中考数学培优 易错 难题(含解析)之旋转及答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、旋转真题与模拟题分类汇编(难题易错题)

1.阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=

∠DAE,AB=AC,AD=AE,则BD=CE.

(1)在图1中证明小胖的发现;

借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:

(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;

(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).

【答案】(1)证明见解析;(2)证明见解析;(3)∠EAF =1

2 m°.

【解析】

分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;

(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明

△ABD≌△CBE即可解决问题;

(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到

M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=1

2 m°.

详(1)证明:如图1中,

∵∠BAC=∠DAE,

∴∠DAB=∠EAC,

在△DAB和△EAC中,

AD AE DAB EAC AB AC ⎧⎪

∠∠⎨⎪⎩

===, ∴△DAB ≌△EAC , ∴BD=EC .

(2)证明:如图2中,延长DC 到E ,使得DB=DE .

∵DB=DE ,∠BDC=60°, ∴△BDE 是等边三角形, ∴∠BD=BE ,∠DBE=∠ABC=60°, ∴∠ABD=∠CBE , ∵AB=BC , ∴△ABD ≌△CBE , ∴AD=EC ,

∴BD=DE=DC+CE=DC+AD . ∴AD+CD=BD .

(3)如图3中,将AE 绕点E 逆时针旋转m°得到AG ,连接CG 、EG 、EF 、FG ,延长ED 到M ,使得DM=DE ,连接FM 、CM .

由(1)可知△EAB ≌△GAC , ∴∠1=∠2,BE=CG ,

∵BD=DC ,∠BDE=∠CDM ,DE=DM , ∴△EDB ≌△MDC ,

∴EM=CM=CG ,∠EBC=∠MCD ,

∵∠EBC=∠ACF , ∴∠MCD=∠ACF , ∴∠FCM=∠ACB=∠ABC , ∴∠1=3=∠2,

∴∠FCG=∠ACB=∠MCF , ∵CF=CF ,CG=CM , ∴△CFG ≌△CFM , ∴FG=FM ,

∵ED=DM ,DF ⊥EM , ∴FE=FM=FG , ∵AE=AG ,AF=AF , ∴△AFE ≌△AFG , ∴∠EAF=∠FAG=

1

2

m°. 点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.

2.如图1,在平面直角坐标系xOy 中,抛物线C :y =ax 2+bx +c 与x 轴相交于A ,B 两点,顶点为D (0,4),AB =42,设点F (m ,0)是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180°,得到新的抛物线C ′. (1)求抛物线C 的函数表达式;

(2)若抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围. (3)如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线C ′上的对应点P ′,设M 是C 上的动点,N 是C ′上的动点,试探究四边形PMP ′N 能否成为正方形?若能,求出m 的值;若不能,请说明理由.

【答案】(1)2

142

y x =-+;(2)2<m <23)m =6或m 173. 【解析】

试题分析:(1)由题意抛物线的顶点C (0,4),A (2,0),设抛物线的解析式为

24y ax =+,把A

(0)代入可得a =1

2

-

,由此即可解决问题; (2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为

()2142y x m =--,由()22142

14

2y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-=,由题

意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()

222(4280

20280m m m ⎧-->⎪⎪

>⎨⎪->⎪⎩

解不等式组即可解决问题;

(3)情形1,四边形PMP ′N 能成为正方形.作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,推出PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,可得M (m +2,m ﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),利用待定系数法即可解决问题.

试题解析:(1)由题意抛物线的顶点C (0,4),A

(,0),设抛物线的解析式为

24y ax =+,把A

(0)代入可得a =1

2

-

,∴抛物线C 的函数表达式为21

42

y x =-+.

(2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为

()2142y x m =--,由2142

1(4

2x y x y ⎧=-+⎪⎪⎨⎪=-⎪⎩,消去y 得到222280x mx m -+-= ,由题意,

抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()

222(4280

20280m m m ⎧-->⎪⎪

>⎨⎪->⎪⎩

,解得

2<m

<,∴满足条件的m 的取值范围为2<m

< (3)结论:四边形PMP ′N 能成为正方形.

理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H .

相关文档
最新文档