人教版八年级数学上册 三角形解答题易错题(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级数学上册三角形解答题易错题(Word版含答案)

一、八年级数学三角形解答题压轴题(难)

1.如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.

(1)求证:∠A+∠C=∠B+D;

(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD、AB分别相交于点M、N.

①以线段AC为边的“8字型”有个,以点O为交点的“8字型”有个;

②若∠B=100°,∠C=120°,求∠P的度数;

③若角平分线中角的关系改为“∠CAP=1

3

∠CAB,∠CDP=1

3

∠CDB”,试探究∠P与

∠B、∠C之间存在的数量关系,并证明理由.

【答案】(1)证明见解析;(2)①3, 4;②∠P=110°;③3∠P=∠B+2∠C,理由见解析.

【解析】

【分析】

(1)由三角形内角和得到∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,由对顶角相等,得到∠AOC=∠BOD,因而∠A+∠C=∠B+∠D;

(2)①以线段AC为边的“8字形”有3个,以O为交点的“8字形”有4个;

②根据(1)的结论,以M为交点“8字型”中,∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,∠P+∠BAP=∠B+∠BDP,两等式相加得到

2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,由AP和DP是角平分线,得到

∠BAP=∠CAP,∠CDP=∠BDP,从而∠P=1

2

(∠B+∠C),然后将∠B=100º,∠C=120º代入计算即可;

③与②的证明方法一样得到3∠P=∠B+2∠C.

【详解】

解:(1)在图1中,有∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,

∵∠AOC=∠BOD,

∴∠A+∠C=∠B+∠D;

(2)解:①以线段AC为边的“8字型”有3个:

以点O为交点的“8字型”有4个:

②以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP

∴2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,

∵AP、DP分别平分∠CAB和∠BDC,

∴∠BAP=∠CAP,∠CDP=∠BDP,

∴2∠P=∠B+∠C,

∵∠B=100°,∠C=120°,

∴∠P=1

2(∠B+∠C)=1

2

(100°+120°)=110°;

③3∠P=∠B+2∠C,其理由是:

∵∠CAP=1

3∠CAB,∠CDP=1

3

∠CDB,

∴∠BAP=2

3∠CAB,∠BDP=2

3

∠CDB,

以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,

以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP

∴∠C﹣∠P=∠CDP﹣∠CAP=1

3

(∠CDB﹣∠CAB),

∠P﹣∠B=∠BDP﹣∠BAP=2

3

(∠CDB﹣∠CAB).

∴2(∠C﹣∠P)=∠P﹣∠B,

∴3∠P=∠B+2∠C.

故答案为:(1)证明见解析;(2)①3, 4;②∠P=110°;③3∠P=∠B+2∠C,理由见解析.【点睛】

本题考查了三角形内角和定理:三角形内角和是180°.也考查了角平分线的定义.

2.直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.

(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE 分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.

(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.

【答案】(1)135°;(2)67.5°;(3)60°, 45°

【解析】

【分析】

(1)根据直线MN 与直线PQ 垂直相交于O 可知∠AOB=90°,再由AE 、BE 分别是∠BAO 和∠ABO 的角平分线得出1BAE OAB 2∠=∠,1ABE ABO 2∠=∠,由三角形内角和定理即可得出结论;

(2)延长AD 、BC 交于点F ,根据直线MN 与直线PQ 垂直相交于O 可得出∠AOB=90°,进而得出OAB OBA 90∠+∠=︒ ,故PAB MBA 270∠+∠=︒,再由AD 、BC 分别是∠BAP 和∠ABM 的角平分线,可知1BAD BAP 2∠=∠,1ABC ABM 2

∠=∠,由三角形内角和定理可知∠F=45°,再根据DE 、CE 分别是∠ADC 和∠BCD 的角平分线可知

CDE DCE 112.5∠+∠=︒,进而得出结论;

(3))由∠BAO 与∠BOQ 的角平分线相交于E 可知

1EAO BAO 2∠=∠,1EOQ BOQ 2

∠=∠ ,进而得出∠E 的度数,由AE 、AF 分别是∠BAO 和∠OAG 的角平分线可知∠EAF=90°,在△AEF 中,由一个角是另一个角的3倍分四种情况进行分类讨论.

【详解】

(1)∠AEB 的大小不变,

∵直线MN 与直线PQ 垂直相交于O ,

∴∠AOB=90°,

∴OAB OBA 90∠+∠=︒,

∵AE 、BE 分别是∠BAO 和∠ABO 角的平分线,

∴1BAE OAB 2∠=∠,1ABE ABO 2

∠=∠, ∴()1BAE ABE OAB ABO 452∠+∠=

∠+∠=°, ∴∠AEB=135°;

(2)∠CED 的大小不变.

如图2,延长AD 、BC 交于点F .

∵直线MN 与直线PQ 垂直相交于O ,

相关文档
最新文档