电磁学复习计算题(附答案)
中考物理总复习《电磁学》专项测试题(附带答案)
中考物理总复习《电磁学》专项测试题(附带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列说法正确的是( )A .二极管和三极管都是半导体材料,二极管能放大电信号B .核潜艇、核电站都是利用核裂变,而太阳、原子弹、氢弹都是利用核聚变C .军用雷达、倒车雷达、手机信号、北斗导航都应用了电磁波D .低声细语、轻声慢语、声如洪钟、引吭高歌形容的都是响度 2.下列说法错误的是( )A .手机5G 通讯技术是利用电磁波传递信息的B .光纤通信是光在光导纤维中多次反射传递信息C .“北斗三号”导航系统最后一颗组网卫星是一颗地球同步通讯卫星,以地球为参照物,它是运动的D .新能源光伏发电技术是利用太阳能电池把太阳能转化为电能 3.关于家庭电路和安全用电,下列说法或做法中正确的是( ) A .家庭电路中空气开关跳闸,一定是发生了短路 B .使用测电笔时,手千万不要接触笔尾金属体 C .不能用潮湿的手触摸家庭电路中的开关D .发现有人触电时,直接用手将触电者拉开以脱离电源4.如图所示的电路中,1L 和2L 是规格不同的两个灯泡,开关闭合后,电流表的示数是0.4A,则A .通过灯泡1L 的电流是0.4AB .通过灯泡的2L 电流是0.4AC .通过灯泡1L 和灯泡2L 的电流之和是0.4AD .通过灯泡1L 和灯泡2L 的电流相等,都是0.4A5.如图所示电路中,R 1:R 2=2:3,开关闭合后,电路的总功率为P 0.若将R 1的阻值增大2Ω,R 2的阻值减小2Ω,电路的总功率仍为P 0;若将R 1的阻值减小2Ω,R 2的阻值增大2Ω,电路的总功率为P ;则P :P 0等于A .3:2B .4:3C .5:4D .6:56.如图甲所示,在一个电阻均匀的正方形金属线框有A 、B 、C 、D 四点,现把A 、D 两点接入电源电压保持不变的如图乙所示的电路MN 两端时,发现电流表示数为I 0,当换接A 、C 两点,则此时电流表的示数应为( )A .034IB .043IC .I 0D .032I7.为了纪念物理学家对人类的贡献,有些物理量的单位会用物理学家的名字命名,电流的单位以下面哪位科学家的名字命名( ) A .欧姆B .安培C .伏特D .焦耳8.如图是小明设计的高温报警电路,电源两端电压保持不变,R 1是定值电阻,R 2是热敏电阻,热敏电阻的阻值随温度升高而减小,当电流表示数大于某一值I 时,就会触发报警。
电磁学领域考试题及答案
电磁学领域考试题及答案一、单项选择题(每题2分,共20分)1. 电场强度的定义式是()。
A. E = F/qB. E = FqC. E = qFD. E = F/Q答案:A2. 电场中某点的电势为零,该点的电场强度一定为零。
()A. 正确B. 错误答案:B3. 电容器的电容与两极板间的距离成反比,与极板的正对面积成正比。
()A. 正确B. 错误答案:A4. 两个点电荷之间的静电力与它们电量的乘积成正比,与它们距离的平方成反比。
()A. 正确B. 错误答案:A5. 电流的磁效应最早由奥斯特发现。
()A. 正确B. 错误6. 根据安培环路定理,磁场强度B沿闭合回路的线积分等于该回路所包围的总电流。
()A. 正确B. 错误答案:A7. 法拉第电磁感应定律表明,感应电动势与磁通量的变化率成正比。
()A. 正确B. 错误答案:A8. 电感线圈的自感系数与线圈的匝数成正比,与线圈的几何形状和介质有关。
()A. 正确答案:A9. 根据楞次定律,当磁通量增加时,感应电流的方向总是阻碍磁通量的增加。
()A. 正确B. 错误答案:A10. 麦克斯韦方程组描述了电场和磁场的产生、传播和相互作用。
()A. 正确B. 错误答案:A二、填空题(每题2分,共20分)11. 电场强度的单位是________,符号为V/m。
答案:伏特每米12. 电容器的单位是________,符号为F。
答案:法拉13. 电感的单位是________,符号为H。
答案:亨利14. 磁场强度的单位是________,符号为T。
答案:特斯拉15. 电流的单位是________,符号为A。
答案:安培16. 电荷的单位是________,符号为C。
答案:库仑17. 电势的单位是________,符号为V。
答案:伏特18. 电势差的单位是________,符号为V。
答案:伏特19. 磁通量的单位是________,符号为Wb。
答案:韦伯20. 磁感应强度的单位是________,符号为A/m。
2023高考物理电磁学复习 题集附答案
2023高考物理电磁学复习题集附答案1. 计算题(1) 题目:一根长直导线与一均匀磁场垂直。
当导线上通过电流I时,该导线受到的磁力为F。
若电流增加到2I,导线受到的磁力变为几倍?答案:根据洛伦兹力公式 F = BIL,磁力与电流I成正比。
当电流增加到2I时,磁力也变为原来的两倍。
(2) 题目:一根长直导线和一个圆形线圈位于同一平面内。
导线与线圈无电流通过时,导线上的电流为I1时,线圈不受任何力的作用。
若导线上的电流变为I2(I2 > I1),线圈受到的磁力的方向如何?答案:根据安培环路定理,通过圆形线圈的磁感应强度与线圈内的电流方向相同。
由于导线和线圈位于同一平面内且导线上电流方向为I1,所以线圈受到的磁力方向与导线相反。
2. 简答题题目:什么是电磁感应?请举一个与电磁感应相关的实例,并说明原理。
答案:电磁感应是指导体中的电荷在磁场的作用下产生电流的现象。
一个与电磁感应相关的实例是发电机的工作原理。
发电机通过旋转导线圈在磁场中产生感应电动势,从而将机械能转化为电能。
发电机工作的原理如下:当导线圈旋转时,由于导线移动时与磁力线斜交,导线内部的自由电子受到洛伦兹力的作用,从而在导线中产生电流。
这时,导线两端的电势差就会推动工作电荷的流动,形成一个电流回路。
由于导线圈在旋转时可以保持与磁场的相对运动,因此电流的产生是连续不断的,实现了电能的转换。
3. 应用题题目:一个带电粒子以速度v进入一个垂直磁场,受到的洛伦兹力为F。
如果将该带电粒子的速度翻倍,磁场保持不变,受到的洛伦兹力将会如何变化?答案:根据洛伦兹力的公式 F = qvB,洛伦兹力与粒子速度v成正比。
当将带电粒子的速度翻倍时,其受到的洛伦兹力也会翻倍。
4. 计算题题目:一根长度为L的导线,电流I以时间t的速率匀速地变化。
在导线附近的某点处,磁感应强度B随时间的变化率为d|B|/dt = k,其中k为常数。
求在这个点的感应电场强度E。
答案:根据法拉第电磁感应定律,感应电场强度E与磁感应强度的变化率成正比。
高考物理电磁学计算题(三十一)含答案与解析
高考物理电磁学计算题(三十一)含答案与解析评卷人得分一.计算题(共40小题)1.如图所示,直角坐标系xOy在竖直平面内,x轴沿水平方向,在第一、四象限区域内存在有匀强电场和匀强磁场,电场强度E=4.0×105N/C,方向沿y轴正方向,磁感应强度B=0.2T,方向与xoy平面垂直向外。
在x轴上的A点处有一足够长、与x轴垂直的荧光屏,交点A与坐标原点O的距离为40.0cm,在OA中点P处有一粒子发射枪(可看作质点),能连续不断的发射速度相同的带正电粒子,粒子质量m=6.4×10﹣27kg,电量q=3.2×10﹣19C.粒子发射枪向x轴方向发射的粒子恰能打到荧光屏的A点处。
若撤去电场,并使粒子发射枪在xoy平面内以角速度ω=2πrad/s逆时针转动(整个装置都处在真空中),求:(1)带电粒子的速度及在磁场中运动的轨迹半径;(2)荧光屏上闪光点范围的长度(结果保留两位有效数字);(3)荧光屏上闪光点从最低点移动到最高点所用的时间(结果保留两位有效数字)。
2.如图,上下放置的两带电金属板,相距为3l,板间有竖直向下的匀强电场E.距上板l 处有一带+q电的小球B,在B上方有带﹣6q电的小球A,他们质量均为m,用长度为l 的绝缘轻杆相连。
已知E=mg/q。
让两小球从静止释放,小球可以通过上板的小孔进入电场中(重力加速度为g)。
求:(1)B球刚进入电场时的速度v1大小;(2)A球刚进入电场时的速度v2大小;(3)B球是否能碰到下金属板?如能,求刚碰到时的速度v3大小。
如不能,请通过计算说明理由。
3.如图所示,质量为m、带电荷量为+q的小物块置于绝缘粗糙水平面上的A点。
首先在如图所示空间施加方向水平向右的匀强电场E,t=0时刻释放物块,一段时间后物块运动到B位置,同时将电场更换为方向水平向左的匀强电场E,物块运动到C点速度恰好减为零,已知A、B间距是B、C间距离的2倍,物块从B点运动到C点所需时间为t,求:(1)物块与水平面间的摩擦力;(2)物块从A点运动到C点的过程中克服摩擦力所做的功。
高考物理电磁学计算题(二十四)含答案与解析
高考物理电磁学计算题(二十四)含答案与解析评卷人得分一.计算题(共40小题)1.如图所示,虚线框内为某种电磁缓冲车的结构俯视图,缓冲车厢的底部安装电磁铁(图中未画出),能产生竖直向下的匀强磁场,磁场的磁感应强度为B,车厢上有两个光滑水平绝缘导轨PQ、MN,将高强度绝缘材料制成的缓冲滑块K置于导轨上,并可在导轨上无摩擦滑动。
滑块K上绕有闭合矩形线圈abcd,线圈的总电阻为R,匝数为n,ab边长为L,假设关闭发动机后,缓冲车厢与滑块K以速度v0与障碍物C碰撞。
滑块K立即停下,此后缓冲车相会受到线圈对它的磁场力而做减速运动,从而实现缓冲,缓冲车厢质量为m,缓冲滑块的质量为m0,车厢与地面间的动摩擦因数为,其他摩擦阻力不计,求:(1)缓冲滑块K的线圈中感应电流的方向和最大安培力的大小;(2)若缓冲车厢向前移动时间t后速度减为零,缓冲车厢与障碍物和线圈的ab边均没有接触,求此过程线圈abcd中通过的电量;(3)接(2)求此过程线圈abcd中产生的焦耳热。
2.如图甲所示为发电机的简化模型,固定于绝缘水平桌面上的金属导轨,处在方向竖直向下的匀强磁场中,导体棒ab在水平向右的拉力F作用下,以水平速度v沿金属导轨向右做匀速直线运动,导体棒ab始终与金属导轨形成闭合回路。
已知导体棒ab的长度恰好等于平行导轨间距l,磁场的磁感应强度大小为B,忽略摩擦阻力。
(1)求导体棒ab运动过程中产生的感应电动势E和感应电流I;(2)从微观角度看,导体棒切割磁感线产生感应电动势是由于导体内部的自由电荷受到沿棒方向的洛伦兹力做功而产生的。
如图乙(甲图中导体棒ab)所示,为了方便,可认为导体棒ab中的自由电荷为正电荷,每个自由电荷的电荷量为q,设导体棒ab中总共有N个自由电荷。
a.求自由电荷沿导体棒定向移动的速率u;b.请分别从宏观和微观两个角度,推导非静电力做功的功率等于拉力做功的功率。
3.环保部门为了监测某化肥厂的污水排放量,技术人员在该厂的排污管末端安装了如图所示的流量计。
2024年高考物理二轮复习专题18:电磁学综合计算题(附答案解析)
专题18·电磁学综合计算题能力突破本专题主要牛顿运动定律、动能定理、动量定理、动量守恒定律、洛伦兹力、法拉第电磁感应定律,以及用这些知识解决匀速圆周运动模型、导体棒模型、线框模型、圆周运动+类平抛运动模型等类型的试题。
高考热点(1)能利用运动合成与分解的方法处理带电粒子在电场中运动问题;(2)应用几何关系和圆周运动规律分析求解带电粒子在磁场、复合场中的运动;(3)电磁感应中的电路分析、电源分析、动力学和能量转化分析。
出题方向主要考查计算题,一压轴题的形式出现,题目难度一般为中档偏难。
考点1带电粒子(体)在电场中的运动(1)首先分析带电粒子(体)的运动规律,确定带电粒子(体)在电场中做直线运动还是曲【例1】(2023•越秀区校级模拟)一长为l 的绝缘细线,上端固定,下端拴一质量为m 、电荷量为q 的带正电的至小球,处于如图所示水平向右的匀强电场中。
先将小球拉至A 点,使细线水平。
然后释放小球,当细线与水平方向夹角为120︒时,小球到达B 点且速度恰好为零,为重力加速度为g ,sin 300.5︒=,cos30︒=。
求:(1)匀强电场AB 两点间的电势差AB U 的大小;(2)小球由A 点到B 点过程速度最大时细线与竖直方向的夹角θ的大小;(3)小球速度最大时细线拉力的大小。
【分析】(1)根据动能定理列式得出AB 两点电势差的大小;(2)根据矢量合成的特点得出小球受到的合力,结合几何关系得出速度最大时细线与竖直方向的夹角;(3)根据动能定理得出小球的速度,结合牛顿第二定律得出细线的拉力。
【解答】解:(1)由小球由A 点到B 点过程,根据动能定理得:(1cos30)0AB qU mgl ++︒=解得:2AB U q=-(2)由UE d=得匀强电场强度的大小为:3mg E q=小球所受的合力大小为:F ==合合力方向tan qE mg θ=故30θ=︒小球由A 点到B 点过程在与竖直方向夹角30θ=︒为时速度最大;(3)当小球运动到与竖直方向夹角30θ=︒为时速度最大,设此时速度为v ,根据动能定理得:()211602F l cos mv ⋅-︒=合得最大速度v =根据牛顿第二定律得2T v F F ml-=合得速度最大时细线拉力大小T F =答:(1)匀强电场AB 两点间的电势差AB U ;(2)小球由A 点到B 点过程速度最大时细线与竖直方向的夹角θ的大小为30︒;(3)小球速度最大时细线拉力的大小为3。
电磁学考试题库及答案详解
电磁学考试题库及答案详解一、单项选择题1. 真空中两个点电荷之间的相互作用力遵循()。
A. 牛顿第三定律B. 库仑定律C. 高斯定律D. 欧姆定律答案:B解析:库仑定律描述了真空中两个点电荷之间的相互作用力,其公式为F=k*q1*q2/r^2,其中F是力,k是库仑常数,q1和q2是两个电荷的量值,r是它们之间的距离。
2. 电场强度的方向是()。
A. 从正电荷指向负电荷B. 从负电荷指向正电荷C. 垂直于电荷分布D. 与电荷分布无关解析:电场强度的方向是从正电荷指向负电荷,这是电场的基本性质之一。
3. 电势能与电势的关系是()。
A. 电势能等于电势的负值B. 电势能等于电势的正值C. 电势能等于电势的两倍D. 电势能与电势无关答案:A解析:电势能U与电势V的关系是U=-qV,其中q是电荷量,V是电势。
4. 电容器的电容C与板间距离d和板面积A的关系是()。
A. C与d成正比B. C与d成反比C. C与A成正比D. C与A和d都成反比解析:电容器的电容C与板间距离d成反比,与板面积A成正比,公式为C=εA/d,其中ε是介电常数。
5. 磁场对运动电荷的作用力遵循()。
A. 洛伦兹力定律B. 库仑定律C. 高斯定律D. 欧姆定律答案:A解析:磁场对运动电荷的作用力遵循洛伦兹力定律,其公式为F=qvBsinθ,其中F是力,q是电荷量,v是电荷的速度,B是磁场强度,θ是速度与磁场的夹角。
二、多项选择题1. 以下哪些是电磁波的特性?()A. 传播不需要介质B. 具有波粒二象性C. 传播速度等于光速D. 只能在真空中传播答案:ABC解析:电磁波的传播不需要介质,具有波粒二象性,传播速度等于光速,但它们也可以在其他介质中传播,只是速度会因为介质的折射率而改变。
2. 以下哪些是电场线的特点?()A. 电场线从正电荷出发,终止于负电荷B. 电场线不相交C. 电场线是闭合的D. 电场线的疏密表示电场强度的大小答案:ABD解析:电场线从正电荷出发,终止于负电荷,不相交,且电场线的疏密表示电场强度的大小。
电磁学复习题与答案
,U = Q 4πε 0 R
。
(
)
6、某电场的电力线分布情况如图所示,一负电荷从 M 点移到 N
点。有人根据这个图作出下列几点结论,其中哪点是正确的?
(A)、电场强度 Em < En; (C)、电势能 Wm < Wn;
(B)、电势 Um < Un; (D)、电场力的功 A > 0。
(
)
7、一球形导体,带电量 q 置于一任意形状的空腔导体中。当用导线将两者
能为零?
(A)、仅在象限Ⅰ;
(B)、仅在象限Ⅱ;
(C)、仅在象限Ⅰ,Ⅲ; (D)、仅在象限Ⅰ,Ⅳ;
(E)、仅在象限Ⅱ,Ⅳ。
(
)
17、有一个圆形回路1及正方形回路 2,圆直径和正方形的边长相等,二者中通有大小相等
的电流,它们在各自中心产生的磁感应强度的大小之比 B1/B2 为:
(A)、0.90; (B)、1.00; (C)、1.11; (D)、1.22。
(E)、高斯定理仅适用于具有高度对称性的电场。
(
)
4、在某电场区域内的电场线(实线)和等势面(虚线)如图所示,由图
判gt; Ec,Va > Vb > Vc; (B)、Ea > Eb > Ec,Va < Vb < Vc; (C)、Ea < Eb < Ec,Va > Vb > Vc; (D)、Ea < Eb < Ec,Va < Vb < Vc。
(
)
15、如图所示,有两个完全相同的回路 L1 和 L2,回路内包含有无限长直电流 I1 和 I2,但在 (b)图中 L2 外又有一无限长直电流 I3。P1 和 P2 是回路上两位置相同的点,请判断正误:
初中物理中考电磁学专项练习(计算题)201-300(含答案解析)
初中物理中考电磁学专项练习(计算题)201-300(含答案解析) 学校:___________姓名:___________班级:___________考号:___________一、计算题1.如图甲所示,电源电压恒定,R0为定值电阻.将滑动变阻器的滑片从a端滑到b端的过程中,电压表示数U与电流表示数I间的关系图象如图乙所示.求:(1)滑动变阻器R的最大阻值;(2)R0的阻值及电源电压;(3)当滑片滑到滑动变阻器的中点时,电阻R0消耗的功率.2.如图所示的电路中,只闭合S1时,通过R2的电流是1.5 A,R1=30 Ω,R2=20 Ω.求:(1)电源电压是多大;(2)只闭合S2时,通电20 s电流通过R1产生的电热是多少;(3)使开关通断情况发生变化,整个电路消耗的最小电功率P和最大电功率P′之比是多少.3.如图所示的电路中,小灯泡上标有“6V 3.6W”字样,滑动变阻器R1的最大电阻为40Ω.当只闭合S、S2,滑动变阻器的滑片P在中点时,小灯泡正常发光;当所有开关都闭合,滑片滑到A端时,A1、A2的示数之比是3:1(灯的电阻保持不变).求:(1)电源电压.(2)当只闭合S 、S 2,滑动变阻器的滑片P 在A 端时,小灯泡两端的实际电压.(3)小灯泡消耗的最小电功率(不能为0).4.小明将规格为“220 V 1 210 W”的电热水器单独接入电路中,测得在2 min 内电能表的转盘转过40转(电能表表盘上标有1 200 r/ kW·h 字样),求: (1)该电热水器的实际功率;(2)电路中的实际电压;(3)若该电热水器加热效率为90%,求在该电压下将5 kg 、25 ℃的水加热到55 ℃需要的时间.5.如图甲所示,滑动变阻器R 2标有“50Ω 1A”字样,电源电压为8V 且保持不变。
当开关S 闭合时,电流表A 1和A 2的指针偏转情况如图乙所示。
求:(1)电阻R 1的阻值(2)通电100s ,电流通过电阻R 1产生的热量;(3)再次移动滑动变阻器R 2的滑片P ,使两电流表指针偏离零刻度的角度相同,此时滑动变阻器R 2消耗的电功率P 2。
电磁学复习计算题(附问题详解)
《电磁学》计算题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体外的场强分布.5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2/ N ·m 2 )6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 )9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量.10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯EqLq P面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )16. 一段半径为a 的细圆弧,对圆心的角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度.17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧ABR ,试求圆心O 点的场强.18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求:dσAσBA Bq ∞∞ -λ +λ(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点). (2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量εr=10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量ε0=8.85×10-12 C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C 平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为εr 1和εr 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8 C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)26. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线均匀分布.试在图示的坐标系中求出xdd/2 d/2轴上两导线之间区域]25,21[a a 磁感强度的分布. 27. 如图所示,在xOy 平面(即纸面)有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的方向和大小,设∆l 1 =∆l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F 和da F的大小和方向.28. 如图所示,在xOy 平面(即纸面)有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2 T的均匀磁场中,B方向沿x 轴正方向.试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的大小和方向,设∆l 1 = ∆l 2=0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F 和da F 的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成α 角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.32. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆a b c dO RR x yI I 30° 45° I ∆l 1 I ∆l 2 a bc d O RR x yI I 30° 45° I ∆l 1I ∆l 2心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.33. 横截面为矩形的环形螺线管,圆环外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面,由实线表示),R EF AB ==,大圆弧BC的半径为R ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B的大小和方向.38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B的大小.39.地球半径为R =6.37×106 m .μ0=4π×10-7 H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小. 40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p与电子轨道运动的动量矩L 大小之比,并指出m p和L 方向间的关系.(电子电荷为e ,电子质量为m )41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB1 mI是铝导线,铝线电阻率为ρ1 =2.50×10-8 Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8 Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A) 42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I 对电流元22d l I的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。
电磁学领域考试题及答案
电磁学领域考试题及答案一、单项选择题(每题2分,共20分)1. 电场强度的定义式是:A. E = F/qB. E = q/FC. E = FqD. E = F/q^2答案:A2. 电势差的定义是:A. U = W/qB. U = qWC. U = W/QD. U = QW答案:A3. 电流强度的单位是:A. 伏特B. 安培C. 欧姆D. 库仑答案:B4. 电容器的电容与电容器的:A. 电量成正比B. 电压成正比C. 电量成反比D. 电压成反比答案:D5. 电感器的自感系数与电感器的:A. 电流成正比B. 电流成反比C. 磁通量成正比D. 磁通量成反比答案:C6. 欧姆定律的数学表达式是:A. I = V/RB. I = VRC. V = IRD. V = R/I答案:C7. 磁场强度的定义式是:A. B = F/IB. B = F/ILC. B = I/FD. B = IL/F答案:B8. 磁通量的定义式是:A. Φ = B·AB. Φ = A·BC. Φ = B/AD. Φ = A/B答案:A9. 法拉第电磁感应定律的数学表达式是:A. E = -dΦ/dtB. E = dΦ/dtC. E = Φ/dtD. E = Φ·dt答案:A10. 洛伦兹力的表达式是:A. F = qvBB. F = qBvC. F = BqvD. F = qv^2B答案:B二、填空题(每空1分,共20分)1. 电场线的方向是_______电势的方向。
答案:电势降低最快的2. 电容器的电容C与电容器两极板间的距离d成_______比,与极板的面积A成_______比。
答案:反,正3. 电流通过导体时,导体两端的电压U与电流I的比值称为导体的_______。
答案:电阻4. 根据安培环路定理,磁场B沿闭合回路的线积分等于_______。
答案:自由电流的总和5. 磁感应强度B与磁通量Φ的关系是_______。
大学电磁学试题及答案
大学电磁学试题及答案一、选择题(每题2分,共20分)1. 电场强度的定义式是()。
A. E = F/qB. E = FqC. E = qFD. E = F/Q答案:A2. 电势差的定义式是()。
A. U = W/qB. U = WqC. U = qWD. U = W/Q答案:A3. 电容器的电容与两极板间的距离成()。
A. 正比B. 反比C. 无关D. 无法确定答案:B4. 电容器的电容与两极板的面积成()。
A. 正比B. 反比C. 无关D. 无法确定答案:A5. 电容器的电容与两极板间介质的介电常数成()。
A. 正比B. 反比C. 无关D. 无法确定答案:A6. 电容器的储能公式是()。
A. W = 1/2CU^2B. W = 1/2CV^2C. W = 1/2CQ^2D. W = 1/2CVQ答案:B7. 电流强度的定义式是()。
A. I = dQ/dtB. I = Q/dtC. I = dQ/tD. I = Qd/t答案:A8. 欧姆定律的公式是()。
A. U = IRB. U = R/IC. U = I/RD. U = RI答案:A9. 电阻定律的公式是()。
A. R = ρL/AB. R = ρA/LC. R = L/ρAD. R = A/ρL答案:A10. 电感的定义式是()。
A. L = NΦ/IB. L = Φ/NIC. L = I/NΦD. L = N/IΦ答案:A二、填空题(每题2分,共20分)11. 电场强度的方向是________。
答案:电势降低最快的方向12. 电势差的方向是________。
答案:电势高的指向电势低的13. 电容器两极板间的电场强度是________。
答案:E = U/d14. 电容器两极板间的电势差是________。
答案:U = Ed15. 电容器的储能公式是________。
答案:W = 1/2CU^216. 电流强度的方向是________。
答案:正电荷定向移动的方向17. 欧姆定律的公式是________。
高考物理电磁学计算题(三十)含答案与解析
高考物理电磁学计算题(三十)含答案与解析评卷人得分一.计算题(共40小题)1.如图,倾角为θ的斜面粗糙且绝缘,在虚平面下方区域有一垂直斜面向上的匀强电场。
一质量为m、电荷量为q的带负电的小物块(可视为质点),从斜面上A点以速度v0沿斜面匀速下滑,进入电场区域滑行距离L后停止。
求:(1)小物块与斜面间的动摩擦因数μ;(2)匀强电场场强E的大小;(3)在电场中滑行L的过程中,带电小物块电势能的变化量。
2.如图,一带正电小球质量m=0.1kg,置于光滑绝缘水平面上的A点,空间存在着斜向上与水平成37°的匀强电场。
该小球从静止开始沿水平面做匀加速直线运动,当运动到B 点时,测得其速度v B=4m/s,此时小球的位移S=4m。
重力加速度g取10m/s2,sin37°=0.6,cos37°=0.8.求:(1)小球沿水平面运动的加速度大小;(2)小球对地面的压力大小;(3)小球从A点运动到B点,电势能的变化量。
3.如图1所示,半径为r的金属细圆环水平放置,环内存在竖直向上的匀强磁场,磁感应强度B随时间t的变化关系为B=kt(k>0,且为已知的常量)。
(1)已知金属环的电阻为R.根据法拉第电磁感应定律,求金属环的感应电动势E感和感应电流I;(2)麦克斯韦电磁理论认为:变化的磁场会在空间激发一种电场,这种电场与静电场不同,称为感生电场或涡旋电场。
图1所示的磁场会在空间产生如图2所示的圆形涡旋电场,涡旋电场的电场线与金属环是同心圆。
金属环中的自由电荷在涡旋电场的作用下做定向运动,形成了感应电流。
涡旋电场力F充当非静电力,其大小与涡旋电场场强E的关系满足F=qE.如果移送电荷q时非静电力所做的功为W,那么感应电动势E感=。
a.请推导证明:金属环上某点的场强大小为E=kr;b.经典物理学认为,金属的电阻源于定向运动的自由电子与金属离子(即金属原子失去电子后的剩余部分)的碰撞。
在考虑大量自由电子的统计结果时,电子与金属离子的碰撞结果可视为导体对电子有连续的阻力,其大小可表示为f=bv(b>0,且为已知的常量)。
高考复习超经典电磁感应计算难题-含答案
高考复习超经典电磁感应计算难题-含答案(总9页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除1、如图所示,半径为a的圆形区域内有匀强磁场,磁感应强度B=0.2T,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心地放置,磁场与环面垂直,其中a=0.4m,b=0.6m.金属环上分别接有灯L1、L2,两灯的电阻均为R0=2Ω.一金属棒MN与金属环接触良好,棒与环的电阻均不计.(1)若棒以v0=5m/s的速率在环上向右匀速滑动,求棒滑过圆环直径OO′的瞬时,MN中的感应电动势和流过灯L1的电流;(2)撤去中间的金属棒MN,将右面的半圆环OL2O′以OO′为轴向上翻转90°,若此时磁场强度随时间均匀变化,其变化率为=T/s,求L1的功率.2、如图所示,两个端面半径同为R的圆柱形铁芯同轴水平放置,相对的端面之间有一缝隙,铁芯上绕导线并与电源连接,在缝隙中形成一匀强磁场.一铜质细直棒ab水平置于缝隙中,且与圆柱轴线等高、垂直.让铜棒从静止开始自由下落,铜棒下落距离为0.2R时铜棒中电动势大小为,下落距离为0.8R时电动势大小为,忽略涡流损耗和边缘效应.关于、的大小和铜棒离开磁场前两端的极性,下列判断正确的是A、>,a端为正B、>,b端为正C、<,a端为正D、<,b端为正3、如图所示,两平行的光滑金属导轨安装在一光滑绝缘斜面上,导轨间距为l、足够长且电阻忽略不计,导轨平面的倾角为,条形匀强磁场的宽度为d,磁感应强度大小为B、方向与导轨平面垂直。
长度为2d的绝缘杆将导体棒和正方形的单匝线框连接在一起组成“”型装置,总质量为m,置于导轨上。
导体棒中通以大小恒为I的电流(由外接恒流源产生,图中未图出)。
线框的边长为d(d < l),电阻为R,下边与磁场区域上边界重合。
将装置由静止释放,导体棒恰好运动到磁场区域下边界处返回,导体棒在整个运动过程中始终与导轨垂直。
高考物理电磁学计算题(二十八)含答案与解析
高考物理电磁学计算题(二十八)含答案与解析评卷人得分一.计算题(共40小题)1.如图1所示,MN、PQ为水平放置的足够长的平行光滑导轨,导轨间距L为0.5m,导轨左端连接一个阻值为R=2.5Ω的定值电阻R.将一质量为0.2kg的金属棒cd垂直放置在导轨上,且与导轨接触良好,金属棒cd的电阻r=1.5Ω,导轨电阻不计,整个装置处于垂直导轨平面向下的匀强磁场中,磁感应强度B=2T.若金属棒以1m/s的初速度向右运动,同时对棒施加一个水平向右的拉力F,并保持拉力的功率恒为4W,从此时开始计时,经过2s金属棒的速度稳定不变,试求:(1)金属棒cd的电流方向,并分析金属棒的加速度变化情况;(2)金属棒稳定后速度是多少?此时电阻R上消耗的电功率是多少?(3)金属棒速度为2m/s时的加速度大小,并画出整个运动过程中大致的v﹣t图象,并标出t=0,t=2s时坐标。
2.如图甲所示,一边长L=2.5m、质量m=0.5kg的正方形金属线框,放在光滑绝缘的水平面上,整个装置放在方向竖直向上、磁感应强度B=0.8T的匀强磁场中,它的一边与磁场的边界MN重合。
在水平力F作用下由静止开始向左运动,经过5s线框被拉出磁场。
测得金属线框中的电流随时间变化的图象如乙图所示,在金属线框被拉出的过程中。
(1)求通过线框导线截面的电量及线框的总电阻(2)分析线框运动性质并写出水平力F随时间变化的表达式(3)已知在这5s内力F做功1.92J,那么在此过程中,线框产生的焦耳热是多少3.如图甲所示,绝缘水平面上固定着两根足够长的光滑金属导轨PQ、MN,相距为L=0.5m,ef右侧导轨处于匀强磁场中,磁场方向垂直导轨平面向下,磁感应强度B的大小如图乙变化。
开始时ab棒和cd棒锁定在导轨如图甲位置,ab棒与cd棒平行,ab棒离水平面高度为h=0.2m,cd棒与ef之间的距离也为L,ab棒的质量为m1=0.2kg,有效电阻R1=0.05Ω,cd棒的质量为m2=0.1kg,有效电阻为R2=0.15Ω.(设a、b棒在运动过程始终与导轨垂直,两棒与导轨接触良好,导轨电阻不计)。
高考物理电磁学计算题(一)含答案与解析
高考物理电磁学计算题(一)组卷老师:莫老师评卷人得分一.计算题(共50小题)1.如图所示,粗糙斜面的倾角θ=37°,半径r=0.5m的圆形区域内存在着垂直于斜面向下的匀强磁场。
一个匝数n=10匝的刚性正方形线框abcd,通过松弛的柔软导线与一个额定功率P=1.25W的小灯泡A相连,圆形磁场的一条直径恰好与线框bc边重合。
已知线框总质量m=2kg,总电阻R0=1.25Ω,边长L>2r,与斜面间的动摩擦因数μ=0.5.从t=0时起,磁场的磁感应强度按B=2﹣t(T)的规律变化。
开始时线框静止在斜面上,在线框运动前,灯泡始终正常发光。
设最大静摩擦力等于滑动摩擦力,(g取10m/s2,sin37°=0.6,cos37°=0.8.π=3.2)求:(1)线框不动时,回路中的感应电动势E;(2)小灯泡正常发光时的电阻R;(3)线框保持不动的时间内,小灯泡产生的热量Q。
2.如图所示为一种“电磁天平”的结构简图,等臂天平的左臂为挂盘,右臂挂有矩形线圈,线圈未通电时天平两臂平衡;已知线圈的水平边长L=0.1m,匝数为N=800,线圈的下底边处于匀强磁场内,磁感应强度B=0.5T,方向垂直于线圈平面向里,线圈中通有方向沿顺时针,大小可在0﹣2A范围内调解的电流I;挂盘放上待测物体后,调解线圈中电流使得天平平衡,测出电流即可测得物体的质量;重力加速度g=10m/s2,试求:该“电磁天平”能够称量的最大质量.3.如图甲所示为发电机的简化模型,固定于绝缘水平桌面上的金属导轨,处在方向竖直向下的匀强磁场中,导体棒ab在水平向右的拉力F作用下,以水平速度v沿金属导轨向右做匀速直线运动,导体棒ab始终与金属导轨形成闭合回路。
已知导体棒ab的长度恰好等于平行导轨间距l,磁场的磁感应强度大小为B,忽略摩擦阻力。
(1)求导体棒ab运动过程中产生的感应电动势E和感应电流I;(2)从微观角度看,导体棒切割磁感线产生感应电动势是由于导体内部的自由电荷受到沿棒方向的洛伦兹力做功而产生的。
电磁学考试试题答案
电磁学考试试题答案一、选择题(每题5分,共25分)1. 以下哪项不是麦克斯韦方程组的组成部分?A. 高斯定律B. 法拉第电磁感应定律C. 安培环路定律D. 洛伦兹力定律答案:D2. 在静电场中,以下哪项是错误的?A. 电场强度与电势梯度成正比B. 电场强度与电荷密度成正比C. 电场强度与距离平方成反比D. 电场强度与电场能量密度成正比答案:B3. 一个均匀磁场中,以下哪项是错误的?A. 磁感应强度与磁场强度成正比B. 磁感应强度与磁通量密度成正比C. 磁感应强度与磁导率成正比D. 磁感应强度与磁力线密度成正比答案:D4. 以下哪个物理量表示电磁波的传播速度?A. 磁导率B. 介电常数C. 电磁波频率D. 电磁波波长答案:D5. 以下哪个现象证明了电磁波的存在?A. 法拉第电磁感应实验B. 麦克斯韦电磁理论C. 赫兹实验D. 光速测量答案:C二、填空题(每题5分,共25分)6. 麦克斯韦方程组包括以下四个方程:______、______、______和______。
答案:高斯定律、法拉第电磁感应定律、安培环路定律、无源电场的高斯定律7. 在静电场中,电场强度E与电势V的关系为:E = -______。
答案:电势梯度8. 一个平面电磁波在真空中的传播速度为______。
答案:光速9. 洛伦兹力公式为:F = q______。
答案:v × B10. 电磁波在介质中的传播速度v与介质的介电常数ε和磁导率μ的关系为:v = 1/______。
答案:√(εμ)三、判断题(每题5分,共25分)11. 在静电场中,电场线从正电荷出发,指向负电荷。
()答案:正确12. 磁感应强度与磁场强度成正比。
()答案:正确13. 电磁波的传播速度与介质的介电常数和磁导率无关。
()答案:错误14. 洛伦兹力垂直于电荷的速度和磁场方向。
()答案:正确15. 麦克斯韦方程组可以描述电磁场的一切现象。
()答案:错误四、计算题(每题25分,共75分)16. 一个半径为R的均匀带电球面,电荷量为Q。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《电磁学》计算题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E ϖ的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?2. 一带有电荷q =3×10-9C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5J ,粒子动能的增量为4.5×10-5J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体内外的场强分布.5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2/ N ·m 2)6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.7. 一电偶极子由电荷q =1.0×10-6C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6C 和q 2=-16.0×10-6C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12C 2N -1m -2)9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E ϖϖϖ300200+= .试求穿过各面的电通量.E ϖqLq10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为:E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12C 2·N -1·m -2)11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p ϖ的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角). 14. 两个点电荷分别为q 1=+2×10-7C 和q 2=-2×10-7C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8C ·m -2,B 面的电荷面密度σB =35.4 ×10-8C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12C 2·N -1·m -2)16. 一段半径为a 的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度.17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB R ,试求圆心O 点的场强.ABRϖⅠⅡ Ⅲ dba 45︒cEϖσAσBA BOa θ0 q AR ∞∞O18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求:(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点).(2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量εr=10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量ε0=8.85×10-12C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C 平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为εr 1和εr 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8C ,两球相距很远.若用细-λ +λdd/2 d/2导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)26. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x轴上两导线之间区域]25,21[a a 内磁感强度的分布.27. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ϖ∆和2F ϖ∆的方向和大小,设∆l 1 = ∆l 2=0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F ϖ和cd F ϖ的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F ϖ和da F ϖ的大小和方向.28. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2T 的均匀磁场中,B ϖ方向沿x 轴正方向.试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ϖ∆和2F ϖ∆的大小和方向,设∆l 1 = ∆l 2=0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F ϖ和cd F ϖ的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F ϖ和da F ϖ的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B ϖ.a b c dO RR x yI I 30° 45° I ∆l 1I ∆l 2a bc d O RR x yI I 30° 45° I ∆l 1 I ∆l 231. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成α 角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.32. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B ϖ的大小及其方向.33. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B ϖ的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B ϖ.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线表示),R EF AB ==,大圆弧BC的半径为R ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B ϖ的大小和方向. 38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B ϖ的大小.39.1 m球半径为R =6.37×106 m .μ0 =4π×10-7H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小. 40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p ϖ与电子轨道运动的动量矩L ϖ大小之比,并指出m p ϖ和L ϖ方向间的关系.(电子电荷为e ,电子质量为m )41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB 是铝导线,铝线电阻率为ρ1 =2.50×10-8Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7T ·m/A)42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7T ·m/A ,铜的相对磁导率μr ≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I ϖ对电流元22d l I ϖ的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)III 21d l I 22d l I ϖ47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。