2.1.1指数与指数幂的运算(1).ppt
合集下载
高一数学指数与指数幂的运算
(2)27的三次方根是
(3)-32的五次方根
(4)16 的四次方根
(5)a6源自的三次方根是(6)0的七次方根是
观察并分析以上各数的方根,你能发现什 么?
5 ( 1 )
3 4
求下列各式的值
2
思考
3
(2 )(-2 ) (3 )(-2 )
4
( a) ?
n n m
2
(4 ) 3-a (a 3 )
a ?
n
;排列3走势图表 https:///chart/pl3/11 排列3走势图表 ;
越是绝对不顺眼.以为自身有壹点背鞠,就摆出呐种姿态,呐种声,最令声厌恶.“城主壹意孤行,俺也无法反对.但是,俺在呐里要说,鞠言就算通过了考核,俺申风学院,也是不会接收他の!”沧龙,狠狠の看了鞠言壹眼.“哦?”“沧龙执事,权历还真是大啊!申风学院招收修行者,你也能全 部做主了?”霍东阳,真の是有些恼怒了.他已经有了心思,觉得自身,是不是等沧龙离开西墎城返回蓝曲郡城の事候,将呐个老东西在路上弄死算了.只要做得隐秘,申风学院也没办法找自身麻烦.不过,呐还是有壹些冒险,万壹消息走漏,他就麻烦了.“城主大声!”呐事候,鞠言开口.“申 风学院就是要俺进去,俺都不会进去了.沧龙执事,也不需要费心了.”鞠言冷笑着说道.被申风学院驱逐出壹次,鞠言,本就没有打算再进入申风学院.蓝曲郡内,又不是只有申风学院壹个学院.鞠言,还能够进入红莲学院或者道壹学院.“鞠言,俺道壹学院,欢迎你加入.”道壹学院の庆墨执 事,当即就开口说道.在庆墨看来,以鞠言の实历,通过三大学院考核,绝对是绰绰有余.对于鞠言呐样の天纵奇才,道壹学院,当然欢迎の很.“多谢庆墨先生了.”鞠言对庆墨拱手道谢.庆墨,笑着对鞠言点了点头.“好了,各位都散了吧!”霍东阳,壹摆手对在场の众声道.“告辞!”照当元, 第壹个冷冰冰の
(3)-32的五次方根
(4)16 的四次方根
(5)a6源自的三次方根是(6)0的七次方根是
观察并分析以上各数的方根,你能发现什 么?
5 ( 1 )
3 4
求下列各式的值
2
思考
3
(2 )(-2 ) (3 )(-2 )
4
( a) ?
n n m
2
(4 ) 3-a (a 3 )
a ?
n
;排列3走势图表 https:///chart/pl3/11 排列3走势图表 ;
越是绝对不顺眼.以为自身有壹点背鞠,就摆出呐种姿态,呐种声,最令声厌恶.“城主壹意孤行,俺也无法反对.但是,俺在呐里要说,鞠言就算通过了考核,俺申风学院,也是不会接收他の!”沧龙,狠狠の看了鞠言壹眼.“哦?”“沧龙执事,权历还真是大啊!申风学院招收修行者,你也能全 部做主了?”霍东阳,真の是有些恼怒了.他已经有了心思,觉得自身,是不是等沧龙离开西墎城返回蓝曲郡城の事候,将呐个老东西在路上弄死算了.只要做得隐秘,申风学院也没办法找自身麻烦.不过,呐还是有壹些冒险,万壹消息走漏,他就麻烦了.“城主大声!”呐事候,鞠言开口.“申 风学院就是要俺进去,俺都不会进去了.沧龙执事,也不需要费心了.”鞠言冷笑着说道.被申风学院驱逐出壹次,鞠言,本就没有打算再进入申风学院.蓝曲郡内,又不是只有申风学院壹个学院.鞠言,还能够进入红莲学院或者道壹学院.“鞠言,俺道壹学院,欢迎你加入.”道壹学院の庆墨执 事,当即就开口说道.在庆墨看来,以鞠言の实历,通过三大学院考核,绝对是绰绰有余.对于鞠言呐样の天纵奇才,道壹学院,当然欢迎の很.“多谢庆墨先生了.”鞠言对庆墨拱手道谢.庆墨,笑着对鞠言点了点头.“好了,各位都散了吧!”霍东阳,壹摆手对在场の众声道.“告辞!”照当元, 第壹个冷冰冰の
2016-2017学年人教A版高一数学必修一书本讲解课件:第二章 2.1 2.1.1 第1课时 根
第二十三页,编辑于星期五:十五点 三十六分。
课时作业
第二十四页,编辑于星期五:十五点 三十六分。
解析:4 0.062 5+
245-
3
27 8
=4 0.54+ 2 522- 3 323=12+52-32=32. 答案:32
第二十二页,编辑于星期五:十五点 三十六分。
4.化简:( a-1)2+ 1-a2+3 1-a3. 解析:由题得 a≥1, ∴( a-1)2+ 1-a2+3 1-a3 =a-1+|1-a|+1-a =a-1.
原式=[a
2 3
·(a-3)
1 2
]
1 3
·(a
5 2
·a
13 2
)
1 2
=a
2 9
·a
1 2
·a
5 4
·a
13 4
=a
5 18
·a-2=a
41 18
=
1
.
a2·18 a5
第十九页,编辑于星期五:十五点 三十六分。
[易错警示]
错误原因
纠错心得
避免错误的方法是先将根式化
错解中主要是在进行化简时,根 为分数指数幂,然后按分数指数
C.1 或 2a-1
D.0
(2)当 a、b∈R 时,下列各式总能成立的是( )
A.(6 a-6 b)6=a-b
8 B.
a2+b28=a2+b2
4 C.
a4-4
b4=a-b
D.10 a+b10=a+b
第十二页,编辑于星期五:十五点 三十六分。
[解析] (1)a+4 1-a4=a+|1-a|=1 或 2a-1,故选 C. (2)取 a=0,b=1,A 不成立. 取 a=0,b=-1,C、D 不成立. ∵a2+b2≥0,∴B 正确,故选 B. [答案] (1)C (2)B
高中数学 2.1.11《指数与指数幂的运算》课件 新人教A版必修1
0的奇次方根是_____,偶次方根是______ 。
第七页,共13页。
当n为奇数(jī shù)时,a的n次方n 根a
是当n为偶数时。,正数a的n次方根(fānggēnna)
是
,
负0的数任没何有(偶rè次nh方é)根次(方fā根ng都gē是n)。n,0即 0
。
试试:b4 a, 则a的4次方根为____; b3 a, 则a的3次方根为____;
y (1 7.3%)x 1.073x (x N*, x 20)
y (1 7.3%)10 1.07310
第三页,共13页。
实例 3:我们(wǒ men)知道考古学家是通过生 物化石的研究判断生物的发展和进化的,他 们究竟是怎样判断生物所处的年代呢?
当生物死亡后,体内碳14每过5730年大约
-125的3次方根是____;
10000的4次方根是____。
第八页,共13页。
思考(sīkǎo)1:
知识(zhī shi)探 究(分三别)等于什么?
一般地,
等于什么? ( n a )n a
思考2:
分别等于什么?
一般地,n an 等于什么?
当n是奇数时, n an a
{ 当n是偶数时, n an | a |
第 sh知ù)识(zhī shi)探 模实型例应(sh用ílì背) 1景:某市人口平均究年增(长一率)为
1.25℅,1990 年人口数为a 万,则 x年后人
口数为多少y 万a?(11.25%)x 1.0125x a(x N )
实例2:国务院发展研究中心在2000 年分 析,我国未来20年GDP(国内生产总值) 年平均增长率达7.3℅, 则x年后GDP 为 2000年的多少倍?10年后呢?
第七页,共13页。
当n为奇数(jī shù)时,a的n次方n 根a
是当n为偶数时。,正数a的n次方根(fānggēnna)
是
,
负0的数任没何有(偶rè次nh方é)根次(方fā根ng都gē是n)。n,0即 0
。
试试:b4 a, 则a的4次方根为____; b3 a, 则a的3次方根为____;
y (1 7.3%)x 1.073x (x N*, x 20)
y (1 7.3%)10 1.07310
第三页,共13页。
实例 3:我们(wǒ men)知道考古学家是通过生 物化石的研究判断生物的发展和进化的,他 们究竟是怎样判断生物所处的年代呢?
当生物死亡后,体内碳14每过5730年大约
-125的3次方根是____;
10000的4次方根是____。
第八页,共13页。
思考(sīkǎo)1:
知识(zhī shi)探 究(分三别)等于什么?
一般地,
等于什么? ( n a )n a
思考2:
分别等于什么?
一般地,n an 等于什么?
当n是奇数时, n an a
{ 当n是偶数时, n an | a |
第 sh知ù)识(zhī shi)探 模实型例应(sh用ílì背) 1景:某市人口平均究年增(长一率)为
1.25℅,1990 年人口数为a 万,则 x年后人
口数为多少y 万a?(11.25%)x 1.0125x a(x N )
实例2:国务院发展研究中心在2000 年分 析,我国未来20年GDP(国内生产总值) 年平均增长率达7.3℅, 则x年后GDP 为 2000年的多少倍?10年后呢?
2.1.1指数幂的运算
(5)0的七次方根等于___________ 0 0
7
根都为0.
x是a的n次方根
不等于 ?
a的n次方根是x
探究
n
a a
n
一定成立吗?
1、当 n 是奇数时,n a n a
a ( a 0 ) 2、当 n 是偶数时, a | a | a (a 0)
n n
例2 求下列各式的值
8
2 3
;
25
1 5
1 2
;
1 2
5
;
4
32
运算法则:
a a a
r s
r S
r s
(a 0, r, s Q)
(a ) a (a 0, r, s Q)
rs
(a b) a b (a 0, b 0, r Q)
r r r
练习1:求下列各式的值
(1) (8)
3 4
3
=-8
4
(2) (10)
2 2
=10
(3) (3 )
=π-3
(4) (a - b) (a b). =a-b
思考:
5
a
a
10
5
(a2) a
5
2
a
10 5
(a>0)
4
12
4
3
a
4
3
n
a
m
a a (a>0) 问: 4 a 吗? (a>0) (a 3 ) a a (a>0,n>1且m,n∈N*) a
1 5730
1 P 2
1 P 学习的指数有什么区别?
2.1.1指数和指数幂运算(一)—根式
新课
2、 n次方根的定义
一般地, 若x a, 则x叫做a的n次方根.其中
n
n次方根,32的5次方根; (2)25的2次方根, 81的4次方根.
n次方根有何性质?
3/21/2019 10:18:57 PM
新课
n次方根的性质
(1)奇次方根的性质 :
(1).
3 3
(3)( 3) ; 2 (4 ) ( a b ) . n n (5 ) ( a b) .
5 5
3/21/2019 10:18:57 PM
小结
5、小结与拓展
1、n次方根与n次根式的概念 2、n次方根与n次根式的运算性质
拓展思维训练
《学案》
求值:5 2 6 7 4 3 6 4 2
例2、计算 :
2 5 5
请思考
(1)( 5 ) ____, ( 3 ) ____;
( 2) ( 2) ____, ( 3) ____ .
2 3 3
比较( a ) 和 a 的区别与联系 ?
3/21/2019 10:18:57 PM
n
n
n
n
新课
根式的运算性质
(1)( n a ) n 是先对a开方, 再乘方, 结果为被开 方数, a 是先对a乘方, 再开方, 结果不一 定为被开方数. n n (2)当n为奇数时, a ____, a 当n为偶数时, a
正数的奇次方根是一个正数, 负数的奇次 方根是一个负数,0的奇次方根是0.
( 2)偶次方根的性质 : 正数的偶次方根是两个绝对值相等符号
相反的数, 负数的偶次方根没有意义,0的 奇次方根是0.
3/21/2019 10:18:57 PM
人教A版高中数学必修一课件:2.1.1 指数与指数幂的运算
有理指数幂的运算性质,对于无理数指数幂都适用
(四).实数指数幂的运算性质
a ar s a (a rs 0, r, s R)
(ar )s ars (a 0, r, s R)
(ab)r a br r (a 0,b 0, r R)
练习: (1).用根式的形式表示下列各式(a>0):
m3n3 m2 n3
(3) a 2 (a 0); a3 a2
(4)(3 25 125) 4 5
2
3
1
a2
1
3
2 1 2
a 2 3
a2 a2
(53 52 ) 54
2
1
3
1
53 54 52 54
5
a6 6 a5
21
31
5
5
53 4 52 4 512 54
a a
(a 0) (a 0)
(Ⅱ)讲授新课 1.引入:
(±2)2=4
2,-2 叫4的平方根(即2次方根),
其中:2叫做4的算术平方根(正的2次方根) -2叫做4的负的平方根(负的2次方根)
23=8
2叫8的立方根(即3次方根)
(-2)3=-8
-2叫-8的立方根(即3次方根)
25=32
五.练习:
课本P59习题2.1A组1,2题
练习
(1)3 64 __-_4___ 5 32 ____2___; (2)4 81 ___3___ 4 81 ___-_3__;;
(3) (4 3)4 3______(5 6)5 ___6___;
(4) 5 a10 _a_2___ 3 a12 _____a4__;
(四).实数指数幂的运算性质
a ar s a (a rs 0, r, s R)
(ar )s ars (a 0, r, s R)
(ab)r a br r (a 0,b 0, r R)
练习: (1).用根式的形式表示下列各式(a>0):
m3n3 m2 n3
(3) a 2 (a 0); a3 a2
(4)(3 25 125) 4 5
2
3
1
a2
1
3
2 1 2
a 2 3
a2 a2
(53 52 ) 54
2
1
3
1
53 54 52 54
5
a6 6 a5
21
31
5
5
53 4 52 4 512 54
a a
(a 0) (a 0)
(Ⅱ)讲授新课 1.引入:
(±2)2=4
2,-2 叫4的平方根(即2次方根),
其中:2叫做4的算术平方根(正的2次方根) -2叫做4的负的平方根(负的2次方根)
23=8
2叫8的立方根(即3次方根)
(-2)3=-8
-2叫-8的立方根(即3次方根)
25=32
五.练习:
课本P59习题2.1A组1,2题
练习
(1)3 64 __-_4___ 5 32 ____2___; (2)4 81 ___3___ 4 81 ___-_3__;;
(3) (4 3)4 3______(5 6)5 ___6___;
(4) 5 a10 _a_2___ 3 a12 _____a4__;
课件 2.1.1 指数与指数幂的运算
(3)4 (3 )4 ; (4) (a b)2 (a b).
解:(1)3 (8)3 8;
(2) (10)2 10 10; (3)4 (3 )4 3 3;
注意符号
(4) (a b)2 a b a b (a b).
【提升总结】 根式化简或求值的注意点 解决根式的化简或求值问题,首先要分清根式为奇 次根式还是偶次根式,然后运用根式的性质进行化 简或求值.
解:
11
41
2
(a a 3 )2 (a 3 )2 a 3 .
利用分数指数幂的形式表示下列各式(其中a >0).
(3)
3
(
3a 3 27b3
)4
3
8 3
a
4b
4
(4)
9
a 2 4 b3
a b . 9 4
3 8
例2.化简下列各式(其中a >0).
(3)
3
(
3a 3 27b3
)4
9
9 3 1
9 3
5
5
512 54
12 55 54 5.
【1】计算下列各式(式中字母都是正数).
(1)
a
a
a
111
a2 a4 a8
a1 2
1 4
1 8
7
a8
8 a7 .
a2
(2)
.
a 3 a2
解:原式 =
a2
1
2 1 2
5
2 a 2 3 a 6
a2 a3
注意:结果可以用根式表示,也可以用分数指数 幂表示.但同一结果中不能既有根式又有分数 指数幂,并且分母中不能含有负分数指数幂.
当n为奇数时,x n a ( a R ) 当n为偶数时,x n a ( a 0 ) 0的任何次方根都是0,记作 =0.
2.1.1指数与指数幂的运算课件人教新课标
例如:27的3次方根表示为 -32的5次方根表示为 a6的3次方根表示为
例如:27的3次方根表示为 -32的5次方根表示为 a6的3次方根表示为 16的4次方根表示为
例如:27的3次方根表示为 -32的5次方根表示为 a6的3次方根表示为 16的4次方根表示为
例如:27的3次方根表示为
-32的5次方根表示为
问题2 当生物死亡后,它机体内原有的碳 14会按确定的规律衰减,大约每经过5730 年衰减为本来的一半,这个时间称为“半
衰期”.根据此规律,人们获得了生物体内 碳14含量P与死亡年数t之间的关系
提问: 什么?
的意义是
讲授新课
根式: (1)求: ①9的算数平方根,9的平方根; ②8的立方根,-8的立方根; ③什么叫做a的平方根?a的立方根?
(3)性质 ①当n为奇数时:正数的n次方根为
正数,负数的n次方根为负数. 记作:
②当n为偶数时:正数的n次方根有 两个(互为相反数).
记作:
(3)性质 ①当n为奇数时:正数的n次方根为
正数,负数的n次方根为负数. 记作:
②当n为偶数时:正数的n次方根有 两个(互为相反数).
记作:
(3)性质 ①当n为奇数时:正数的n次方根为
(2)定义 一般地,若xn=a (n>1, n∈N*),则
x叫做a的n次方根.
叫做根式, n 叫做根指数, a 叫做被开方数.
例如:27的3次方根表示为 -32的5次方根表示为 a6的3次方根表示为
例如:27的3次方根表示为 -32的5次方根表示为 a6的3次方根表示为
例如:27的3次方根表示为 -32的5次方根表示为 a6的3次方根表示为
② 当n为任意正整数时,
例1 求下列各式的值:
人教A高中数学必修一2.1.1指数与指数幂的运算
练一练
3 3 27
2 3 8
2 5 32
22 4
3 2 9 2 416
视察思考:你能得到什么结论?
得出结论
3 3 27 2 3 8
2 5 32
x5 11
3 3 27 2 3 8 2 5 32
x 5 11
结论:当 n为奇数时,记为 x n a
得出结论
22 4 3 2 9 2 4 16
2.根式的概念:式子n a 叫做根式,其中 n 叫做根指
数,a 叫做被开方数.
3.根式的性质:(1)当 n a有意义时,(n a)n a
(2)当 n 是奇数时, n an a
n 当
是偶数时,n an
a
a(a 0) a(a 0)
选做题: 化简计算:
a
(3) 5 a b5 ;
(4) 6 (a b)6
课堂练习二:化简下列各式 :
(1) 5 32
(2) (3)4 (3) ( 2 3)2 (4)
52 6 化简计算: 3 2 2 3 2 2
课时小结
本节课同学们有哪些收获呢?
1. n次方根的概念: 一般地,如果xn a ,那么 x 叫 a的 n次方根,其中 n 1 且 n N*.
第二章 基本初等函数(Ⅰ)
2.1 指数函数 2.1.1 指数与指数幂的运算
第1课时 根式
学习目标
1.理解n次方根及根式的概念,掌握根式性质. 2.能利用根式的性质对根式进行化简.
平方根
如果 x2 a,那么 x 叫做 a的平方根,
正数的平方根有两个,它们互为相反数.
记作 a
如:4的平方根是±2,即 2 4
n 次方根存在吗?有几个?怎么表示? 若 a是负数呢?
(学习方略)高中数学 2.1.1指数与指数幂的运算课件 新人教A版必修1
【分析】 分n为奇数和n为偶数两种情况解答.
A
28
【解】 当n为奇数时, 原式=a-b+a+b=2a; 当n为偶数时,∵a<b<0, ∴原式=|a-b|+|a+b|=b-a+(-a-b)=-2a. 综上知, n a-bn+n a+bn=2-a2an为n奇 为数 偶数 ,.
A
29
规律技巧 为使开偶次方不出现符号错误,先用绝对值保 留开方的结果,然后根据题设条件化去绝对值符号,没给条件 的要分情况讨论.
A
7
2.根式的性质
(1)当n为奇数时, n an =________,当n为偶数时, n an = ________.
(2)负数没有偶次方根,零的任何次方根都是________.
A
8
3.分数指数幂的意义
(1)设a>0,m,n∈N*,n>1,则将 n am 表示为a的分数指数
幂的形式为____________,a-
A
10
1.(1)xn=a 根式 根指数 被开方数 a
(2)负数 n a n a -n a ±n a
自 2.(1)a |a|=a a≥0 -a a<0 我 (2)0
校
m1
3.(1)a n m
对
an
(2)0 没有意义
4.ar+s ars arbr
A
11
思考探究 在有理数指数幂的运算性质中,为什么要规定
A
32
规律技巧 本题ab与a-b互为倒数,抓住这一点,已知和 所求分别平方很快得出答案,这里运用了公式变形a-b2=a +b2-4ab.
A
33
变式训练4
已知a
1 2
+a-
1 2
=m,求a2+a 1的值.
A
28
【解】 当n为奇数时, 原式=a-b+a+b=2a; 当n为偶数时,∵a<b<0, ∴原式=|a-b|+|a+b|=b-a+(-a-b)=-2a. 综上知, n a-bn+n a+bn=2-a2an为n奇 为数 偶数 ,.
A
29
规律技巧 为使开偶次方不出现符号错误,先用绝对值保 留开方的结果,然后根据题设条件化去绝对值符号,没给条件 的要分情况讨论.
A
7
2.根式的性质
(1)当n为奇数时, n an =________,当n为偶数时, n an = ________.
(2)负数没有偶次方根,零的任何次方根都是________.
A
8
3.分数指数幂的意义
(1)设a>0,m,n∈N*,n>1,则将 n am 表示为a的分数指数
幂的形式为____________,a-
A
10
1.(1)xn=a 根式 根指数 被开方数 a
(2)负数 n a n a -n a ±n a
自 2.(1)a |a|=a a≥0 -a a<0 我 (2)0
校
m1
3.(1)a n m
对
an
(2)0 没有意义
4.ar+s ars arbr
A
11
思考探究 在有理数指数幂的运算性质中,为什么要规定
A
32
规律技巧 本题ab与a-b互为倒数,抓住这一点,已知和 所求分别平方很快得出答案,这里运用了公式变形a-b2=a +b2-4ab.
A
33
变式训练4
已知a
1 2
+a-
1 2
=m,求a2+a 1的值.
2.1.1指数与指数幂的运算(必修一 数学 优秀课件)
a
性质:
(1)当n是奇数时,正数的n次方根是一个正数, 负数的n次方根是一个负数. (2)当n是偶数时,正数的n次方根有两个,它们 互为相反数. (3)负数没有偶次方根, 0的任何次方根都是0. 记作 n 0 = 0.
(4)
(
n
a)
5
n
a
4
2 32 _______ 81 _______ 3
(
>0, 是
无理数)是一个确定的实数. 有理数指数幂的
运算性质同样适用于无理数指数幂.
思考:请说明无理数指数幂
2
3
的含义。
1、已知 x
3
3 6 1 a ,求 a 2ax x 的值。
2
2、计算下列各式
(1)
a b a b
2
1 2
1 2
1 2
1 2
a b a b
rs
r
(a b) a b (a 0, b 0, r Q)
r
例2、求值
8
2 3
;
25
1 2
;
1 2
5
16 ; 81
3 4
例3、用分数指数幂的形式表示下列各式(其中a>0):
(1) a
3
a ( 2) a
2
3
a
2
(3) a a
3
3 x y 2
)
7、若10x=2,10y=3,则10
2 6 3
。
B 8、a , b ,下列各式总能成立的是( R
A .( a
6 6 6
)
2 2 8 2 2 8 b) a b B. ( a b ) a b
课件17:2.1.1 指数与指数幂的运算
1
-2 -2
- -
解:原式=(2 ) +(6 2) 3+(32+22)2-4×8×62
3
1
1
1
1
1
=24+62+5+2×62-3×62=21.
1
归纳升华
1.基本原则:式子里既有分数指数幂又有根式时,一般把根式统一
化为分数指数幂的形式,再用有理指数幂的运算性质化简.
2.常规方法:(1)化负指数幂为正指数幂;(2)化根式为分数指数幂;
根式与分数指数幂的互化
3
-
[典例 2] (1)将分数指数幂 a 4(a>0)化为根式为________.
3
1
1
1
-
答案:(1) 4
解析:(1)a 4= 3=4 .
a4
a3
a3
5
(2)化简:a2· a3÷
5
10
a·
10
9=________(用分数指数幂表示).
a
3
1
9
13
7
13 7
6
解析: (a2· a3)÷( a· a9)=(a2·a5)÷(a2·a10)=a 5 ÷a5=a 5 -5=a5.
6
答案: (2)a5
(3)将下列根式与分数指数幂进行互化
3
①a3· a2. ②
-4
3
a b2 ab2(a>0,b>0).
2
3
11
2
解:①a3· a2=a3·a3=a3+3=a 3 .
D.负数没有 n 次方根
解析:对于A,正数的偶次方根中有负数,所以A错误;对于B,
负数的奇次方根是负数,偶次方根不存在,所以B错误;对于
-2 -2
- -
解:原式=(2 ) +(6 2) 3+(32+22)2-4×8×62
3
1
1
1
1
1
=24+62+5+2×62-3×62=21.
1
归纳升华
1.基本原则:式子里既有分数指数幂又有根式时,一般把根式统一
化为分数指数幂的形式,再用有理指数幂的运算性质化简.
2.常规方法:(1)化负指数幂为正指数幂;(2)化根式为分数指数幂;
根式与分数指数幂的互化
3
-
[典例 2] (1)将分数指数幂 a 4(a>0)化为根式为________.
3
1
1
1
-
答案:(1) 4
解析:(1)a 4= 3=4 .
a4
a3
a3
5
(2)化简:a2· a3÷
5
10
a·
10
9=________(用分数指数幂表示).
a
3
1
9
13
7
13 7
6
解析: (a2· a3)÷( a· a9)=(a2·a5)÷(a2·a10)=a 5 ÷a5=a 5 -5=a5.
6
答案: (2)a5
(3)将下列根式与分数指数幂进行互化
3
①a3· a2. ②
-4
3
a b2 ab2(a>0,b>0).
2
3
11
2
解:①a3· a2=a3·a3=a3+3=a 3 .
D.负数没有 n 次方根
解析:对于A,正数的偶次方根中有负数,所以A错误;对于B,
负数的奇次方根是负数,偶次方根不存在,所以B错误;对于
2.1.1指数与指数幂的运算(一)(2)课件人教新课标
2.1.1 指数与指数幂的运算(一)
第二章 §2.1 指数函数
情境引入关于根号的故事,最有价值和意义的当属它导致了第一次数学危机,并促使了逻辑学和几何学的发展.公元前五世纪,古希腊有一个数学学派,名叫毕达哥拉斯学派,毕达哥拉斯学派提出的著名命题“万物皆数”是该学派的哲学基石.而“一切数均可表示成整数或整数之比”则是这一学派的数学信仰.
归 纳 总 结
用文字总结如下:
探究点2 在方根的表示中,你知道式子叫什么吗?
式子叫做根式,这里n叫做根指数,a叫做被开方数.
根指数
被开方数
根式
问题探究
结论:
探究点3 你能根据方根的意义确定下面式子的值吗?
问题探究
结论:an开奇次方根,则有
本课结束
探究2:
二、n次方根的表示:
1、当n为偶数时,正数a的n(偶)次方根有两个,互为相 反数正的记作 ,负的记作 负数 无偶次方跟
2、当n为奇数时,正数a的n奇次方根是一个正数,记 负数的n(奇)次方根是一个负数,记
3、0的任何次方根都是0.
小组讨论
解答
跟踪训练2 求下列各式的值:
解答
类型二 根式的意义
解答
∴a-1≥0,∴a≥1.
当堂训练
1.已知x5=6,则x等于
√
答案
2
3
4
5
1
2.m是实数,则下列式子中可能没有意义的是
答案
√
2
3
4
5
1
3.( )4运算的结果是A.2 B.-2C.±2 D.不确定
答案
√
2
3
4
5
1
4. 的值是A.2 B.-2C.±2 D.-8
第二章 §2.1 指数函数
情境引入关于根号的故事,最有价值和意义的当属它导致了第一次数学危机,并促使了逻辑学和几何学的发展.公元前五世纪,古希腊有一个数学学派,名叫毕达哥拉斯学派,毕达哥拉斯学派提出的著名命题“万物皆数”是该学派的哲学基石.而“一切数均可表示成整数或整数之比”则是这一学派的数学信仰.
归 纳 总 结
用文字总结如下:
探究点2 在方根的表示中,你知道式子叫什么吗?
式子叫做根式,这里n叫做根指数,a叫做被开方数.
根指数
被开方数
根式
问题探究
结论:
探究点3 你能根据方根的意义确定下面式子的值吗?
问题探究
结论:an开奇次方根,则有
本课结束
探究2:
二、n次方根的表示:
1、当n为偶数时,正数a的n(偶)次方根有两个,互为相 反数正的记作 ,负的记作 负数 无偶次方跟
2、当n为奇数时,正数a的n奇次方根是一个正数,记 负数的n(奇)次方根是一个负数,记
3、0的任何次方根都是0.
小组讨论
解答
跟踪训练2 求下列各式的值:
解答
类型二 根式的意义
解答
∴a-1≥0,∴a≥1.
当堂训练
1.已知x5=6,则x等于
√
答案
2
3
4
5
1
2.m是实数,则下列式子中可能没有意义的是
答案
√
2
3
4
5
1
3.( )4运算的结果是A.2 B.-2C.±2 D.不确定
答案
√
2
3
4
5
1
4. 的值是A.2 B.-2C.±2 D.-8
2.1.1指数与指数幂的运算(一)课件
n n n n
9 ( 3 8)3 ____. -8 ( 9) ____, n n ( a) a
2
(1)
5
25 2,
3
( 2 3 2. )
(2) 32 3,
(3)2 3,
(3)2 3.
(3) 4 24 2, 4 (2)4 2, 4 2 4 2. ( )
x 2 x 2 ( x 2) x 2. x 2 0, 则有 x 2 0, 或 | x 2 | x 2. x 2, x 2, 或 即 x 2, 或x ≥ 2. x 2 ≥ 0. 所以x的取值范围是 x 2, 或x ≥ 2.
§2.1.1指数与指数幂的运算
回顾初中知识,什么是平方根?立方根?
①如果一个数的平方等于a,则这个数叫做 a
的平方根. 例:22=4 2,-2叫4的平方根. 2=4 (-2) ②如果一个数的立方等于a,则这个数叫做a 的立方根. 2叫8的立方根. 例:23=8 (-2)3=-8 -2叫-8的立方根.
§2.1.1指数与指数幂的运算
3.三个公式 (1) an Nhomakorabean
a;
(2) n a n a;
(3) a | a | .
n n
4.若xn=a , x怎样用a表示?
n a, n为奇数, n a , n为偶数, a 0, x a 0, 0, 不存在, n为偶数, a 0.
2
(4) 5 2 6 ( 2 3 3 2. )
2
§2.1.1指数与指数幂的运算
例2.填空: (1)在 6 ( 2)2 n , 5 a 4 , 3 a 4 , 4 ( 3)2 n1
9 ( 3 8)3 ____. -8 ( 9) ____, n n ( a) a
2
(1)
5
25 2,
3
( 2 3 2. )
(2) 32 3,
(3)2 3,
(3)2 3.
(3) 4 24 2, 4 (2)4 2, 4 2 4 2. ( )
x 2 x 2 ( x 2) x 2. x 2 0, 则有 x 2 0, 或 | x 2 | x 2. x 2, x 2, 或 即 x 2, 或x ≥ 2. x 2 ≥ 0. 所以x的取值范围是 x 2, 或x ≥ 2.
§2.1.1指数与指数幂的运算
回顾初中知识,什么是平方根?立方根?
①如果一个数的平方等于a,则这个数叫做 a
的平方根. 例:22=4 2,-2叫4的平方根. 2=4 (-2) ②如果一个数的立方等于a,则这个数叫做a 的立方根. 2叫8的立方根. 例:23=8 (-2)3=-8 -2叫-8的立方根.
§2.1.1指数与指数幂的运算
3.三个公式 (1) an Nhomakorabean
a;
(2) n a n a;
(3) a | a | .
n n
4.若xn=a , x怎样用a表示?
n a, n为奇数, n a , n为偶数, a 0, x a 0, 0, 不存在, n为偶数, a 0.
2
(4) 5 2 6 ( 2 3 3 2. )
2
§2.1.1指数与指数幂的运算
例2.填空: (1)在 6 ( 2)2 n , 5 a 4 , 3 a 4 , 4 ( 3)2 n1
数学:2.1.1《指数与指数幂的运算》课件(新人教A版必修1)(中学课件2019)
器也 天下謷謷然 坐法失官 以天地五位之合终於十者乘之 观玉台 或召见 不绌无德 靡有解怠 可不勉哉 属常雨也 变动不居 讲习《礼经》 退之可也 千人 死有馀罪 更节加黄旄 有常节 因谋作乱 勿听 因矫以王命杀武平君畔 王治无雷城 为所称善 兴不从命 王尊字子赣 骏以孝廉为郎 案卫思
后 戾太子 戾后园 《法言》十三 虽复破绝筋骨 国除 羲和司日 天子独与侍中泰车子侯上泰山 避帝外家 今闻错已诛 拔城而不得其封 及眊掉之人刑罚所不加 亦亡去 乃敢饮 去食谷马 其明年 愿陛下与平昌侯 乐昌侯 平恩侯及有识者详议乃可 上从相言而止 知吏贼伤奴 处巴江州 戒太子曰 即
也 又一切调上公以下诸有奴婢者 中分天下 申子主之 承圣业 并州 平州尤甚 晋史卜之 云梦泽在南 三月癸卯制书曰 其封婕妤父丞相少史王禁为阳平侯 自此始也 止王南越 耕耘五德 甲辰 周殷反楚 还 其以军若城邑降者 大举九州之势以立城郭室舍形 而山戎伐燕 云廷讦禹 而汉亦亡两将军
时杀人民 此天以臣授陛下 若齐之技击 曰上崩 武闻之 为水 呼韩邪破 自君王以下咸食畜肉 非胙惟殃 所以存亡继绝 成命统序 东济大河 此两统贰父 蹶浮麋 所以变民风 此所以成变化而行鬼神也 并终数为十九 行至塞 宣之使言 盖堤防之作 迁乐浪都尉丞 有日蚀 地震之变 农民不得收敛 深
•今秦无德 羽大怒 曹参次之 上曰 善 於是乃令何第一 民皆引领而望 二 欲人变更 蓼 广如一匹布 斩其王还 毋须时 於水则波 去日半次 太公治齐 上思仲舒前言 因为博家属徙者求还 周勃为布衣时 故与李斯同邑 或闭不食 莽曰监朐 《汉流星行事占验》八卷 法而陈之 何为苦心 语在《宪王
传》 淮阳阳夏人也 害五谷 而曰豫建太子 后年入朝 台子通为燕王 珠熉黄 秦民失望 刻印三 一曰 维祉冠存己夏处南山臧薄冰 世以此多焉 稍夺诸侯权 汝复为太史 大夫 谒者 郎诸官长丞皆损其员 更化则可善治 布召见 因惠言 匈奴连发大兵击乌孙 景驹自立为楚假王 大置酒 太后诏曰 太师
高中新课程数学(新课标)必修一《2.1.1指数与指数幂的运算》课件
的对应关系是互逆的.它们的单调性是一致的,在掌握这 两类函数的性质时,要结合图象来加以理解和记忆.
3.要正确区分指数函数与幂函数的定义及性质,牢
记两类函数表达式的形式.
4.关于底数含有参数的指数函数、对数函数讨论的 问题是学习中的重点与难点,解决这些问题最基本的方法 是以“底”大于1或大于0小于1分类.
n
m
an=|a|= a (a≥0) . -a (a<0) 要在理解的基础上,记准,记熟,会用,用活.
n
【例 2】 计算: 5+2 6+ 7-4 3- 6-4 2.
思路分析:本题需把各项被开方数变为完全平方的形
式,然后再利用根式运算的性质.
解: 5+2 6+ 7-4 3- 6-4 2 = ( 3)2+2 3· 2+( 2)2+ 22-2×2 3+( 3)2- 22-2×2 2+( 2)2 = ( 3+ 2)2+ (2- 3)2- (2- 2)2 =| 3+ 2|+|2- 3|-|2- 2| = 3+ 2+2- 3-(2- 2) =2 2
二、地位作用
幂函数、指数函数、对数函数是重要的基本初等函数,
是高中数学函数部分的主体内容,是函数理论的主要载体, 特别是指数函数、对数函数,更是历年高考的重点、热 点.从简单函数性质到复合函数知识、从容易题到压轴难 题,都可能以它为背景编拟.
三、学法指导
1.三种基本初等函数的概念、图象及性质.要在理
4. (-5)2=________,[ (-5)2]2=________.
5.求( a-2) + (2-a) + (2-a)3的值.
2
2
3
类型一 根式的化简与运算 【例 1】 求下列各式的值. 5 4 4 5 2 (1) (-3) ; (2) (-3) ; (3) (π-4)2; (4) (a-b)2.
3.要正确区分指数函数与幂函数的定义及性质,牢
记两类函数表达式的形式.
4.关于底数含有参数的指数函数、对数函数讨论的 问题是学习中的重点与难点,解决这些问题最基本的方法 是以“底”大于1或大于0小于1分类.
n
m
an=|a|= a (a≥0) . -a (a<0) 要在理解的基础上,记准,记熟,会用,用活.
n
【例 2】 计算: 5+2 6+ 7-4 3- 6-4 2.
思路分析:本题需把各项被开方数变为完全平方的形
式,然后再利用根式运算的性质.
解: 5+2 6+ 7-4 3- 6-4 2 = ( 3)2+2 3· 2+( 2)2+ 22-2×2 3+( 3)2- 22-2×2 2+( 2)2 = ( 3+ 2)2+ (2- 3)2- (2- 2)2 =| 3+ 2|+|2- 3|-|2- 2| = 3+ 2+2- 3-(2- 2) =2 2
二、地位作用
幂函数、指数函数、对数函数是重要的基本初等函数,
是高中数学函数部分的主体内容,是函数理论的主要载体, 特别是指数函数、对数函数,更是历年高考的重点、热 点.从简单函数性质到复合函数知识、从容易题到压轴难 题,都可能以它为背景编拟.
三、学法指导
1.三种基本初等函数的概念、图象及性质.要在理
4. (-5)2=________,[ (-5)2]2=________.
5.求( a-2) + (2-a) + (2-a)3的值.
2
2
3
类型一 根式的化简与运算 【例 1】 求下列各式的值. 5 4 4 5 2 (1) (-3) ; (2) (-3) ; (3) (π-4)2; (4) (a-b)2.
高一数学指数与指数幂的运算
a ?
n
九州娱乐网 www.jiuzhouyule.me 九州娱乐网
uyd31vau
板,每挂车上各放着一把大铁锹和四只大木桶。大个子和小胖子把平车推到淋灰池子旁边,把所有的木桶全部搬下来摆放好,又各自抄起 一把铁锹。大个子问中年男人:“头儿,挖哪个池子里的?”中年男人没有说话,而是走过去从他们手里拿过大铁锹来,将两把铁锹相互 刮蹭敲打一番后又递给他们拿着。接着,又挨着个儿将八只大木桶一个一个地拍打拍打,又提起来倒过去磕打磕打以后重新摆放好。做完 这些之后,中年男人这才问耿老爹:“这位大哥,你想要哪个池子里的?”耿老爹说:“就顺序从边上的这个池子挖吧。”“好喽!”中 年男人答应一声,又认真吩咐大个子和小胖子:“装满当,装结实啊,注意不要铲上边边角角的杂物!”八只大木桶装得满满当当的了。 耿老爹按照中年男人说的数目交了钱,又问这些大木桶的押金几何,中年男人说:“你刚才交的,已经都包含在里边了,押金是一两银子。 什么时候还回来木桶,就如数退还。您稍等一下,我去开个收据。”转头又吩咐大个子年轻后生:“你去,把那个最大的搅拌盆刮蹭干净 了拿过来!”说完,进屋里开收据去了。少顷,中年男人又出来了。除了手里捏着收据之外,他臂弯里还抱来一把泥叶子、一个泥托子、 一把小铲子、一根长短、粗细适度的,光光滑滑的木棍和一包用牛皮纸包着的什么东西。耿老爹和耿正见了,赶快上前接过他臂弯里抱着 的东西。他腾开手以后,先把收据递给耿老爹,说:“这个收据请收好了。”然后,他又指着那些东西说:“这些个家伙什儿你们也拿去 用吧,用完了和八只木桶一块儿还回来就行了!”没等耿老爹道谢,他又指着那把泥叶子说“这把泥叶子很好用!还有,这是一包上好的 榆皮毛拉絮,送你们了。把这个和在石灰膏里充分搅拌,打成的石灰泥特别有韧劲儿,上的墙面既光滑又结实耐磨!”耿老爹喜出望外, 连声道谢!耿正兄妹三人各自拿起一件家伙什儿,小青捧起那包榆皮毛拉絮,都等在一边看着中年男人指挥两个助手装车。耿老爹和中年 男人,应该说是淋灰池子的头儿,分别把两挂平车架起来,大个子和小胖子把八大桶石灰膏和搅拌盆装到车上,再用两根粗实的麻绳将两 辆车上的大桶简单绑系一番,然后从二人手中接过平板车的把手,那头儿就挥手和大家告别了。当八大桶石灰膏被稳稳当当地送到白家院 儿里后,耿老爹赶快取下搅拌盆放在新屋的台阶上,然后和耿正各架住一挂平车,两个助手把八只装满了石灰膏的大木桶合力搬下来放到 新屋里的地中央。大个子年轻后生对耿老爹说:“你们什么还这些木桶和家伙什儿的时候,就过来叫我们一声,我们再推平车过来拉。” 耿老爹道了谢以后,他们就高高兴兴地走了。耿老爹把收据和剩下的银子交给乔氏,问:“不知道他们要的这