数()2log f x x +的解析式,可得200x x -≥>⎧⎨⎩,解不等式可得,函数()2log f x x =的定义域是(]0,2,故选A . 2.【答案】A【解析】由分段函数第二段解析式可知,()()35f f =,继而()()57f f =,寒假训练02 函数的概念与性质由分段函数第一段解析式()7752f =-=,()32f ∴=,故选A . 3.【答案】C【解析】令213x +=-,解得2x =-,故()()234216f -=⨯-=.所以选C .4.【答案】B【解析】Q 函数()()()1,122,1x xx f x x -⎧-<⎪=⎨⎪≥⎩,()4123f ∴-=+=,则()()()314328f f f --===,故选B . 5.【答案】D【解析】()f x Q 对于任意实数x 恒有()1221f x f x x ⎛⎫-=+ ⎪⎝⎭,用1x 代替式中x 可得()1221f f x x x ⎛⎫-=+ ⎪⎝⎭,联立两式可得()12433f x x x ⎛⎫=⨯++ ⎪⎝⎭,()122423432f ⎛⎫=⨯+⨯+= ⎪⎝⎭,故选D .6.【答案】C【解析】对于A ,3y x =在定义域R 内是增函数,不满足题意; 对于B ,2y x =在(),0-∞递减,在()0,+∞递增,不满足题意; 对于C ,1y x =-+定义域R 内是减函数,满足题意; 对于D ,2y x=在(),0-∞和()0,+∞都单调递减,但在整个定义域没有单调性, 不满足题意,故选C . 7.【答案】C【解析】()()22212g f =--=-,由于函数为偶函数,故()()22212g f -=-+-=-,()23f -=-.故选C .8.【答案】C【解析】因为函数()()()()1231ln 1a x a x f x xx ⎧-+<⎪=⎨≥⎪⎩的值域为R , 所以()1201230a a a ->-+⎧⎪⎨⎪⎩≥,解得112a -≤<,故选C . 9.【答案】C【解析】函数()e 21xf x x =--是偶函数,排除选项B ;当0x >时,函数()e 21x f x x =--,可得()'e 2x f x =-,当()0,ln2x ∈时,()'0f x <,函数是减函数,当ln2x >时,函数是增函数,排除项选项A ,D ,故选C . 10.【答案】B【解析】因为函数对任意12x x ≠,都有()()12120f x f x x x -<-成立,所以函数在定义域内单调递减,所以()01410log 14112aa a a a<<-<≥-⋅+⎧⎪⎨⎪⎩,106a ∴<≤,故答案为B .11.【答案】B【解析】函数()f x 满足()()0f x f x +-=,且当0x <时,()222f x x =-,()1220f ∴-=-=,()()()100f f f -==,()()()2222226f f ⎡⎤∴=--=-⨯--=-⎣⎦,()()()12066f f f -+=-=-,故选B .12.【答案】B【解析】因为函数()()21x mf x m -=+∈R 为偶函数,所以0m =, 则()f x 在[)0,+∞上单调递增,因为()()12log 211a f f f ⎛⎫==-= ⎪⎝⎭,()()2log 42b f f ==,()()20c f m f ==,所以c a b <<,故选B .二、填空题13.【答案】{x x ≠,()1,0,3⎡⎫-∞+∞⎪⎢⎣⎭U【解析】要使函数()213f x x=-有意义,则230x -≠,求得x ≠,即函数的定义域为{x x ≠;设213y x =-,可得2310y x y -=≥,解得13y ≥或0y <, 即函数的值域为()1,0,3⎡⎫-∞+∞⎪⎢⎣⎭U ,故答案为{x x ≠,()1,0,3⎡⎫-∞+∞⎪⎢⎣⎭U .14.【答案】3【解析】由题得()()0f x f x -+=,所以232302121xxx x a a --⋅+⋅++=--,3232012112x x x xaa +⋅+∴+=--,322301221x x x x a a +⋅⋅+∴+=--,3223021x x x a a --⋅+⋅+∴=-,32230x x a a ∴--⋅+⋅+=,()()2330x a a ∴---=,()()2130x a ∴--=,3a ∴=,故答案为3.15.【答案】()21xf x x =- 【解析】设0x <,则0x ->,又当0x >时,()21x f x x -=+,故()21xf x x -=-+, 又函数为奇函数,故()()21x f x f x x -=-=-+,()21x f x x =-,故答案为()21xf x x =-.16.【答案】13,22⎛⎫⎪⎝⎭【解析】由于函数是偶函数,且在(),0-∞上递增,故函数在()0,+∞上递减,故原不等式可转化为13a -<112033a -<<,即112a -<,11122a -<-<,1322a <<.三、解答题17.【答案】(1)()f x 的单调减区间为(],1-∞,()1,+∞,无单调增区间;(2)当01a <≤时,不等式的解集为(](),1,a -∞+∞U ;当1a >时,不等式的解集为][(),1,a -∞+∞U . 【解析】(1)2a =-时,()()()2,1212,1x x f x x x x --≤⎧⎪=⎨--+>⎪⎩,因为2y x =--的斜率为负值,所以由一次函数性质得()f x 在(],1-∞上递减;()()212y x x =--+的图象开口向下,对称轴为12x =-,由二次函数性质得()f x 在()1,+∞上递减,()f x 没有增区间.(2)0a >时,不等式转化为01a x x ->≤⎧⎨⎩,① 或()()101a x x a x ⎧-->>⎪⎨⎪⎩,②若01a <≤时,①解集为x a <;②解集为1x >,∴不等式解为()(),1,a -∞+∞U . 若1a >时,①解集为1x ≤;②解集为x a >,∴不等式解为(](),1,a -∞+∞U , 综上所述,01a <≤时,不等式()0f x >的解集为()(),1,a -∞+∞U ; 当1a >时,不等式的解集为(](),1,a -∞+∞U . 18.【答案】(1)见解析;(2)见解析. 【解析】(1)()f x 在R 上为单调增函数,证明如下:()312213131x x xf x +-==-++,任取1x ,2x ∈R ,且12x x <. ()()()()()12121212233221131313131x x x x x x f x f x -⎛⎫---= ⎪++++⎝⎭-=,因为12x x <,所以1233x x -, 所以()()120f x f x <-,所以()f x 在R 上为单调增函数. (2)()f x 在R 上为非奇非偶函数. 证明如下:()312g =,()112g -=,因为()()11g g ≠±-, 所以()f x 在R 上为非奇非偶函数.一、选择题 1.【答案】B寒假训练03 指、幂函数【解析】11222933422⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭==. 2.【答案】D【解析】设()f x x α=,则3α=⎝⎭,2α=-,则()f x 的表达式为()2f x x -=,故选D . 3.【答案】C【解析】因为在函数2x y a =+中,当0x =时,恒有023y a =+=, ∴函数2x y a =+的图象一定经过点()0,3,故选C .4.【答案】C【解析】A.12x =- ()0x ≥,因此不正确; B.13x-=()0x ≠,因此不正确;C.)34,0x x y y -⎛⎫≠ ⎪⎝⎭()0xy >,因此正确;D13y =,因此不正确.故选C . 5.【答案】B【解析】∵343log 02a ⎛⎫=< ⎪⎝⎭,32312b ⎛⎫ ⎪⎝⎭>=,433041c ⎛⎫<= ⎪⎭<⎝,b c a ∴>>,故选B .6.【答案】D【解析】由12136322215log 5log 103log 9182710-⨯⎡⎤⎛⎫-+-=+=-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,故选D .7.【答案】C【解析】由函数的解析式得,该函数的定义域为R ,当0x =时,021y ==,即函数过点()0,1,可排除选项A ; 当0x >时,1222x xxy --⎛⎫=== ⎪⎝⎭,即函数在()0,+∞的图象是12xy ⎛⎫= ⎪⎝⎭在()0,+∞的图象, 可排除选项B ,D ,故选C . 8.【答案】D【解析】22110x x y -⎛⎫= ⎪⎝⎭,1110<Q,故原函数单调递减, 要求函数递增区间就是要求22x x -的递减区间,∴当1x ≥时,22x x -单调递减, 故选D . 9.【答案】A【解析】①当01a <<时,函数()x y f x a ==在[]0,1上单调递减, 由题意得()()0max min 13f x f x a a a +=+=+=,解得2a =,不合题意. ②当1a >时,函数()x y f x a ==在[]0,1上单调递增,由题意得()()0max min 13f x f x a a a +=+=+=,解得2a =,符合题意. 综上可得2a =.故选A . 10.【答案】D【解析】令2xt =则22333324y t t t ⎛⎫=-+=-+ ⎪⎝⎭,对称轴为32t =.当[]2,4x ∈时,[]4,16t ∈,此时[]7,211y ∈,不满足题意; 当(],0x ∈-∞时,(]0,1t ∈,此时[]1,3y ∈,不满足题意;当(][]0,12,4x ∈U 时,(][]1,24,16t ∈U ,此时[]3,17,2114y ⎡⎤∈⎢⎥⎣⎦U ,不满足题意;当(][],01,2x ∈-∞U 时,(][]0,12,4t ∈U ,此时[]1,7y ∈,满足题意.故选D . 11.【答案】A【解析】根据指数函数xb y a ⎛⎫= ⎪⎝⎭可知:a ,b 同号且不相等,则02b a -<,∴二次函数2y ax bx =+图象的对称轴在y 轴左侧,故排除B ,D ,再由指数函数xb y a ⎛⎫= ⎪⎝⎭可知,1b a <,1b a ∴->-,二次函数2y ax bx =+与x 轴交点坐标为,0b a ⎛⎫- ⎪⎝⎭,故排除选项C ,故选A . 12.【答案】D【解析】由幂函数的性质可知()πf x x =在区间()0,+∞上单调递增,由于3e 0>>,故ππ3e >,即b c >,由指数函数的性质可知()e x g x =在区间()0,+∞上单调递增, 由于π30>>,故3πe e >,即c a >, 综上可得b c a >>.本题选择D 选项.二、填空题 13.【答案】(],2-∞【解析】由二次根式有意义,得420x -≥,即2242x ≤=, 因为2x y =在R 上是增函数,所以,2x ≤,即定义域为(],2-∞. 14.【答案】102y y ⎧⎫<<⎨⎬⎩⎭【解析】因为1012<<,所以函数12xy ⎛⎫= ⎪⎝⎭在()1,+∞上单调递减,由1x >可得1122xy ⎛⎫=< ⎪⎝⎭,又因为102x⎛⎫> ⎪⎝⎭,所以函数()112xy x ⎛⎫=> ⎪⎝⎭的值域为102y y ⎧⎫<<⎨⎬⎩⎭,故答案为102y y ⎧⎫<<⎨⎬⎩⎭.15.【答案】2318【解析】()2216330236412234π11272318-⎛⎫⎛⎫++=-+= ⎪ ⎪⎝⎭⎝⎭-.16.【答案】4【解析】∵()()257mf x m m x =-+在R 上为增函数,25710m m m ⎧-+=∴⎨>⎩,解得3m =,311log log 22log 2lg5lg 4log lg 25lg 43mm m∴++=++323131log 3lg10024222=++=++=,故答案为4.三、解答题17.【答案】(1)()21x f x x =+;(2)见解析;(3)10,2⎡⎫⎪⎢⎣⎭. 【解析】(1)因为()f x 是定义在[]1,1-上的奇函数,所以()()f x f x =--, 2211x a x a x bx x bx +-+=-++-+,()20b a x a --=,0a =,0b =,()21x f x x =+. (2)取1211x x -≤<≤,则121x x <,()()()()()()1212121222221212101111x x x x x x f x f x x x x x ---=-=<++++,所以()f x 在[]1,1-单调递增.(3)因为()()10f t f t -+<,所以()()1f t f t -<-,因为()f x 在[]1,1-单调递增, 所以111t t -≤-<-≤,102t ≤<. 18.【答案】(1)见解析;(2)1,4⎛⎫+∞ ⎪⎝⎭.【解析】(1)由已知可得()21123b f a +==+,()1001bf a+==+,解得1a =,1b =-, 所以()2121x x f x -=+,函数()f x 为奇函数.证明如下:()f x 的定义域为R ,()()21122112x xx xf x f x -----===-++Q ,∴函数()f x 为奇函数. (2)()2121x x f x -=+Q ,214x xm ∴-<⋅,()2111424xxx x m g x -⎛⎫⎛⎫∴>=- ⎪ ⎪⎝⎭=⎝⎭,故对于任意的[]0,2x ∈,()()214x x f x m +<⋅恒成立等价于()max m g x >, 令12xt ⎛⎫= ⎪⎝⎭,则2,114y t t t =-<<⎡⎤⎢⎥⎣⎦,则当12t =时,2max 111224y ⎛⎫=-= ⎪⎝⎭,故14m >,即m 的取值范围为1,4⎛⎫+∞ ⎪⎝⎭.一、选择题 1.【答案】D【解析】由题意,根据对数的运算性质,可知log 10a =,故选D . 2.【答案】D【解析】令21x +=,此时0y =,解得1x =-.1x =-时总有0y =成立,故函数()log 2a y x =+的图象恒过定点()1,0A -,所以点A 坐标为()1,0-,故选D . 3.【答案】B【解析】6662log 3log log 2log 3log 61=+==,故选B . 4.【答案】B【解析】∵函数()()211log ,1,221x x x f x x -⎧+-<⎪=⎨≥⎪⎩,∴()2log 1212log 1221226f -==÷=.故选B . 5.【答案】D【解析】因为函数()()22log 23f x x x +-=,所以2230x x +->, 即()()310x x +->,解得3x <-或1x >,所以函数()f x 的定义域为{}31x x x <->或,故选D . 6.【答案】B【解析】∵22log 5log 42a =>=,44log 15log 162c =<=, 324443log 15log 8log 4 1.52>===,052 1.5b ==., ∴a ,b ,c 的大小关系为b c a <<,故选B . 7.【答案】C【解析】令lg y t =,2430t x x =+->,()14x -<<,寒假训练04 对数函数lg y t =在()0,+∞为增函数,243t x x =+-在31,2⎛⎫- ⎪⎝⎭上是增函数,在3,42⎛⎫⎪⎝⎭上是减函数;根据复合函数单调性判断方法“同增异减”可知,函数()2lg 43y x x =+-的单调增区间为31,2⎛⎫- ⎪⎝⎭,故选C . 8.【答案】D【解析】因为函数()()log m f x m x =-在区间[]4,5上是单调函数,5m >, 所以()()log 4log 51m m m m ---=.所以45m m m -=-,即2640m m +=-, 又5m >,解得3m =+D . 9.【答案】A【解析】()()()2f x f x f x +=-=-,所以()f x 的图像的对称轴为1x =, ()229log 9log 4f f ⎛⎫=- ⎪⎝⎭,因291log 24<<,故2229916log 2log log 449f f f ⎛⎫⎛⎫⎛⎫=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中2160log 19<<,所以216log 92167log 2199f ⎛⎫=-= ⎪⎝⎭,故()27log 99f =-.故选A .10.【答案】C【解析】∵函数xy a -=与可化为函数1xy a ⎛⎫= ⎪⎝⎭,其底数大于1,是增函数,又log a y x =,当01a <<时是减函数,两个函数是一增一减,前增后减.故选C . 11.【答案】D【解析】由()12221x f x x -⎧≤≤⇔⎨≤⎩或2101log 2x x x >⇔≥-≤⎧⎨⎩, 所以满足()2f x ≤的x 的取值范围是[)0,+∞,故选D . 12.【答案】D【解析】易知函数()f x 的定义域为R ,()()))()22ln3ln32ln 1992ln122f x f x x x x x =+++=-=++-=+,由上式关系知,()()()112lg lg 2lg 222f g f f f ⎛⎫== ⎪⎝⎭++-.故选D .二、填空题 13.【答案】()12b a b ++【解析】()()()1lg30lg10lg31lg312lg62lg 2lg32lg 2lg32b a b +++=====+++, 故答案为()12b a b ++.14.【答案】(]1,2【解析】要使函数()f x =()12log 10x -≥,即011x <-≤,即12x <≤,故函数的定义域为(]1,2,故答案为(]1,2. 15.【答案】3,42⎛⎫ ⎪⎝⎭【解析】由对数函数的图象与性质,可知函数12log y x =在()0,+∞上是单调递减函数,所以不等式()()1231122log log x x +-<等价于不等式组10230123x x x x +>->+>-⎧⎪⎨⎪⎩,解得342x <<,即不等式的解集为3,42⎛⎫⎪⎝⎭.16.【答案】23【解析】由题意可知求b a -的最小值即求区间[],a b 的长度的最小值,当()0f x =时,1x =;当()1f x =时,3x =或13,所以区间[],a b 的最短长度为12133-=,所以b a -的最小值为23,故答案为23.三、解答题17.【答案】(1)1;(2)0;(3)19. 【解析】(1)原式()()()()()2210lg5lg 105lglg51lg51lg55+==+-⋅⨯+ ()()22lg51lg51-=+=.(2)方法一 原式()()27lg 272lg lg7lg 323=+--⨯⨯()()lg 2lg72lg7lg3lg72lg3lg 20=+--+-+=.方法二 原式227147lg14lg lg 7lg18lg lg1037183⨯⎛⎫=-+-=== ⎪⎝⎭⎛⎫⨯ ⎪⎝⎭. (3)原式()2933lg18lg1019=-⨯-++==.18.【答案】(1)1,3⎛⎫+∞ ⎪⎝⎭;(2)单调递增区间是()1,1-,单调递减区间是()1,3;(3)12a =.【解析】(1)因为()f x 的定义域为R ,所以2230ax x +>+对任意x ∈R 恒成立. 显然0a =时不合题意,从而必有00a Δ>⎧⎨<⎩,即04120a a >⎧⎨-<⎩,解得13a >.即a 的取值范围是1,3⎛⎫+∞ ⎪⎝⎭.(2)因为()11f =,所以()4log 51a =+,因此54a +=,1a =-, 这时()()24log 23f x x x -++=.由2230x x -+>+,得13x -<<,即函数定义域为()1,3-.令()223g x x x =-++,则()g x 在()1,1-上单调递增,在()1,3上单调递减. 又4log y x =在()0,+∞上单调递增,所以()f x 的单调递增区间是()1,1-, 单调递减区间是()1,3.(3)假设存在实数a 使()f x 的最小值为0,则()223h x ax x =++应有最小值1, 因此应有0311a a a>⎧⎪-⎨=⎪⎩,解得12a =.故存在实数12a =使()f x 的最小值为0.一、选择题 1.【答案】B寒假训练05 函数应用【解析】函数()2ln f x x x =-,在0x >上单调递增,()2ln 210f =-<,()23ln303f =->,函数()f x 零点所在的大致区间是()2,3,故选B . 2.【答案】C【解析】开区间()0,1的长度等于1,每经过一次操作,区间长度变为原来的一半, 经过n 此操作后,区间长度变为12n , Q 用二分法求函数()()ln 11f x x x =++-在区间()0,1上近似解,要求精确度为0.01,10.012n∴≤,解得7n ≥,故选C . 3.【答案】A【解析】根据题意,由表格可知,方程()ln 26f x x x =+-的近似根在()2.5,3,()2.5,2.75,()2.5,2.625内,据此分析选项A 中2.55符合,故选A .4.【答案】B【解析】设()()()g x x m x n =--,则()()()2f x x m x n =--+,分别画出这两个函数的图象,其中()f x 的图象可看成是由()g x 的图象向上平移2个单位得到,如图,由图可知m n αβ<<<,故选B . 5.【答案】B【解析】令()0f x =,得2110x x -+=,所以211x x +=,再作出函数211y x y x=+=与的图像,由于两个函数的图像只有一个交点,所以零点的个数为1,故答案为B . 6.【答案】B【解析】由题意求满足()1130112%200n -+>最小n 值,由()1130112%200n -+>,得()1lg 130112%lg200n -⎡⎤+>⎣⎦,()lg1.321lg1.12lg22n ∴++->+,()0.110.0510.3n +->, 4.8n ∴>,min 5n ∴=,开始超过200万元的年份是2017512021+-=,故选B . 7.【答案】C【解析】因为()332ln31ln30f =--=-<,()442ln42ln40f =--=->, 所以根据零点存在定理得在()3,4有零点,故选C . 8.【答案】D【解析】因为方程()2250x m x m ++++=有两个正根,所以()()()224502050m m m m +-+⎧⎪⎪⎨≥-+>+>⎪⎪⎩,4425m m m m ≤-≥⎧⎪∴<-⎨⎪>-⎩或,54m ∴-<≤-,故选D . 9.【答案】C【解析】由题意知,0x ≠,则原方程为()1lg 2x x+=, 在同一直角坐标系中作出函数()lg 2y x =+与1y x=的图象,如图所示,由图象可知,原方程有两个根,一个在区间()2,1--上,一个在区间()1,2上, 所以2k =-或1,故选C . 10.【答案】B【解析】函数()21x f x m =--的零点即为210x m --=的解集, 化简得21x m =-,令()21x h x =-,画出函数图象如下图所示,由图象可知,若有两个交点,则m 的取值范围为01m <<,所以选B . 11.【答案】D 【解析】如图:方程5lg x x -=有两个根分别为1x ,2x ,不妨令12x x <,由图可知两根的范围是1201x x <<<,则115lg x x -=-①,225lg x x -=②,作差②-①得:1212lg 0x x x x -=<, 即1201x x <<,故选D . 12.【答案】D【解析】()[]()1111f x x x +=++-+,而[][]11x x +=+,故()[]()[][]()11111111f x x x x x x x f x +=++-+=++--=+-=, 当[)0,1x ∈时,()1f x x =-,故()f x 在[)0,+∞上的图像如图所示:因为log a y x =的图像与()y f x =的图像有3个交点,故1log 31log 41a aa >≤>⎧⎪⎨⎪⎩,故34a ≤<,故选D .二、填空题 13.【答案】3.75(或154) 【解析】由题意函数关系2p at bt c =++(a ,b ,c 是常数)经过点()3,0.7,()4,0.8,()5,0.5,∴930.71640.82550.5a b c a b c a b c ++=++=++=⎧⎪⎨⎪⎩,得0.2a =-, 1.5b =,2c =-, ∴()220.2 1.520.23750.8125p t t t =-+-=--+., ∴得到最佳加工时间为3.75分钟.故答案为3.75. 14.【答案】()(),01,-∞+∞U【解析】∵()()g x f x a =-有两个零点,∴()f x a =有两个零点,即()y f x =与y a =的 图象有两个交点,由32x x =可得,0x =或1x =. ①当1m >时,函数()f x 的图象如图所示,此时存在a 满足题意,故1m >满足题意.②当1m =时,由于函数()f x 在定义域R 上单调递增,故不符合题意. ③当01m <<时,函数()f x 单调递增,故不符合题意.④0m =时,()f x 单调递增,故不符合题意. ⑤当0m <时,函数()y f x =的图象如图所示,此时存在a 使得()y f x =与y a =有两个交点.综上可得0m <或1m >,所以实数m 的取值范围是()(),01,-∞+∞U . 15.【答案】()0,1【解析】函数()f x 图象如图,所以若()0f x a -=有三个不同的实数解,则a 的取值范围为()0,1. 16.【答案】6【解析】由题意可得方程36x x =-和3log 6x x =-的解分别为1x 和2x , 设函数3x y =的图象和直线6y x =-的图象交点为A ,函数3log y x =的图象和直线6y x =-的交点为B ,线段AB 的中点为C , 则点C 的横坐标为122x x +. 函数3x y =和函数3log y x =互为反函数,它们的图象关于直线y x =对称, 且直线6y x =-自身关于直线y x =对称,∴A ,B 两点关于直线y x =,即点C 在直线直线y x =, 易得1206322x x ++==,即126x x +=,故答案为6. 三、解答题17.【答案】(1)从7时起,水塔中水的剩余量何时开始低于10吨;(2)进水量应选为第4级.【解析】(1)当2x =时,由10y <得1090t t -<,且016t ≤≤,所以19t <<,181t <<.所以从7时起,水塔中水的剩余量何时开始低于10吨. (2)根据题意0300y <≤,进水x 级,所以010********xt t t <+--. 由左边得211111011024x t t t ⎡⎤⎫⎫>+-=+--+⎢⎥⎪⎪⎭⎭⎢⎥⎣⎦, 当4t =时,21111024t ⎡⎤⎫+-+⎢⎥⎪⎭⎢⎥⎣⎦-有最大值3.5.所以 3.5x >.由右边得201x t ≤+, 当16t =时,201t ++有最小值4.75,所以 4.75x ≤, 综合上述,进水量应选为第4级.18.【答案】(1)见解析;(2)见解析;(3)511,24⎛⎫⎪⎝⎭.【解析】(1)证明:函数()f x 的定义域为()0,+∞,设120x x <<,则12ln ln x x <,1222x x <,∴1122ln 26ln 26x x x x <+-+-.∴()()12f x f x <. ∴()f x 在()0,+∞上是增函数.(2)证明:∵()2ln 220f =-<,()3ln30f =>, ∴()()230f f ⋅<.∴()f x 在()2,3上至少有一个零点,又由(1)可知()f x 在()0,+∞上是增函数,因此函数至多有一个根, 从而函数()f x 在()0,+∞上有且只有一个零点. (3)解:由(2)可知()f x 的零点()02,3x ∈, 取123522x +==,55ln 1022f ⎛⎫=-< ⎪⎝⎭,()5302ff ⎛⎫⋅< ⎪⎝⎭, ∴05,32x ⎛⎫∈ ⎪⎝⎭区间长度5113224-=>,取15311224x +==,11111ln 0442f ⎛⎫=-> ⎪⎝⎭,∴511024f f ⎛⎫⎛⎫⋅< ⎪ ⎪⎝⎭⎝⎭. ∴0511,24x ⎛⎫∈ ⎪⎝⎭,区间长度115114244-=≤,∴511,24⎛⎫⎪⎝⎭即为符合条件的区间.一、选择题寒假训练06 空间几何体1.【答案】D【解析】设球的半径为R ,则24π36πR =,可得3R =.∴该球的体积为34π36π3R =.故选D . 2.【答案】D【解析】因为水平放置的ABC △的直观图中,45x O y '''∠=︒,A B A C ='''',且A B x '''∥,A C y '''∥,所以AB AC ⊥,AB AC ≠,所以ABC △是直角三角形,故选D .3.【答案】B【解析】设圆柱底面圆半径为r ,则()222212r =+,3r ∴=,从而圆柱的体积为233π1π4⎛⎫⨯= ⎪ ⎪⎝⎭,故选B . 4.【答案】A【解析】画出直观图如下图所示,计算各面的面积为122122ABC S ==△12112ABD BCD S S ==⨯⨯=△△,16232ACD S =△6,所以选A . 5.【答案】B【解析】由三视图可知,该四棱锥是底面边长为1的正方形,一条长为1的侧棱与底面垂直,将该棱锥补成棱长为1的正方体,则棱锥的外接球就是正方体的外接球,正方体外接球的直径就是正方体的体对角线,即23R =3R =,故选B . 6.【答案】B【解析】易知该几何体是一个多面体,由上下两个全等的正四棱锥组成, 21,据此可知,多面体的体积: 21422133V ⎡⎤=⨯⨯⨯=⎢⎥⎣⎦.本题选择B 选项.7.【答案】B【解析】将一个直角边长为1的等腰直角三角形绕其一条直角边旋转一周, 所形成几何体是底面半径为1r =,母线长为2l =的圆锥, ∴该几何体的侧面积ππ122πS rl ==⨯⨯=.故选B . 8.【答案】A【解析】观察三视图,可知三棱锥A BCD -的直观图如图所示,11142223323A BCD BCD V S AB -==⨯⨯⨯⨯=△.故选A .9.【答案】D【解析】由已知中的三视图可得,该几何体是一个以正视图为底面的四棱锥, 其外接球,与以俯视图为底面,以4为高的正三棱柱的外接球相同, 如图所示:由底面边长为43.由棱柱高为4,可得球心距为222428233⎛⎫+ ⎪⎝⎭故外接球的表面积228112π4π4π33S r ==⨯=,故选D . 10.【答案】A 【解析】如图,∵D 到平面1MC N 的距离为定值125,1MC N △的一边长2MN =, ∴要使三棱锥1D MNC -的体积最小,则1C 到直线MN 的距离最小,此时MN 在AC 上,1C 到直线MN 的距离为5,则三棱锥1D MNC -的体积最小值为1112254325V =⨯⨯⨯⨯=.故选A . 11.【答案】B 【解析】该几何体中图中粗线部分,体积为114222323V =⨯⨯⨯⨯=,故选B .12.【答案】C【解析】正方体的棱长为a ,体积3V a =,32266S a V ==正,等边圆柱(轴截面是正方形)的高为2h ,体积23π22πV h h h =⋅⋅=,3226π32πS h V ==柱, 球的半径为R ,体积34π3V R =,3224π36πS R V ==球S S S <<正球柱,本题选择C 选项.二、填空题 13.【答案】13【解析】在四面体ABCD 中,过A 作AH ⊥平面BCD 于点H ,连接BH 交DC 于点M , 则H 为底面正三角形BCD 的重心,22233AH AB BH =-=, 1163222BCD S BM DC =⨯⨯=⨯⨯=△,1323133A BCD V -=⨯⨯=,故答案为13.14.【答案】2394336++【解析】Q 正三棱柱的高为6,4AB =, ∴四棱锥1C A ABD -的表面1A DC 为等腰三角形,15A D CD ==,1213A C =,D 到1A C 距离为251323-=, 11213232392A DC S ∴=⨯⨯=△,1111C A ABD BDC A C A AC ABC A D D A B S S S S S S -=++++△△△△四边形()111144323964423222623=⨯+⨯⨯++⨯⨯+⨯⨯+ 2394336=++,故答案为2394336++. 15.【答案】90,138 【解析】由三视图可得该几何体为如图所示:则该几何体的体积1463433902V =⨯⨯+⨯⨯⨯=,表面积()221246436333432343341382S =⨯+⨯+⨯-⨯+⨯⨯⨯++⨯+⨯=,故答案为90,138. 16.【答案】50πS =【解析】由于CB ,1BB ,BA 两两相互垂直,所以阳马111C ABB A -的外接球的直径为1A C ,即222253450R =++=,因此外接球的表面积是24π50πR =.三、解答题17.【答案】2113π2S R +=几何体表,35π6V R =几何体. 【解析】过C 作1CO AB ⊥于点1O ,由已知得90BCA ∠=︒, ∵30BAC ∠=︒,2AB R =,∴3AC R =,BC R =,132CO R =. ∴24πS R =球,12333π22πAO S R R R ⨯⨯==圆锥侧, 1232π3π2BO S R R R =⨯⨯=圆锥侧, ∴112222331134ππππ222AO BO S S S S R R R R =++++=+=几何体表球圆锥侧圆锥侧.又∵34π3V R =球,12211111ππ34AO V AO CO R AO ⋅⋅⋅=⋅=圆锥,12211111ππ·34BO V BO CO R BO =⋅⋅⋅=圆锥,∴()1135π6AO BO V V V V R +==-几何体球圆锥圆锥.18.【答案】(1)见解析;(2)表面积为72+,体积为32. 【解析】(1)直观图如图所示.(2)由三视图可知该几何体是长方体被截去一个三棱柱,且该几何体的体积是以1A A ,11A D ,11A B 为棱的长方体的体积的34,在直角梯形11AA B B 中,作11BE A B ⊥于E ,则四边形1AA EB 是正方形,11AA BE ==,在1BEB Rt △中,1BE =,11EB =,所以1BB =所以几何体的表面积11111111112ABCD AA D D A B C D BB C C AA B B S S S S S S +++=+正方形正方形矩形矩形梯形 ()(112121211172=+⨯+⨯⨯+⨯+=.几何体的体积3312142V =⨯⨯⨯=.所以该几何体的表面积为7+32.一、选择题 1.【答案】C【解析】条件即为线面平行的性质定理,所以a b ∥,又a 与α无公共点,故选C . 2.【答案】C【解析】根据公理2的推论,直线和直线外一点确定一个平面,再结合,线面平行的性质定理,可知C 选项正确. 3.【答案】B【解析】A ,平行于同一直线的两个平面平行或相交,故错误 B ,垂直于同一直线的两个平面平行,故正确C ,平行于同一平面的两条直线平行,相交或异面直线,故错误D ,垂直于同一直线的两条直线平行,相交或异面直线,故错误 故选B . 4.【答案】A 【解析】如图,寒假训练07 点、线、面的位置关系平面αβ⊥,l αβ=I ,l α⊂,且l 不垂直于平面β,故A 不正确,故选A . 5.【答案】B【解析】根据圆柱的结构特征,可知母线垂直于圆柱的两个底面,已知另一底面的垂线上的点不在底面圆周上,故这条垂线与圆柱的母线所在直线平行,故选B . 6.【答案】D【解析】如图,三个平面两两相交有1条交线的情况,也有3条交线的情况,故选D .7.【答案】C【解析】60EPF ∠=︒就是两个平面α和β的法向量的夹角,它与二面角的平面角相等或 互补,故二面角的平面角的大小为60︒或120︒.故选C . 8.【答案】A【解析】∵E 、F 分别是SN 和SP 的中点,∴EF PN ∥. 同理可证HG PN ∥,∴EF HG ∥. 9.【答案】C 【解析】①正确; ②错误,如图1所示,1l m ∥,而m α⊂,1l α⊂;③正确,如图2所示,在正方体1111ABCD A B C D -中,直线11A C 与直线BD 异面,11A C ⊂平面1111A B C D ,且BD ∥平面1111A B C D ,故③正确;④错误,直线还可能与平面相交.由此可知,①③正确,故选C . 10.【答案】C【解析】∵平面11ABB A ∥平面11DCC D ,平面1D B I 平面11ABB A BE =,平面1D B I 平面111DCC D D F =,∴1BE D F ∥,同理可得:1D E BF ∥,∴四边形1D EBF 是平行四边形,故选C . 11.【答案】B【解析】取1C C 的中点为E 点,11C D 的中点为G 点,连接AG ,AE ,EG ,EG 平行于1C D ,1C D 平行于1A B ,故EG 平行于1A B ,则三角形AEG 中,角AEG 或其补角为所求,设正方形边长为2,根据三角形的三边关系得到222AC CE AE +=, 故3AE =,222AG AD DG =+,故3AG =,2GE =, 由余弦定理得到角AEG 的余弦值为2cos 6232AEG ∠==⨯⨯.故答案为B . 12.【答案】B【解析】由题意可知,PA ⊥底面ABC ,所以PCA ∠为直线PC 与平面ABC 所成角,PA AC =,所以三角形PCA 为等腰直角三角形,所以45PCA ∠=︒,故选B .二、填空题 13.【答案】0或1【解析】若平面外两点所在直线与该平面相交,则过这两个点不存在平面与已知平面平行;若平面外两点所在直线与该平面平行,则过这两个点存在唯一的平面与已知平面平行.故答案为0或1. 14.【答案】90︒【解析】如图,由题意知3AB AC BD CD ====,2BC AD ==. 取BC 的中点E ,连接DE 、AE ,则AE BC ⊥,DE BC ⊥,所以DEA ∠为所求二面角的平面角.易得2AE DE ==, 又2AD =,所以90DEA ∠=︒. 15.【答案】60︒【解析】如图所示,取BC 的中点E ,连接AE ,DE ,易得AE ⊥平面11BB C C ,则AD 与平面11BB C C 所成的角为ADE ∠,设正三棱柱棱长为2,则3AE =1DE =,所以tan 3AEADE DE∠==60ADE ∠=︒. 16.6【解析】取11B C 的中点为H 点,连接1A H ,HD ,在三角形1A HD 中,求线线角即可,13DE A E ==12AA =HE ,根据三角形三边关系得到5HD ,11A H =,16A D =,在三角形1A HD 应用余弦定理得到夹角的余弦值为66,故答案为66.三、解答题17.【答案】证明见解析.【解析】∵EF GH P =I ,∴P EF ∈且P GH ∈.又∵EF ⊂平面ABD ,GH ⊂平面CBD ,∴P ∈平面ABD ,且P ∈平面CBD , 又P ∈平面ABD I 平面CBD ,平面ABD I 平面CBD BD =,由公理3可得P BD ∈. ∴点P 在直线BD 上.18.【答案】(1)画图见解析.(2)证明见解析. 【解析】(1)(2)证明:设1MB a =,1NB b =,1PB c =, 则222MN a b =+,222NP b c =+,222MP c a =+,则MNP △中,22222cos 022MP MN NP a M MP MN MP MN+-∠==>⋅⋅,同理可得cos 0N ∠>,cos 0P ∠>,则M ∠、N ∠、P ∠均为锐角,即MNP △是锐角三角形.一、选择题1.【答案】C【解析】由题意,已知互不重合的直线a,b和互不重合的平面α,β,在A中,由于bαβ=I,aα∥,aβ∥,过直线a与平面α,β都相交的平面γ,记dαγ=I,cβγ=I,则a d∥且a c∥,所以d c∥,又d b∥,所以a b∥,故A是正确的;在B中,若αβ⊥,aα⊥,bβ⊥,则由面面垂直和线面垂直的性质得a b⊥,所以是正确;在C中,若αβ⊥,αγ⊥,aβλ=I,则由线面垂直的判定定理得aα⊥,所以是正确;在D中,若αβ∥,aα∥,则aβ∥或aβ⊂,所以是不正确的,故选C.2.【答案】B【解析】A,如果m n∥,αβ∥,根据线面角的定义可知m,n与α所成的角和m,n与β所成的角均相等,故A正确;B,如果m n⊥,mα⊥,nβ∥,α、β可平行也可以相交,不能得出αβ⊥,故B错误;C,如果αβ∥,mα⊂,那么m与β无公共点,则mβ∥,故C正确;D,如果nα∥,则存在直线lα⊂,使n l∥,由mα⊥,可得m l⊥,那么m n⊥,故D正确,故选B.经典集训寒假训练08 平行、垂直关系的证明3.【答案】B【解析】B 中,可证AB DE ∥,BC DF ∥,故可以证明AB ∥平面DEF ,BC ∥平面DEF .又AB BC B =I ,所以平面ABC ∥平面DEF .故选B . 4.【答案】B【解析】以A 为原点,AB ,AD ,1AA 所在直线分别为x ,y ,z 轴建立空间直角坐标系,设正方体棱长为1,则()0,0,0A ,()1,1,0C ,()1,0,0B ,()0,1,0D ,()10,0,1A ,11,,122E ⎛⎫ ⎪⎝⎭,11,,122CE ⎛⎫∴=-- ⎪⎝⎭u u u r ,()1,1,0AC =u u ur ,()1,1,0BD =-u u u r ,()10,1,1A D =-u u u u r ,()10,0,1AA =u u u u r ,110022CE BD ∴=-+=⋅u u u r u u u r ,则CE BD ⊥u u u r u u u r ,即CE BD ⊥,故选B .5.【答案】B【解析】∵11SG G E ⊥,33SG G F ⊥,∴SG GE ⊥,SG GF ⊥,∴SG ⊥平面EFG , 故①正确;同理可得GF ⊥平面EGS ,又∵SE I 平面EGS ,根据线面垂直的性质定理, 得GF SE ⊥,故③正确,故选B . 6.【答案】B【解析】∵PA PB =,AD DB =,∴PD AB ⊥.又∵平面ABC ⊥平面PAB ,平面ABC I 平面PAB AB =,∴PD ⊥平面ABC ,故选B . 7.【答案】B【解析】①90BAD ∠=︒Q ,AD AB =,45ADB ABD ∴∠=∠=︒,AD BC Q ∥,45BCD ∠=︒,BD DC ∴⊥,Q 平面A BD '⊥平面BCD ,且平面A BD 'I 平面BCD BD =,CD ∴⊥平面A BD ',A D ⊂'Q 平面A BD ',CD A D ∴⊥',故A D BC '⊥不成立,故①错误;②棱锥A BCD '-的体积为1132⋅=③由①知CD ⊥平面A BD ',故③正确;④由①知CD ⊥平面A BD ',又A B ⊂'Q 平面A BD ',CD A B ∴⊥', 又A B A D '⊥',且A D '、CD ⊂平面A DC ',A D CD D '=I ,A B ∴'⊥平面A DC ',又A B '⊂平面A BC ',∴平面A BC '⊥平面A DC ',故④正确.故选B .8.【答案】D【解析】在正方体1111ABCD A B C D -中,BD ⊥平面11A ACC , 而CE ⊂平面11A ACC ,故BD CE ⊥,故A 正确.又11A C ∥平面ABCD ,因此EF ∥平面ABCD ,故B 正确.当EF 变化时,三角形CEF 的面积不变,点B 到平面CEF 的距离就是B 到平面11A CCC 的距离,它是一个定值,故三棱锥E FBC -的体积为定值(此时可看成三棱锥B CEF -的体积),故C 正确.在正方体中,点B 到EF ,而C 到EF 的距离为1,D 是错误的. 综上,故选D . 9.【答案】A【解析】∵PA ⊥矩形ABCD ,∴PA BD ⊥, 若PD BD ⊥,则BD ⊥平面PAD ,又BA ⊥平面PAD ,则过平面外一面有两条直线与平面垂直,不成立, 故PD BD ⊥不正确,故A 不正确;∵PA ⊥矩形ABCD ,∴PA CD ⊥,AD CD ⊥, ∴CD ⊥平面PAD ,∴PD CD ⊥,故B 正确;∵PA ⊥矩形ABCD ,∴由三垂线定理得PB BC ⊥,故C 正确;∵PA ⊥矩形ABCD ,∴由直线与平面垂直的性质得PA BD ⊥,故D 正确.故选A . 10.【答案】D【解析】①错误.所得四棱锥中,设AS 中点为I ,则E 、I 两点重合, ∵FI GH ∥,即EF GH ∥,即EF 与GH 不是异面直线;②正确.∵FI GH ∥,PB 与BQ 重合,且GH 与BQ 所成角为60︒, 说明EF 与PB 所成角为60︒;③正确.∵FI GH BC ∥∥,BC ⊂平面PBC ,FI ⊄平面PBC , ∴FI ∥平面PBC ,∴FE ∥平面PBC ;④正确.∵FI ∥平面ABCD ,IH ∥平面ABCD ,FI HI I =I 点, ∴平面FIHG ∥平面ABCD ,即平面EFGH ∥平面ABCD ,故选D . 11.【答案】B【解析】根据题意得到立体图如图所示:A .NC 与DE 是异面直线,故不相交;B .CM 与ED 平行,由立体图知是正确的;C .AF 与CN 位于两个平行平面内,故不正确;D .AF 与CM 是相交的. 故答案为B . 12.【答案】C【解析】因为PA O ⊥☉所在的平面,BC O ⊂☉所在的平面,所以PA BC ⊥, 而BC AC ⊥,AC PA A =I ,所以BC ⊥平面PAC ,故①正确; 又因为AF ⊂平面PAC ,所以AF BC ⊥,而AF PC ⊥,PC BC C =I , 所以AF ⊥平面PCB ,故②正确;而PB ⊂平面PCB ,所以AF PB ⊥,而AE PB ⊥,AE AF A =I , 所以PB ⊥平面AEF ,而EF ⊂平面AEF ,所以EF PB ⊥,故③正确;因为AF ⊥平面PCB ,假设AE ⊥平面PBC ,所以AF AE ∥,显然不成立,故④不正确;故选C .二、填空题 13.【答案】(1)【解析】(1)根据线面垂直的性质可知若m α⊥,m β⊥,则αβ∥成立; (2)若αγ⊥,βγ⊥,则αβ∥或α与β相交;故(2)不成立;(3)根据面面平行的可知,当m 与n 相交时,αβ∥,若两直线不相交时,结论不成立; (4)若m β∥,βγ∥,则m γ∥或m γ⊂,故(4)不成立. 故正确的是(1),故答案为(1). 14.15【解析】将直三棱柱111ABC A B C -沿棱1AA 展开成平面连接1BC ,与1AA 的交点即为满足1BF FC +最小时的点F ,由于2AB =,1AC =,13AA =,再结合棱柱的性质,可得122AF FA ==, 由图形及棱柱的性质,可得BF =1FC =1BC =,1cosFC B ∠==.∴1sin FC B ∠=,1BFC △的面积为12=. 15.【答案】②③④【解析】①如果m ,n 不一定相交,不能得出αβ∥,故错误;②如果n α∥,则存在直线l α⊂,使n l ∥,由m α⊥,可得m l ⊥,那么m n ⊥.故正确; ③如果αβ∥,m α⊂,那么m 与β无公共点,则m β∥.故正确;④如果m n ∥,αβ∥,那么m ,n 与α所成的角和m ,n 与β所成的角均相等.故正确; 故答案是②③④. 16.【答案】②③【解析】①当P 位于1BD 与平面MNAC 的交点处时,MN 在平面APC 内, ②因为1AB 垂直于BC 和1BD ,所以成立,③1AB 和11A C 成60︒角,过P 点与两直线成60︒的直线有三条 故答案为②③.三、解答题17.【答案】(1)详见解析;(2)13.【解析】(1)证明:取PD 的中点G ,连FG ,AG ,∵F 为PC 的中点,∴FG CD ∥,12FG CD =且,又AE CD ∥,12AE CD =且,∴AEFG 四边形为平行四边形,∴EF AG ∥,EF PAD ⊄又平面,AG PAD ⊂平面,∴EF PAD ∥平面.(2)∵PD ABCD ⊥底面,F 为PC 的中点,∴点112F BCE d PD ==到平面的距离为.又1112122BCE S BE BC =⋅⋅=⨯⨯=△,∴11111333B EFC F BCE BCE V V S d --===⨯⨯=⋅△,即三棱锥B EFC -的体积为13.18.【答案】(1)93(2)见解析;(3)见解析.【解析】(1)∵ABC △为正三角形,D 为AC 中点,∴BD AC ⊥, 由6AB =可知,3CD =,33BD =1932BCD S CD BD ⋅⋅==△.又∵1A A ⊥底面ABC ,且16A A AB ==,∴1C C ⊥底面ABC ,且16C C =, ∴111933C BCD BCD V S C C -⋅⋅==△.(2)∵1A A ⊥底面ABC ,∴1A A BD ⊥. 又BD AC ⊥,∴BD ⊥平面11ACC A .又BD ⊂平面1BC D ,∴平面1BC D ⊥平面11ACC A . (3)连接1B C 交1BC 于O ,连接OD ,。

高一数学寒假作业答案

高一数学寒假作业答案

高一数学寒假作业答案高一数学寒假作业答案高一数学寒假作业答案一、选择题1.对于集合A,B,AB不成立的含义是A.B是A的子集B.A中的元素都不是B的元素C.A中至少有一个元素不属于BD.B中至少有一个元素不属于A[答案] C[解析] AB成立的含义是集合A中的任何一个元素都是B的元素.不成立的含义是A中至少有一个元素不属于B,应选C.A.{a}?MB.a?MC.{a}MD.aM[答案] A[解析] ∵a=3536=6,aM,{a}?M.3.以下四个集合中,是空集的是[答案] B[解析] 选项A、C、D都含有元素.而选项B无元素,应选B.A.A=BB.A?BC.B?AD.以上都不对[答案] A[解析] A、B中的元素显然都是奇数,A、B都是有所有等数构成的集合.故A=B.选A.[探究] 假设在此题的根底上演变为kN.又如何呢?答案选B你知道吗?A.1B.-1C.0,1D.-1,0,1[答案] D[解析] ∵集合A有且仅有2个子集,A仅有一个元素,即方程ax2+2x+a=0(aR)仅有一个根.当a=0时,方程化为2x=0,x=0,此时A={0},符合题意.当a0时,=22-4aa=0,即a2=1,a=1.此时A={-1},或A={1},符合题意.a=0或a=1.A.PQB.PQC.P=QD.以上都不对[答案] D[解析] 因为集合P、Q代表元素不同,集合P为数集,集合Q为点集,应选D.二、填空题[答案] m1[解析] ∵M=,2mm+1,m1.8.集合x,yy=-x+2,y=12x+2{(x,y)}y=3x+b},那么b=________.[答案] 2[解析] 解方程组y=-x+2y=12x+2得x=0y=2代入y=3x+b得b=2.[答案] M=P[解析] ∵xy0,x,y同号,又x+y0,x0,y0,即集合M 表示第三象限内的点.而集合P表示第三象限内的点,故M=P.三、解答题10.判断以下表示是否正确:(1)a(2){a}{a,b};(3)?{-1,1};(4){0,1}={(0,1)};[解析] (1)错误.a是集合{a}的元素,应表示为a{a}.(2)错误.集合{a}与{a,b}之间的关系应用?表示.(3)正确.空集是任何一个非空集合的真子集.(4)错误.{0,1}是一个数集,含有两个元素0,1,{(0,1)}是一个以有序实数对(0,1)为元素的集合,所以{0,1}{(0,1)}.[解析] 由AB.(1)当A=时,应有2a-2a+24.得2a-212.设S是非空集合,且满足两个条件:①S{1,2,3,4,5};②假设aS,那么6-aS.那么满足条件的S有多少个?[分析^p ] 此题主要考察子集的有关问题,解决此题的关键是正确理解题意.非空集合S所满足的第一个条件:S是集合{1,2,3,4,5}的任何一个子集,第二个条件:假设aS,那么6-aS,即a和6-a都是S中的元素,且它们允许的取值范围都是1,2,3,4,5.[解析] 用列举法表示出符合题意的全部S:{3},{1,5},{2,4},{1,3,5},{2,3,4},{1,2,4,5},{1,2,3,4,5}.共有7个.[点评] 从此题可以看出,S中的元素在取值方面应满足的条件是:1,5同时选,2,4同时选,3单独选.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档