高中数学数列极限完整ppt课件

合集下载

《高数》数列极限课件PPT

《高数》数列极限课件PPT

定义与其他概念的关系
极限与连续性的关系
函数的连续性是指在某一点处的极限 值等于该点的函数值,因此,函数的 连续性可以看作是极限的一种特殊情 况。
极限与可导性的关系
极限与积分的关系
积分是研究面积和体积的重要工具, 而积分的计算需要用到极限的概念。
可导性是指函数在某一点处的切线斜 率存在,而这个切线斜率可以通过函 数在该点的极限值来定义。
数列极限与其他数学概念的关系
数列极限与函数极限的关 系
函数极限是数列极限的一个特例,即当自变 量n趋于无穷大时,函数值趋于一个常数, 这个常数就是函数的极限值。函数极限和数 列极限有许多共同的性质和定理,如单侧极 限、连续性等。
数列极限与微积分学
微积分学中的许多概念都与数列极限有关, 如导数、定积分等。通过数列极限,我们可 以更好地理解这些概念的本质和性质。同时 ,微积分学中的许多问题也需要借助数列极
04
数列极限的应用
在数学分析中的应用
极限是数学分析的基本概念之一,数列极限在数学分析中有 着广泛的应用。通过研究数列极限,可以更好地理解函数的 变化趋势、导数和积分的定义和性质等。
数列极限在证明一些数学定理和推导数学公式中也有着重要 的作用。例如,利用数列极限可以证明实数的完备性定理、 级数收敛的判别法等。
数列极限的几何解释
数列极限的几何解释是通过图形直观 地理解数列收敛和发散的概念。在平 面坐标系中,我们可以绘制数列的图 像,通过观察图像的变化趋势来理解 数列的收敛性和发散性。
收敛数列的图像会趋近于一个固定的 点,而发散数列的图像则会远离这个 点。通过比较不同数列的图像,我们 可以更好地理解数列极限的性质和特 点。
闭区间套定理
总结词
闭区间套定理是数列极限存在的一个充分条件,它表明如果一个数列的项构成一个闭区 间套,则该数列收敛。

《数列极限》课件

《数列极限》课件
性。
适用于任何收敛数列的证明 。
需要选择合适的正数 $varepsilon$,以确保证明
的有效性。
夹逼定理证明法
01 总结词
通过夹逼定理来证明数列的收 敛性。
02 详细描述
03 适用范围
适用于某些收敛数列的证明。
夹逼定理指出,如果存在两个 常数$a$和$b$,使得$a leq a_n leq b$且$lim_{n to infty} a = lim_{n to infty} b = L$, 则数列${a_n}$也收敛于$L$。 通过证明存在这样的常数$a$和 $b$,可以证明数列的收敛性。
利用数列极限探究数学规律或现象,如 探究数学猜想、探究函数的周期性等。
利用数列极限求解复杂数学问题,如求 解高阶导数、求解微分方程等。
详细描述 利用数列极限证明函数的性质或定理。
THANKS
感谢观看
微积分基本定理的推导
01
微积分基本定理的 内容
微积分基本定理是微积分学中的 重要定理,它建立了定积分与不 定积分之间的关系。
02
微积分基本定理的 推导过程
通过极限理论、实数完备性等数 学工具,可以推导出微积分基本 定理。
03
微积分基本定理的 应用
微积分基本定理是计算定积分的 基石,可以用于解决面积、体积 、长度等几何和物理问题。
需要选择合适的正数,以确 保证明的有效性。
柯西收敛准则证明法
总结词
详细描述
适用范围
注意事项
通过柯西收敛准则来证明数 列的收敛性。
柯西收敛准则指出,如果对于任 意正数$varepsilon$,存在正整 数$N$,使得当$n, m > N$时, 有$|a_n - a_m| < varepsilon$ ,则数列收敛。通过证明存在这 样的$N$,可以证明数列的收敛

《高数》数列极限》课件

《高数》数列极限》课件

详细描述
几何级数是每一项都等于前一项乘以一个固 定比例的数列。数列极限的概念用于计算几 何级数的和,帮助我们了解这种数列的增长
趋势和规律。
05
数列极限的扩展知识
无穷级数的概念
要点一
无穷级数定义
无穷级数是无穷多个数按照一定顺序排列的数列,可以表 示为$sum_{n=0}^{infty} a_n$,其中$a_n$是级数的项。
《高数》数列极限》ppt课件
• 数列极限的定义 • 数列极限的性质与定理 • 数列极限的运算 • 数列极限的应用 • 数列极限的扩展知识
01
数列极限的定义
定义及性质
定义
数列的极限是指当项数n无限增大时 ,数列的项无限趋近的数值。
性质
极限具有唯一性、有界性、局部保序 性等性质。
收敛与发散
收敛
如果数列的极限存在,则称该数列收敛。
单调有界定理
如果数列单调递增且有上界或单调递减且有下界,则 该数列收敛。
反例
举出一些不满足单调有界定理的数列,如无界且无周 期的数列等。
应用
单调有界定理在证明某些数学问题时具有重要应用, 如求函数的极值点等。
柯西收敛准则
柯西收敛准则
数列收敛的充要条件是对于任意 给定的正数$varepsilon$,存在 正整数$N$,使得当$n,m>N$时 ,有$|a_n - a_m|<varepsilon$ 。
幂级数求极限
幂级数求极限的方法
介绍如何利用幂级数的方法求极限,包 括将函数展开为幂级数,并利用幂级数 的性质求极限。
VS
举例说明
通过具体例子演示如何运用幂级数求极限 ,如求lim(x->0) (1+x)^1/x的极限值。

高等数学放明亮版课件1.2-数列的极限ppt.ppt

高等数学放明亮版课件1.2-数列的极限ppt.ppt

2024/9/27
17
目录
上页
下页
返回
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
xn
1
(1)n n
无限接近于常数1 .
怎样用精确的数学语言来阐述“当 n 趋于无穷大时,
数列 xn 无限接近一个确定的常数 a ”这一变化趋势? 我们知道,两个数 a 与 b 之间的接近程度可以用这两个
数之差的绝对值| b a | 来度量( | b a | 的几何意义表示点 a
与点 b 之间的距离),| b a | 越小,a 与 b 就越接近.为此,“数
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
2. 收敛数列一定有界.
(Roundedness)
证: 设nl imxn a, 取 1, 则 N , 当 nN 时, 有 xn a 1,从而有
去求最小的 N.
2024/9/27
9
目录
上页
下页
返回
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
例2 证明
lim
n
(1)n (n 8)3
0
证:
xn0
( 1) n (n 8)3
极限是唯一的.
2024/9/27
12
目录
上页
下页

高三数学高等数学极限部分数列极限PPT课件

高三数学高等数学极限部分数列极限PPT课件

xn
(a , a ) 内, 而此区间外至多只有有限
个点即
x1 , x2 ,
, xN 1, xN .
17
第17页/共30页
例 设 | q | 1, 证明: lim qn 0 . n
分析 对于 0, 要使 qn 0 ,
即要使 qn q n , n ln q ln ,
即:n ln , (先设q不为零) 取 0 1, 使得
定义
(数列极限的
N 数量化定义)

{
x } 为一数列, n
若存在定数 a,
0, N Z , 使得 n N,
恒有 xn a , 则称 a 为数列
的极限,
{ x } 或称数列
收敛于 a, 并记为
n
{ xn }
lim
n
xn
a,
或记为
xn a,(n ).
15
第15页/共30页
若不存在这样的定数 a,
12
第12页/共30页

an 1
1 1 2n
1
1 2n
1 10
只要项号 n 满足
n4
要使
an
1
1 2n
1 100
只要项号 n 满足
n7
就有
1 27
1 128
1 100
而要使
an 1
1 2n
1 10000
13
第13页/共30页
( 1)
( N1)
( 2)
( N2)
( 3)
2n 10000 n lg 2 lg10000
ln q
ln 1,
ln q
于是只要取
N
ln
ln | q

高等数学第一章第二节数列的极限课件.ppt

高等数学第一章第二节数列的极限课件.ppt

1
1 2n
1
二、数列的定义
定义:按自然数1,2,3,编号依次排列的一列数
x1 , x2 ,, xn ,
(1)
称为无穷数列,简称数列.其中的每个数称为数
列的项,xn 称为通项(一般项).数列(1)记为{ xn }.
例如 2,4,8,,2n ,;
1 2
,
1 4
,
1 8
,,
1 2n
,;
{2n}
1 {2n }
五、小结
数列:研究其变化规律; 数列极限:极限思想、精确定义、几何意义; 收敛数列的性质: 有界性、唯一性、保号性、子列的收敛性
练习题
一、利用数列极限的定义证明:
1、lim 3n 1 3 ; n 2n 1 2
2、lim0.999....9 1 n
二、设数列
xn
有界,又lim n
yn
0,
有 xn 1 成立.
定义 如果对于任意给定的正数 (不论它多么
小),总存在正数 N ,使得对于n N 时的一切 xn,
不等式 xn A 都成立,那末就称常数 A 是数列
xn的极限,或者称数列 xn收敛于 A,记为
lim
n
xn
A,
或 xn A (n ).
如果数列没有极限,就说数列是发散的.
n
n
例2
设xn
C(C为常数),
证明 lim n
xn
C.
说明:常数列的极限等于同一常数.
小结: 用定义证数列极限存在时,关键是任意给 定 0,寻找N,但不必要求最小的N.
例3 证明 lim qn 0,其中q 1. n
四、数列极限的性质
性质1 如果数列有极限,则极限是唯一的.

数列极限-PPT精选文档

数列极限-PPT精选文档

2.几个重要极限:
1 0 limC C (C为常数) lim n n n
q 0 当 q 1 时 lim n
n
3.我们可以将an看成是n的函数即an=f(n),n∈N*,an就
是一个特殊的函数,对于一般的函数f(x) x∈R是否有同
样的结论?
3、数列极限的运算法则 lim bn=B 如果 lim an=A,
n
n 1
例2:已) 5 a n b n
2
求常数a、b、c的值。
例3.已知数列{ an }是由正数构成的数列, a1=3,且满足于lgan =lgan-1 +lgc,其中 n 是 大于1的整数,c 是正数
(1)求数列{ an }的通项公式及前n项和Sn
例1:求下列极限
2n n7 (1 )lim 2 5 n 7 n
2
(2 )lim ( n nn )
2 n
2 4 2 n 2 . . . . . 2) ( 3 ) l i m (n 2 n n n
a ( 1 a ) ( 1 a) ( a 1 ) ( 4 ) l i m n 1 n 1 a ) ( 1 a ) . . . . . . . . . . . n a (
2 a n 求 的 值 (2) lim n n 2 a n 1
n 1
课堂小结 1、极限的四则运算,要特别注意四则运 算的条件是否满足。
2.几个重要极限:
limC C (C为常数)
n
1 lim 0 n n
q 0 当 q 1 时 lim n
n
2、本节复习内容是数列极限在代数,平 面几何、三角、解析几何中的综合应用, a1 尤其要注意公式S= 的运用。 1 q

高等数学《数列的极限》课件

高等数学《数列的极限》课件
则有唯一极限 a 存在 .

则存在 N ,
但因
交替取值 1 与-1 ,
内,
而此二数不可能同时落在
长度为 1 的开区间
使当 n > N 时, 有
因此该数列发散 .
2. 收敛数列一定有界.
证: 设



时,
从而有

则有
由此证明收敛数列必有界.
说明: 此性质反过来不一定成立.
例如,
虽有界但不收敛 .
欲使

只要
因此 , 取
则当
时, 就有

例2. 已知
证明
证:
欲使
只要


则当
时, 就有

故也可取
也可由
N 与 有关, 但不唯一.
不一定取最小的 N .
说明:

例3. 设
证明等比数列
证:
欲使
只要

亦即
因此 , 取
, 则当 n > N 时,
就有

的极限为0 .
二、收敛数列的性质
证: 用反证法.
第一章
二 、收敛数列的性质
三 、极限存在准则
一、数列极限的定义
第二节
数列的极限
数学语言描述:
一 、数列极限的定义
引例.
设有半径为 r 的圆,
逼近圆面积 S .
如图所示 , 可知
当 n 无限增大时,
无限逼近 S .
当 n > N 时,
用其内接正 n 边形的面积
总有
(刘徽割圆术)
他对数学的贡献主要集中
在微积分学,

《数列的极限》PPT课件

《数列的极限》PPT课件

1.数列极限的定义
设{an}是一个无穷数列,如果当项数 n 无限增大时,项 an 无限地趋近于某个常数 a(即|an
-a|无限地接近于
0),那么就说数列{an}以
a
为极限(或者说
a
是数列{an}的极限),记作
lim n→∞
an=a.
2.几个常用极限
(1)lim C=C(C 为常数); n→∞
(2)lim n→∞
答案:1000
首页 上一页 下一页 末页
瀚海导与练 成功永相伴
瀚海书业
瞻前顾后 要点突破 典例精析 演练广场 考题赏析
首页 上一页 下一页 末页
瀚海导与练 成功永相伴
瀚海书业
瞻前顾后 要点突破 典例精析 演练广场 考题赏析
知识要点一:对数列极限的理解 1.数列{an}的极限是指当 n 无限增大时,an 无限趋近的那个常数.如果当 n 无限增大时, an 不趋近于任何一个常数,那么这个数列就没有极限.数列的极限是一个常数,这个常数与 n 无关,求数列的极限就是求这个常数. 2.一个数列如果有极限,那么这个数列的极限是唯一的,即一个数列不可能有两个或 更多个极限.
知识要点二:几种常用数列的极限 1.常数数列的极限是这个常数本身,即n→lim∞C=C(C 为常数). 2.如果|a|<1,那么n→lim∞an=0;如果n→lim∞an=0,那么|a|<1;如果n→lim∞an 存在,那 么-1<a≤1.
首页 上一页 下一页 末页
瀚海导与练 成功永相伴
瀚海书业
瞻前顾后 要点突破 典例精析 演练广场 考题赏析
首页 上一页 下一页 末页
瀚海导与练 成功永相伴
瀚海书业
瞻前顾后 要点突破 典例精析 演练广场 考题赏析

1-02-数列的极限-PPT精品文档

1-02-数列的极限-PPT精品文档
则对一切 n,皆 自有 xn然 M 数 , 故 xn有.界
注意:有界性是数列收敛的必要条件. 推论 无界数列必定发散.
2、唯一性
定理2 收敛的数列极限唯一。
证 设 l n ix n m a ,又 l n ix n m b , 由定义,
0,N 1,N 2.使当 得 n N 1 时x 恒 n a 有 ;
定理2 收敛的数列极限唯一。
证 法二 设 l n ix n m a ,又 l n ix n m b ,
假设a

b,不


a

b,则 可 取 0

a
2
b

0,
lim
n
xn

a

对于0

0,N 1,n

N1,
xn a

0,

xn

a

0

a
2
b
,
只有(至 有多 限 N 个 只 )个 落有 在 . 其外
例1 证l明 im n(1)n11. n n

xn
1
n(1)n1 n
11, n
任给0,要xn1,只要n1,或n1,
所以, 取N1,则当nN时,就有n(1)n11

n
n(1)n1 n
Xn
1
1 2n
1
数 定义:按自然数1,2,3,编号依次排列的一列数

x1, x2,, xn,
(1)
称为无穷数列,简称数列.其中的每个数称为数
列的项,xn称为通项(一般项).数列(1)记为{xn}.
例如 2,4,8, ,2n, ; { 2 n }

人教版高中数学课件:高二数学课件-数列的极限

人教版高中数学课件:高二数学课件-数列的极限
在研究数列的极限时,需要特别关注 初始项的选择,以确保数列的收敛性 和收敛速度。
收敛数列的性质
收敛数列具有唯一性,即收敛 数列只能收敛到一个唯一的极 限值。
收敛数列具有有界性,即收敛 数列的项值必须在一定范围内 波动,不会无限增大或减小。
收敛数列具有保序性,即如果 一个数列收敛到极限a,那么对 于任何正整数n,都有 an≥an+1。
03
数列极限的应用
利用极限求数列的通项公式
总结词
通过数列的极限,我们可以推导出数列的通项公式。
详细描述
在数列的极限中,如果一个数列的极限值存在,那么这个极限值就是数列的通项 公式。例如,对于等差数列,其通项公式可以通过求差分比值的极限得到。
利用极限证明数列的单调性
总结词
通过比较相邻项的极限,可以证明数 列的单调性。
极限的唯一性
极限的唯一性是数列极限的一个 重要性质,即一个数列只能有一
个极限值。
如果一个数列有两个不同的极限 值,那么这个数列就不会收敛。
极限的唯一性对于研究数列的性 质和函数的变化规律非常重要, 是数学分析中的一个基本原则。
THANK YOU
数列极限的存在性
01
02
03
单调有界定理
如果数列单调递增且有上 界或单调递减且有下界, 则该数列存在极限。
闭区间套定理
如果数列满足闭区间套的 条件,则该数列存在极限 。
柯西收敛准则
如果对于任意给定的正数 $varepsilon$,存在正整 数N,使得当$n, m > N$ 时,有$|a_n - a_m| < varepsilon$,则该数列 存在极限。
04
数列极限的求解方法
直接代入法

高等数学之数列的极限PPT课件

高等数学之数列的极限PPT课件
§2 数列的极限
一、概念的引入 二、数列的概念 三、数列极限的定义 四、数列极限的性质
1
一、概念的引入
1、割圆术: “割之弥细,所 失弥少,割之又 割,以至于不可 割,则与圆周合 体而无所失矣”
——刘徽
2
正六边形的面积 A1
正十二边形的面积 A 2
R

正62n1形的面积 A n
A 1,A 2,A 3, ,A n,S
随着 n 的无限增大而无限趋于 0 .
4
二、数列的概念
定义:按自然数1,2,3,编号依次排列的一列数
x1 , x2 ,, xn ,
(1)
称为实数列,简称数列.其中的每个数称为数列
的项, xn称为通项(一般项).数列(1)记为{xn }.
例如 2,4,8, ,2n, ;
{2 n }
12,14,18,,21n,;
则对一切 n,皆 自有 xn然 M 数 , 故 xn有.界
推论 无界数列必定发散.
13
例 数x列 n(1)n1.
事实 ,{xn}是 上有 ,但 界却 的 . 发散
注意:有界性是数列收敛的必要条件.
14
3、保号性 定理3 若 ln imxn a, 且a >0( 或a <0),则存在
证 设数 x n k 是 列数 x n 的 列 任一子
ln i m xna,
0 , N 0 , 使 n N 时 , 恒 x n a 有 . 取KN,
则k 当 K时 , n k n k n KN .
xnk a. k l i m xnk a.
证毕.
21
说明: 由此性质可知 , 若数列有两个子数列收敛于不同的极 限 , 则原数列一定发散 . 例如,

数列极限ppt课件

数列极限ppt课件

lim
n
xn
A,

xn
A(n ),
此时也称{ xn }的极限存在.
否则称{ xn }的极限不存在,或称{ xn } 发散.
5
定义5 设{ xn }是一个数列, A是一个常数,若对任给的 0, 存在正整数 N,使得当 n N时,都有| xn A | ,则称 A是
数列{ xn }的极限,或称{ xn }收敛于A,记作
特别地,若 xn
0
(或 xn
0
),则lim
n
xn
0
(或 lim
n
xn
0).
9
注:在推论2中即使是xn
yn
,也只能推出lim
n
xn
lim
n
yn .
定理4(夹逼定理)设数列{ xn },{ yn },{zn}满足xn yn zn (当
n
N时),且 lim
n
xn
lim
n
z
a
,则 lim
n
yn
a.
例2
lim
n
yn ,则存在正整数
N,当n
N 时,有xn
yn .
推论1(保号性定理)设 {
xn
}的极限存在,且lim
n
xn
0
(或
lim
n
xn
0),则存在正整数N,当n
N
时,有xn
0(或
xn
0).
推论2 设{ xn },{ yn }的极限存在,若 xn yn (当n N 时),则
lim
n
xn
lim
n
yn .
lim
n
xn
A,

高三数学数列的极限精选课件PPT

高三数学数列的极限精选课件PPT
0 .9 19 0 4 0 .3 0 1 50 0 .9 59 0 1 0 .5 0 1 20 2 0 .9 19 0 0 2 .2 0 1 0 40 4 0 .9 29 0 5 0 .1 0 1 0 80 8 由此猜想 lim 0.9n 90
n
一般地,如果 |ห้องสมุดไป่ตู้a | 1,那么 nl im an0.
周分成三等分、六等分、十二等分、二十四等分、···这样 继续分割下去,所得多边形的周长就无限接近于圆的周长.
定量分析
圆的半径 R 1 2
2.3 数列的极限
项号 边数 内 接 多 边 形 周 长
1 3 2.598076211353 2 6 3.0 3 12 3.1 4 24 3.1
5 48 3.7
2.3 数列的极限
2.3 数列的极限
战国时代哲学家庄周著的《庄子·天 下篇》引用过一句话:
一尺之棰 日取其半 万世不竭.
……
定量分析
2.3 数列的极限
项号 项
1
1
2
1
2
4
1
3
8
4
1 16
1
5
32
6
1 64
1
7
128
1
8
256
……
这一项与0的差的绝对值
| 1 0|0.5 2
| 10|0.25 4
| 10|0.125 8
(2)
1, 2, 3, , n, 234 n1
(3) 1 , 2 1, 1 3, , ( n 1 )n,
共同特性是:不论这些变化趋势如何,随着项数n 的无 限增大,数列的项 a n无限地趋近于常数a(即 ana 无限地接 近于0) .

《高数数列极限》PPT课件

《高数数列极限》PPT课件

如果数列没有极限,就说数列是发散的.
注意:
1. 不等式 xna 刻 画了xn 和a 的“无限接近”,
2. 必须是可以任意小的,不能只是局限于某些个别的;
2. N与 有关, 通常随着 的不同而变化; 3. 但对于固定的, N又是不唯一的!
n 3. nN 刻画了变标 的变n 化程度, 与 N 无关! 10
12
上下
例2.
xn (n(11)n)2 , 证明 n l i m xn0.
证:
xn0
(1)n (n1)2
0
(n
1 1)2
1 n 1
0(设 1),
欲使
xn0,只要
1
n1
,

1
n
1.
取 故
Nn l i[ 1m xn1 ],n l 那 当i m 么(n ( 1 n1 ) n )2N 0 时,
就有
上下
➢几何解释:
a 2 a x 2 x1 xN1 a xN2 x 3 x
当 nN 时 ,所 有 x n 都 的 ( 落 a 点 ,a 在 )内 ,
只有 (至 有多 限 N 个 )落 只 个 在 有 . 其外
➢.符号定义: ln i m xn a
0 , N 0 , 当 n N 时 , 有 x n a .
取 N m N 1 ,N a 2 ,及x b2a
则n 当 N时有 b 2axnab 2a
xn
ab 2
b 2axnbb 2a
xn
ab 2
矛盾. 故收敛数列极限唯一.
15
上下
二、收敛数列的性质
2.有界性 【定理2】 收敛的数列必定有界.
只 要 n 1 0 0 0 0 时 ,有xn1100 100;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

周长之和。
……
思考—讨论—探究—解答
.
18
(四)分层练习、巩固创新
4 [开放性练习] :
某校有教职工150人,为了丰富教职工的课 余生活,每天定时开放健身房和娱乐室,并且 所有教职工每次去健身房或娱乐室之一。据调 查室统,计而, 去每 娱次 乐去 室健 的身人房有的20人0 0 有下1次0 去0 0 下健次身去房娱,乐请 思考,随着时间的推移,去健身房的人数能否 趋于稳141592106
.
4
… …
(一)结合实际,动画导入:
2、战国时代哲学家庄周说道: “一尺之棰,日取其半,万世不竭。”
求第n天剩余的木棒长度(尺),并分析变化趋势;
1
第1天
第2天 .
第3天
1
……
2n
第n天 …5 …
(一)结合实际,动画导入:
3.求曲边梯形的面积:
y=f(x)
(三)尝试探究,深化概念:
[应用举例]: 揭示共同规律,形成概念。
11
1
(1)
1,
, 8
,L 27
,
n3
,L
;
(2) 6.5,6.95,6.995, L710 5n,L;
(3)
11 1
1
2,4,8,L,(2)n ,L.
(4) 1,2,3,L,n,L
(5) 1,1,1,L1,L.
结 论 : lim C C C 为 常 数
结论:一般地,若 a1则liman 0 n
.
13
教学过程:
(一) 结合实际,动画导入 (二) 感知实例,归纳概念 (三) 尝试探究,深化概念 (四) 分层练习,巩固提高 (五) 课堂小结,布置作业
.
14
(四)分层练习、巩固创新
1. [巩固性练习] :考察以下数列的极限。
(1) 10,20,30,,n0,
210 (n 210 )
(1)若
an
210
n
(n>210 ) 则数列 { a n } (
)
A 无极限
B 有极限 2 1 0
C 有极限 2 1 0 或0 D 有极限0
.
16
(四)分层练习、巩固创新
2 [提高性练习] :
[深入探究]: (2)试比较 0
g
.9
与1
的大小
考察数列0.9 ,0.99 ,0.999 ,…1- 各1项与1的距离。
数a,(即 |a n a |无限地接近于0)那么就
说数列{ a n }以a为极限,或者说a是数列{ a n } 的极限
记作:
lim
n
a
n
a
.
10
教学过程:
(一) 结合实际,动画导入 (二) 感知实例,归纳概念 (三) 尝试探究,深化概念 (四) 分层练习,巩固提高 (五) 课堂小结,布置作业
.
11
n
lim10 lim (1)p. 0(p>0)
12
n n
n n
(三)尝试探究,深化概念
[猜想,探究]:
例2判断以下推理过程正确与否: Q lim1n 1 ,而0.99很接近于1
n
lim0.99n 1 是否正确? n
猜想数列 0.99n 的极限,再用计算器计算
0 .9 9 1 0 0 0,0 .9 9 5 0 0 0,0 .9 9 1 0 0 0 0,0 .9 9 2 0 0 0 0 .
有一个正三角形的岛屿(边长为1);第二次观察时,发现它并非正三角形, 而的是中每央边13 中处央都13 有处一向向外外有突一出正的三正角三形角海形岬海;岬第,三把次这观个察过时程发无现限原继先续每下一去小,边 就得到著名的数学模型——科赫岛。
直径为1的圆:
正三角形
正六边形
正十二边形
.
3
(一)结合实际,动画导入:
内接正多边形边数
正多边形周长
6
3.00000000
12
3.10582854
24
3.13262861
48
3.13935020
96
3.14103194
192
3.14145247
384
3.14155761
768
3.14158389
1536
答:随着时间的推移,去健身房的人数稳定在 100人左右
.
19
(五)归纳小结
(1)在数列极限的定义中,当n无限增 大时,如何趋近是不重要的,重要的是 无限趋近。
(2)不是任何数列都有极限,但如果有 极限,则极限是唯一的。
(3)掌握数列极限的性质和结论。
.
20
作业
1教材第76页习题 2.2 2 探究 : 人们想象,一艘太空飞船飞回地球,第一次观察时 发现地球上
10n
序号 1 2 3 4
项an 0.9 0.99 0.999 0.9999
an与1的差的绝对值 |0.9-1|=0.1 |0.99-1|=0.01 |0.999-1|=0.001 |0.9999-1|=0.0001
5
0.99999 |0.99999-1|=0.00001
6
0.999999 |0.999999-1|=0.000001
y
0a
b
x
.
6
教学过程:
(一) 结合实际,动画导入 (二) 感知实例,归纳概念 (三) 尝试探究,深化概念 (四) 分层练习,巩固提高 (五) 课堂小结,布置作业
.
7
(二)感知实例,归纳概念
1、 [观察思考]:考察以下数列的 变化趋势。
(1)
(2)
(3)
.
8
(二)感知实例,归纳概念
2 [揭示本质]:观察变化趋势,总结规律。
(1)
.... . .
.
(2)
. . . .....
0
1
23
1
2
34
(3)
.
. . ....... ... .
-1
-1 3
1 5
1 7
0.
11 64
1 2
9
(二)感知实例,归纳概念
3、 [概念形成]: 揭示共同规律,形成概念。
定义:一般地,如果当项数n无限增大时,
无穷数列{ a n } 的项 a n 无限地趋近于某个常

… …
.
17
(四)分层练习、巩固创新
3 [探索性练习] :
(1)公比为q的无穷等比数列,它的前n项和为 S
足什么条件时,
lim
n
S
n
存在?
,当q满
n
(2)在边长为R的正六边形内,依次连结各边的中点,得一
正六边形,又在这一正六边形内,依次连结各边的中点,又
得一正六边形,这样无限地继续下去,试求所有正六边形的
(2) 1, 1, 1, , 1, 23 n
(3) 2,4, 8,,(2)n, 3 9 27 3
(4) 3,9,27,,(3)n,
24 8
2
(5 ) 2 .9 , 2 .9 9 , 2 .9 9 9 ,, 3 1 0 1 n, .
观 察 讨 论
15
(四)分层练习、巩固创新
2 [提高性练习] :考察以下数列的极限。
教材:人教版高级中学《数学》 第三册 P73-P76
.
1
教学过程:
(一) 结合实际,动画导入 (二) 感知实例,归纳概念 (三) 尝试探究,深化概念 (四) 分层练习,巩固提高 (五) 课堂小结,布置作业
.
2
(一)结合实际,动画导入:
1.刘徽割圆术:“割之弥细,所失弥少,割之又割, 以至于不可割,则与圆周合体,而无所失矣。”
相关文档
最新文档