认识无理数(ppt)
合集下载
《认识无理数》实数精品ppt课件3

94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰·拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉·班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳]
91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿·休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯·奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰·纳森·爱德瓦兹]
边长a会不会算到某一位时,它的平方恰好等于2呢? 为什么?
a可能是有限小数吗?它会是一个怎样的数呢? 事实上,a=1.414 213 56…, 它是一个无限不循环小数!
【例题】
【例】把下列各数分别填入相应的有理数集合与无理数集合内:
1 ,
4
,
5, 2
0,
0.373 773 777 3
97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔·普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉·彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔·卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰·罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳·厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝·C·科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔·卡内基] 110.每天安静地坐十五分钟·倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克·佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根·皮沙尔·史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。
91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿·休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯·奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰·纳森·爱德瓦兹]
边长a会不会算到某一位时,它的平方恰好等于2呢? 为什么?
a可能是有限小数吗?它会是一个怎样的数呢? 事实上,a=1.414 213 56…, 它是一个无限不循环小数!
【例题】
【例】把下列各数分别填入相应的有理数集合与无理数集合内:
1 ,
4
,
5, 2
0,
0.373 773 777 3
97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔·普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉·彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔·卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰·罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳·厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝·C·科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔·卡内基] 110.每天安静地坐十五分钟·倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克·佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根·皮沙尔·史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。
认识无理数课件北师大版八年级数学上册

教学重难点1.无理数的探索过程.2.了解无理数与有理数的区分,并能正确判断.3把两个边长为1的正方形拼成一个大正方形的动手操作过程.
把两个边长为1的小正方形通过剪、拼,设法得到一个大正方形,你会吗?
1
1
1
1
剪一剪
拼一拼
议一议
越来越大,所以a不可能是整数
a可能是整数吗?
a可能是以2为分母的分数吗?
结果都为分数,所以a不可能是以2为分母的分数。
a可能是以3为分母的分数吗?
结果都为分数,所以a不可能是以3为分母的分数。
探究新知
a2=2
以2为分母的分数平方
结果都为分数,所以a不可能是以2为分母的分数。
以3为分母的分数平方
结果都为分数,所以a不可能是以3为分母的分数。a可能是分数吗?Fra bibliotek探究新知
1.4<a<1.5
1.96<S<2.25
1.41<a<1.42
1.9881<S<2.0164
1.414<a<1.415
1.999396<S<2.002225
1.4142<a<1.4143
1.99996164<S<2.00024449
结论:a2=2,a =1.41421356… a是一个无限不循环小数.
1< a< 2
探究新知
把下列各数表示成小数,你发现了什么?
事实上,有理数总可以用有限小数或无限循环小数表示,反过来,任何有限小数或无限循环小数也都是有理数。
3=3.0;
探究新知
知识点
无理数的定义
有限小数
无限循环小数
有理数
无理数:无限不循环小数
实数
有理数和无理数统称为实数
无限不循环小数称为无理数
把两个边长为1的小正方形通过剪、拼,设法得到一个大正方形,你会吗?
1
1
1
1
剪一剪
拼一拼
议一议
越来越大,所以a不可能是整数
a可能是整数吗?
a可能是以2为分母的分数吗?
结果都为分数,所以a不可能是以2为分母的分数。
a可能是以3为分母的分数吗?
结果都为分数,所以a不可能是以3为分母的分数。
探究新知
a2=2
以2为分母的分数平方
结果都为分数,所以a不可能是以2为分母的分数。
以3为分母的分数平方
结果都为分数,所以a不可能是以3为分母的分数。a可能是分数吗?Fra bibliotek探究新知
1.4<a<1.5
1.96<S<2.25
1.41<a<1.42
1.9881<S<2.0164
1.414<a<1.415
1.999396<S<2.002225
1.4142<a<1.4143
1.99996164<S<2.00024449
结论:a2=2,a =1.41421356… a是一个无限不循环小数.
1< a< 2
探究新知
把下列各数表示成小数,你发现了什么?
事实上,有理数总可以用有限小数或无限循环小数表示,反过来,任何有限小数或无限循环小数也都是有理数。
3=3.0;
探究新知
知识点
无理数的定义
有限小数
无限循环小数
有理数
无理数:无限不循环小数
实数
有理数和无理数统称为实数
无限不循环小数称为无理数
《认识无理数》课件

无理数的特征
无理数的小数部分是无限不循环的, 无法精确表示。
无理数是实数的一种,具有实数的所 有性质和运算规则。
无理数与有理数的区别
有理数是可以表示为 两个整数之比的数, 包括整数、分数和十 进制小数。
有理数和无理数在实 数域中是互斥的,即 它们不能相互转化。
无理数则无法表示为 分数形式,其小数部 分无限不循环。
古希腊数学家阿基米德首次使用圆内接多边形的方法近似计 算出圆周率的值。
根号2的发现
根号2是一个无限不循环小数,表示2的平方根。
古希腊数学家欧几里德在《几何原本》中首次证明了根号2的存在性,并对其进 行了近似计算。
03 无理数的应用
在几何学中的应用
勾股定理
无理数在几何学中最为著名的应 用是勾股定理,它说明了直角三 角形的两条直角边的平方和等于 斜边的平方,其中斜边长度是一
无理数在未来的发展前景
01
推动数学与其他学科的进一步融合
随着科学技术的不断发展,无理数将在更多领域发挥重要作用,推动数
学与其他学科的进一步融合。
02
深化实数理论的研究
随着数学的发展,实数理论的研究将不断深入,无理数作为实数理论的
基础之一,其研究也将得到进一步深化。
03
促进数学教育的发展
无理数是数学教育中的重要内容之一,随着教育的不断改革和完善,无
02 无理数的产生
无法精确表示的数
无法用分数精确表示的数
例如,0.333...虽然可以无限接近于1/3,但无法精确等于1/3。
无法用有限小数或循环小数精确表示的数
例如,0.1010010001...是一个无限不循环小数,无法用有限小数或循环小数来 表示。
圆周率π的发现
北师大版数学八年级上册课件:2.1 认识无理数(共13张PPT)

综合能力提升练
13.( 教材母题变式 )如图是16个边长为1的小正方形拼成的大正方形,其中CA,CB,CD,CE中 长度既不是整数,也不是分数的有 3 条.
14.( 改编 )把下列各数填入表示它所在的数集的大括号内: -2,-12,3.020020002…( 每两个 2 之间多 1 个 0 ),272,-π3,-( -3 ),0.333,0,34,-17,3.1·5·,0.12345678910111213…( 小数部分由相继的正整数组 成 ),-1.202020202…( 每两个 2 之间有 1 个 0 ).
( 4 )无理数集合: 3.020020002…( 每两个 2 之间多 1 个 0 ),-
π 3
,0.12345678910111213…(
小数部分由相继的正整数组成
)…
.
综合能力提升练
15.请你在方格纸上按照如下要求设计图形,每个单元格的边长为1.( 所设计图形顶点在格 点上 ) ( 1 )请在图1中设计一个直角三角形,使它三边中有两边边长不是有理数. ( 2 )请在图2中设计一个直角三角形,使它的三边边长都不是有理数.
综合能力提升练
( 1 )整数集合:{-2,-(-3 ),0,-17…}; ( 2 )分数集合: -12 , 272,0.333,-34,3.1·5·,-1.202020202…( 每两个 2 之间 有 1 个 0 )… ; ( 3 )负有理数集合: -2,-12,-34,-17,-1.202020202…( 每两个 2 之间有 1 个 0 )… ;
拓展探究突破练
17.无限循环小数如何化为分数呢?请你仔细阅读下列资料:由于小数部分位数是无限的,所 以不可能写成十分之几、百分之几、千分之几等等的数.转化时需要先去掉无限循环小数 的“无限小数部分”.一般是用扩倍的方法,把无限循环小数扩大十倍、一百倍或一千倍…… 使扩大后的无限循环小数与原无限循环小数的“无限小数部分”完全相同,然后这两个数相
北师大版数学八年级上册《认识无理数》教学课件

. < < .
. < < .
. < < .
. < < .
. < < .
想一想:可以继续算下去吗?是有限小数吗?
数
教学过程——新知探究
第二章
北师大版 ∙ 八年级上册
教学课件
第二章
实
1. 认识无理数
数
教学内容
第二章
1.1
认识无理数
实
数
教学目标——重点难点
第二章
1.知道非有理数的存在,认识无理数.
2.理解无理数的概念,掌握无理数与有理数的区别,并
能判断一个数是有理数还是无理数.(重点)
3.能用“夹逼法”确定无理数的近似值(难点)
实
数
教学目标——温故知新
实
活动探究3
认识无理数
有理数与无理数区别:
因为整数都可以看着小数部分为0的小数,而分数都可以化为有限小数或无限循
环小数,所以有理数总可以用有限小数或无限循环小数表示;反过来,任何有限
小数或无限循环小数也都是有理数. 但无理数是无限不循环小数,所以有理数和
无理数的根本区别就在于无理数不能化为有限小数或无限循环小数.
第二章
知识储备
1.什么是有理数?
整数和分数统称为有理数.
2.有理数有哪些分类方法?
正整数
整数
负整数
分数
正分数
负分数
正整数
正数
正分数
负整数
负数
负分数
实
数
教学过程——新课引入
第二章
议一议
有两个正方形,一个正方形的面积为4,一个正方形的面积为
. < < .
. < < .
. < < .
. < < .
想一想:可以继续算下去吗?是有限小数吗?
数
教学过程——新知探究
第二章
北师大版 ∙ 八年级上册
教学课件
第二章
实
1. 认识无理数
数
教学内容
第二章
1.1
认识无理数
实
数
教学目标——重点难点
第二章
1.知道非有理数的存在,认识无理数.
2.理解无理数的概念,掌握无理数与有理数的区别,并
能判断一个数是有理数还是无理数.(重点)
3.能用“夹逼法”确定无理数的近似值(难点)
实
数
教学目标——温故知新
实
活动探究3
认识无理数
有理数与无理数区别:
因为整数都可以看着小数部分为0的小数,而分数都可以化为有限小数或无限循
环小数,所以有理数总可以用有限小数或无限循环小数表示;反过来,任何有限
小数或无限循环小数也都是有理数. 但无理数是无限不循环小数,所以有理数和
无理数的根本区别就在于无理数不能化为有限小数或无限循环小数.
第二章
知识储备
1.什么是有理数?
整数和分数统称为有理数.
2.有理数有哪些分类方法?
正整数
整数
负整数
分数
正分数
负分数
正整数
正数
正分数
负整数
负数
负分数
实
数
教学过程——新课引入
第二章
议一议
有两个正方形,一个正方形的面积为4,一个正方形的面积为
认识无理数-(第二课时)PPT课件

2020年9月28日
13
拓展
学习目标 预习
2、下列语句正确的是( D )
展 示 A、3.78788788887888是无理数
互 动 B、无理数分正无理数、零、负
生成
达 标 无理数
拓 展 C、无限小数不能化成分数
谈谈收获 D、无限不循环小数是无理数
2020年9月28日
14
拓展
学习目标
预 习 3、面积为6的长方形,长是宽
0 .351 , -5.232 332…, 3.14159, π . 4 . 96 ,
3
2, 3
123.345 678 910 11…(由相继的正整数组成)
0 .351 ,
.
4 .96 ,
2, 3
3.141 59,
-5.232332…
π, 3 0.123 345 678 910 11…
有理数
2020年9月28日
互动 生成
其中无理数的个数为x, 整数的个
达 标 数为y, 非负数的个数为z, 则
拓展
谈谈收获 x+y+z= ___6__.
2020年9月28日
12
拓展
学习目标
预 习 1、下列说法中正确的是( D) 展 示 A、不循坏小数是无理数
互动
生 成 B、分数不是有理数 达 标 C、有理数都是有限小数
拓展
谈谈收获 D、3.1415926是有理数
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
认识无理数课件ppt

90
9
事实上,任何一个有理数都可以写成有限小数或无 限循环小数. 反过来,任何有限小数或无限循环小数也都是有理数.
无理 2
0.101 001 000 1…(两个1之间依次多1个0)
-168.323 223 222 3…(两个3之间依次多1个2)
无理数有_______________________________ 实数有___27_2_,__13_,__, 0_._3_, 0____________________
【规律方法】
无理数的特征:
1.圆周率 及一些最终结果含有 的数.
2.开方开不尽的数. 3.有一定的规律,但不循环的无限小数.
随堂练习
1.下列各数:
,0,0.23,1,25,
2
27
0.303
003
(相邻两个3之间0
的个数逐次加1),1中,无理数的个数是( )
A.2个
B.3个 C.4个 D.5个
【解析】选A.无限不循环小数是无理数,其中 π,0.303 003 2
(相邻两个3之间0的个数逐次加1)两个是无理数,其他是有理数.
1 ,
5 ,
4
2
0,
有理数集合
, 0.373 773 777 3 (相邻两个3之间的7的个 数逐次加1)
无理数集合
【跟踪训练】
填空:在实数 22 , 1 , ,0.3,0 中,
73
整数有_______0__________________________ 有理数有____2_72_,__13_,_0_.3_,_0__________________
学习目标
1.理解无理数的概念,会判断一个数是有理数还是 无理数. 2.能在数轴上表示某些简单的无理数.
认识无理数ppt课件

新课引入
小红是刚升入八年级的新生,一个周末的上午,当工程 师的爸爸给小红出了一道数学题:一个边长为6cm的正方形 木板,按如图的痕迹锯掉四个一样的直角三角形.请计算剩下 的正方形木板的面积是多少?剩下的正方形木板的边长又是 多少厘米呢?见过这个数吗?你能帮小红解决这个问题吗?
探究学习
核心知识点一 无理数的认识 讨论一:a,b是否存在,它们是有理数吗?
(3)借助计算器进行探索,过程整理如下,你的结果呢?
边长a 1<a<2 1.4<a<1.5 1.41<a<1.42 1.414<a<1.415 1.4142<a<1.4143
面积s 1<s<4 1.96<s<2.25 1.9881<s<2.0164 1.999396<s<2.002225 1.99996164<s<2.00024449
解:(1)在整数10和11之间 (2)x精确到十分位时,x在10.2与10.3之间,x精确到百分位时,x 在10.29与10.30之间
9.如图,在3×3的方格网(每个小方格的边长均为1) 中有一阴影正方形, (1)阴影正方形的面积是多少? (2)阴影正方形的边长介于哪两个整数之间?
解:(1)S阴影正方形=3×3-12 ×1×2×4=5 (2)介于2和3之间
随堂练习
1.下列各数中,是有理数的是( B ) A.面积为3的正方形的边长 B.体积为8的正方体的棱长 C.两直角边长分别为2和3的直角三角形的斜边长 D.长为3,宽为2的长方形的对角线长
2.下列各数:π,0,0.23·,22,0.303 003 000 3…(每个 3 后增加 1 个 0)
八年级数学上册教学课件《认识无理数(第2课时)》

B
π
5.如图是面积分别为1,2,3,4,5,6,7,8,9的正方形.边长是有理数的正方形有_____个,边长是无理数的正方形有_____个.
3
6
CD,EF
解析:设小正方形的边长为x,则x2=2.因为AB2=x2+(3x)2=10x2=20,所以AB的长不是有理数.因为CD2=(2x)2+(2x)2=8x2=16,CD=4,即CD的长是有理数.因为EF2=x2+x2=2x2=4,EF=2,即EF的长是有理数.因为GH2=x2+(2x)2=5x2=10,所以GH的长不是有理数.
3.14
(因为3.14是有限小数)
(因为0. 是无限循环小数)
(因为它是无限不循环小数)
例
1.在 ,0,3.14,-0. ,6.751 755 175 551 7…(7和1之间5的个数逐次加1),- 中,无理数有 个.
2
2.下列各数是无理数的是 ( )A.1 B.-0.6C.-6 D.π
1. 判断题
×
√
√
×
2.以下各正方形的边长是无理数的是( )
A.面积为25的正方形; B.面积为的正方形;C.面积为8的正方形; D.面积为1.44的正方形.
C
3 .下列各数,是大于-4而小于-3的无理数的是( )A.-2.56879 B.-3.121221222…C.-2. D.2.383883888…4.请你写出一个大于2且小于4的无理数: .
思考 a的范围在哪两个数之间?左面的边长
用上面的方法估计面积为5的正方形的边长b的值.边长b会不会算到某一位时,它的平方恰好等于5?
如果b算到某一位时,它的平方恰好等于5,即b是一个有限小数,那么它的平方一定是一个有限小数,而不可能是5,所以b不可能是有限小数. 事实上,b=2.236 067 978…它是一个无限不循环小数. 同样,对于体积为2的正方体,借用计算器,可以得到它的棱长c=1.259 921 05…,它也是一个无限不循环小数.
π
5.如图是面积分别为1,2,3,4,5,6,7,8,9的正方形.边长是有理数的正方形有_____个,边长是无理数的正方形有_____个.
3
6
CD,EF
解析:设小正方形的边长为x,则x2=2.因为AB2=x2+(3x)2=10x2=20,所以AB的长不是有理数.因为CD2=(2x)2+(2x)2=8x2=16,CD=4,即CD的长是有理数.因为EF2=x2+x2=2x2=4,EF=2,即EF的长是有理数.因为GH2=x2+(2x)2=5x2=10,所以GH的长不是有理数.
3.14
(因为3.14是有限小数)
(因为0. 是无限循环小数)
(因为它是无限不循环小数)
例
1.在 ,0,3.14,-0. ,6.751 755 175 551 7…(7和1之间5的个数逐次加1),- 中,无理数有 个.
2
2.下列各数是无理数的是 ( )A.1 B.-0.6C.-6 D.π
1. 判断题
×
√
√
×
2.以下各正方形的边长是无理数的是( )
A.面积为25的正方形; B.面积为的正方形;C.面积为8的正方形; D.面积为1.44的正方形.
C
3 .下列各数,是大于-4而小于-3的无理数的是( )A.-2.56879 B.-3.121221222…C.-2. D.2.383883888…4.请你写出一个大于2且小于4的无理数: .
思考 a的范围在哪两个数之间?左面的边长
用上面的方法估计面积为5的正方形的边长b的值.边长b会不会算到某一位时,它的平方恰好等于5?
如果b算到某一位时,它的平方恰好等于5,即b是一个有限小数,那么它的平方一定是一个有限小数,而不可能是5,所以b不可能是有限小数. 事实上,b=2.236 067 978…它是一个无限不循环小数. 同样,对于体积为2的正方体,借用计算器,可以得到它的棱长c=1.259 921 05…,它也是一个无限不循环小数.
认识无理数 实数PPT优秀课件

a 2
2
释 1.
a为什么不是整数? a为什么不是分数?
释 2.
忆一忆
有理数包括:整数和分数 如果一个数既不是整数也不是分数, 那么这个数,
2
找一找
在下列正方形网格中,先找出长度为有 理数的线段,再找出长度不是有理数的 线段.
画一画(1)
在下面的正方形网格中,画出一条 长度 是有理数的线段和一条长度不 是有理数的线段
第二章 实数
想一想
.
1.一个整数的平方一定是整数吗? 2.一个分数的平方一定是分数吗?
算一算
1
x
2
x ?
2
问:x是整数(或分数)吗?
剪一剪
把两个边长为1的小正方形通过剪、 拼,设法得到一个大正方形,你会吗?
1
1
1
1
拼一拼
议一议
a
a aa
a 2
2
a 可能是整数吗? a 可能是分数吗?
释一释
• • • • • •
• • • • • • •
● 一个不注意小事情的人,永远不会成功大事业。──卡耐基 ● 一个能思考的人,才真是一个力量无边的人。──巴尔扎克 ● 一个人的价值,应当看他贡献了什么,而不应当看他取得了什么。 ──爱因斯坦 ● 一个人的价值在于他的才华,而不在他的衣饰。 ──雨果 ● 一个人追求的目标越高,他的才力就发展得越快,对社会就越有 益。──高尔基 ● 生活就像海洋,只有意志坚强的人,才能到达彼岸。──马克思 ● 浪费别人的时间是谋财害命,浪费自己的时间是慢性自杀。──列 宁 ● 哪里有天才,我是把别人喝咖啡的工夫都用在工作上的。──鲁迅 ● 完成工作的方法,是爱惜每一分钟。──达尔文 ● 没有伟大的愿望,就没有伟大的天才。──巴尔扎克 ● 读一切好的书,就是和许多高尚的人说话。──笛卡尔 ● 成功=艰苦的劳动+正确的方法+少谈空话。 ──爱因斯坦
北师大2011课标版初中数学八年级上册 第二章 2.1 认识无理数 课件(共21张PPT)

同伴进行交流.
2 a =2
a既不是整数,也不 是分数,所以a不是 有理数.
做一做 1.如图,以直角三角形的斜边为边的正方形
的面积是多少?
2.设该正方形的边长为b,b满足什么条件?
3.b是有理数吗?
2 b =5
b既不是整数,也不是分
数,所以b不是有理数.
b
无理数的发现
1.长、宽分别为3,2的长方形,它的对角线 的长( D ) A.是分数 C.是整数 B.是小数 D.不是有理数
你一定是最棒 的!加油!
1.在下列正方形网格中,先找出长度为有理 数的线段,再找出长度不是有理数的线段.请 说明理由.
2.一养鱼专业户欲将面积为288m2的长方形 鱼塘改为等面积的边长为l m的正方形鱼塘, 则l满足什么条件?l是有理数吗?请说明理 由.
1、必做题:课本习题2.1(2) 2、选做题:课堂精炼P13(11、12) 3形的 边长均为1,任意连接这些小正方形的若干个 顶点,可得到一些线段.试分别找出两条长
度是有理数的线段和两条长度不是有理数的
线段.
2.如图是小明以他画的线段为边长设计出的 一个正方形,请解决下列问题: (1)阴影正方形的面积是多少? (2)阴影正方形的边长介于哪两个整数之间?
你一定是最棒 的!加油!
2.下列各数中,是有理数的是( B ) A.面积为3的正方形的边长 B.体积为8的正方体的棱长
C.两直角边长分别为5和3的直角三角形的
斜边长
D.圆周率π
3.如图,在4×4的正方形网格中,每个小正方 形的边长均为1,则△ABC中三边边长不是有 理数的有( C ) A. 0条 B. 1条 C. 2条 D. 3 条
3.在4×4的正方形网格中,每个小正方形的边长均 为1,请按要求设计如下图形: (1)三边边长均是有理数的三角形; (2)三边边长均不是有理数的三角形; (3)两边边长是有理数,另一边长不是有理数的 直角三角形; (4)一边边长是有理数,另两边长不是有理数的 钝角三角形.
《认识无理数》课件 2022年北师大版八上数学PPT+

3.有理数能化为分数形式,无理数____不__能____化为分数形式.
1.(3分)一个长方形的长与宽分别是6 cm,3 cm,它的对角线的长可
能是( D ) A.整数
B.分数
C.有理数
D.无限不循环小数
2.(3分)直角三角形两直角边长为2和5,以斜边为边的正方形的面积
是__2_9___,此正方形的边长__不__是____(填“是〞或者“不是〞)有理数. 3.(6分)B,C是一个生活小区的两个路口,BC长为2千米,A处是一
D
(2)∠CAD=∠CBD.
B
A
N
作业分析 8
提高证明能力的源泉
8、任意作一个钝角,求作它的角平分线.
作业分析 9
提高证明能力的源泉
9、线段a, 求作:以a为底,以2a为高的等腰三角形.
A D
∴PD=PE
1
逆定理:
O2
在一个角的内部,且到角的两边距离相 E
等的点,在这个角的平分线上.
P
C
B
∵ PD⊥OA,PE⊥OB , PD=PE ∴ ∠1=∠2(OP是角平分线或P在∠AOB的平分线上)
11.定理:三角形三条边的垂直平分线相交于一点,并且
这一点到三个顶点的距离相等.
(这一点叫做三角形的外心)
个花园,从A到B,C两路口的距离都是2千米,现要从花园到生活小区
修一条最短的路,这条路的长可能是整数吗?可能是分数吗?
解:不可能是整数,也不可能是分数
4.(8分)如图,在3×3的方格中,有一阴影正方形,设每一个小方格的 边长为1个单位.请解决下面的问题. (1)阴影正方形的面积是多少? (2)阴影正方形的边长介于哪两个整数之间?
例1:在ΔABC中,AB=2AC,∠1=∠2,DA=DB
1.(3分)一个长方形的长与宽分别是6 cm,3 cm,它的对角线的长可
能是( D ) A.整数
B.分数
C.有理数
D.无限不循环小数
2.(3分)直角三角形两直角边长为2和5,以斜边为边的正方形的面积
是__2_9___,此正方形的边长__不__是____(填“是〞或者“不是〞)有理数. 3.(6分)B,C是一个生活小区的两个路口,BC长为2千米,A处是一
D
(2)∠CAD=∠CBD.
B
A
N
作业分析 8
提高证明能力的源泉
8、任意作一个钝角,求作它的角平分线.
作业分析 9
提高证明能力的源泉
9、线段a, 求作:以a为底,以2a为高的等腰三角形.
A D
∴PD=PE
1
逆定理:
O2
在一个角的内部,且到角的两边距离相 E
等的点,在这个角的平分线上.
P
C
B
∵ PD⊥OA,PE⊥OB , PD=PE ∴ ∠1=∠2(OP是角平分线或P在∠AOB的平分线上)
11.定理:三角形三条边的垂直平分线相交于一点,并且
这一点到三个顶点的距离相等.
(这一点叫做三角形的外心)
个花园,从A到B,C两路口的距离都是2千米,现要从花园到生活小区
修一条最短的路,这条路的长可能是整数吗?可能是分数吗?
解:不可能是整数,也不可能是分数
4.(8分)如图,在3×3的方格中,有一阴影正方形,设每一个小方格的 边长为1个单位.请解决下面的问题. (1)阴影正方形的面积是多少? (2)阴影正方形的边长介于哪两个整数之间?
例1:在ΔABC中,AB=2AC,∠1=∠2,DA=DB
认识无理数(2)(课件ppt)

2.1 认识无理数(2)
北师大版 八年级上
新知导入
【思考】你能根据有理数的定义对有理数进行分类吗?
有理数
正整数 整数 零
负整数 正分数 分数 负分数
自然数
新知导入
【思考】如果按性质(正数、负数)来分类,又该怎样来分呢?
有理数
正有理数 零 负有理数
正整数 正分数 负整数 负分数
新知导入
上节课我们又了解到一些数,如a2=2,b2=5中的a,b不是整数, 能不能转化成分数呢? 那么它们究竟是什么数呢?
事实上,b=2.236 067 978…它是一个无限不循环小数.
新知讲解
c 同样,对于体积为2的正方体,借助计算器,可以得到它的棱长 c=1.259 921 05…它也是一个无限不循环小数.
新知讲解
【议一议】 把下列各数表示成小数,你发现了什么?
3,
4, 5
5, 9
-
8 45
,
2. 11
3=3.0
新知讲解
面积为2的正方形的边长a究竟是多少呢? (1)如图,三个正方形的边长之间有怎样的大小关系?说说你的理由.
∵12=1,a2=2,22=4,∴1<a2<4,且a>0,∴1<a<2
新知讲解
面积为2的正方形的边长a究竟是多少呢?
(2)边长a的整数部分是几?十分位是几?百分位呢?千分位呢?… 借助计算器进行探索.
新知讲解
【总结提高】
1.无理数是无限不循环小数,有理数是有限小数或无限循环小数.
2.任何一个有理数都可以化成分数
p q
的形式(q≠0,p,q为整数且互
质),而无理数不能.
课堂练习
1.下列说法中正确的是 ( C ) A.无限小数都是无理数 B.有限小数是无理数 C.无理数都是无限小数 D.有理数是有限小数
北师大版 八年级上
新知导入
【思考】你能根据有理数的定义对有理数进行分类吗?
有理数
正整数 整数 零
负整数 正分数 分数 负分数
自然数
新知导入
【思考】如果按性质(正数、负数)来分类,又该怎样来分呢?
有理数
正有理数 零 负有理数
正整数 正分数 负整数 负分数
新知导入
上节课我们又了解到一些数,如a2=2,b2=5中的a,b不是整数, 能不能转化成分数呢? 那么它们究竟是什么数呢?
事实上,b=2.236 067 978…它是一个无限不循环小数.
新知讲解
c 同样,对于体积为2的正方体,借助计算器,可以得到它的棱长 c=1.259 921 05…它也是一个无限不循环小数.
新知讲解
【议一议】 把下列各数表示成小数,你发现了什么?
3,
4, 5
5, 9
-
8 45
,
2. 11
3=3.0
新知讲解
面积为2的正方形的边长a究竟是多少呢? (1)如图,三个正方形的边长之间有怎样的大小关系?说说你的理由.
∵12=1,a2=2,22=4,∴1<a2<4,且a>0,∴1<a<2
新知讲解
面积为2的正方形的边长a究竟是多少呢?
(2)边长a的整数部分是几?十分位是几?百分位呢?千分位呢?… 借助计算器进行探索.
新知讲解
【总结提高】
1.无理数是无限不循环小数,有理数是有限小数或无限循环小数.
2.任何一个有理数都可以化成分数
p q
的形式(q≠0,p,q为整数且互
质),而无理数不能.
课堂练习
1.下列说法中正确的是 ( C ) A.无限小数都是无理数 B.有限小数是无理数 C.无理数都是无限小数 D.有理数是有限小数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
活动1:面积为2,5的正方形的边长a,b究竟是多少呢?
边长a 1<a<2
面积s 1<S<4
1.4<a<1.5
1.41<a<1.42
1.96<s<2.25
1.9881<s<2.0164
1.414<a<1.415
1.999396<s<2.002225
1.4142<a<1.4143 1.99996164<s<2.00024449
(二)
一、想一想
1.有理数如何分类?
思 考
整数(如-1,0,2,3,… ):都可看成有限小数.
有理数
分数(如
1 2 9 , , 3 5 11
…
):可不可能都化成有
限小数或无限循环小数? 2.上节课了解到一些数,如a2=2,b2=5中的a,b 既不 是整数,也不是分数,那么它们究竟是什么数呢?
二、活动与探究
例4
?
一个直角三角形两条直角边的长分别是3和5,则斜边
a是有理数吗?
解:由勾股定理得:a2=32+52,即
a2=34.因为34不是完全平方数,
所以a不是有理数.
5
a
3
五、练一练
1.随堂练习. 2.习题2.2. 3.家庭作业:学习丛书.
本课小结:
1.无理数的定义.
2.数的分类. 3.判定一个数是无理数还是有理数.
0.351 ,
3.14159,
4. 96,
…
..
2 , 3
-5.232332…
, 12334567891011… 3
…
有理数集合
无理数集合
例2 判断题
?
(
(1)有限小数是有理数;
√) √)
(2)无限小数都是无理数; ( ╳ )
(3)无理数都是无限小数; (
(4)有理数是有限小数.
( ╳ )
设计面积为5π的圆的半径为a.
(1)a是有理数吗?说说你的理由.
(2)估计a的值(精确到十分位,并利用你的计算器验证 你的估计. (3)如果精确到百分位呢?
解:∵πa2=5π,∴ a2=5 .
(1)a不是有理数,因为a既不是整数,也不是分数,而是
无限不循环小数. (2)估计a≈2.2. (3)估计a≈2.24.
a 2
2
a
a
是多少?
=1.41421356…
b 5
2
b
b
是多少?
=2.2360679…
结论:a,b既不是整数,也不是分数,则a,b 一定不是有理数.
活动2:分数化成小数,最终此小数的形式有几种 情况?
请同学们以学习小组活动:一同学举出任意一分数,
另一同学将此分数化成小数.并总结此小数的形式? 结论:分数只能化成有限小数或无限循环小数.
即任何有限小数或无限循环小数都是有理数.
强 调
像0.585885888588885…,1.41421356…, 2.2360679…等这些数的小数位数都是无限的,但是又不 是循环的,是无限不循环小数.
故无限不循环小数叫无理数.(圆周率π=3.14159265…
也是一个无限不循环小数,故π是无理数)
强 调
1.无理数是无限不循环小数,有理数是有限小数或
无限循环小数.
2.任何一个有理数都可以化成分数
q 为整数且互质),而无理数不能.
p q
形式( p,
例3 以下各正方形的边长是无理数的是( C A.面积为25的正方形; B.面积为 4 的正方形;
)
25
C.面积为8的正方形; D.面积为1.44的正方形.
三、分一分
到目前为止我们所学过的数可以分为几类? 按小数的形式来分 整数
有理数:有限小数或无限循环小数
数 分数
无理数:无限不循环小数
四、辨一辨
例1 填空
?
2 0.351 , , 3
4. 96,
..
3.14159,
-5.232332…, . 3
12334567891011…(由相继的正整数组成).
边长a 1<a<2
面积s 1<S<4
1.4<a<1.5
1.41<a<1.42
1.96<s<2.25
1.9881<s<2.0164
1.414<a<1.415
1.999396<s<2.002225
1.4142<a<1.4143 1.99996164<s<2.00024449
(二)
一、想一想
1.有理数如何分类?
思 考
整数(如-1,0,2,3,… ):都可看成有限小数.
有理数
分数(如
1 2 9 , , 3 5 11
…
):可不可能都化成有
限小数或无限循环小数? 2.上节课了解到一些数,如a2=2,b2=5中的a,b 既不 是整数,也不是分数,那么它们究竟是什么数呢?
二、活动与探究
例4
?
一个直角三角形两条直角边的长分别是3和5,则斜边
a是有理数吗?
解:由勾股定理得:a2=32+52,即
a2=34.因为34不是完全平方数,
所以a不是有理数.
5
a
3
五、练一练
1.随堂练习. 2.习题2.2. 3.家庭作业:学习丛书.
本课小结:
1.无理数的定义.
2.数的分类. 3.判定一个数是无理数还是有理数.
0.351 ,
3.14159,
4. 96,
…
..
2 , 3
-5.232332…
, 12334567891011… 3
…
有理数集合
无理数集合
例2 判断题
?
(
(1)有限小数是有理数;
√) √)
(2)无限小数都是无理数; ( ╳ )
(3)无理数都是无限小数; (
(4)有理数是有限小数.
( ╳ )
设计面积为5π的圆的半径为a.
(1)a是有理数吗?说说你的理由.
(2)估计a的值(精确到十分位,并利用你的计算器验证 你的估计. (3)如果精确到百分位呢?
解:∵πa2=5π,∴ a2=5 .
(1)a不是有理数,因为a既不是整数,也不是分数,而是
无限不循环小数. (2)估计a≈2.2. (3)估计a≈2.24.
a 2
2
a
a
是多少?
=1.41421356…
b 5
2
b
b
是多少?
=2.2360679…
结论:a,b既不是整数,也不是分数,则a,b 一定不是有理数.
活动2:分数化成小数,最终此小数的形式有几种 情况?
请同学们以学习小组活动:一同学举出任意一分数,
另一同学将此分数化成小数.并总结此小数的形式? 结论:分数只能化成有限小数或无限循环小数.
即任何有限小数或无限循环小数都是有理数.
强 调
像0.585885888588885…,1.41421356…, 2.2360679…等这些数的小数位数都是无限的,但是又不 是循环的,是无限不循环小数.
故无限不循环小数叫无理数.(圆周率π=3.14159265…
也是一个无限不循环小数,故π是无理数)
强 调
1.无理数是无限不循环小数,有理数是有限小数或
无限循环小数.
2.任何一个有理数都可以化成分数
q 为整数且互质),而无理数不能.
p q
形式( p,
例3 以下各正方形的边长是无理数的是( C A.面积为25的正方形; B.面积为 4 的正方形;
)
25
C.面积为8的正方形; D.面积为1.44的正方形.
三、分一分
到目前为止我们所学过的数可以分为几类? 按小数的形式来分 整数
有理数:有限小数或无限循环小数
数 分数
无理数:无限不循环小数
四、辨一辨
例1 填空
?
2 0.351 , , 3
4. 96,
..
3.14159,
-5.232332…, . 3
12334567891011…(由相继的正整数组成).