中考数学概率综合题

合集下载

全国中考概率数学题

全国中考概率数学题

全国中考概率数学题全国中考概率数学题汇总概率,又称或然率、机会率、机率(几率)或可能性,是概率论的基本概念,也是数学中的一个重要考点。

下面店铺为大家整理了全国中考概率数学题的汇总,欢迎大家阅读参考,更多内容请关注应届毕业生网!(2013•哈尔滨)在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回.再随机地摸出一个球.则两次都摸到白球的概率为( ).(A) (B) (C) (D)(2013•牡丹江)小明制作了十张卡片,上面分别标有1~10这十个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是( )A. B. C. D.考点:概率公式.分析:在十张数字卡片中,恰好能被4整除的有4,8,共2个;求抽到的数能被4整除的可能性个数,进而得出答案.解答:解:1﹣10中的数有:4、8,共2个,就有10张卡片,2÷10= ,答:从中任意摸一张,那么恰好能被4整除的概率是 ;故选:C.点评:此题主要考查了概率公式,概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)= .(2013•河南)现有四张完全相同的卡片,上面分别标有数字-1,-2,3,4. 把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片上的数字之积为负数的概率是_________.(2013•河南)从2013年1月7日起,中国中东部大部分地区持续出现雾霾天气. 某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.组别观点频数(人数)A 大气气压低,空气不流动 80B 地面灰尘大,空气湿度低 mC 汽车尾部排放 nD 工厂造成污染 120E 其他 60请根据图表中提供的信息解答下列问题;(1)填空:m=________,n=_______,扇形统计图中E组所占的百分比为_________%.(2)若该市人口约有100万人,请你估计其中持D组“观点”的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人持C组“观点”的概率是多少?(2013兰州)“兰州市明天降水概率是30%”,对此消息下列说法中正确的是( )A.兰州市明天将有30%的地区降水B.兰州市明天将有30%的时间降水C.兰州市明天降水的可能性较小D.兰州市明天肯定不降水考点:概率的意义.分析:根据概率表示某事情发生的可能性的大小,依此分析选项可得答案.解答:解:根据概率表示某事情发生的可能性的大小,分析可得:A.兰州市明天降水概率是30%,并不是有30%的地区降水,故选项错误;B.兰州市明天将有30%的时间降水,故选项错误;C.兰州市明天降水概率是30%,即可能性比较小,故选项正确;D.兰州市明天降水概率是30%,明天有可能降水,故选项错误.故选C.点评:本题考查概率的意义,随机事件是指在一定条件下,可能发生也可能不发生的事件.概率表示随机事件发生的可能性的大小.(2013兰州)某校决定从两名男生和三名女生中选出两名同学作为兰州国际马拉松赛的志愿者,则选出一男一女的概率是 .考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选出一男一女的情况,再利用概率公式求解即可求得答案.解答:解:画树状图得:∵共有20种等可能的结果,选出一男一女的`有12种情况,∴选出一男一女的概率是: = .故答案为: .点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.(2013•黔西南州)“五一”假期,黔西南州某公司组织部分员工分别到甲、乙、丙、丁四地考察,公司按定额购买了前往各地的车票,图9是用来制作完整的车票种类和相应数量的条形统计图,根据统计图回答下列问题:(1)若去丁地的车票占全部车票的10%,请求出去丁地的车票数量,并补全统计图(图9).(2)若公司采用随机抽取的方式发车票,小胡先从所有的车票中随机抽取一张(所有车票的形状、大小、质地完全相同、均匀),那么员工小胡抽到去甲地的车票的概率是多少?(3)若有一张车票,小王和小李都想去,决定采取摸球的方式确定,具体规则:“每人从不透明袋子中摸出分别标有1、2、3、4的四个球中摸出一球(球除数字不同外完全相同),并放回让另一人摸,若小王摸得的数字比小李的小,车票给小王,否则给小李。

中考数学复习专题《概率》专项训练-附带答案

中考数学复习专题《概率》专项训练-附带答案

中考数学复习专题《概率》专项训练-附带答案一、选择题1.下列事件为必然事件的是()A.三角形内角和是180°B.打开电视机,正在播放新闻C.明天下雨D.掷一枚质地均匀的硬币,正面朝上2.九年级一班有25名男生和20名女生,从中随机抽取一名作为代表参加校演讲比赛.下列说法正确的是()A.抽到男生和女生的可能性一样大B.抽到男生的可能性大C.抽到女生的可能性大D.抽到男生或女生的可能性大小不能确定3.将分别标有“大”、“美”、“明”、“德”四个汉字的小球装在一个不透明的口袋中,这些小球除汉字以外其它完全相同,每次摸球前先搅匀,随机摸出一球,不放回,再随机摸出一球,两次摸出的球上的汉字可以组成“明德”的概率是()A.16B.18C.14D.5164.已知抛一枚均匀硬币正面朝上的概率为12,下列说法正确的是().A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次,不可能正面都朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的5.某展览大厅有2个入口和2个出口,其示意图如图所示,参观者可从任意一个入口进入,参观结束后可从任意一个出口离开,则一位参观者从入口1进入并从出口A离开的概率是()A.12B.13C.14D.166.口袋中有白球和红球共10个,这些球除颜色外其它都相同.小明将口袋中的球搅匀后随机从中摸出一个球,记下颜色后放回口袋中,小明继续重复这一过程,共摸了100次,结果有40次是红球,请你估计下一次操作获到红球的概率是()A.0.3 B.0.4 C.0.5 D.0.67.有三张正面分别写有数字-2,1,3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后把这张放回去,洗匀后,再从三张卡片中随机抽一张,以其正面的数字作为b的值,则点(a,b)在第一象限的概率为()A.16B.13C.12D.498.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚质地均匀的正六面体的骰子,向上的一面点数是1点的概率B.抛一枚质地均匀的硬币,出现正面朝上的概率C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率D.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率二、填空题9.从√2,0,π,3.14,17中随机抽取一个数,抽到有理数的概率是.10.甲、乙、丙三个人相互传一个球,由甲开始发球,并作为第一次传球,则经过两次传球后,球回到甲手中的概率是。

中考数学总复习《概率初步》专项提升练习题(附答案)

中考数学总复习《概率初步》专项提升练习题(附答案)

中考数学总复习《概率初步》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列事件中,是必然事件的是( )A.明天太阳从东方升起B.打开电视机,正在播放体育新闻C.射击运动员射击一次,命中靶心D.经过有交通信号灯的路灯,遇到红灯2.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则( )A.事件①是必然事件,事件②是随机事件B.事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件D.事件①和②都是必然事件3.在不透明的袋子装有9个白球和一个红球,它们除颜色外其余都相同,从袋中随意摸出一个球,则下列说法中正确的是( )A.“摸出的球是白球”是必然事件B.“摸出的球是红球”是不可能事件C.摸出的球是白球的可能性不大D.摸出的球有可能是红球4.某同学午觉醒来发现钟表停了,他打开收音机想听电台整点报时,则他等待的时间不超过15分钟的概率是( )A.12B.13C.14D.155.如图,一个圆形转盘被平均分成6个全等的扇形,任意旋转这个转盘1次,则当转盘停止转动时,指针指向阴影部分的概率是( )A. B. C. D.6.从-2,-1,2这三个数中任取两个不同的数相乘,积为正数的概率是( ) A.23 B.12 C.13 D.147.小杰想用6个除颜色外均相同的球设计一个游戏,下面是他设计的4个游戏方案.不成功的是( )A.摸到黄球的概率为12,红球的概率为12B.摸到黄、红、白球的概率都为13C.摸到黄球的概率为12,红球的概率为13,白球的概率为16D.摸到黄球的概率为23,摸到红球、白球的概率都是138.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是( )实验次数100200 300 500 800 1000 2000频率 0.365 0.328 0.330 0.334 0.336 0.332 0.333 A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率9.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线图,则符合这一结果的实验最有可能的是( )A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.掷一枚质地均匀的正六面体骰子,向上一面的点数是4C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃D.抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上10.同时抛掷A、B两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x、y,并以此确定点P(x,y),那么点P落在抛物线y=-x2+3x上的概率为( )A.118B.112C.19D.16二、填空题11.抛掷一枚质地均匀的硬币,落地后正面朝上的概率是 .12.在分别写有-1,0,1,2的四张卡片中随机抽取一张,所抽取的数字平方后等于1的概率为________.13.已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是________.14.游戏是否公平是指双方获胜的可能性是否相同,只有当双方获胜的可能性 (等可能事件发生的概率相同)时,游戏才公平,否则游戏不公平.15.一个不透明的口袋里装有若干除颜色外其他完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述实验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球个.16.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为(精确到0.1).投篮次数(n) 50 100 150 200 250 300 500投中次数(m) 28 60 78 104 123 152 251投中频率(m/n)0.56 0.60 0.52 0.52 0.49 0.51 0.50三、解答题17.一个袋中装有2个红球,3个白球,和5个黄球,每个球除了顔色外都相同,从中任意摸出一个球,分别求出摸到红球,白球,黄球的概率。

2023中考数学真题汇编27 概率(含答案与解析)

2023中考数学真题汇编27 概率(含答案与解析)

2023中考数学真题汇编·27概率一、单选题1.(2023·湖北十堰)任意掷一枚均匀的小正方体色子,朝上点数是偶数的概率为()A .16B .13C .12D .232.(2023·四川泸州)从1,2,3,4,5,5六个数中随机选取一个数,这个数恰为该组数据的众数的概率为()A .16B .13C .12D .233.(2023·广东)某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等,小明恰好选中“烹饪”的概率为()A .18B .16C .14D .124.(2023·江苏苏州)如图,转盘中四个扇形的面积都相等,任意转动这个转盘1次,当转盘停止转动时,指针落在灰色区域的概率是()A .14B .13C .12D .345.(2023·浙江)某校准备组织红色研学活动,需要从梅岐、王村口、住龙、小顺四个红色教育基地中任选一个前往研学,选中梅岐红色教育基地的概率是()A .12B .14C .13D .346.(2023·浙江绍兴)在一个不透明的袋子里装有2个红球和5个白球,它们除颜色外都相同,从中任意摸出1个球,则摸出的球为红球的概率是()A .25B .35C .27D .577.(2023·湖南)从6名男生和4名女生的注册学号中随机抽取一个学号,则抽到的学号为男生的概率是()A .25B .35C .23D .348.(2023·湖北武汉)某校即将举行田径运动会,“体育达人”小明从“跳高”“跳远”“100米”“400米”四个项目中,随机选择两项,则他选择“100米”与“400米”两个项目的概率是()A.12B.14C.16D.1129.(2023·河北)1有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是()A.B.C.D.10.(2023·四川成都)为贯彻教育部《大中小学劳动教育指导纲要(试行)》文件精神,某学校积极开设种植类劳动教育课.某班决定每位学生随机抽取一张卡片来确定自己的种植项目,老师提供6张背面完全相同的卡片,其中蔬菜类有4张,正面分别印有白菜、辣椒、豇豆、茄子图案;水果类有2张,正面分别印有草莓、西瓜图案,每个图案对应该种植项目.把这6张卡片背面朝上洗匀,小明随机抽取一张,他恰好抽中水果类卡片的概率是()A.12B.13C.14D.1611.(2023·湖南永州)今年2月,某班准备从《在希望的田野上》《我和我的祖国》《十送红军》三首歌曲中选择两首进行排练,参加永州市即将举办的“唱响新时代,筑梦新征程”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是()A.12B.13C.23D.112.(2023·山东临沂)在项目化学习中,“水是生命之源”项目组为了解本地区人均淡水消耗量,需要从四名同学(两名男生,两名女生)中随机抽取两人,组成调查小组进行社会调查,恰好抽到一名男生和一名女生的概率是()A.16B.13C.12D.2313.(2023·浙江温州)某校计划组织研学活动,现有四个地点可供选择:南麂岛、百丈漈、楠溪江、雁荡山.若从中随机选择一个地点,则选中“南麂岛”或“百丈漈”的概率为()A.14B.13C.12D.2314.(2023·四川遂宁)为增强班级凝聚力,吴老师组织开展了一次主题班会.班会上,他设计了一个如图的飞镖靶盘,靶盘由两个同心圆构成,小圆半径为10cm ,大圆半径为20cm ,每个扇形的圆心角为60度.如果用飞镖击中靶盘每一处是等可能的,那么小全同学任意投掷飞镖1次(击中边界或没有击中靶盘,则重投1次),投中“免一次作业”的概率是()A .16B .18C .110D .11215.(2023·安徽)如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为()A .59B .12C .13D .29二、填空题16.(2023·浙江金华)下表为某中学统计的七年级500名学生体重达标情况(单位:人),在该年级随机抽取一名学生,该生体重“标准”的概率是__________.“偏瘦”“标准”“超重”“肥胖”80350462417.(2023·湖南郴州)在一个不透明的袋子中装有3个白球和7个红球,它们除颜色外,大小、质地都相同.从袋子中随机取出一个球,是红球的概率是___________.18.(2023·浙江台州)一个不透明的口袋中有5个除颜色外完全相同的小球,其中2个红球,3个白球.随机摸出一个小球,摸出红球的概率是________.19.(2023·上海)在不透明的盒子中装有一个黑球,两个白球,三个红球,四个绿球,这十个球除颜色外完全相同.那么从中随机摸出一个球是绿球的概率为________.20.(2023·天津)不透明袋子中装有10个球,其中有7个绿球、3个红球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率为________.21.(2023·四川南充)不透明袋中有红、白两种颜色的小球,这些球除颜色外无其他差别.从袋中随机取出一个球是红球的概率为0.6,若袋中有4个白球,则袋中红球有________个.22.(2023·浙江杭州)一个仅装有球的不透明布袋里只有6个红球和n 个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为25,则n _________.23.(2023·四川自贡)端午节早上,小颖为全家人蒸了2个蛋黄粽,3个鲜肉粽,她从中随机挑选了两个孝敬爷爷奶奶,请问爷爷奶奶吃到同类粽子的概率是________.24.(2023·新疆)在平面直角坐标系中有五个点,分别是 1,2A , 3,4B , 2,3C , 4,3D , 2,3E ,从中任选一个点恰好在第一象限的概率是______.25.(2023·山东滨州)同时掷两枚质地均匀的骰子,则两枚骰子点数之和等于7的概率是___________.26.(2023·辽宁大连)一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球,记下标号后放回并再次摸出一个球,记下标号后放回.则两次标号之和为3的概率为_______________.27.(2023·重庆)一个口袋中有1个红色球,有1个白色球,有1个蓝色球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后放回,摇匀后再从中随机摸出一个球,则两次都摸到红球的概率是___________.28.(2023·山东)用数字0,1,2,3组成个位数字与十位数字不同的两位数,其中是偶数的概率为__________.三、解答题29.(2023·湖南岳阳)为落实中共中央办公厅、国务院办公厅印发的《关于实施中华优秀传统文化传承发展工程意见》,深入开展“我们的节日”主题活动,某校七年级在端午节来临之际,成立了四个社团:A 包粽子,B 腌咸蛋,C 酿甜酒,D 摘艾叶.每人只参加一个社团的情况下,随机调查了部分学生,根据调查结果绘制了两幅不完整的统计图:(1)本次共调查了_________名学生;(2)请补全条形统计图;(3)学校计划从四个社团中任选两个社团进行成果展示,请用列表或画树状图的方法,求同时选中A 和C 两个社团的概率.30.(2023·四川宜宾)某校举办“我劳动,我快乐,我光荣”活动.为了解该校九年级学生周末在家的劳动情况,随机调查了九年级1班的所有学生在家劳动时间(单位:小时),并进行了统计和整理绘制如图所示的不完整统计图.根据图表信息回答以下问题:类别劳动时间xA 01xB 12xC 23x D 34x E4x(1)九年级1班的学生共有___________人,补全条形统计图;(2)若九年级学生共有800人,请估计周末在家劳动时间在3小时及以上的学生人数;(3)已知E 类学生中恰好有2名女生3名男生,现从中抽取两名学生做劳动交流,请用列表或画树状图的方法,求所抽的两名学生恰好是一男一女的概率.31.(2023·四川广安)“双减”政策实施后,某校为丰富学生的课余生活,开设了A 书法,B 绘画,C 舞蹈,D 跆拳道四类兴趣班.为了解学生对这四类兴趣班的喜爱情况,随机抽取该校部分学生进行了问卷调查,并将调查结果整理后绘制成两幅不完整的统计图.请根据统计图信息回答下列问题.(1)本次抽取调查学生共有___________人,估计该校3000名学生喜爱“跆拳道”兴趣班的人数约为___________人.(2)请将以上两个..统计图补充完整.(3)甲、乙两名学生要选择参加兴趣班,若他们每人从A,B,C,D四类兴趣班中随机选取一类,请用画树状图或列表法,求两人恰好选择同一类的概率.32.(2023·四川内江)某校为落实国家“双减”政策,丰富课后服务内容,为学生开设五类社团活动(要求每人必须参加且只参加一类活动):A.音乐社团;B.体育社团;C.美术社团;D.文学社团;E.电脑编程社团,该校为了解学生对这五类社团活动的喜爱情况,随机抽取部分学生进行了调查统计,并根据调查结果,绘制了如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)此次调查一共随机抽取了___________名学生,补全条形统计图(要求在条形图上方注明人数);(2)扇形统计图中圆心角 ___________度;(3)现从“文学社团”里表现优秀的甲、乙、丙、丁四名同学中随机选取两名参加演讲比赛,请用列表或画树状图的方法求出恰好选中甲和乙两名同学的概率.33.(2023·四川乐山)为培养同学们爱劳动的习惯,某班开展了“做好一件家务”主题活动,要求全班同学人人参与经统计,同学们做的家务类型为“洗衣”“拖地”“煮饭”“刷碗”.班主任将以上信息绘制成了统计图表,如图所示.家务类型洗衣拖地煮饭刷碗人数(人)101210m根据上面图表信息,回答下列问题:(1)m __________;(2)在扇形统计图中,“拖地”所占的圆心角度数为__________;(3)班会课上,班主任评选出了近期做家务表现优异的4名同学,其中有2名男生.现准备从表现优异的同学中随机选取两名同学分享体会,请用画树状图或列表的方法求所选同学中有男生的概率.34.(2023·湖北宜昌)“阅读新时代,书香满宜昌”.在“全民阅读月”活动中,某校提供了四类适合学生阅读的书籍:A文学类,B科幻类,C漫画类,D数理类.为了解学生阅读兴趣,学校随机抽取了部分学生进行调查(每位学生仅选一类).根据收集到的数据,整理后得到下列不完整的图表:书籍类别学生人数A文学类24B科幻类mC漫画类16D数理类8(1)本次抽查的学生人数是_________,统计表中的m _________;(2)在扇形统计图中,“C漫画类”对应的圆心角的度数是_________;(3)若该校共有1200名学生,请你估计该校学生选择“D数理类”书籍的学生人数;(4)学校决定成立“文学”“科幻”“漫画”“数理”四个阅读社团.若小文、小明随机选取四个社团中的一个,请利用列表或画树状图的方法,求他们选择同一社团的概率.35.(2023·湖北荆州)首届楚文化节在荆州举办前,主办方为使参与服务的志愿者队伍整齐,随机抽取了部分志愿者,对其身高进行调查,将身高(单位:cm)数据分A,B,C,D,E五组制成了如下的统计图表(不完整).组别身高分组人数x 3A155160x 2B160165x mC165170x 5D170175x 4E175180根据以上信息回答:(1)这次被调查身高的志愿者有______人,表中的m _______,扇形统计图中 的度数是________;(2)若E组的4人中,男女各有2人,以抽签方式从中随机抽取两人担任组长.请列表或画树状图,求刚好抽中两名女志愿者的概率.36.(2023·山东枣庄)《义务教育课程方案》和《义务教育劳动课程标准(2022年版)》正式发布,劳动课正式成为中小学的一门独立课程,日常生活劳动设定四个任务群:A清洁与卫生,B整理与收纳,C家用器具使用与维护,D烹饪与营养.学校为了较好地开设课程,对学生最喜欢的任务群进行了调查,并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中,一共调查了___________名学生,其中选择“C家用器具使用与维护”的女生有___________名,“D烹饪与营养”的男生有___________名.(2)补全上面的条形统计图和扇形统计图;(3)学校想从选择“C家用器具使用与维护”的学生中随机选取两名学生作为“家居博览会”的志愿者,请用画树状图或列表法求出所选的学生恰好是一名男生和一名女生的概率.37.(2023·四川达州)在深化教育综合改革、提升区域教育整体水平的进程中,某中学以兴趣小组为载体,加强社团建设,艺术活动学生参与面达100%,通过调查统计,八年级二班参加学校社团的情况(每位同学只能参加其中一项):A.剪纸社团,B.泥塑社团,C.陶笛社团,D.书法社团,E.合唱社团,并绘制了如下两幅不完整的统计图.(1)该班共有学生_______人,并把条形统计图补充完整;(2)扇形统计图中,m _________,n _________,参加剪纸社团对应的扇形圆心角为_______度;(3)小鹏和小兵参加了书法社团,由于参加书法社团几位同学都非常优秀,老师将从书法社团的学生中选取2人参加学校组织的书法大赛,请用“列表法”或“画树状图法”,求出恰好是小鹏和小兵参加比赛的概率.38.(2023·江西)为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动,根据活动要求,每班需要2名宣传员,某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员.(1)“甲、乙同学都被选为宣传员”是_______事件:(填“必然”、“不可能”或“随机”)(2)请用画树状图法或列表法,求甲、丁同学都被选为宣传员的概率.39.(2023·甘肃武威)为传承红色文化,激发革命精神,增强爱国主义情感,某校组织七年级学生开展“讲好红色故事,传承红色基因”为主题的研学之旅,策划了三条红色线路让学生选择:A.南梁精神红色记忆之旅(华池县);B.长征会师胜利之旅(会宁县);C.西路军红色征程之旅(高台县),且每人只能选择一条线路.小亮和小刚两人用抽卡片的方式确定一条自己要去的线路.他们准备了3张不透明的卡片,正面分别写上字母A,B,C,卡片除正面字母不同外其余均相同,将3张卡片正面向下洗匀,小亮先从中随机抽取一张卡片,记下字母后正面向下放回,洗匀后小刚再从中随机抽取一张卡片.(1)求小亮从中随机抽到卡片A的概率;(2)请用画树状图或列表的方法,求两人都抽到卡片C的概率.40.(2023·江苏苏州)一只不透明的袋子中装有4个小球,分别标有编号1,2,3,4,这些小球除编号外都相同.(1)搅匀后从中任意摸出1个球,这个球的编号是2的概率为______.(2)搅匀后从中任意摸出1个球,记录球的编号后放回、搅匀,再从中任意摸出1个球.求第2次摸到的小球编号比第1次摸到的小球编号大1的概率是多少?(用画树状图或列表的方法说明)41.(2023·四川南充)为培养学生劳动习惯,提升学生劳动技能,某校在五月第二周开展了劳动教育实践周活动.七(1)班提供了四类活动:A.物品整理,B.环境美化,C.植物栽培,D.工具制作.要求每个学生选择其中一项活动参加,该班数学科代表对全班学生参与四类活动情况进行了统计,并绘制成统计图(如图).(1)已知该班有15人参加A类活动,则参加C类活动有多少人?(2)该班参加D类活动的学生中有2名女生和2名男生获得一等奖,其中一名女生叫王丽,若从获得一等奖的学生中随机抽取两人参加学校“工具制作”比赛,求刚好抽中王丽和1名男生的概率.42.(2023·福建)为促进消费,助力经济发展,某商场决定“让利酬宾”,于“五一”期间举办了抽奖促销活动.活动规定:凡在商场消费一定金额的顾客,均可获得一次抽奖机会.抽奖方案如下:从装有大小质地完全相同的1个红球及编号为①②③的3个黄球的袋中,随机摸出1个球,若摸得红球,则中奖,可获得奖品:若摸得黄球,则不中奖.同时,还允许未中奖的顾客将其摸得的球放回袋中,并再往袋中加入1个红球或黄球(它们的大小质地与袋中的4个球完全相同),然后从中随机摸出1个球,记下颜色后不放回,再从中随机摸出1个球,若摸得的两球的颜色相同,则该顾客可获得精美礼品一份.现已知某顾客获得抽奖机会.(1)求该顾客首次摸球中奖的概率;(2)假如该顾客首次摸球未中奖,为了有更大机会获得精美礼品,他应往袋中加入哪种颜色的球?说明你的理由.【参考答案与解析】1.【答案】C【解析】∵任意掷一枚均匀的小正方体色子,共有6种等可能的结果,其中朝上点数是偶数的结果有3种,∴朝上点数是偶数的概率为3162.故选:C.2.【答案】B【解析】解:1,2,3,4,5,5六个数中,数字5出现了2次,出现的次数最多,故这组数据的众数为5,所以从六个数中随机选取一个数,这个数恰为该组数据的众数的概率为2163 P .故选:B.3.【答案】C【解析】解:由题意可知小明恰好选中“烹饪”的概率为1 4;故选C.4.【答案】C【解析】解:∵转盘中四个扇形的面积都相等,设整个圆的面积为1,∴灰色区域的面积为12,∴当转盘停止转动时,指针落在灰色区域的概率是12,故选:C.5.【答案】B【解析】解:从梅岐、王村口、住龙、小顺四个红色教育基地中任选一个前往研学,总共有4种选择,选中梅岐红色教育基地有1种,则概率为1 4,故选:B6.【答案】C【解析】解:在一个不透明的袋子中装有2个红球和5个白球,它们除颜色外其他均相同,从中任意摸出1个球,共有7种可能,摸到红球的可能为2种,则摸出红球的概率是27,故选:C.7.【答案】B【解析】解:总人数为10人,随机抽取一个学号共有10种等可能结果,抽到的学号为男生的可能有6种,则抽到的学号为男生的概率为:63 105 ,故选:B.8.【答案】C【解析】解:设“跳高”“跳远”“100米”“400米”四个项目分别为A B C D、、、,画树状图如下:由树状图可知共有12种等可能情况,他选择“100米”与“400米”两个项目即选择C和D的情况数共有2种,∴选择“100米”与“400米”两个项目的概率为21126,故选:C.9.【答案】B【解析】解:∵一共有7张扑克牌,每张牌被抽到的概率相同,其中黑桃牌有1张,红桃牌有3张,梅花牌有1张,方块牌有2张,∴抽到的花色是黑桃的概率为17,抽到的花色是红桃的概率为37,抽到的花色是梅花的概率为17,抽到的花色是方块的概率为27,∴抽到的花色可能性最大的是红桃,故选:B.10.【答案】B【解析】解:由题意,随机抽取一张,共有6种等可能的结果,其中恰好抽中水果类卡片的有2种,∴小明随机抽取一张,他恰好抽中水果类卡片的概率是2163,故选:B.11.【答案】B【解析】解:从三首歌曲中选择两首进行排练,有《在希望的田野上》《我和我的祖国》、《在希望的田野上》《十送红军》、《我和我的祖国》《十送红军》共三种选择方式,故选到前两首的概率是1 3,故选:B.12.【答案】D【解析】解:设两名男生分别记为A,B,两名女生分别记为C,D,画树状图如下:共有12种等可能的结果,其中抽取的两名同学恰好是一名男生和一名女生的结果有8种,∴抽取的两名同学恰好是一名男生和一名女生的概率为82123,故选:D .13.【答案】C【解析】解:∵有四个地点可供选择:南麂岛、百丈漈、楠溪江、雁荡山,∴若从中随机选择一个地点,则选中“南麂岛”或“百丈漈”的概率为2142;故选:C .14.【答案】B【解析】解:由题意得,大圆面积为2220400cm ,免一次作业对应区域的面积为2226020601050cm 360360,∴投中“免一次作业”的概率是5014008,故选B .15.【答案】C【解析】解:依题意,用1,2,3这三个数字随机组成一个无重复数字的三位数,可能结果有,123,132,213,231,312,321共六种可能,只有123321,是“平稳数”.∴恰好是“平稳数”的概率为21=63故选:C .16.【答案】710【解析】解:该生体重“标准”的概率是350750010,故答案为:710.17.【答案】710【解析】解:由题意,得,随机取出一个球共有10种等可能的结果,其中取出的是红球共有7种等可能的结果,∴710P ;故答案为:710.18.【答案】25【解析】解:由题意得摸出红球的情况有两种,总共有5个球, 摸出红球的概率:22235.故答案为:25.19.【答案】25【解析】解:因为在不透明的盒子中,总共有10个球,其中有四个绿球,并且这十个球除颜色外,完全相同,所以从中随机摸出一个球是绿球的概率为42105P ,故答案为:25.20.【答案】710【解析】解:由题意,从装有10个球的不透明袋子中,随机取出1个球,则它是绿球的概率为710,故答案为:710.21.【答案】6【解析】解:设袋中红球有x 个,由题意得:0.64xx ,解得6x ,检验,当6x 时,40x ,∴6x 是原方程的解,∴袋中红球有6个,故答案为:6.22.【答案】9【解析】解:∵从中任意摸出一个球是红球的概率为25,6265n ,去分母,得 6526n ,解得9n ,经检验9n 是所列分式方程的根, 9n ,故答案为:9.23.【答案】25【解析】解:设蛋黄粽为A ,鲜肉粽为B ,画树状图如下:共有20种等可能的结果,其中爷爷奶奶吃到同类粽子有8种等可能的结果,∴爷爷奶奶吃到同类粽子的概率是82205,故答案为:25.24.【答案】25【解析】解:在平面直角坐标系中有五个点,分别是 1,2A , 3,4B , 2,3C , 4,3D , 2,3E ,其中 1,2A , 4,3D ,在第一象限,共2个点,∴从中任选一个点恰好在第一象限的概率是25,故答案为:25.25.【答案】16【解析】所有可能结果如下表,所有结果共有36种,其中,点数之和等于7的结果有6种,概率为61366.故答案为:16.26.【答案】12【解析】解:由题意,画出树状图如下:由图可知,两次摸球的所有等可能的结果共有4种,其中,两次标号之和为3的结果有2种,则两次标号之和为3的概率为2142 P ,故答案为:12.27.【答案】1 9【解析】解:根据题意列表如下:红球白球蓝球红球(红球,红球)(白球,红球)(蓝球,红球)白球(红球,白球)(白球,白球)(蓝球,白球)蓝球(红球,蓝球)(白球,蓝球)(蓝球,蓝球)由表知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次摸到球的颜色相同的概率为1 9,故答案为:1 9.28.【答案】5 9【解析】解:0不能在最高位,而且个位数字与十位数字不同,列表如下:1230102030121312123231323一共有可以组成9个数字,偶数有10、12、20、30、32,∴是偶数的概率为5 9.故答案为:5 9.29.【答案】(1)100(2)B的人数:10040251520(人),补全统计图如下:.(3)根据题意,画树状图如下:一共有12种等可能性,选中A ,C 的等可能性有2种,故同时选中A 和C 两个社团的概率为21126.【解析】(1)根据样本容量=频数÷所占百分数,计算即可.2525%100 (人);(2)先计算B 的人数,再完善统计图即可.(3)利用画树状图计算即可.30.【答案】(1)50;补全条形统计图如下:(2)由题意得,8580020850(人),即估计周末在家劳动时间在3小时及以上的学生人数为208人;(3)列表如下:女1女2男1男2男3女1女1,女2女1,男1女1,男2女1,男3女2女2,女1女2,男1女2,男2女2,男3男1男1,女1男1,女2男1,男2男1,男3男2男2,女1男2,女2男2,男1男2,男3男3男3,女1男3,女2男3,男1男3,男2由表格可知,共有20种等可能的情况,其中一男一女共有12种,∴所抽的两名学生恰好是一男一女的概率是123205.【解析】(1)利用C 类人数除以对应的百分比即可得到九年级1班的总人数,再分别求出B 和D 的人数,补全统计图即可;由题意得1530%50 (人),类别B 的人数为5028%14 (人),类别D 的人数为508141558 (人),(2)用九年级学生总人数乘以九年级1班周末在家劳动时间在3小时及以上的学生占的比值即可得到答案;(3)根据题意列出表格,利用满足要求的情况数除以总的情况数即可得到答案.31.【答案】(1)60,300(2)解:喜欢书法的学生人数人6035%21 (人),喜欢舞蹈的学生所占百分比为15100%25%60,喜欢跆拳道的学生所占百分比为100%66010% .则补全两个统计图如下:(3)解:由题意,画树状图如下:由图可知,甲、乙两名学生选择参加兴趣班的所有等可能的结果共有16种,其中,两人恰好选择同一类的结果有4种,则两人恰好选择同一类的概率为41164P ,答:两人恰好选择同一类的概率为14.【解析】(1)根据喜欢绘画的条形统计图和扇形统计图信息即可得本次抽取调查学生的总人数,再利用3000乘以喜欢跆拳道的学生所占百分比即可得;本次抽取调查学生的总人数为1830%60 (人),估计该校3000名学生喜爱“跆拳道”兴趣班的人数约为6300030060(人);(2)先求出喜欢书法的学生人数,据此补全条形统计图,再求出喜欢舞蹈和跆拳道的学生所占百分比,据此补全扇形统计图即可得;(3)先画出树状图,从而可得甲、乙两名学生选择参加兴趣班的所有等可能的结果,再找出两人恰好选择同一类的结果,然后利用概率公式计算即可得.32.【答案】(1)200;补全条形统计图如图:(2)54;(3)解:画树状图如下:∵共有12种等可能的结果,其中恰好选中甲、乙两名同学的结果有2种,∴恰好选中甲、乙两名同学的概率为21126.【解析】(1)用B 类型社团的人数除以其人数占比即可求出参与调查的总人数;用总人数减去A 、B 、D 、E 四个类型社团的人数得到C 类型社团的人数,即可补全条形统计图;5025%200 (人),C 类型社团的人数为2003050702030 (人),(2)用360 乘以C 类型社团的人数占比即可求出扇形统计图中 的度数;3036054200;(3)先画出树状图得到所有等可能性的结果数,再找到恰好选中甲和乙两名同学的结果数,最后依据概率计算公式求解即可.33.【答案】(1)8(2)108。

中考数学试卷概率题及答案

中考数学试卷概率题及答案

一、选择题1. 抛掷一枚均匀的正方体骰子,向上的面朝上的点数是奇数的概率是多少?A. 1/3B. 1/2C. 2/3D. 1答案:B解析:正方体骰子有6个面,每个面的点数分别是1、2、3、4、5、6。

其中,奇数点数有3个(1、3、5),所以向上的面朝上的点数是奇数的概率为3/6=1/2。

2. 从一副52张的标准扑克牌中随机抽取一张牌,抽到红桃的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/26答案:A解析:一副标准扑克牌有52张牌,其中红桃有13张。

所以从一副52张的标准扑克牌中随机抽取一张牌,抽到红桃的概率为13/52=1/4。

3. 一个袋子里有5个红球和7个蓝球,从中随机取出一个球,取出红球的概率是多少?A. 5/12B. 7/12C. 5/22D. 7/22答案:A解析:袋子里共有5个红球和7个蓝球,即12个球。

从中随机取出一个球,取出红球的概率为5/12。

4. 一个袋子里有3个白球和2个黑球,随机取出两个球,两个球都是白球的概率是多少?A. 1/5B. 2/5C. 1/3D. 2/3答案:C解析:取出第一个球是白球的概率为3/5,取出第二个球也是白球的概率为2/4(因为第一个白球已经取出,所以剩下2个白球和2个黑球)。

所以两个球都是白球的概率为3/5×2/4=3/10=1/3。

5. 一个班级有30名学生,其中有10名男生和20名女生。

从班级中随机选取一名学生,这名学生是女生的概率是多少?A. 1/3B. 2/3C. 1/2D. 3/5答案:B解析:班级中女生有20名,男生有10名,共30名学生。

从班级中随机选取一名学生,这名学生是女生的概率为20/30=2/3。

二、填空题6. 抛掷一枚均匀的正方体骰子,向上的面朝上的点数小于4的概率是______。

答案:1/2解析:正方体骰子有6个面,点数小于4的有3个(1、2、3),所以向上的面朝上的点数小于4的概率为3/6=1/2。

中考数学复习之统计与概率综合训练题(含20大题)

中考数学复习之统计与概率综合训练题(含20大题)

中考数学复习之统计与概率综合训练题(含20大题)1.小丹有3张扑克牌,小林有2张扑克牌,扑克牌上的数字如图所示.两人用这些扑克牌做游戏,他们分别从自己的扑克牌中随机抽取一张,比较这两张扑克牌上的数字大小,数字大的一方获胜.请用画树状图(或列表)的方法,求小丹获胜的概率.2.某电视台为了解观众对“谍战”题材电视剧的喜爱情况,随机抽取某社区部分电视观众,进行问卷调查,整理绘制了如下不完整的条形统计图和扇形统计图:请根据以上信息,解答下列问题:(1)在这次接受调查的女观众中,表示“不喜欢”的女观众所占的百分比是多少?(2)求这次调查的男观众人数,并补全条形统计图.(3)若该社区有男观众约1000人,估计该社区男观众喜欢看“谍战”题材电视剧的约有多少人?3.一所中学,为了让学生了解环保知识,增强的环保意识,特地举行了一次“护家乡”的环保知识竞赛,共有900名学生参加这次竞赛.为了解本次竞赛的情况,从中抽取了部分学生的成绩进行统计.分组频数频率50.5~60.540.0860.5~70.580.1670.5~80.5100.2080.5~90.5160.3290.5~100合计请根据上表和图,解答下列问题:(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)在该问题中,样本容量是;(4)全体参赛学生中,竞赛成绩的中位数落在哪个组内?(5)若成绩在90分以上(不含90分)可以获奖,在全校学生的试卷中任抽取一张,获奖的概率是多大?4.孙明和王军两人去桃园游玩,返回时打算顺便买些新鲜油桃.此时桃园仅三箱油桃,价钱相同,但质量略有区别,分为A1级、A2级、A3级,其中A1级最好,A3级最差.挑选时,三箱油桃不同时拿出,只能一箱一箱的看,也不告知该箱的质量等级.两人采取了不同的选择方案:孙明无论如何总是买第一次拿出来的那箱.王军是先观察再确定,他不买第一箱油桃,而是仔细观察第一箱油桃的状况;如果第二箱油桃的质量比第一箱好,他就买第二箱油桃,如果第二箱的油桃不比第一箱好,他就买第三箱.(1)三箱油桃出现的先后顺序共有哪几种不同的可能?(2)孙明与王军,谁买到A1级的可能性大?为什么?5.“时裳”服装店现有A、B、C三种品牌的衣服和D、E两种品牌的裤子,温馨家现要从服装店选购一种品牌的衣服和一种品牌的裤子.(1)写出所有选购方案(利用树状图或列表方法表示)(2)如果(1)中各种选购方案被选中的可能性相同,那么A品牌衣服被选中的概率是多少?6.校文学社在全校范围内随机抽取一部分读者对社刊中最感兴趣的文学栏目进行了投票.每人一张选票,每张选票只能投给一个栏目,经统计无弃权票,根据投票结果绘制的条形统计图如下:(1)这次参加投票的总人数为.(2)若全校有3000名读者,估计其中对“写作指导”最感兴趣的人数.(3)在全校3000名读者中,若对某个栏目最感兴趣的人数少于300人将会影响社刊的销售,这个栏目就需要被撤换.请通过计算判断,“新书上架”栏目是否需要被撤换.7.如图,有A、B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字.现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘指针指向的数字记为y,从而确定点P的坐标为P(x,y).(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标;(2)计算点P在函数y=6x图象上的概率.8.宣传交通安全知识,争做安全小卫士.某校进行“交通安全知识”宣传培训后进行了一次测试.学生考分按标准划分为不合格、合格、良好、优秀四个等级,为了解全校的考试情况,对在校的学生随机抽样调查,得到图(1)的条形统计图,请结合统计图回答下列问题:(1)该校抽样调查的学生人数为名;抽样中考生分数的中位数所在等级是;(2)抽样中不及格的人数是多少?占被调查人数的百分比是多少?(3)若已知该校九年级有学生500名,图(2)是各年级人数占全校人数百分比的扇形图(图中圆心角被等分),请你估计全校优良(良好与优秀)的人数约有多少人?9.小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由.若不公平,如何修改规则才能使游戏对双方公平?10.“学生坐校车上学”的安全问题越来越受到社会的关注,某校利用周末假期,随机抽查了本校若干名学生和部分家长对“初中生坐校车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)这次抽查的家长总人数为;(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是.11.“你记得父母的生日吗?”这是我校在九年级学生中开展主题为“感恩”教育时设置的一个问题,有以下四个选项:A.父母生日都记得;B.只记得母亲生日;C.只记得父亲生日;D.父母生日都不记得.在随机调查了(1)班和(2)班各50名学生后,根据相关数据绘出如图所示的统计图.(1)补全频数分布直方图;(2)据此推算,九年级共900名学生中,“父母生日都不记得”的学生共多少名?(3)若两个班中“只记得母亲生日”的学生占22%,则(2)班“只记得母亲生日”的学生所占百分比是多少?12.某中学开展菜市场菜价调查活动,以锻炼同学们的生活能力.调查一共连续7天,每天调查3次,第一次8:00由各班的A小组调查,第二次13:00由B小组调查,第三次17:00由C小组调查.调查完后分析当天的菜价波动情况,七天调查结束后整理数据,就得出了菜价最便宜的某一时段.下面是同学们的一些调查情况,请你帮忙分析数据:第1天菜价调查情况(单位:元/千克)第2﹣5天平均菜价(单位:元/千克)(1)根据“第2﹣5天平均菜价”图来分析:哪种蔬果价格最便宜?(2)从第一天的调查情况来看,哪种蔬果的价格波动最小?请通过计算说明.(3)计算苹果、白菜、土豆在1﹣5天的平均菜价.(4)根据上面两个图来分析:在3﹣5天中的哪一天的哪一时段购买苹果最省钱?13.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是多少?14.某班50名同学进行数学测验,将所得成绩(得分取整数,最低分为50分)进行整理后分成五组,并绘成统计图(如图).请结合统计图提供的信息,回答下列问题.(1)请将该统计图补充完整;(2)请你写出从图中获得的三个以上的信息;(3)老师随机抽取一份试卷来分析,抽取到哪一组学生试卷的可能性较大?15.2006年,某校三个年级的初中在校学生共有796名,学生的出生月份统计如下,根据图中数据回答下列问题:(1)出生人数超过60人的月份有哪些?(2)出生人数最多的是几月?(3)在这些学生中至少有两人生日在10月5日是不可能或可能,还是必然的?(4)如果你随机地遇到这些学生中的一位,那么这位学生生日在哪一个月概率最小?16.为了给某区初一新生订做校服,某服装加工厂随机选取部分新生,对其身高情况进行调查,图甲、图乙是由统计结果绘制成的不完整的统计图.根据图中信息解答下列问题:(1)一共调查了名学生;(2)在被调查的学生中,身高在1.55~1.65m的有人,在1.75m及以上的有人;(3)在被调查的学生中,身高在1.65~1.75m的学生占被调查人数的%,在1.75m 及以上的学生占被调查人数的%;(4)如果今年该区初一新生有3200人,请你估计身高在1.65~1.75m的学生有多少人.17.某开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数/名1423223每人月工资/元2100084002025220018001600950请你根据上述内容,解答下列问题:(1)该公司“高级技工”有人;(2)该公司的工资极差是元;(3)小张到这家公司应聘普通工作人员,咨询过程中得到两个答案,你认为用哪个数据向小张介绍员工的月工资实际水平更合理些?(4)去掉最高工资的前五名,再去掉最低工资的后五名,然后算一算余下的40人的平均工资,说说你的看法.18.为了解全校学生上学的交通方式,该校九年级(8)班的5名同学联合设计了一份调查问卷,对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:(1)本次接受调查的总人数是人,并把条形统计图补充完整;(2)在扇形统计图中,“步行”的人数所占的百分比是,“其他方式”所在扇形的圆心角度数是;(3)已知这5名同学中有2名女同学,要从中选两名同学汇报调查结果.请你用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.19.有三张卡片(形状、大小、质地都相同),正面分别写上整式x+1,x,3.将这三张卡片背面向上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张、第一次抽取的卡片上的整式作为分子,第二次抽取的卡片上的整式作为分母.(1)请写出抽取两张卡片的所有等可能结果(用树状图或列表法求解);(2)试求抽取的两张卡片结果能组成分式的概率.20.初三学生小丽、小杰为了解本校初二学生每周上网的时间,各自在本校进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间,算得这些学生平均每周上网时间为2.5小时;小杰从全体320名初二学生名单中随机抽取了40名学生,调查了他们每周上网的时间,算得这些学生平均每周上网时间为1.2小时.小丽与小杰整理各自样本数据,如下表所示.时间段(小时/周)小丽抽样人数小杰抽样人数0~16221~210102~31663~482(每组可含最低值,不含最高值)请根据上述信息,回答下列问题:(1)你认为哪位学生抽取的样本具有代表性?答:;估计该校全体初二学生平均每周上网时间为小时;(2)根据具有代表性的样本,把上图中的频数分布直方图补画完整;(3)在具有代表性的样本中,中位数所在的时间段是小时/周;(4)专家建议每周上网2小时以上(含2小时)的同学应适当减少上网的时间,根据具有代表性的样本估计,该校全体初二学生中有多少名同学应适当减少上网的时间?。

中考数学专题训练—统计与概率综合

中考数学专题训练—统计与概率综合

2019年中考数学专题训练—统计与概率综合1.某学校组建了书法、音乐、美术、舞蹈、演讲五个社团,全校1600名学生每人都参加且只参加了其中一个社团的活动.校团委从这1600名学生中随机选取部分学生进行了参加活动情况的调查,并将调查结果制成了如图不完整的统计图.请根据统计图完成下列问题:参加本次调查有名学生,根据调查数据分析,全校约有名学生参加了音乐社团;请你补全条形统计图.2.为响应“全民阅读”号召,某校在七年级800名学生中随机抽取100名学生,对该年级学生在2019年全年阅读中外名著的情况进行调查,整理调查结果发现,学生阅读中外名著的本数,最少的有5本,最多的有8本,并根据调查结果绘制了如图所示的不完整的条形统计图,其中阅读了6本的人数占被调查人数的30%,根据图中提供的信息,补全条形统计图并估计该校七年级全体学生在2019年全年阅读中外名著的总本数.3.为了掌握某次数学模拟考试卷的命题质量与难度系数,命题教师选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩分为5组:第一组75~90;第二组90~105;第三组105~120;第四组120~135;第五组135~150.统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图.观察图形的信息,回答下列问题:请将频数分布直方图补充完整;若老师找到第五组中一个学生的语文、数学、英语三科成绩,如表.老师将语文、数学、英语成绩按照3:5:2的比例给出这位同学的综合分数.求此同学的综合分数.4.我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师采取的调查方式是 (填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共 件,其中b 班征集到作品 件,请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率. 科目 语文 数学 英语 得分 120 146 1405.2019年3月20日上午8时,重庆国际马拉松赛在南滨路鸣枪开赛,来自30个国家和地区的3万多名跑者朝着快乐奔跑,最终埃塞俄比亚选手夺得男子组冠军,而女子全程前三名则由中国选手包揽.某校课外活动小组为了调查该校学生对“马拉松”喜爱的情况,随机对该校学生进行了调查,调查的结果分为“非常喜欢”、“比较喜欢”、“基本喜欢”、“不太喜欢”四个等级,分别记作A、B、C、D.根据调查结果绘制成了两幅不完整的统计图,请解答下列总量:请你补全两种统计图并估算该校600名学生中“非常喜欢”马拉松的人数.6.双福育才中学为积极响应学校提出的“实现伟大育才梦,建设美丽双福”的号召,面向全校学生开展征文活动,校学生会对七年级各班一周内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.(1)图中投稿篇数为2所对应的扇形的圆心角度数为,并将该条形统计图补充完整.(2)求学校七年级各班在这一周内投稿的平均篇数.(3)若全校共有72个班,请估计全校征文投稿不低于6篇的班级有多少个?7.重庆市巴川中学是全国啦啦操基地,每届学生对啦啦操技巧的掌握都将得到传承,初2019级的同学们本周正在认真学习啦啦操,为庆“六一”表演积极做准备.学校艺体处为了解同学们跳啦啦操的热情和喜爱情况,组织大队委对本年级学生进行随机抽样调查.大队委文艺副部长小王对抽样的同学们对啦啦操的喜爱程度分为四类:A:非常喜欢;B:比较喜欢;C:一般喜欢;D:不喜欢,并将自己的调查结果绘制成如图的统计图,请你结合图中所给信息解答下列问题:请将条形统计图补充完整;初2019级共有学生2400人,请你用小王的调查结果估计该年级“非常喜欢”和“比较喜欢”跳啦啦操的人数之和有多少人?8.学校教务处为了了解学生下午参加体育活动的情况,采用随机抽样的方式进行问卷调查,调查结果分为“篮球”、“足球”、“乒乓球”、“跳绳”“体育舞蹈”、“其他”六类,分别用A、B、C、D、E、F表示.根据调查结果绘制了如图所示两幅不完整的统计图.结合图中所给出的信息,请补全条形统计图,并根据抽样调查估计全校3600名学生中选择跳绳和体育舞蹈的总人数.9.2019年春节联欢晚会分为A(语言类)、B(歌舞类)、C(魔术类)、D(杂技类)四类节目.为了了解某养老院老人对这几类节目的喜好程度,民政部门在该养老院随机抽取部分老人进行了问卷调查,规定每位老人只能选一类自己最喜欢的节目,并制成了以下两幅不完整的统计图.由图中所给出的信息解答下列问题:(1)补全条形统计图;(2)已知该养老院共有230位老人,请你估计该养老院喜欢语言类节目的老人大约有多少人?10.为丰富我校学生的课余生活,增强学生的综合能力,学校计划在下学年新开设A:国际象棋社;B:皮影社;C:话剧社;D:手语社这四个社团;为了解学生喜欢哪一个社团,随机抽取了部分学生进行调查,并将调查结果绘制成如下的条形统计图和扇形统计图,请结合图中信息解答下列问题:求样本中喜欢C社团的人数在扇形统计图中的圆心角的度数,并把条形统计图补充完整.11.随着一部在重庆取景拍摄的电影《火锅英雄》在山城的热播,山城人民又掀起了一股去吃洞子老火锅的热潮.某餐饮公司为了大力宣传和推广该公司的企业文化,准备举办一个火锅美食节.为此,公司派出了若干业务员到几个社区作随机调查,了解市民对火锅的喜爱程度.业务员小王将“喜爱程度”按A、B、C、D进行分类,并将自己的调查结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:“喜爱程度”条形统计图“喜爱程度”扇形统计图(说明:A:非常喜欢;B:比较喜欢;C:一般喜欢;D:不喜欢)(1)请把条形统计图补充完整;(2)扇形统计图中A类所在的扇形的圆心角度数是;(3)若小王调查的社区大概有5000人,请你用小王的调查结果估计“非常喜欢”和“比较喜欢”的人数之和.12.电视节目“了不起的挑战”播出后深受中小学生的喜爱,小刚想知道我校学生最喜欢哪位明星,于是在我校随机抽取了一部分学生进行抽查(每人只能选一个自己最喜欢的明星),将调查结果进行了整理后绘制成如图两幅不完整的统计图,请结合图中提供的信息解答下列问题:(1)本次被调查的学生有人.并将两幅统计图补充完整.(2)若小刚所在学校有3500名学生,请根据图中信息,估计全校喜欢“阮经天”的人数.13.数学兴趣小组为了解我校初三年级1800名学生的身体健康情况,从初三随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.补全条形统计图,并估计我校初三年级体重介于47kg至53kg的学生大约有多少名.14.自1939年创办以来,重庆育才中学一直坚守文化底线,不断挑战自我极限,在沧桑文化中愈加根深叶茂.在今年,即将推出的本部改造计划不仅是文化审美层面的颠覆尝试,也是学校发展的巨大工程,其中三种style的民国大门各具特色,A磅礴大气,B清爽简约,C典雅古朴款,为调查民意学校让教职工进行投票呈现了四种结果,喜欢A款、喜欢B款、喜欢C款、都可以,现调查结果如下:(1)如图,喜欢C款的占20%,喜欢B款的占15%,则调查总人数为,扇形统计图中认为“都可以”的所占圆心角为度;根据题中信息补全条形统计图.(2)我们学校共有600名教职工,请根据上图估算喜欢A款的有多少人?15.重庆市某超市举行盛大的周年庆庆祝活动,推出“感恩顾客,回馈真情”抽奖活动,活动规定,凡购买商品价值不低于200元的顾客,都能参与一次抽奖活动,奖励的等级分为下列五等:A等级:奖励现金50元,B等级:奖励现金30元;C等级:奖励现金10元;D等级:奖励现金6元;E等级:呵呵,恭喜发财,下次再来(没有奖励)!超市根据部分顾客的抽奖情况,对抽奖结果进行分析,绘制了下列两幅不完整的统计图:根据提供的信息,求扇形统计图中“D等级”所对应的圆心角度数,并求出顾客抽一次奖的平均收益,并补全条形统计图.16.小明参加班委竞选,需进行演讲答辩与民主测评,民主测评时一人一票,按“优秀、良好、一般”三选一投票.如图是五位评委对小明“演讲答辩”的评分条形统计图及全班50位同学民主测评票数统计表,已知小明“演讲答辩”得分是95分(1)请补全条形统计图;(2)小明的民主测评得分是;(3)请求出小明的综合得分.17.在初三综合素质评定结束后,为了了解年级的评定情况,现对初三某班的学生进行了评定等级的调查,绘制了如下男女生等级情况折线统计图和全班等级情况扇形统计图.(1)调查发现评定等级为合格的男生有2人,女生有1人,则全班共有名学生.(2)补全女生等级评定的折线统计图.(3)根据调查情况,该班班主任从评定等级为合格和A的学生中各选1名学生进行交流,请用树形图或表格求出刚好选中一名男生和一名女生的概率.18.食品安全关系千家万户,春节期间,食监部门对某超市的甲、乙两种品牌的菜籽油进行了抽检,共随机抽取了36桶油进行检测,检测结果分成“优秀”、“合格”、“不合格”三个等级,已知乙种品牌的菜籽油全部合格,统计人员将数据处理后制成了如下的扇形统计图及折线统计图,其中扇形统计图表示甲种品牌菜籽油检测的结果,折线统计图表示甲、乙两种品牌菜籽油检测的结果.(1)甲、乙两种品牌的菜籽油各被抽取了多少桶进行检测?(2)甲、乙两种品牌的菜籽油检测结果中“优秀”各有多少桶?19.近年来,“小组合作学习”成为我区推动课堂教学活动改革,打造高效课堂的重要举措.某中学为了了解“小组合作学习”实施后学生的学习兴趣,随机调查了部分学生,并根据调查结果绘制成如图图表:(1)求调查的学生中学习兴趣“高”的人数的百分比和其所在扇形图中的圆心角的度数;(2)请把条形统计图补充完整;(3)已知该校有750人,请根据调查情况估计全校学习兴趣“极高”的人数是多少?20.某中学上学期开展了以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制如图所示的不完整的统计图,请你根据图中提供的信息补全条形统计图并估计该中学1500名学生中最喜爱律师职业的学生有多少名?21.“六一”儿童节前夕,某县××局准备给留守儿童赠送一批学习用品,先对某小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名、7名、8名、10名、12名这五种情形,并将统计结果绘制成了如图所示的两幅不完整的统计图.请根据上述统计图,解答下列问题:(1)该校有个班级;各班留守儿童人数的中位数是;并补全条形统计图;(2)若该镇所有小学共有65个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.22.《中国足球改革总体方案》提出足球要进校园,为了解某校学生对校园足球喜爱的情况,随机对该校部分学生进行了调查,将调查结果分为“很喜欢”、“较喜欢”、“一般”、“不喜欢”四个等级,并根据调查结果绘制成了如下两幅不完整的统计图;(1)一共调查了名学生,请补全条形统计图;(2)在此次调查活动中,选择“一般”的学生中只有两人来自初三年级,现在要从选择“一般”的同学中随机抽取两人来谈谈各自对校园足球的感想,请用画树状图或列表法求选中的两人刚好都来自初三年级的概率.23.中学生上学带手机的现象越来越受到社会的关注,为此媒体记者随机调查了某校若干名学生上学带手机的目的,分为四种类型:A接听电话;B收发短信;C查阅资料;D游戏聊天.并将调查结果绘制成图1和图2的统计图(不完整),请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;C类所占百分比为;(2)将图1补充完整;(3)现有6名学生,其中A类三名,B类三名,张华在A类,王雨在B类,从A、B中各选1名学生,请用列表法或树状图法求张华、王雨至少有一个被抽到的概率.24.创造节期间,重庆育才中学向学生征集校服自主设计作品.初三年级信息技术张老师从全年级32个班中随机抽取了A、B、C、D共四个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)张老师所调查的4个班征集到作品共件,其中B班征集到作品件,请把图2补充完整.(2)如果全年级参赛作品中有4件获全校一等奖,其中有2名作者是男生,2名作者是女生.现在要在获一等奖的四个人中抽两人去参加全校自主校服设计的走秀活动,求恰好抽中一男一女的概率(要求用树状图或列表法写出分析过程).25.某区教委对部分学校的七年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层次,A 级:对学习很感兴趣,B级:对学习比较感兴趣,C级:对学习不敢兴趣)并将调查结果绘制成图1和图2的统计图(不完整)根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生,图2中C级扇形的圆心角是度.并将图1补充完整.(2)已知A级中有4名数奥尖子学生,其中有2名男生,2名女生,B级中有3名体育尖子学生,其中有2名男生,1名女生,从这4名数奥尖子学生和3名体育尖子生中各选出1名学生,参加学校的“特长学生经验交流会”.利用”树状图“或者”列表”法求所选出的2名学生恰好是一名男生和一名女生的概率.26.我校学生社团下学年将新增四个社团:A.开心农场、B.小小书吧、C.宏帆传媒、D.学生大使团.为了了解学生对四个社团的喜欢情况,学生会干部随机抽取了部分学生进行调查,并将调查结果绘制成下列的统计图,请结合图中的信息解答下列问题:(1)在这次调查中,共调查了多少名学生?(2)请计算扇形统计图中B的圆心角;并将条形统计图补充完整;(3)为了了解学生喜欢“宏帆传媒”社团的原因,调查到喜欢“宏帆传媒”社团的5个学生中有2个初一的,3个初二的,现在这5个学生中任抽取2名学生参加座谈,请用树状图或列表的方法,求刚好抽到同一年级学生的概率.27.某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类(记为A)、音乐类(记为B)、球类(记为C)、其它类(记为D).根据调查结果发现该班每个学生都进行了登记且每人只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生进行了归类,并制作了如下两幅统计图.请你结合图中所给信息解答下列问题:(1)七年级(1)班学生总人数为人,扇形统计图中D类所对应扇形的圆心角为度,请补全条形统计图;(2)学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名学生擅长绘画.班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.28.为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内所有的小微企业按年利润w(万元)的多少分为以下四个类型:A类(w<10),B类(10≤w<20),C类(20≤w<30),D类(w≥30),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是,扇形统计图中B类所对应扇形圆心角的度数为度,请补全条形统计图;(2)为了进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.29.经国家体育总局、重庆市××局批准,国家级青少年体育俱乐部-重庆巴蜀青少年体育俱乐部-于2019年12月20日成立.体育老师吴老师为了了解七年级学生喜欢球类运动的情况,抽取了该年级部分学生对篮球、足球、排球、乒乓球的爱好情况进行了调查,并将调查结果绘制成如下两幅不完整的统计图(说明:每位学生只选一种自己喜欢的一种球类),请根据这两幅图形解答下列问题:(1)将两个不完整的统计图补充完整;(2)七(一)班在本次调查中有3名女生和2名男生喜欢篮球,现从这5名学生中任意抽取2名学生当篮球队的队长,请用列表法或画树状图的方法求出刚好抽到一男一女的概率.30.某公司××部分员工到一博览会的A、B、C、D、E五个展馆参观,公司所购门票种类、数量绘制成的条形和扇形统计图如图所示.请根据统计图回答下列问题:(1)将条形统计图和扇形统计图在图中补充完整;(2)若B馆门票仅剩下一张,而员工小明和小华都想要,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四张牌洗匀后,背面朝上放置在桌面上,每人随机抽一次且一次只抽一张;一人抽后记下数字,将牌放回洗匀背面朝上放置在桌面上,再由另一人抽.若抽出的两次数字之积为偶数则小明获得门票,反之小华获得门票.”请用画树状图或列表的方法计算出小明和小华获得门票的概率,并说明这个规则对双方是否公平.。

2023中考数学概率的计算与应用历年真题及答案

2023中考数学概率的计算与应用历年真题及答案

2023中考数学概率的计算与应用历年真题及答案一、选择题1. 在甲乙两袋中,各有5个红球和3个蓝球。

现从甲袋中任取球1个,放入乙袋;再从乙袋中任取1个球,放入甲袋。

最后从甲袋中任取1个球。

若取出的球是红色的,则事件A发生。

若取出的球是蓝色的,则事件B发生。

则事件A与事件B是互斥事件的是()A. 取出的第一个球是红色的B. 取出的最后一个球是红色的C. 取出的第一个球是蓝色的D. 取出的最后一个球是蓝色的解析:对于互斥事件,两个事件不能同时发生。

根据题意,在甲乙两袋中的球的颜色分别是红色和蓝色,从甲袋中拿出的第一个球只能是红色,而从乙袋中拿出的球只能是蓝色。

所以事件A与事件B是互斥事件的条件是取出的最后一个球是蓝色的,即选项D。

答案:D2. 在一副标准扑克牌中,有红桃、黑桃、梅花、方块四种花色,每种花色有13张牌,共52张牌。

现从中任取1张牌,那么取到红桃的概率是多少?解析:从52张牌中取到红桃的概率可以用事件的数量除以样本空间的数量来表示。

标准扑克牌中红桃的数量是13张,样本空间中的总数量是52张,所以取到红桃的概率是13/52,即1/4。

答案:1/4二、填空题1. 甲、乙、丙、丁四个人按次序排队,它们的生日都在1月份,但具体日期不一样。

如果任意两人的生日不能相邻,则有 ______ 种不同的排队方式。

解析:假设甲、乙、丙、丁的生日分别是1号、2号、3号、4号。

首先有4种选择,选择排在第一位的人;然后有3种选择,选择排在第二位的人,因为排在第二位的人的生日不能与第一位的人相邻;同理,排在第三位的人有2种选择;最后,排在第四位的人只有1种选择。

所以,不同的排队方式有4 × 3 × 2 × 1 = 24种。

答案:242. 有甲、乙、丙、丁、戊五位同学按次序坐成一排。

如果乙和丙不能坐在一起,则有 ______ 种不同的坐法。

解析:首先有5种选择,选择谁坐在第一位;然后有4种选择,选择谁坐在第二位,因为乙和丙不能坐在一起;同理,排在第三位有3种选择;最后,排在第四位有2种选择;最后一位只剩下一种选择。

备考2023年中考数学一轮复习-统计与概率_概率_简单事件概率的计算-综合题专训及答案

备考2023年中考数学一轮复习-统计与概率_概率_简单事件概率的计算-综合题专训及答案

备考2023年中考数学一轮复习-统计与概率_概率_简单事件概率的计算-综合题专训及答案简单事件概率的计算综合题专训1、(2022开鲁.中考模拟) 有四张反面完全相同的纸牌,其正面分别画有四个不同的几何图形,将四张纸牌洗匀正面朝下随机放在桌面上.(1)从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是.(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张,不放回.再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形既是轴对称图形又是中心对称图形,则小亮获胜,否则小明获胜.这个游戏公平吗?请用列表法(或画树状图)说明理由.(纸牌用表示)若不公平,请你帮忙修改一下游戏规则,使游戏公平.2、(2019徐州.中考真卷) 如图,甲、乙两个转盘分别被分成了等份与等份,每份内均标有数字.分别旋转这两个转盘,将转盘停止后指针所指区域内的两数相乘.乙1 2 3 4积甲123(2)积为的概率为;积为偶数的概率为;(3)从这个整数中,随机选取个整数,该数不是(1)中所填数字的概率为.3、(2018山西.中考模拟) 图1所示是一枚质地均匀的骰子.骰子有六个面并分别代表数字1,2,3,4,5,6.如图2,正六边形ABCDEF的顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子向上的一面上的点数是几,就沿正六边形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从圈D开始顺时针连续跳2个边长,落到圈F……设游戏者从圈A起跳.;(1)小明随机掷一次骰子,求落回到圈A的概率P1(2)小亮随机掷两次骰子,用列表法或画树状图法求最后落回到圈A的概率P,并指出他与小明落回到圈A的可能性一样吗?24、(2018建邺.中考模拟) 超市水果货架上有四个苹果,重量分别是100g、110g、120g和125g.(1)小明妈妈从货架上随机取下一个苹果.恰是最重的苹果的概率是;(2)小明妈妈从货架上随机取下两个苹果.它们总重量超过232g的概率是多少?5、(2018玄武.中考模拟) 甲、乙两名同学参加1 000米比赛,由于参赛选手较多,将选手随机分A、B、C三组进行比赛.(1)甲同学恰好在A组的概率是;(2)求甲、乙两人至少有一人在B组的概率.6、(2018惠州.中考模拟) 甲、乙、丙三人之间相互传球,球从一个人手中随机传到另外一个人手中,共传球三次.(1)若开始时球在甲手中,求经过三次传球后,球传回到甲手中的概率是多少?(2)若丙想使球经过三次传递后,球落在自己手中的概率最大,丙会让球开始时在谁手中?请说明理由.7、(2019洪江.中考模拟) 甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.(1)求从袋中随机摸出一球,标号是1的概率;(2)从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.8、(2018柳北.中考模拟) 在一个不透明的袋里装有分别标有数字1,2,3,4,5的5个小球,除所有数字不同外,小球没有其他分别,每次试验前先搅拌均匀.(1)若从中任取一球,球上的数字为奇数的概率为多少?(2)若从中任取一球不放回,再从中任取1球,请用画树状图或列表的方法求出两个球上的数字之和为偶数的概率.9、(2019玉林.中考真卷) 某校有20名同学参加市举办的“文明环保,从我做起”征文比赛,成绩分别记为60分、70分、80分、90分、100分,为方便奖励,现统计出80分、90分、100分的人数,制成如图不完整的扇形统计图,设70分所对扇形圆心角为α.(1)若从这20份征文中,随机抽取一份,则抽到试卷的分数为低于80分的概率是;(2)当α=108°时,求成绩是60分的人数;(3)设80分为唯一众数,求这20名同学的平均成绩的最大值.10、(2019南充.中考真卷) 现有四张完全相同的不透明卡片,其正面分别写有数字-2,-1,0,2,把这四张卡片背面朝上洗匀后放在桌面上.(1)随机抽取一张卡片,求抽取的卡片上的数字为负数的概率;(2)先随机抽取卡片,其上的数字作为点A的横坐标;然后放回并洗匀,再随机抽取一张卡片,其上的数字作为点A的纵坐标,试用画树状图或列表的方法求出点A在直线y=2x上的概率.11、(2018遵义.中考模拟) 学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是;(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.12、(2019岐山.中考模拟) 某校组织一项公益知识竞赛,比赛规定:每个代表队由3名男生、4名女生和1名指导老师组成.但参赛时,每个代表队只能有3名队员上场参赛,指导老师必须参加,另外2名队员分别在3名男生和4名女生中各随机抽出一名.七年级(1)班代表队有甲、乙、丙三名男生和A、B、C、D4名女生及1名指导老师组成.求:(1)抽到D上场参赛的概率;(2)恰好抽到由男生丙、女生C和这位指导老师一起上场参赛的概率.(请用“画树状图”或“列表”的方式给出分析过程)13、(2019陕西.中考模拟) 有2部不同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看.(1)求甲选择A部电影的概率;(2)求甲、乙、丙3人选择同一部电影的概率(请用画树状图的方法给出分析过程,并求出结果)14、(2020长春.中考模拟) 某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出1个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品。

初三数学中考复习随机事件的概率专项综合练习题含答案

初三数学中考复习随机事件的概率专项综合练习题含答案

初三数学中考复习随机事件的概率专项综合练习题含答案1.从一副洗匀的普通扑克牌中随机抽取一张,那么抽出红桃的概率是( ) A.154 B .1354 C.113 D .142. 以下事情中,是肯定事情的是( )A .将油滴入水中,油会浮会水面上B .车辆随机到在一个路口,遇到红灯C .假设a 2+b 2,那么a =bD .掷一枚质地平均的硬币,一定正面向上3.以下事情中的不能够事情是( )A .通常加热到100℃时,水沸腾B .抛掷2枚正方体骰子,都是6点朝上C .经过有交能信号灯的路口,遇到红灯D .恣意画一个三角形,其内角和是360°4. 如图,共有12个大小相反的小正方形,其中阴影局部的5个小正方形是一个正方体的外表展开图的一局部,现从其他的小正方形中任取一个涂上阴影,能构成这个正方体的外表展开图的概率是( )A.47 B .37 C.27 D .175. 一个不透明的盒子里有n 个除颜色外其他完全相反的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,恣意摸出一个球记下颜色后再放回盒子,经过少量重复摸球实验后发现,摸到黄球的频率动摇在30%,那么估量盒子中小球的个数n 为( )A .20B .24 C.28 D .306. 在课外实际活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法预算正面朝上的概率,其实验次数区分为10次、50次、100次,200次,其中实验相对迷信的是( )A .甲组B .乙组C .丙组D .丁组7. 从2,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率为( )A.15 B .25 C.35 D .458.某品牌电插座抽样反省的合格率为99%,那么以下说法中正确的选项是( )A .购置20个该品牌的电插座,一定都合格B .购置1000个该品牌的电插座,一定有10个不合格C .即使购置一个该品牌的电插座,也能够不合格D .购置100个该品牌的电插座,一定有99个合格9.九一(1)班在参与学校4×100m 接力赛时,布置了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决议,那么甲跑第一棒的概率为( )A .1B .12 C.13 D .1410. 一个不透明的布袋里装有5个红球、2个白球、3个黄球,它们除颜色外其他都相反.从袋中恣意找出1个球,是黄球的概率为( )A.12 B .15 C.310 D .71011. 小明恣意掷一枚平均的硬币,前9次都是正面朝上,当他掷第10次时,你以为正面朝上的概率是_____.12. 在一个不透明的袋子中装有4个红球和2个白球,这些球除了颜色外无其他差异,从袋子中随机摸出一个球,那么摸出白球的概率是_____.13. 我国魏晋时期数学家刘徽首创〝割圆术〞计算圆周率.随着时代开展,如古人们依据频率估量概率这一原理,常用随机模拟的方法对圆周率π停止估量,用计算机随机发生m 个有序数对(x ,y)(x ,y 是实数,且0≤x≤1,0≤y≤1),它们对应的点在平面直角坐标系中全部在某一个正方形的边界及其外部.假设统计出这些点中到原点的距离小于或等于1的点有n 个,那么据此可估量π的值为_______.(用含m ,n 的式子表示)14. 在一个不透明的箱子里装有白色、蓝色、黄色的球共20个,除颜色外,外形、大小、质地等完全相反,小明经过屡次摸球实验后发现摸到白色、黄色球的频率区分动摇在10%和15%,那么箱子里蓝色球的个数很能够是______个.15. ⊙O 的两条直径AC 、BD 相互垂直,区分以AB 、BC 、CD 、DA 为直径向外作半圆失掉如下图的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P 1,针尖落在⊙O 内的概率为P 2,那么P 1P 2=______. 16. 不透明袋子中装有2个红球,1个白球和1个黑球,这些球除颜色外无其他差异,随机摸出1个球不放回,再随机摸出1个球,求两次均摸到红球的概率.17. 在3×3的方格纸中,点A 、B 、C 、D 、E 、F 区分位于如下图的小正方形的顶点上.(1)从A 、D 、E 、F 四个点中恣意取一点,以所取的这一点及点B 、C 为顶点画三角形,那么所画三角形是等腰三角形的概率是________;(2)从A 、D 、E 、F 四个点中先后恣意取两个不同的点,以所取的这两点及点B 、C 为顶点画四边形,求所画四边形是平行四边形的概率(用树状图或列表法求解).18. 为了调查甲、乙两种成熟期小麦的株高长势状况,现从中各随机抽取6株,并测得它们的株高(单位:cm)如下表所示:(1) 一?(2) 现将停止两种小麦优秀种类杂交实验,需从表内的甲、乙两种小麦中,各随机抽取一株停止配对,以预估全体配对状况.请你用列表法或画树状图的方法,求所抽取的两株配对小麦株高恰恰都等于各自平均株高的概率. 参考答案:1---10 BDBBD DCADC11. 1212. 1313. 4n m14. 1515. 2π16. 解:如下图:一切的能够有12种,契合题意的有2种,故两次均摸到红球的概率为:212=16. 17. 解:(1)从A 、D 、E 、F 四个点中恣意取一点,以所取的这一点及点B 、C 为顶点画三角形,有△ABC ,△DBC ,△EBC ,△FBC ,但只要△DBC 是等腰三角形,所以P(所画三角形是等腰三角形)=14; (2)用〝树状图〞或应用表格列出一切能够的结果:∵以点A ∴P(所画的四边形是平行四边形)=412=13.18. 解:(1)∵x 甲=63+66+63+61+64+616=63, ∴s 2甲=16×[(63-63)2×2+(66-63)2+2×(61-63)2+(64-63)2]=3; ∵x 乙=63+65+60+63+64+636=63, ∴S 2乙=16×[(63-63)2×3+(65-63)2+(60-63)2+(64-63)2]=73; ∵s 2乙<s 2甲. ∴乙种小麦的株高长势比拟划一;(2)列表如下:的有6种, ∴所抽取的两株配对小麦株高恰恰都等于各自平均株高的的概率为636=16.。

概率与统计(40题)-2023年中考数学真题分项汇编(全国通用)(解析版)全文

概率与统计(40题)-2023年中考数学真题分项汇编(全国通用)(解析版)全文

概率与统计(40题)一、单选题1.(2023·上海·统考中考真题)如图所示,为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,下图是各时间段的小车与公车的车流量,则下列说法正确的是()A.小车的车流量与公车的车流量稳定;B.小车的车流量的平均数较大;C.小车与公车车流量在同一时间段达到最小值;D.小车与公车车流量的变化趋势相同.【答案】B【分析】根据折线统计图逐项判断即可得.【详解】解:A、小车的车流量不稳定,公车的车流量较为稳定,则此项错误,不符合题意;B、小车的车流量的平均数较大,则此项正确,符合题意;C、小车车流量达到最小值的时间段早于公车车流量,则此项错误,不符合题意;D、小车车流量的变化趋势是先增加、再减小、又增加;大车车流量的变化趋势是先增加、再减小,则此项错误,不符合题意;故选:B.【点睛】本题考查了折线统计图,读懂折线统计图是解题关键.2.(2023·四川遂宁·统考中考真题)为增强班级凝聚力,吴老师组织开展了一次主题班会.班会上,他设计了一个如图的飞镖靶盘,靶盘由两个同心圆构成,小圆半径为10cm,大圆半径为20cm,每个扇形的圆心角为60度.如果用飞镖击中靶盘每一处是等可能的,那么小全同学任意投掷飞镖1次(击中边界或没有击中靶盘,则重投1次),投中“免一次作业”的概率是()【答案】B【分析】根据扇形面积公式求出免一次作业对应区域的面积,再根据投中“免一次作业”的概率=免一次作业对应区域的面积÷大圆面积进行求解即可【详解】解:由题意得,大圆面积为2220400cm ππ⨯=,免一次作业对应区域的面积为2226020601050cm 360360πππ⨯⨯⨯⨯−=,∴投中“免一次作业”的概率是5014008ππ=,故选:B .【点睛】本题主要考查了几何概率,扇形面积,正确求出大圆面积和免一次作业对应区域的面积是解题的关键.A .58B 【答案】B【分析】设小正方形的边长为1,则大正方形的边长为32,根据题意,分别求得阴影部分面积和总面积,根据概率公式即可求解.【详解】解:设小正方形的边长为1,则大正方形的边长为32,∴总面积为2231614169252⎛⎫⨯+⨯=+= ⎪⎝⎭,阴影部分的面积为2239132122222⎛⎫⨯+⨯=+=⎪⎝⎭,∴点P 落在阴影部分的概率为131322550=, 故选:B .【点睛】本题考查了几何概率,分别求得阴影部分的面积是解题的关键.根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( ) A .甲 B .乙 C .丙 D .丁【答案】D【分析】根据10次射击成绩的平均数x 可知淘汰乙;再由10次射击成绩的方差2S 可知1.8 1.20.4>>,也就是丁的射击成绩比较稳定,从而得到答案. 【详解】解:98>,∴由四人的10次射击成绩的平均数x 可知淘汰乙;1.8 1.20.4>>,∴由四人的10次射击成绩的方差2S 可知丁的射击成绩比较稳定;故选:D .【点睛】本题考查通过统计数据做决策,熟记平均数与方差的定义与作用是解决问题的关键.5.(2023·湖南怀化·统考中考真题)某县“三独”比赛独唱项目中,5名同学的得分分别是:9.6,9.2,9.6,9.7,9.4.关于这组数据,下列说法正确的是( )A .众数是9.6B .中位数是9.5C .平均数是9.4D .方差是0.3【答案】A【分析】先把5个数据按从小到大的顺序排列,而后用中位数,众数,平均数和方差的定义及计算方法逐一判断.【详解】解:5个数按从小到大的顺序排列9.2,9.4,9.6,9.6,9.7,A、9.6出现次数最多,众数是9.6,故正确,符合题意;B、中位数是9.6,故不正确,不符合题意;C、平均数是()19.2+9.4+9.62+9.7=9.55⨯,故不正确,不符合题意;D、方差是()()()()222219.29.5+9.49.5+29.69.5+9.79.5=0.0325⎡⎤⨯−−−−⎣⎦,故不正确,不符合题意.故选:A.【点睛】本题考查了中位数,众数,平均数和方差,熟练掌握这些定义及计算方法是解决此类问题的关键.A.该小组共统计了100名数学家的年龄B.统计表中m的值为5C.长寿数学家年龄在9293−岁的人数最多D.《数学家传略辞典》中收录的数学家年龄在9697−岁的人数估计有110人【答案】D【分析】利用年龄范围为9899−的人数为10人,对应的百分比为10%,即可判断A 选项;由A 选项可知该小组共统计了100名数学家的年龄,根据1005%5m =⨯=即可判断B 选项;由扇形统计图可知,长寿数学家年龄在9293−岁的占的百分比最大,即可判断C 选项;用2200乘以小组共统计了100名数学家的年龄中在9697−岁的百分比,即可判断D 选项.【详解】解:A .年龄范围为9899−的人数为10人,对应的百分比为10%,则可得1010%100÷=(人),即该小组共统计了100名数学家的年龄,故选项正确,不符合题意;B .由A 选项可知该小组共统计了100名数学家的年龄,则1005%5m =⨯=,故选项正确,不符合题意;C .由扇形统计图可知,长寿数学家年龄在9293−岁的占的百分比最大,即长寿数学家年龄在9293−岁的人数最多,故选项正确,不符合题意;D .《数学家传略辞典》中收录的数学家年龄在9697−岁的人数估计有112200242100⨯=人,故选项错误,符合题意. 故选:D .【点睛】此题考查了扇形统计图和统计表,从扇形统计图和统计表中获取正确信息,进行正确计算是解题的关键.二、填空题这种绿豆发芽的概率的估计值为________(精确到0.01). 【答案】0.93【分析】根据题意,用频率估计概率即可.【详解】解:由图表可知,绿豆发芽的概率的估计值0.93, 故答案为:0.93.【点睛】本题考查了利用频率估计概率.解题的关键在于明确:大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【答案】10【分析】根据概率公式计算即可得出结果. 【详解】解:该生体重“标准”的概率是350750010=, 故答案为:710.【点睛】本题考查了概率公式,熟练掌握概率=所求情况数与总情况数之比是本题的关键.【答案】1500吨【分析】由题意易得试点区域的垃圾收集总量为300吨,然后问题可求解. 【详解】解:由扇形统计图可得试点区域的垃圾收集总量为()60150129300÷−−−=%%%(吨),∴全市可收集的干垃圾总量为30050101500⨯⨯=%(吨); 故答案为1500吨.【点睛】本题主要考查扇形统计图,熟练掌握扇形统计图是解题的关键.10.(2023·浙江宁波·统考中考真题)一个不透明的袋子里装有3个绿球、3个黑球和6个红球,它们除颜色外其余相同.从袋中任意摸出一个球为绿球的概率为_____________.【答案】1 4【分析】从袋子里任意摸一个球有12种等可能的结果,其中是绿球的有3种,根据简单概率公式代值求解即可得到答案.【详解】解:由题意可知,从袋子里任意摸一个球有12种等可能的结果,其中是绿球的有3种,P∴(任意摸出一个球为绿球)31 124==,故答案为:1 4.【点睛】本题考查概率问题,弄清总的结果数及符合要求的结果数,熟记简单概率公式求解是解决问题的关键.三、解答题(1)阳阳已经对B,C型号汽车数据统计如表,请继续求出A型号汽车的平均里程、中位数和众数.(2)为了尽可能避免行程中充电耽误时间,又能经济实惠地用车,请你从相关统计量和符合行程要求的百分比等进行分析,给出合理的用车型号建议.【答案】(1)平均里程:200km ;中位数:200km ,众数:205km ;(2)见解析 【分析】(1)观察统计图,根据平均数、中位数和众数的计算方法求解即可; (2)根据各型号汽车的平均里程、中位数、众数和租金方面进行分析. 【详解】(1)解:由统计图可知: A 型号汽车的平均里程:31904195520062052210200(km)34562A x ⨯+⨯+⨯+⨯+⨯==++++,A 型号汽车的里程由小到大排序:最中间的两个数(第10、11个数据)是200、200,故中位数200200200(km)2+==,出现充满电后的里程最多的是205公里,共六次,故众数为205km .(2)选择B 型号汽车.理由:A 型号汽车的平均里程、中位数、众数均低于210km ,且只有10%的车辆能达到行程要求,故不建议选择;B ,C 型号汽车的平均里程、中位数、众数都超过210km ,其中B 型号汽车有90%符合行程要求,很大程度上可以避免行程中充电耽误时间,且B 型号汽车比C 型号汽车更经济实惠,故建议选择B 型号汽车.【点睛】本题考查了统计量的选择,平均数、中位数和众数,熟练掌握平均数、方差、中位数的定义和意义是解题的关键.根据以上信息,解答下列问题:(1)补全频数分布直方图;(2)抽取的40名学生成绩的中位数是___________;(3)如果测试成绩达到80分及以上为优秀,试估计该校800名学生中对安全知识掌握程度为优秀的学生约有多少人?【答案】(1)见解析;(2)82;(3)估计该校800名学生中对安全知识掌握程度为优秀的学生约有440人 【分析】(1)根据总人数减去其他组的人数求得7080x ≤<的人数,即可补全直方图; (2)根据中位数为第20、21个数据的平均数,结合直方图或分布表可得; (3)用样本估计总体即可得.【详解】(1)解:404612108−−−−=(人), 补全的频数分布直方图如下图所示,;(2)解:∵46818++=, ∴第20、21个数为81、83;∴抽取的40名学生成绩的中位数是()18183822+=;故答案为:82; (3)解:由题意可得:121080044040+⨯=(人),答:估计该校800名学生中对安全知识掌握程度为优秀的学生约有440人.【点睛】本题考查频数分布直方图、中位数,用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.13.(2023·浙江·统考中考真题)为全面提升中小学生体质健康水平,我市开展了儿童青少年“正脊行动”.人民医院专家组随机抽取某校各年级部分学生进行了脊柱健康状况筛查.根据筛查情况,李老师绘制了两幅不完整的统计图表,请根据图表信息解答下列问题: 抽取的学生脊柱健康情况统计表(1)求所抽取的学生总人数;(2)该校共有学生1600人,请估算脊柱侧弯程度为中度和重度的总人数;(3)为保护学生脊柱健康,请结合上述统计数据,提出一条合理的建议.【答案】(1)200人;(2)80人;(3)【分析】(1)利用抽取的学生中正常的人数除以对应的百分比即可得到所抽取的学生总人数;(2)用该校学生总数乘以抽取学生中脊柱侧弯程度为中度和重度的百分比即可得到答案;(3)利用图表中的数据提出合理建议即可.【详解】(1)解:17085%200÷=(人).∴所抽取的学生总人数为200人.(2)() 1600185%10%80⨯−−=(人).∴估算该校学生中脊柱侧弯程度为中度和重度的总人数有80人.(3)该校学生脊柱侧弯人数占比为15%,说明该校学生脊柱侧弯情况较为严重,建议学校要每天组织学生做护脊操等.【点睛】此题考查了统计表和扇形统计图,熟练掌握用部分除以对应的百分比求总数、用样本估计总体是解题的关键.【答案】(1)1,8;(2)23,;(3)优秀率高的年级不是平均成绩也高,理由见解析【分析】(1)根据扇形统计图得出七年级活动成绩为7分的学生数的占比为10%,即可得出七年级活动成绩为7分的学生数,根据扇形统计图结合众数的定义,即可求解;(2)根据中位数的定义,得出第5名学生为8分,第6名学生为9分,进而求得a,b的值,即可求解;(3)分别求得七年级与八年级的优秀率与平均成绩,即可求解.−−−【详解】(1)解:根据扇形统计图,七年级活动成绩为7分的学生数的占比为150%20%20%=10%´,∴样本中,七年级活动成绩为7分的学生数是1010%=1根据扇形统计图,七年级活动成绩的众数为8分, 故答案为:1,8.(2)∵八年级10名学生活动成绩的中位数为8.5分,∴第5名学生为8分,第6名学生为9分,∴5122a =−−=, 1012223b =−−−−=,故答案为:23,. (3)优秀率高的年级不是平均成绩也高,理由如下,七年级优秀率为20%20%=40%+,平均成绩为:710%850%920%1020%=8.5⨯+⨯+⨯+⨯,八年级优秀率为32100%50%10+⨯=40%>,平均成绩为:()167228392108.310⨯+⨯+⨯+⨯+⨯=8.5<, ∴优秀率高的年级为八年级,但平均成绩七年级更高, ∴优秀率高的年级不是平均成绩也高【点睛】本题考查了扇形统计图,统计表,中位数,众数,求一组数据的平均数,从统计图表获取信息是解题的关键.②若将车辆的外观造型,舒适程度、操控性能,售后服务等四项评分数据按2:3:3:2的比例统计,求A 款新能原汽车四项评分数据的平均数. (2)合理建议:请按你认为的各项“重要程度”设计四项评分数据的比例,并结合销售量,以此为依据建议小明的爸爸购买哪款汽车?说说你的理由.【答案】(1)①3015辆,②68.3分;(2)选B 款,理由见解析 【分析】(1)①根据中位数的概念求解即可; ②根据加权平均数的计算方法求解即可; (2)根据加权平均数的意义求解即可. 【详解】(1)①由中位数的概念可得,B 款新能源汽车在2022年9月至2023年3月期间月销售量的中位数为3015辆; ②172270367364268.32332x ⨯+⨯+⨯+⨯==+++分.∴A 款新能原汽车四项评分数据的平均数为68.3分; (2)给出1:2:1:2的权重时, 72170267164267.81212A x ⨯+⨯+⨯+⨯=≈+++(分),70171270168269.71212B x ⨯+⨯+⨯+⨯=≈+++(分),75165267161265.71212C x ⨯+⨯+⨯+⨯=≈+++(分),结合2023年3月的销售量, ∴可以选B 款.【点睛】此题考查了中位数和加权平均数,以及利用加权平均数做决策,解题的关键是熟练掌握以上知识点.16.(2023·江苏连云港·统考中考真题)如图,有4张分别印有Q 版西游图案的卡片:A 唐僧、B 孙悟空、C 猪八戒、D 沙悟净.现将这4张卡片(卡片的形状、大小、质地都相同)放在不透明的盒子中,搅匀后从中任意取出1张卡片,记录后放回、搅匀,再从中任意取出1张卡片求下列事件发生的概率: (1)第一次取出的卡片图案为“B 孙悟空”的概率为__________;(2)用画树状图或列表的方法,求两次取出的2张卡片中至少有1张图案为“A 唐僧”的概率.【答案】(1)14;(2)716【分析】(1)根据概率公式即可求解;(2)根据题意,画出树状图, 进而根据概率公式即可求解. 【详解】(1)解:共有4张卡片,第一次取出的卡片图案为“B 孙悟空”的概率为14 故答案为:14.(2)树状图如图所示:由图可以看出一共有16种等可能结果,其中至少一张卡片图案为“A 唐僧”的结果有7种. ∴P (至少一张卡片图案为“A 唐僧”)716=.答:两次取出的2张卡片中至少有一张图案为“A 唐僧”的概率为716.【点睛】本题考查了概率公式求概率,画树状图法求概率,熟练掌握求概率的方法是解题的关键.【答案】(1)100人;(2)270人【分析】(1)根据保山市腾冲市的员工人数除以所占百分比即可求出本次被抽样调查的员工人数;(2)用该公司总的员工数乘以样本中保山市腾冲市的员工人数除以所占百分比即可估计出该公司意向前往保山市腾冲市的员工人数.÷(人),【详解】(1)本次被抽样调查的员工人数为:3030.00%=100所以,本次被抽样调查的员工人数为100人;⨯(人),(2)90030.00%=270答:估计该公司意向前往保山市腾冲市的员工人数为270人.【点睛】本题考查扇形统计图及相关计算.熟练掌握用样本估计总体是解答本题的关键.18.(2023·新疆·统考中考真题)跳绳是某校体育活动的特色项目.体育组为了了解七年级学生1分钟跳绳次数情况,随机抽取20名七年级学生进行1分钟跳绳测试(单位:次),数据如下:请根据以上信息解答下列问题: (1)填空:=a ______,b =______;(2)学校规定1分钟跳绳165次及以上为优秀,请你估计七年级240名学生中,约有多少名学生能达到优秀? (3)某同学1分钟跳绳152次,请推测该同学的1分钟跳绳次数是否超过年级一半的学生?说明理由. 【答案】(1)165,150;(2)84;(3)见解析【分析】(1)根据众数与中位数的定义进行计算即可求解;(2)根据样本估计总体,用跳绳165次及以上人数的占比乘以总人数,即可求解; (3)根据中位数的定义即可求解;【详解】(1)解:这组数据中,165出现了4次,出现次数最多 ∴165a =,这组数据从小到大排列,第1011个数据分别为148,152, ∴1481521502b +==,故答案为:165,150.(2)解:∵跳绳165次及以上人数有7个, ∴估计七年级240名学生中,有72408420⨯=个优秀,(3)解:∵中位数为150,∴某同学1分钟跳绳152次,可推测该同学的1分钟跳绳次数超过年级一半的学生.【点睛】本题考查了求中位数,众数,样本估计总体,熟练掌握中位数、众数的定义是解题的关键. 19.(2023·甘肃武威·统考中考真题)某校八年级共有200名学生,为了解八年级学生地理学科的学习情况,从中随机抽取40名学生的八年级上、下两个学期期末地理成绩进行整理和分析(两次测试试卷满分均为35分,难度系数相同;成绩用x 表示,分成6个等级:A .10x <;B .10 1.5x ≤<;C .1520x ≤<;D .2025x ≤<;E .2530x ≤<;F .3035x ≤≤).下面给出了部分信息:b .八年级学生上学期期末地理成绩在C .1520x ≤<这一组的成绩是: 15,15,15,15,15,16,16,16,18,18c .八年级学生上、下两个学期期末地理成绩的平均数、众数、中位数如下:学期 平均数 众数 中位数八年级上学期 17.715 m【答案】(1)16;(2)35;(3)八年级,理由见解析【分析】(1)由中位数的概念,可知40人成绩的中位数是第20、21位的成绩; (2)根据样本估计总体即可求解; (3)根据平均成绩或中位数即可判断.【详解】(1)解:由中位数的概念,可知40人成绩的中位数是第20、21位的成绩,由统计图知A 组4人,B 组10人,C 组10人,则中位数在C 组,第20、21位的成绩分别是16,16, 则中位数是1616162+=;故答案为:16; (2)解:612003540+⨯=(人),这200名学生八年级下学期期末地理成绩达到优秀的约有35人,故答案为:35;(3)解:因为抽取的八年级学生的期末地理成绩的平均分(或中位数)下学期的比上学期的高,所以八年级学生下学期期末地理成绩更好.【点睛】本题考查了条形统计图,中位数,众数等知识,熟练掌握知识点并灵活运用是解题的关键. 平均数 众数 中位数七年级参赛学生成绩 85.5 m 87 八年级参赛学生成绩 85.5 85n根据以上信息,回答下列问题:(1)填空:m =________,n =________;(2)七、八年级参赛学生成绩的方差分别记为21S 、22S ,请判断21S ___________22S (填“>”“<”或“=”);(3)从平均数和中位数的角度分析哪个年级参赛学生的成绩较好. 【答案】(1)80,86;(2)>;(3)见解析【分析】(1)找到七年级学生的10个数据中出现次数最多的即为m 的值,将八年级的10个数据进行排序,第5和第6个数据的平均数即为n 的值;(2)根据折线统计图得到七年级的数据波动较大,根据方差的意义,进行判断即可; (3)利用平均数和中位数作决策即可.【详解】(1)解:七年级的10个数据中,出现次数最多的是:80,∴80m=;将八年级的10个数据进行排序:76,77,85,85,85,87,87,88,88,97;∴()18587862n=+=;故答案为:80,86;(2)由折线统计图可知:七年级的成绩波动程度较大,∵方差越小,数据越稳定,∴2212S S>;故答案为:>.(3)七年级和八年级的平均成绩相同,但是七年级的中位数比八年级的大,所以七年级参赛学生的成绩较好.【点睛】本题考查数据的分析.熟练掌握众数,中位数的确定方法,利用中位数作决策,是解题的关键.(1)A,B两班的学生人数分别是多少?(2)请选择一种适当的统计量,分析比较A,B两班的后测数据.(3)通过分析前测、后测数据,请对张老师的教学实验效果进行评价.【答案】(1)A ,B 两班的学生人数分别是50人,46人;(2)见解析;(3)见解析 【分析】(1)由统计表中的数据个数之和可得两个班的总人数;(2)先求解两个班成绩的平均数,再判断中位数落在哪个范围,以及15分以上的百分率,再比较即可; (3)先求解前测数据的平均数,判断前测数据两个班的中位数落在哪个组,计算15人数的增长百分率,再从这三个分面比较即可.【详解】(1)解: A 班的人数:28993150++++=(人) B 班的人数:251082146++++=(人) 答:A ,B 两班的学生人数分别是50人,46人. (2)14 2.5167.51212.5617.5222.59.150A x ⨯+⨯+⨯+⨯+⨯==,6 2.587.51112.51817.5322.512.946B x ⨯+⨯+⨯+⨯+⨯=≈, 从平均数看,B 班成绩好于A 班成绩.从中位数看,A 班中位数在510x <≤这一范围,B 班中位数在1015x <≤这一范围,B 班成绩好于A 班成绩. 从百分率看,A 班15分以上的人数占16%,B 班15分以上的人数约占46%,B 班成绩好于A 班成绩. (3)前测结果中: A 28 2.597.5912.5317.5122.56.550x ⨯+⨯+⨯+⨯+⨯'==B6.4x '=≈从平均数看,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好. 从中位数看,两班前测中位数均在05x <≤这一范围,后测A 班中位数在510x <≤这一范围,B 班中位数在1015x <≤这一范围,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.从百分率看,A 班15分以上的人数增加了100%,B 班15分以上的人数增加了600%,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.【点睛】本题考查的是从统计表中获取信息,平均数,中位数的含义,增长率的含义,选择合适的统计量作分析,熟练掌握基础的统计知识是解本题的关键.……结合调查信息,回答下列问题:本次调查共抽查了多少名学生?900名初中生中最喜爱篮球项目的人数.假如你是小组成员,请你向该校提一条合理建议.【答案】(1)100;(2)360;(3)见解析【分析】(1)根据乒乓球人数和所占比例,求出抽查的学生数;(2)先求出喜爱篮球学生比例,再乘以总数即可;(3)从图中观察或计算得出,合理即可.÷=,【详解】(1)被抽查学生数:3030%100答:本次调查共抽查了100名学生.⨯=,(2)被抽查的100人中最喜爱羽毛球的人数为:1005%5−−−−=,∴被抽查的100人中最喜爱篮球的人数为:100301015540∴40900360100⨯=(人).答:估计该校900名初中生中最喜爱篮球项目的人数为360.(3)答案不唯一,如:因为喜欢篮球的学生较多,建议学校多配置篮球器材、增加篮球场地等.【点睛】本题考查从条形统计图和扇形统计图获取信息的能力,并用所获取的信息反映实际问题.【答案】(1)8;(2)108︒;(3)5 6【分析】(1)用做饭的人数除以做饭点的百分比25%,得抽取的总人数,再减去“洗衣”、“拖地”、“刷碗”的人数即可求得到m值;(2)用360︒乘以“拖地”人数所占的百分比,即可求解;(3)画树状图或列表分析出所有可能的结果数和有男生的结果数,再用概率公式计算即可.【详解】(1)解:1025%1012108m=÷−−−=,故荅案为:8;(2)解:() 360121025%108︒⨯÷÷=︒,故荅案为:108°;(3)解:方法一:画树状图如下:由图可知所有可能的结果共的12种,有男生的结果有10种,所以所选同学中有男生的概率为105 126=.方法二:列表如下:由表可知所有可能的结果共的12种,有男生的结果有10种,所以所选同学中有男生的概率为105 126=.【点睛】本题考查统计表,扇形统计图,用画树状图或列表的方法求概率.熟练掌握从统计图表中获取有用信息和用画树状图或列表的方法求概率是解题的关键.(1)补全学生课外读书数量条形统计图;(2)请直接写出本次所抽取学生课外读书数量的众数、中位数和平均数;(3)该校有600名学生,请根据抽样调查的结果,估计本学期开学以来课外读书数量不少于【答案】(1)补全学生课外读书数量条形统计图见解析;(2)4,72,103;(3)450人【分析】(1)根据已知条件可知,课外读书数量为2本的有2人,4本的有4人,据此可以补全条形统计图;(2)根据众数,中位数和平均数的定义求解即可;(3)用该校学生总数乘以抽样调查的数据中外读书数量不少于3本的学生人数所占的比例即可.【详解】(1)补全学生课外读书数量条形统计图,如图:(2)∵本次所抽取学生课外读书数量的数据中出现次数最多的是4,∴众数是4.将本次所抽取的12名学生课外读书数量的数据,按照从小到大的顺序排列为:1,2,2,3,3,3,4,4,4,4,5,5.∵中间两位数据是3,4,∴中位数是:347 22+=.平均数为:112233445210123x⨯+⨯+⨯+⨯+⨯==.(3)3429 6006004501212++⨯=⨯=,∴该校有600名学生,估计本学期开学以来课外读书数量不少于3本的学生人数为450人.【点睛】本题主要考查了条形统计图,众数,中位数,平均数,以及用样本所占百分比估计总体的数量,熟练掌握众数,中位数,平均数的定义是解题的关键.25.(2023·四川达州·统考中考真题)在深化教育综合改革、提升区域教育整体水平的进程中,某中学以兴趣小组为载体,加强社团建设,艺术活动学生参与面达100%,通过调查统计,八年级二班参加学校社团的情况(每位同学只能参加其中一项):A.剪纸社团,B.泥塑社团,C.陶笛社团,D.书法社团,E.合唱社团,并绘制了如下两幅不完整的统计图.(1)该班共有学生_________人,并把条形统计图补充完整;(2)扇形统计图中,m =___________,n =___________,参加剪纸社团对应的扇形圆心角为_______度;(3)小鹏和小兵参加了书法社团,由于参加书法社团几位同学都非常优秀,老师将从书法社团的学生中选取2人参加学校组织的书法大赛,请用“列表法”或“画树状图法”,求出恰好是小鹏和小兵参加比赛的概率.【答案】(1)见解析;(2)20,10,144;(3)110【分析】(1)利用C 类人数除以所占百分比可得调查的学生人数;用总人数减去其它四项的人数可得到D 的人数,然后补图即可;(2)根据总数与各项人数比值可求出m ,n 的值,A 项目的人数与总人数比值乘360︒即可得出圆心角的度数;(3)画树状图展示所有20求解.【详解】(1)本次调查的学生总数:510%50÷=(人),D 、书法社团的人数为:5020105105−−−−=(人),如图所示故答案为:50;(2)由图知,105020%5010%2050360144÷=÷=÷⨯︒=︒,5,,。

备战2023年杭州中考数学真题分类汇编(5年中考1年模拟)12概率统计综合题含详解

备战2023年杭州中考数学真题分类汇编(5年中考1年模拟)12概率统计综合题含详解

专题12概率统计综合题1.(2022•杭州)某校学生会要在甲、乙两位候选人中选择一人担任文艺部干事,对他们进行了文化水平、艺术水平、组织能力的测试,根据综合成绩择优录取,他们的各项成绩(单项满分100分)如下表所示:候选人文化水平艺术水平组织能力甲80分87分82分乙80分96分76分(1)如果把各项成绩的平均数作为综合成绩,应该录取谁?(2)如果想录取一名组织能力较强的候选人,把文化水平、艺术水平、组织能力三项成绩分别按照20%,20%,60%的比例计入综合成绩,应该录取谁?2.(2021•杭州)为了解某校某年级学生一分钟跳绳情况,对该年级全部360名学生进行一分钟跳绳次数的测试,并把测得数据分成四组,绘制成如图所示的频数表和未完成的频数分布直方图(每一组不含前一个边界值,含后一个边界值).某校某年级360名学生一分钟跳绳次数的频数表组别(次)频数100~13048130~16096160~190a190~22072(1)求a的值;(2)把频数分布直方图补充完整;(3)求该年级一分钟跳绳次数在190次以上的学生数占该年级全部学生数的百分比.3.(2020•杭州)某工厂生产某种产品,3月份的产量为5000件,4月份的产量为10000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数分布直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品.(1)求4月份生产的该产品抽样检测的合格率;(2)在3月份和4月份生产的产品中,估计哪个月的不合格件数多?为什么?4.(2019•杭州)称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表序号数据12345甲组4852474954乙组2-23-1-4(1)补充完成乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为x 甲,x 乙,写出x 甲与x 乙之间的等量关系.②甲,乙两组数据的方差分别为2S 甲,2S 乙,比较2S 甲与2S 乙的大小,并说明理由.5.(2018•杭州)某校积极参与垃圾分类活动,以班级为单位收集可回收垃圾,下面是七年级各班一周收集的可回收垃圾的质量的频数表和频数分布直方图(每组含前一个边界值,不含后一个边界值).某校七年级各班一周收集的可回收垃圾的质量的频数表组别()kg频数4.0~4.524.5~5.0a5.0~5.535.5~6.01(1)求a的值;(2)已知收集的可回收垃圾以0.8元/kg被回收,该年级这周收集的可回收垃圾被回收后所得金额能否达到50元?6.(2022•上城区一模)《最强大脑第9季》推出LevelK(最高阶思维策略)冲击挑战,其中包含A,B,C,D 四个挑战项目,每位选手随机选择其中一个项目参加.(1)若选手甲任意选择一个项目,请列出甲选择项目的所有可能情况.(2)求选手乙和选手丙选择同一项目的概率.7.(2022•拱墅区一模)为了解某校七年级学生100m跑成绩(精确到0.1秒),对该年级全部学生进行100m跑测试,把测得的数据分成五组,绘制成如图所示的频数表和未完成的频数分布直方图(每组不含前一个边界值,含后一个边界值).(1)求该年级学生的总人数.(2)把频数分布直方图补充完整.(3)求该年级100m跑成绩不超过15.5秒的学生数占该年级全部学生数的百分比.某校七年级全部学生100m跑成绩的频数表值班表(秒)频数12.5~13.532a13.5~14.51614.5~15.511215.5~16.5a16.5~17.5328.(2022•西湖区一模)杭州市体育中考跳跃类项目有立定跳远和1分钟跳绳两项,每位学生只能选择一项参加考试,满分为10分.某校九年级(1)班体育委员统计了该班40人的跳跃类项目测试成绩,并列出下面的频数分布表和频数分布直方图(每组均含前一个边界值,不含后一个边界值).(1)求m的值.(2)根据项目评分表,跳绳180个及以上计9.5分(男、女生标准一样).该校九年级共有400名学生,请你估计该年级跳跃类项目获得满分(9.5分按照10分计)的学生人数.1分钟跳绳的频数分布表组别(个)频数120~1401140~160m160~1805180~200139.(2022•钱塘区一模)某校为了解初中生对亚运会有关知识的掌握情况,对全校学生进行了一次迎亚运知识测试,并随机抽取了若干名学生的测试成绩作为样本进行整理分析,绘制成如图所示不完整的频数分布直方图(每一组含前一个边界值,不含后一个边界值)和扇形统计图.(1)求样本容量,并将频数分布直方图补充完整.(2)若成绩在60分以下(不包括60分)为不合格,请估计全校1200名学生中成绩合格的人数.10.(2022•淳安县一模)某中学举行了一次庆祝建党100周年知识竞赛.比赛结束后,老师随机抽取了部分参赛学生的成绩(x x取整数,满分100分)作为样本,整理并绘制成如图不完整的统计图表.分数段频数频率分数段频数频率300.156070x<m0.45x<708060nx<8090x<200.190100请根据以上图表提供的信息,解答下列问题:(1)表格中m=;n=.(2)把频数分布直方图补充完整.(3)全校共有600名学生参加比赛,请你估计成绩不低于80分的学生人数.11.(2022•富阳区一模)甲、乙两校各组织300名学生参加联赛,为了解两校联赛成绩情况,在两校随机抽取部分学生的联赛成绩,两校抽取的人数相等,结果如下(数据包括左端点不包括右端点).甲校抽取的学生联赛成绩频数分布表分组频数13040x<2x<4050x<550609x<6070117080x<x<158090790100x<(1)若小明是乙校的学生,他的成绩是75分,请结合数据分析小明的成绩;(2)若甲校中一位同学的成绩不纳入计算后,甲校的平均成绩提高了,你认为这位同学的成绩一定不可能在哪个分数段?(3)请用适当的统计量从两个不同角度分析哪所学校的联赛成绩整体较好?12.(2022•临安区一模)某校春日郊游就“最想去的杭州市临安区旅游景点”,随机调查了本校1200名学生中的部分学生,提供四个景点选择:A.青山湖;B.大明山;C.太湖源;D.神农川,要求每位学生选择一个最想去的景点.下面是根据调查结果进行数据整理后绘制的两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次一共随机调查了多少名学生?(2)请补全条形统计图;(3)请估计全校“最想去景点D(神农川)”的学生人数.13.(2022•钱塘区二模)“节约用水、人人有责”,某班学生利用课余时间对金辉小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,并且将5月份各户居民的节水量统计整理成如图所示的统计图表节水量/立方米1 1.5 2.53户数/户5080a70(1)写出统计表中a的值和扇形统计图中2.5立方米对应扇形的圆心角度数.(2)根据题意,将5月份各居民的节水量的条形统计图补充完整.(3)求该小区300户居民5月份平均每户节约用水量,若用每立方米水需4元水费,请你估算每户居民1年可节约多少元钱的水费?14.(2022•西湖区校级一模)为坚持“五育并举”,落实立德树人根本任务,教育部出台了“五项管理”举措.我校对九年级部分家长就“五项管理”知晓情况作调查,A:完全知晓,B:知晓,C:基本知晓,D:不知晓.九年级组长将调查情况制成了条形统计图和扇形统计图.请根据图中信息,回答下列问题:(1)共调查了名家长;图2中D选项所对应的圆心角度数为;请补齐条形统计图;(2)已知D选项中男女家长数相同,若从D选项家长中随机抽取2名家长参加“家校共育”座谈会,请用列表或画树状图的方法,求抽取家长恰好是一男一女的概率.15.(2022•萧山区校级一模)农科院为了解某种小麦的长势,从中随机抽取了部分麦苗,对苗高(单位:)cm进行了测量.根据统计的结果,绘制出如图的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次抽取的麦苗的株数为,图①中m的值为;(Ⅱ)求统计的这组苗高数据的平均数、众数和中位数.16.(2022•萧山区一模)某初中为增强学生亚运精神,举行了“迎亚运”书画作品创作比赛,评选小组从全校24个班中随机抽取4个班(用A,B,C,D表示),并对征集到的作品数量进行了统计分析,得到下列两幅不完整的统计图.(1)评选小组采用的调查方式是普查还抽样调查?(2)根据上图表中的数据,补充完整作品数量条形图,并求出C班扇形的圆心角度数;(3)请你估计该校在此次活动中征集到的作品数量.17.(2022•滨江区一模)某超市为制定今年第三季度功能饮料订购计划,销售部门查阅了去年第三季度某一周的饮料销售情况,并将其销售量绘制成如下统计图:请根据统计图回答以下问题:(1)补全条形统计图.(2)求扇形统计图中“能量饮料”部分的圆心角.(3)请制定该超市今年第三季度的订购各类饮料数的计划(第三季度按13周计算).18.(2022•上城区二模)旅客在网购高铁车票时,系统是随机分配座位的.小王和小李打算购买从杭州到北京的高铁车票(如图所示,同一排的座位编号为A,B,C,D,)F,假设系统已将两人分配到同一排后,在同一排分配各个座位的机会是均等的.窗A B C过道D F窗(1)求系统将王某安排到靠窗座位的概率;(2)求系统分配给王某和李某相邻座位(过道两侧座位C,D不算相邻)的概率.19.(2022•余杭区一模)在3-,2-,1,3四个数中随机选取一个数作为一元二次方程2420+-=中a的值,ax x则该一元二次方程有解的概率是多少?20.(2022•富阳区二模)体育老师统计了七年级甲、乙两个班女生的身高情况,并绘制了如下不完整的统计图.请根据图中信息,解决下列问题:(1)求甲、乙两个班共有女生多少人?(2)请将频数分布直方图补充完整;(3)求扇形统计图中E 部分所对应的扇形圆心角的度数.21.(2022•西湖区校级模拟)某数学兴趣小组在学习了统计相关知识以后,以“我最敬佩的职业”为主题的进行了一次调查活动,就“在医生,军人,科研工作者,教师,演员这五类职业中,你最敬佩哪一类?(必选且只选一类)”这个问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少学生;(2)补全条形统计图,并求出圆心角α的度数;(3)若该中学共有1440名学生,请你估计该中学最敬佩科研工作者这一职业的学生有多少人.22.(2022•富阳区一模)A 箱中装有3张扑克牌,牌面数字分别为2,4,6;B 箱中也装有3张扑克牌,牌面数字分别为4,6,8;现从A 箱、B 箱中各随机地取出1张扑克牌,请你用画树状图或列表的方法求:(1)抽取的两张扑克牌上的数字恰好相同的概率;(2)如果用抽取的两张扑克牌上的数字组成一个两位数,组成的两位数大于90的概率.23.(2022•西湖区校级二模)“惜餐为荣,殄物为耻”,为了解落实“光盘行动”的情况,某校数学兴趣小组的同学调研了七、八年级部分班级某一天的餐厨垃圾质量.从七、八年级中各随机抽取10个班的餐厨垃圾质量的数据(单位:)kg ,进行整理和分析(餐厨垃圾质量用x 表示,共分为四个等级:A .1x <,.1 1.5B x < ,.1.52C x < ,D .2)x ,下面给出了部分信息.七年级10个班的餐厨垃圾质量:0.8,0.8,0.8,0.9,1.1,1.1,1.6,1.7,1.9,2.3.八年级10个班的餐厨垃圾质量中B 等级包含的所有数据为:1.0,1.0,1.0,1.0,1.2.七、八年级抽取的班级餐厨垃圾质量统计表年级平均数中位数众数方差A等级所占百分比七年级 1.3 1.1a0.2640%m 八年级 1.3b 1.00.23%根据以上信息,解答下列问题:(1)直接写出上述表中a,b,m的值;(2)该校八年级共30个班,估计八年级这一天餐厨垃圾质量符合A等级的班级数;(3)根据以上数据,你认为该校七、八年级的“光盘行动”,哪个年级落实得更好?请说明理由(写出一条理由即可).24.(2022•西湖区校级模拟)某学校对九年级共500名男生进行体能测试,从中任意选取40名的测试成绩进行分析,分为甲,乙两组,绘制出如下的统计表和统计图(成绩均为整数,满分为10分).甲组成绩统计表:成绩78910人数1955请根据上面的信息,解答下列问题:(1)m ;(2)从平均分角度看,评价甲,乙两个小组的成绩;(3)估计该校男生在这次体能测试中拿满分的人数.25.(2022•下城区校级二模)某中学为了了解孩子们对篮球、足球、羽毛球、乒乓球、网球五种体育运动的喜爱程度,随机在七、八、九年级抽取了部分学生进行调查(每人必选且只能选择一种运动),并将获得的数据进行整理,绘制出如图两幅不完整的统计图,请根据两幅统计图中的信息回答下列问题:(1)本次调查共抽取了名学生.(2)补全条形统计图,并求扇形统计图中表示“篮球”的扇形圆心角的度数.(3)若该校有1500名学生,请估计喜爱足球运动的学生有多少人?26.(2022•杭州模拟)学校为了切实抓好线上学习活动,借助平台随机抽取了该校部分学生的在线学习时间,并将结果绘制成如下两幅不完整的统计图:请你根据以上信息回答下列问题:(1)计算本次调查的人数以及学习时间为6小时的扇形的圆心角度数;(2)补全频数分布直方图;(3)若全校共有学生1200人,请估计该校有多少名学生在线学习时间不低于8个小时?27.(2022•江干区校级模拟)针对新型冠状病毒事件,九(1)班全体学生参加学校举行的“珍惜生命,远离病毒”知识竞赛后,班长对本班成绩进行分析,制作如下的频数分布表和频数分布条形统计图(未完成).除了60到70之间学生成绩尚未统计,还有6名学生成绩如下:90,96,98,99,99,99.班长根据情况画出的扇形统计图如下:类别分数段频数(人数)A 6070x < aB 7080x < 16C 8090x < 24D90100x < b(1)九(1)班有多少名学生?(2)求出a 、b 的值?并请补全条形统计图.(3)全校共有720名学生参加初赛,估计该校成绩90100x <范围内的学生有多少人?(4)九(1)班甲、乙、丙三位同学的成绩并列第一,现选两人参加决赛,求恰好选中甲,乙两位同学的概率.28.(2022•拱墅区模拟)为了更好地了解党的历史,宣传党的知识,传颂英雄事迹,某校团支部组建了:A .党史宣讲;B .歌曲演唱;C .校刊编撰;D .诗歌创作等四个小组,团支部将各组人数情况制成了统计图表(不完整).各组参加人数情况统计表小组类别AB C D人数(人)10a155根据统计图表中的信息,解答下列问题:(1)求a 和m 的值;(2)求扇形统计图中D 所对应的圆心角度数;(3)若在某一周各小组平均每人参与活动的时间如下表所示:小组类别ABCD平均用时(小时)2.5323求这一周四个小组所有成员平均每人参与活动的时间.29.(2022•拱墅区模拟)某校七年级举行一分钟投篮比赛,要求每班选出10名学生参赛,在规定时间内每人进球数不低于8个为优秀,冠、亚军在甲、乙两班中产生,图1、图2分别是甲、乙两个班的10名学生比赛的数据统计图(单位:个)根据以上信息,解答下列问题:(1)将下面的《1分钟投篮测试成绩统计表》补充完整:统计量平均数中位数方差优秀率班级甲班 6.5 3.4530%乙班6 4.65(2)你认为冠军奖应发给哪个班?简要说明理由.专题12概率统计综合题1.(2022•杭州)某校学生会要在甲、乙两位候选人中选择一人担任文艺部干事,对他们进行了文化水平、艺术水平、组织能力的测试,根据综合成绩择优录取,他们的各项成绩(单项满分100分)如下表所示:候选人文化水平艺术水平组织能力甲80分87分82分乙80分96分76分(1)如果把各项成绩的平均数作为综合成绩,应该录取谁?(2)如果想录取一名组织能力较强的候选人,把文化水平、艺术水平、组织能力三项成绩分别按照20%,20%,60%的比例计入综合成绩,应该录取谁?【答案】见解析【详解】(1)甲的平均成绩为808782833++=(分);乙的平均成绩为809676843++=(分),因为乙的平均成绩高于甲的平均成绩,所以乙被录用;(2)根据题意,甲的平均成绩为8020%8720%8260%82.6⨯+⨯+⨯=(分),乙的平均成绩为8020%9620%7660%80.8⨯+⨯+⨯=(分),因为甲的平均成绩高于乙的平均成绩,所以甲被录用.2.(2021•杭州)为了解某校某年级学生一分钟跳绳情况,对该年级全部360名学生进行一分钟跳绳次数的测试,并把测得数据分成四组,绘制成如图所示的频数表和未完成的频数分布直方图(每一组不含前一个边界值,含后一个边界值).某校某年级360名学生一分钟跳绳次数的频数表组别(次)频数100~13048130~16096160~190a190~22072(1)求a的值;(2)把频数分布直方图补充完整;(3)求该年级一分钟跳绳次数在190次以上的学生数占该年级全部学生数的百分比.【答案】见解析【详解】(1)360(489672)144a=-++=;(2)补全频数分布直方图如下:(3)该年级一分钟跳绳次数在190次以上的学生数占该年级全部学生数的百分比为72100%20% 360⨯=.3.(2020•杭州)某工厂生产某种产品,3月份的产量为5000件,4月份的产量为10000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数分布直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品.(1)求4月份生产的该产品抽样检测的合格率;(2)在3月份和4月份生产的产品中,估计哪个月的不合格件数多?为什么?【答案】见解析【详解】(1)(132160200)(8132160200)100%98.4%++÷+++⨯=,答:4月份生产的该产品抽样检测的合格率为98.4%;(2)估计4月份生产的产品中,不合格的件数多,理由:3月份生产的产品中,不合格的件数为50002%100⨯=,4月份生产的产品中,不合格的件数为10000(198.4%)160⨯-=,100160< ,∴估计4月份生产的产品中,不合格的件数多.4.(2019•杭州)称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表序号数据12345甲组4852474954乙组2-23-1-4(1)补充完成乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为x 甲,x 乙,写出x 甲与x 乙之间的等量关系.②甲,乙两组数据的方差分别为2S 甲,2S 乙,比较2S 甲与2S 乙的大小,并说明理由.【答案】见解析【详解】(1)乙组数据的折线统计图如图所示:(2)①50x x =+乙甲.②22S S =乙甲.理由:(2222221[(4850)(5250)(4750)(4950)5450) 6.85S ⎤=-+-+-+-+-=⎦ 甲.(2222221[(20)(20)(30)(10)40) 6.85S ⎤=--+-+--+--+-=⎦乙,22S S ∴=乙甲.5.(2018•杭州)某校积极参与垃圾分类活动,以班级为单位收集可回收垃圾,下面是七年级各班一周收集的可回收垃圾的质量的频数表和频数分布直方图(每组含前一个边界值,不含后一个边界值).某校七年级各班一周收集的可回收垃圾的质量的频数表组别()kg 频数4.0~4.524.5~5.0a5.0~5.535.5~6.01(1)求a 的值;(2)已知收集的可回收垃圾以0.8元/kg 被回收,该年级这周收集的可回收垃圾被回收后所得金额能否达到50元?【答案】见解析【详解】(1)由频数分布直方图可知4.5~5.0的频数4a=;(2) 该年级这周收集的可回收垃圾的质量小于4.5254 5.53651.5()kg⨯+⨯+⨯+=,∴该年级这周收集的可回收垃圾被回收后所得金额小于51.50.841.2⨯=元,∴该年级这周收集的可回收垃圾被回收后所得金额不能达到50元.6.(2022•上城区一模)《最强大脑第9季》推出LevelK(最高阶思维策略)冲击挑战,其中包含A,B,C,D 四个挑战项目,每位选手随机选择其中一个项目参加.(1)若选手甲任意选择一个项目,请列出甲选择项目的所有可能情况.(2)求选手乙和选手丙选择同一项目的概率.【答案】见解析【详解】(1)甲选择项目的可能情况有A、B、C、D四种结果;(2)根据题意列表如下:A B C DA A,A B,A C,A D,AB A,B B,B C,B D,BC A,C B,C C,C D,CD A,D B,D C,D D,D共有16种等可能的结果,其中选手乙和选手丙选择同一项目的有4种结果,所以选手乙和选手丙选择同一项目的概率为41 164=.7.(2022•拱墅区一模)为了解某校七年级学生100m跑成绩(精确到0.1秒),对该年级全部学生进行100m跑测试,把测得的数据分成五组,绘制成如图所示的频数表和未完成的频数分布直方图(每组不含前一个边界值,含后一个边界值).(1)求该年级学生的总人数.(2)把频数分布直方图补充完整.(3)求该年级100m跑成绩不超过15.5秒的学生数占该年级全部学生数的百分比.某校七年级全部学生100m跑成绩的频数表值班表(秒)频数12.5~13.53213.5~14.516a+14.5~15.511215.5~16.5a16.5~17.532【答案】见解析【详解】(1)由图表知1680a+=,解得64a=,∴总人数为32801126432320++++=(人);(2)补全直方图如下:(3)该年级100m跑成绩不超过15.5秒的学生数占该年级全部学生数的百分比为3280112100%70% 320++⨯=.8.(2022•西湖区一模)杭州市体育中考跳跃类项目有立定跳远和1分钟跳绳两项,每位学生只能选择一项参加考试,满分为10分.某校九年级(1)班体育委员统计了该班40人的跳跃类项目测试成绩,并列出下面的频数分布表和频数分布直方图(每组均含前一个边界值,不含后一个边界值).(1)求m的值.(2)根据项目评分表,跳绳180个及以上计9.5分(男、女生标准一样).该校九年级共有400名学生,请你估计该年级跳跃类项目获得满分(9.5分按照10分计)的学生人数.1分钟跳绳的频数分布表组别(个)频数120~1401140~160m160~1805180~20013【答案】见解析【详解】(1)40(151311237)7m=-+++++++=;(2)估计该年级跳跃类项目获得满分(9.5分按照10分计)的学生人数为13740020040+⨯=(名).9.(2022•钱塘区一模)某校为了解初中生对亚运会有关知识的掌握情况,对全校学生进行了一次迎亚运知识测试,并随机抽取了若干名学生的测试成绩作为样本进行整理分析,绘制成如图所示不完整的频数分布直方图(每一组含前一个边界值,不含后一个边界值)和扇形统计图.(1)求样本容量,并将频数分布直方图补充完整.(2)若成绩在60分以下(不包括60分)为不合格,请估计全校1200名学生中成绩合格的人数.【答案】见解析【详解】(1)根据频数分布直方图和扇形统计图可知,样本容量为2525%100÷=,∴成绩为8090a <的人数为1001015252030----=(人),故补全的统计图如下:(2)全校1200名学生中成绩合格的人数为1525302012001080100+++⨯=(人),答:估计全校1200名学生中成绩合格的人数为1080人.10.(2022•淳安县一模)某中学举行了一次庆祝建党100周年知识竞赛.比赛结束后,老师随机抽取了部分参赛学生的成绩(x x 取整数,满分100分)作为样本,整理并绘制成如图不完整的统计图表.分数段频数频率分数段频数频率6070x < 300.157080x < m0.458090x < 60n90100x < 200.1请根据以上图表提供的信息,解答下列问题:(1)表格中m =;n =.(2)把频数分布直方图补充完整.(3)全校共有600名学生参加比赛,请你估计成绩不低于80分的学生人数.【答案】见解析【详解】(1)30015200÷=(人),m=⨯=,2000.4590n=÷=,602000.30故答案为:90,0.30,(2)补全频数分布直方图如图所示:(3)600(0.300.10)240⨯+=(人),答:估计成绩不低于80分的学生人数有240人.11.(2022•富阳区一模)甲、乙两校各组织300名学生参加联赛,为了解两校联赛成绩情况,在两校随机抽取部分学生的联赛成绩,两校抽取的人数相等,结果如下(数据包括左端点不包括右端点).甲校抽取的学生联赛成绩频数分布表分组频数1x<30402x<4050x<550609x<6070x<11708015x<80907x<90100(1)若小明是乙校的学生,他的成绩是75分,请结合数据分析小明的成绩;(2)若甲校中一位同学的成绩不纳入计算后,甲校的平均成绩提高了,你认为这位同学的成绩一定不可能在哪个分数段?(3)请用适当的统计量从两个不同角度分析哪所学校的联赛成绩整体较好?。

2022年中考数学真题分类汇编:概率

2022年中考数学真题分类汇编:概率

2022年中考数学真题分类汇编:27 概率一、单选题(共15题;共45分)1.(3分)(2022·贺州)在一个不透明的盒子中,装有质地、大小一样的白色乒乓球2个,黄色乒乓球3个,随机摸出一个球,摸到黄色乒乓球的概率是( ) A .15B .13C .25D .35【答案】D【解析】【解答】解:因为盒子里由黄色乒乓球3个,所以随机摸出一个球,摸到黄色乒乓球的情况有3种, 因为盒子里一共有2+3=5(个)球, ∴一共有5种情况,∴随机摸出一个球,摸到黄色乒乓球的概率为35.故答案为:D.【分析】利用黄色乒乓球的个数除以乒乓球的总数可得对应的概率.2.(3分)(2022·北部湾)下列事件是必然事件的是( )A .三角形内角和是180°B .端午节赛龙舟,红队获得冠军C .掷一枚均匀骰子,点数是6的一面朝上D .打开电视,正在播放神舟十四号载人飞船发射实况【答案】A【解析】【解答】解:A 、三角形内角和是180°是必然事件,故此选项符合题意;B 、端午节赛龙舟,红队获得冠军是随机事件,故此选项不符合题意;C 、掷一枚均匀骰子,点数是6的一面朝上是随机事件,故此选项不符合题意;D 、打开电视,正在播放神舟十四号载人飞船发射实况是随机事件,故此选项不符合题意. 故答案为:A.【分析】必然事件:在一定条件下,一定会发生的事件,叫做必然事件;不可能事件:在一定条件下,一定不可能发生的事件,叫做不可能事件;随机事件:随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件,据此一一判断得出答案.3.(3分)(2022·威海)一个不透明的袋子中装有2个红球、3个白球和4个黄球,每个球除颜色外都相同.从中任意摸出1个球,摸到红球的概率是( )A.29B.13C.49D.12【答案】A【解析】【解答】解:∵一个不透明的袋子中装有2个红球、3个白球和4个黄球,∴从中任意摸出1个球,一共有9种可能性,其中摸到红球的可能性有2种,∴从中任意摸出1个球,摸到红球的概率是29,故答案为:A.【分析】利用概率公式求解即可。

中考数学复习《概率》练习题(含答案)

中考数学复习《概率》练习题(含答案)

中考数学复习《概率》练习题(含答案)一、选择题1.“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.如图,是一“赵 爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距 离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上),则投掷一次飞镖扎在中间小正形 区域(含边)的概率是A .12B .14C .15D .110 2.期中考试后,小明的讲义夹里放了8K 大小的试卷纸共12页,其中语文4页、数学2页、英语6页,他随机从讲义夹中抽出1页,是数学卷的概率是( ). A. 21 B. 31 C. 61 D. 121 3.如图①,有6张写有实数的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图②摆放,从中任意翻开两张都是无理数的概率是 ( )A.21B.61 C.31 D.514.如图,在12 网格的两个格点上任意摆放黑、白两个棋子,且两棋子不在同一条格线上.其中恰好如图示位置摆放的概率是( ▲ ).A .61B . 91C . 121D . 1815.从分别标有A 、B 、C 的3根纸签中随机抽取一根,然后放回,再随机抽取一根,两次抽签的所有可能结果的树形图如下:那么抽出的两根签中,一根标有A ,一π 7228 020 图①图② 39(第4题图)根标有C 的概率是A .91B .92C .31D .94 6.一个布袋中有1个红球, 3个黄球,4个蓝球,它们除颜色外完全相同. 从袋中随机取出一个球,取到黄球的概率是( )A. 18B. 38C. 13D. 12二、填空题1.在如图的甲、乙两个转盘中,指针指向每一个数字的机会是均等的.当同时转动两个转盘,停止后指针所指的两个数字表示两条线段的长,如果第三条线段的长为5,那么这三条线段能构成三角形的概率为_____.2.在一个不透明的布袋中,黄色、白色的乒乓球共10个,这些球除颜色外其他都相同.小刚通过多次摸球实验后发现其中摸到黄球 的频率稳定在60%,则布袋中白色球的个数很可能 是 个.3.不透明的袋子里装有将10个乒乓球,其中5个白色的,2个黄色的,3个红色的, 这些乒乓球除颜色外全相同,从中任意摸出一个,则摸出白色乒乓球的概率是____.4.从1-9这九个自然数中任取一个,是2的倍数的概率是 ﹡ .5.在一个不透明的盒子中装有8个白球,x 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为 23,则x = ▲ . 6.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是绿灯的概率是 .7..将2个黑球,3个白球,4个红球放入一个不透明的袋子里,从中摸出8个球,恰好红球、白球、黑球都摸到,这个事件是事件 (填“必然”或“不可能”或“随机”).8. “五·一”假期,某公司组织全体员工分别到西湖、动漫节、宋城旅游,购买前往各地的车票种类、数量如图所示.若公司决定采用随机抽取的方式把车票分配给员工,则员工小王抽到去动漫节车票的概率为 ▲ .答案: 选择题1、C2、C3、D4、C5、B6、B填空题1、【答案】 16252、【答案】43、答案:124、 答案:945、答案:46、答案:5/127、答案:必然8、答案:21第8题 西湖 动漫节 宋城。

2024年中考数学真题分类汇编(全国通用)专题30概率(38题)(解析版)

2024年中考数学真题分类汇编(全国通用)专题30概率(38题)(解析版)

专题30概率(38题)一、单选题1.(2024-广西•中考真题)不透明袋子中装有白球2个,红球1个,这些球除了颜色外无其他差别.从袋子中随机取出1个球,取出白球的概率是()A.1B.-C.」D.-323【答案】D【分析】本题考查求概率,直接利用概率公式进行计算即可.【详解】解:从袋子中随机取出1个球,有2+1=3种等可能的结果,其中取出白球的情况有2种,:.p=--,3故选D.2.(2024-广东•中考真题)长江是中华民族的母亲河,长江流域孕育出藏羌文化、巴蜀文化、荆楚文化、吴越文化等区域文化.若从上述四种区域文化中随机选一种文化开展专题学习,则选中“巴蜀文化”的概率是()A.-B.-C.;D.-4324【答案】A【分析】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.直接根据概率公式求解即可.【详解】解:根据题意,选中“巴蜀文化”的概率是;,4故选:A.3.(2024-内蒙古呼伦贝尔•中考真题)下列说法正确的是()A.任意画一个三角形,其内角和是360。

是必然事件B.调查某批次汽车的抗撞击能力,适宜全面调查.C.一组数据2,4,6,x,7,4,6,9的众数是4,则这组数据的中位数是4D.在一次芭蕾舞比赛中,甲、乙两个芭蕾舞团都表演了舞剧《天鹅湖》,两团女演员的身高平均数相同,方差分别为^=1.5,5|=2.5,则甲芭蕾舞团的女演员身高更整齐【答案】D【分析】本题考查了必然事件,方差的意义,抽样调查与普查,中位数,根据必然事件,中位数,方差的意义,抽样调查与普查逐项分析判断即可.【详解】A.任意画一个三角形,其内角和是360。

是不可能事件,故原说法错误;B.调查某批次汽车的抗撞击能力,适宜抽样调查.故原说法错误;C.一组数据2,4,6,x,7,4,6,9的众数是4,则这组数据的中位数是5,故原说法错误D.在一次芭蕾舞比赛中,甲、乙两个芭蕾舞团都表演了舞剧《天鹅湖》,两团女演员的身高平均数相同,方差分别为S言=1.5,S]=2.5,则甲芭蕾舞团的女演员身高更整齐,故正确,故选:D.4.(2024-内蒙古通辽•中考真题)不透明的袋子中装有1个红球,2个白球,这些球除颜色外无其他差别,从中随机摸出一个球,放回并摇匀,再从中随机摸出一个球,那么两次都摸出白球的概率是()A.-B.-C.-D.-9393【答案】C【分析】本题主要考查了列表法或树状图法求概率.根据题意,列出表格,可得一共有9种等可能结果,其中两次都摸出白球的有4种,再由概率公式计算,即可求解.【详解】解:根据题意,列出表格如下:红白1白2红(红,红)(白1,红)(白2,红)白1(红,白1)(白1,白1)(白2,白1)白2(红,白2)(白1,白2)(白2,白2)一共有9种等可能结果,其中两次都摸出白球的有4种,4所以两次都摸出白球的概率是§.故选:C5.(2024-河南•中考真题)豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为()豫剧•花木兰豫剧•七品芝麻官豫剧•朝阳沟2【答案】D【分析】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图得到所有的等可能的结果数.根据题意,利用树状图法将所有结果都列举出来,然后根据概率公式计算解决即可.【详解】解:把3张卡片分别记为A、B、C,画树状图如下:共有9种等可能的结果,其中两次抽取的卡片正面相同的结果有3种,31・.・两次抽取的卡片图案相同的概率为-=故选:D.6.(2024-山东•中考真题)某校课外活动期间开展跳绳、踢犍子、韵律操三项活动,甲、乙两位同学各自任选其中一项参加,则他们选择同一项活动的概率是()A.-B.-C.-D.-9933【答案】C【分析】本题考查了用列表法或画树状图法求概率.首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及甲与乙恰好选择同一项活动的情况,再利用概率公式求解即可求得答案.【详解】解:设跳绳、踢犍子、韵律操分别为A、B、C,画树状图如下,ABC ABC ABC共有9种等可能的结果,甲、乙恰好选择同一项活动的有3种情况,31故他们选择同一项活动的概率是3=-,故选:C.7.(2024.贵州.中考真题)小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是()A.小星定点投篮1次,不一定能投中B.小星定点投篮1次,一定可以投中C.小星定点投篮10次,一定投中4次D.小星定点投篮4次,一定投中1次【分析】本题主要考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,据此求解即可.【详解】解:小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,则由概率的意义可知,小星定点投篮1次,不一定能投中,故选项A正确,选项B错误;小星定点投篮10次,不一定投中4次,故选项C错误;小星定点投篮4次,不一定投中1次,故选项D错误故选;A.8.(2024.湖北武汉•中考真题)小美和小好同学做“石头、剪刀、布”的游戏,两人同时出相同的手势,这个事件是()A.随机事件B.不可能事件C.必然事件D.确定性事件【答案】A【分析】本题考查的是必然事件、不可能事件、随机事件的概念.根据事件发生的可能性大小判断即可.【详解】解:两人同时出相同的手势,,这个事件是随机事件,故选:A.9.(2024.湖北武汉•中考真题)经过某十字路口的汽车,可能直行,也可能向左转或向右转,这三种可能性大小相同.若两辆汽车经过这个十字路口,则至少一辆车向右转的概率是()A.-B.-C.-D.-9399【答案】D【分析】本题考查的是运用树状图求概率,运用树状图法确定所有情况数和符合题意情况数是解答本题的关键.运用树状图法确定所有情况数和符合题意情况数,然后用概率公式解答即可.【详解】解:列树状图如图所示,开始1车左右直行2车左右直行左右直行左右直行共有9种情况,至少一辆车向右转有5种,.••至少一辆车向右转的概率是:,9410.(2024-黑龙江齐齐哈尔•中考真题)六月份,在邛日光大课间”活动中,某校设计了“篮球、足球、排球、羽毛球”四种球类运动项目,且每名学生在一个大课间只能选择参加一种运动项目,则甲、乙两名学生在一个大课间参加同种球类运动项目的概率是()A.—B.—C.—D.—2346【答案】C【分析】本题考查了列表法或画树状图法求概率,分别用A、B,C、。

中考数学复习---《概率》知识点总结与专项练习题(含答案解析)

中考数学复习---《概率》知识点总结与专项练习题(含答案解析)

中考数学复习---《概率》知识点总结与专项练习题(含答案解析)知识点总结1. 事件:①确定事件:事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定事件。

②随机事件:在一定条件下,可能发生也可能不发生的事件,称为随机事件。

2. 事件的可能性(概率)大小:事件的可能性大小用概率来表示。

表示为()事件P 。

必然事件的概率为1;不可能事件的概率为0;随机事件的概率为10<<P 。

3. 概率的定义与计算公式:①概率的意义:一般地,在大量重复实验中,如果事件A 发生的频率n m 会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率,记为()A P =p②概率公式:随机事件A 的概率()所有可能出现的结果数随机事件出现的次数=A P 。

4. 几何概率:在几何中概率的求解皆用部分面积比总面积,或部分长度比总长度,或部分角度比整个大角角度。

专项练习题1.(2022•巴中)下列说法正确的是( )A .4是无理数B .明天巴中城区下雨是必然事件C .正五边形的每个内角是108°D .相似三角形的面积比等于相似比【分析】根据二次根式的化简可得=2,随机事件,正五边形每个内角是108°,相似三角形的性质,逐一判断即可解得.【解答】解:A.∵=2,∴是有理数,故A不符合题意;B.明天巴中城区下雨是随机事件,故B不符合题意;C.正五边形的每个内角是108°,故C符合题意;D.相似三角形的面积比等于相似比的平方,故D不符合题意;故选:C.2.(2022•宁夏)下列事件为确定事件的有()(1)打开电视正在播动画片(2)长、宽为m,n的矩形面积是m n(3)掷一枚质地均匀的硬币,正面朝上(4)π是无理数A.1个B.2个C.3个D.4个【分析】直接利用随机事件以及确定事件的定义分析得出答案.【解答】解:(1)打开电视正在播动画片,是随机事件,不合题意;(2)长、宽为m,n的矩形面积是mn,是确定事件,符合题意;(3)掷一枚质地均匀的硬币,正面朝上,是随机事件,不合题意;(4)π是无理数,是确定事件,符合题意;故选:B.3.(2022•辽宁)下列事件中,是必然事件的是()A.射击运动员射击一次,命中靶心B.掷一次骰子,向上一面的点数是6C.任意买一张电影票,座位号是2的倍数D.从一个只装有红球的盒子里摸出一个球是红球【分析】根据随机事件,必然事件,不可能事件的定义,逐一判断即可解答.【解答】解:A、射击运动员射击一次,命中靶心,是随机事件,故A不符合题意;B、掷一次骰子,向上一面的点数是6,是随机事件,故B不符合题意;C、任意买一张电影票,座位号是2的倍数,是随机事件,故C不符合题意;D、从一个只装有红球的盒子里摸出一个球是红球,是必然事件,故D符合题意;故选:D.4.(2022•广西)下列事件是必然事件的是()A.三角形内角和是180°B.端午节赛龙舟,红队获得冠军C.掷一枚均匀骰子,点数是6的一面朝上D.打开电视,正在播放神舟十四号载人飞船发射实况【分析】根据三角形内角和定理,随机事件,必然事件,不可能事件的定义,逐一判断即可解答.【解答】解:A、三角形内角和是180°,是必然事件,故A符合题意;B、端午节赛龙舟,红队获得冠军,是随机事件,故B不符合题意;C、掷一枚均匀骰子,点数是6的一面朝上,是随机事件,故C不符合题意;D、打开电视,正在播放神舟十四号载人飞船发射实况,是随机事件,故D不符合题意;故选:A.5.(2022•武汉)彩民李大叔购买1张彩票,中奖.这个事件是()A.必然事件B.确定性事件C.不可能事件D.随机事件【分析】根据随机事件,必然事件,不可能事件的定义,即可判断.【解答】解:彩民李大叔购买1张彩票,中奖.这个事件是随机事件,故选:D.6.(2022•贵阳)某校九年级选出三名同学参加学校组织的“法治和安全知识竞赛”.比赛规定,以抽签方式决定每个人的出场顺序、主持人将表示出场顺序的数字1,2,3分别写在3张同样的纸条上,并将这些纸条放在一个不透明的盒子中,搅匀后从中任意抽出一张,小星第一个抽,下列说法中正确的是()A.小星抽到数字1的可能性最小B.小星抽到数字2的可能性最大C.小星抽到数字3的可能性最大D.小星抽到每个数的可能性相同【分析】根据概率公式求出小星抽到各个数字的概率,然后进行比较,即可得出答案.【解答】解:∵3张同样的纸条上分别写有1,2,3,∴小星抽到数字1的概率是,抽到数字2的概率是,抽到数字3的概率是,∴小星抽到每个数的可能性相同;故选:D.7.(2022•襄阳)下列说法正确的是()A.自然现象中,“太阳东方升起”是必然事件B.成语“水中捞月”所描述的事件,是随机事件C.“襄阳明天降雨的概率为0.6”,表示襄阳明天一定降雨D .若抽奖活动的中奖概率为501,则抽奖50次必中奖1次 【分析】根据概率的意义,概率公式,随机事件,必然事件,不可能事件的特点,即可解答.【解答】解:A 、自然现象中,“太阳东方升起”是必然事件,故A 符合题意; B 、成语“水中捞月”所描述的事件,是不可能事件,故B 不符合题意;C 、襄阳明天降雨的概率为0.6”,表示襄阳明天降雨的可能性是60%,故C 不符合题意;D 、若抽奖活动的中奖概率为,则抽奖50次不一定中奖1次,故D 不符合题意;故选:A .8.(2022•长沙)下列说法中,正确的是( )A .调查某班45名学生的身高情况宜采用全面调查B .“太阳东升西落”是不可能事件C .为了直观地介绍空气各成分的百分比,最适合使用的统计图是条形统计图D .任意投掷一枚质地均匀的硬币26次,出现正面朝上的次数一定是13次【分析】根据概率的意义,全面调查与抽样调查,条形统计图,随机事件,逐一判断即可解答.【解答】解:A 、调查某班45名学生的身高情况宜采用全面调查,故A 符合题意; B 、“太阳东升西落”是必然事件,故B 不符合题意;C 、为了直观地介绍空气各成分的百分比,最适合使用的统计图是扇形统计图,故C 不符合题意;D 、任意投掷一枚质地均匀的硬币26次,出现正面朝上的次数可能是13次,故D 不符合题意;故选:A .9.(2022•东营)如图,任意将图中的某一白色方块涂黑后,能使所有黑色方块构成的图形是轴对称图形的概率是( )A .32B .21C .31D .61 【分析】根据轴对称图形的概念、概率公式计算即可.【解答】解:如图,当涂黑1或2或3或4区域时,所有黑色方块构成的图形是轴对称图形,则P (是轴对称图形)==,故选:A .10.(2022•丹东)四张不透明的卡片,正面标有数字分别是﹣2,3,﹣10,6,除正面数字不同外,其余都相同,将它们背面朝上洗匀后放在桌面上,从中随机抽取一张卡片,则这张卡片正面的数字是﹣10的概率是( )A .41B .21C .43D .1【分析】用﹣10的个数除以总数即可求得概率.【解答】解:由题意可知,共有4张标有数字﹣2,3,﹣10,6的卡片,摸到每一张的可能性是均等的,其中为﹣10的有1种,所以随机抽取一张,这张卡片正面的数字是﹣10的概率是,故选:A .11.(2022•益阳)在某市组织的物理实验操作考试中,考试所用实验室共有24个测试位,分成6组,同组4个测试位各有一道相同试题,各组的试题不同,分别标记为A ,B ,C ,D ,E ,F ,考生从中随机抽取一道试题,则某个考生抽到试题A 的概率为( )A .32B .41C .61D .241 【分析】根据抽到试题A 的概率=试题A 出现的结果数÷所有可能出现的结果数即可得出答案.【解答】解:总共有24道题,试题A 共有4道,P (抽到试题A )==,故选:C . 12.(2022•兰州)无色酚酞溶液是一种常用酸碱指示剂,广泛应用于检验溶液酸碱性,通常情况下酚酞溶液遇酸溶液不变色,遇中性溶液也不变色,遇碱溶液变红色.现有5瓶缺失标签的无色液体:蒸馏水、白醋溶液、食用碱溶液、柠檬水溶液、火碱溶液,将酚酞试剂滴入任意一瓶液体后呈现红色的概率是( )A .51B .52C .53D .54 【分析】总共5种溶液,其中碱性溶液有2种,再根据概率公式求解即可.【解答】解:∵总共5种溶液,其中碱性溶液有2种,∴将酚酞试剂滴入任意一瓶液体后呈现红色的概率是,故选:B .13.(2022•铜仁市)在一个不透明的布袋内,有红球5个,黄球4个,白球1个,蓝球3个,它们除颜色外,大小、质地都相同.若随机从袋中摸取一个球,则摸中哪种球的概率最大( )A .红球B .黄球C .白球D .蓝球【分析】根据概率的求法,因为红球的个数最多,所以摸到红球的概率最大.【解答】解:在一个不透明的布袋内,有红球5个,黄球4个,白球1个,蓝球3个,它们除颜色外,大小、质地都相同.若随机从袋中摸取一个球,因为红球的个数最多,所以摸到红球的概率最大,摸到红球的概率是:, 故选:A .14.(2022•百色)篮球裁判员通常用抛掷硬币的方式来确定哪一方先选场地,那么抛掷一枚均匀的硬币一次,正面朝上的概率是( )A .1B .21C .41D .61 【分析】根据概率的计算公式直接计算即可.一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率为P (A )=.【解答】解:抛硬币有两种结果:正面向上、反面向上,则正面向上的概率为.故选:B .15.(2022•呼和浩特)不透明袋中装有除颜色外完全相同的a 个白球、b 个红球,则任意摸出一个球是红球的概率是( )A .b a b +B .a bC .b a a +D .ba 【分析】根据概率的计算公式直接计算即可.一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率为P (A )=.【解答】解:不透明袋中装有除颜色外完全相同的a 个白球、b 个红球,则任意摸出一个球是红球的概率是.故选:A . 16.(2022•齐齐哈尔)在单词statistics (统计学)中任意选择一个字母,字母为“s ”的概率是( )A .101B .51C .103D .52 【分析】根据题意,可以写出任意选择一个字母的所有可能性和选择的字母是s 的可能性,从而可以求出相应的概率.【解答】解:在单词statistics (统计学)中任意选择一个字母一共有10种可能性,其中字母为“s ”的可能性有3种,∴任意选择一个字母,字母为“s ”的概率是, 故选:C .17.(2022•镇江)从2021、2022、2023、2024、2025这五个数中任意抽取3个数.抽到中位数是2022的3个数的概率等于 .【分析】列举得出共有10种等可能情况,其中中位数是2022有3种情况,再由概率公式求解即可.【解答】解:从2021、2022、2023、2024、2025这五个数中任意抽取3个数为:2021、2022、2023,2021、2022、2024,2021、2022、2025,2021、2023、2024,2021、2023、2025,2021、2024、2025,2022、2023、2024,2022、2023、2025,2022、2024、2025,2023、2024、2025,共有10种等可能情况,其中中位数是2022有3种情况,∴抽到中位数是2022的3个数的概率为,故答案为:.18.(2022•阜新)如图,是由12个全等的等边三角形组成的图案,假设可以随机在图中取点,那么这个点取在阴影部分的概率是( )A .41B .43C .32D .21 【分析】先设每个小等边三角的面积为x ,则阴影部分的面积是6x ,得出整个图形的面积是12x ,再根据几何概率的求法即可得出答案.【解答】解:先设每个小等边三角的面积为x ,则阴影部分的面积是6x ,得出整个图形的面积是12x ,则这个点取在阴影部分的概率是=.故选:D .19.(2022•徐州)将一枚飞镖任意投掷到如图所示的正六边形镖盘上,若飞镖落在镖盘上各点的机会相等,则飞镖落在阴影区域的概率为( )A .41B .31C .21D .33 【分析】如图,将整个图形分割成图形中的小三角形,令小三角形的面积为a ,分别表示出阴影部分的面积和正六边形的面积,根据概率公式求解即可.【解答】解:如图所示,设每个小三角形的面积为a ,则阴影的面积为6a ,正六边形的面积为18a ,∴将一枚飞镖任意投掷到镖盘上,飞镖落在阴影区域的概率为=,故选:B .20.(2022•朝阳)如图所示的是由8个全等的小正方形组成的图案,假设可以随意在图中取一点,那么这个点取在阴影部分的概率是( )A .83B .21C .85D .1【分析】根据阴影部分的面积所占比例得出概率即可.【解答】解:由图知,阴影部分的面积占图案面积的,即这个点取在阴影部分的概率是,故选:A .21.(2022•通辽)如图,正方形ABCD 及其内切圆O ,随机地往正方形内投一粒米,落在阴影部分的概率是( )A .4πB .1﹣4πC .8πD .1﹣8π 【分析】直接表示出各部分面积,进而得出落在阴影部分的概率.【解答】解:设圆的半径为a,则圆的面积为:πa2,正方形面积为:4a2,故随机地往正方形内投一粒米,落在阴影部分的概率为:.故选:B.22.(2022•黔东南州)如图,已知正六边形ABCDEF内接于半径为r的⊙O,随机地往⊙O 内投一粒米,落在正六边形内的概率为()A.π233B.π23C.π43D.以上答案都不对【分析】求出正六边形的面积占圆面积的几分之几即可.【解答】解:圆的面积为πr2,正六边形ABCDEF的面积为r×r×6=r2,所以正六边形的面积占圆面积的=,故选:A.23.(2022•苏州)如图,在5×6的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,小正方形的顶点称为格点,扇形OAB的圆心及弧的两端均为格点.假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次,飞镖击中扇形OAB(阴影部分)的概率是()A .12πB .24πC .6010πD .605π 【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【解答】解:∵总面积为5×6=30,其中阴影部分面积为=, ∴飞镖落在阴影部分的概率是=,故选:A . 24.(2022•成都)如图,已知⊙O 是小正方形的外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是 .【分析】作OD ⊥CD ,OB ⊥AB ,设⊙O 的半径为r ,根据⊙O 是小正方形的外接圆,是大正方形的内切圆,可得OB =OC =r ,△AOB 、△COD 是等腰直角三角形,即可得AE =2r ,CF =r ,从而求出答案.【解答】解:作OD ⊥CD ,OB ⊥AB ,如图:设⊙O的半径为r,∵⊙O是小正方形的外接圆,是大正方形的内切圆,∴OB=OC=r,△AOB、△COD是等腰直角三角形,∴AB=OB=r,OD=CD=r,∴AE=2r,CF=r,∴这个点取在阴影部分的概率是=,故答案为:.。

中考数学专题训练:概率(附参考答案)

中考数学专题训练:概率(附参考答案)

中考数学专题训练:概率(附参考答案)1.如图是由16个相同的小正方形和4个相同的大正方形组成的图形,在这个图形内任取一点P,则点P落在阴影部分的概率为( )A.58B.1350C.1332D.5162.在6,7,8,9四个数字中任意选取两个数字,则这两个数字之和为奇数的概率是( )A.13B.12C.23D.143.先后两次抛掷同一枚质地均匀的硬币,则第一次正面向上、第二次反面向上的概率是( )A.14B.13C.12D.344.骰子各面上的点数分别是1,2,…,6.抛掷一枚骰子,朝上一面的点数是偶数的概率是( )A.12B.14C.16D.15.在四张反面无差别的卡片上,其正面分别印有线段、等边三角形、平行四边形和正六边形.现将四张卡片的正面朝下放置,混合均匀后从中随机抽取两张,则抽到的卡片正面图形都是轴对称图形的概率为( )A.12B.13C.14D.346.如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为( )A.59B.12C.13D.297.一个不透明的盒子中装有2个黑球和4个白球,这些球除颜色外其他均相同,从中任意摸出3个球,下列事件为必然事件的是( )A.至少有1个白球B.至少有2个白球C.至少有1个黑球D.至少有2个黑球8.班长邀请A,B,C,D四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A,B两位同学座位相邻的概率是( )A.14B.13C.12D.239.如图所示的电路图,同时闭合两个开关能形成闭合电路的概率是( )A.13B.23C.12D.110.如图,两个相同的可以自由转动的转盘A和B,转盘A被三等分,分别标有数字2,0,-1;转盘B被四等分,分别标有数字3,2,-2,-3.如果同时转动转盘A,B,转盘停止时,两个指针指向转盘A,B上的对应数字分别为x,y(当指针指在两个扇形的交线时,需重新转动转盘),那么点(x,y)落在平面直角坐标系第二象限的概率是.11.中国象棋文化历史久远.在图中所示的部分棋盘中,“馬”的位置在“”(图中虚线)的下方,“馬”移动一次能够到达的所有位置已用“·”标记,则“馬”随机移动一次,到达的位置在“”上方的概率是______.12.一个不透明的口袋中装有标号为1,2,3的三个小球,这些小球除标号外完全相同,随机摸出1个小球,然后把小球重新放回口袋摇匀,再随机摸出1个小球,那么两次摸出小球上的数字之和是偶数的概率是______.13.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是______.14.为落实“双减提质”,进一步深化“数学提升工程”,提升学生数学核心素养,某学校拟开展“双减”背景下的初中数学活动型作业成果展示现场会,为了解学生最喜爱的项目,现随机抽取若干名学生进行调查,并将调查结果绘制成如下两幅不完整的统计图:根据以上信息,解答下列问题.(1)参与此次抽样调查的学生人数是_______人,补全统计图1(要求在条形图上方注明人数);(2)图2中扇形C的圆心角度数为______度;(3)若参加成果展示活动的学生共有1 200人,估计其中最喜爱“测量”项目的学生人数是多少;(4)计划在A,B,C,D,E五项活动中随机选取两项作为直播项目,请用列表或画树状图的方法,求恰好选中B,E这两项活动的概率.15.在一个不透明的袋子中,装有五个分别标有数字-√3,√6,0,2,π的小球,这些小球除数字外其他完全相同.从袋子中随机摸出两个小球,两球上的数字之积恰好是有理数的概率为______.16.新高考“3+1+2”选科模式是指除语文、数学、外语3门科目以外,学生应在历史和物理2门首选科目中选择1科,在思想政治、地理、化学、生物学4门再选科目中选择2科.某同学从4门再选科目中随机选择2科,恰好选择地理和化学的概率为______.17.在创建“文明校园”的活动中,班级决定从四名同学(两名男生,两名女生)中随机抽取两名同学担任本周的值周长,那么抽取的两名同学恰好是一名男生和一名女生的概率是______.18.从2 021,2 022,2 023,2 024,2 025 这五个数中任意抽取3个数.抽到中位数是2 022的3个数的概率等于______.19.为更好引导和促进旅游业恢复发展,深入推动大众旅游,文化和旅游部决定开展2023年“5·19中国旅游日”活动.青海省某旅行社为了解游客喜爱的旅游景区的情况,对五一假期期间的游客去向进行了随机抽样调查,并绘制了不完整的统计图,请根据图1、图2中所给的信息,解答下列问题.(1)此次抽样调查的样本容量是_______;(2)将图1中的条形统计图补充完整;(3)根据抽样调查结果,五一假期期间这四个景区共接待游客约19万人,请估计前往青海湖景区的游客有多少万人;(4)若甲、乙两名游客从四个景区中任选一个景区旅游,请用树状图或列表法求出他们选择同一景区的概率.20.2022年3月23日下午,“天宫课堂”第二课开讲,航天员翟志刚、王亚平、叶光富相互配合进行授课,激发了同学们学习航天知识的热情.小冰和小雪参加航天知识竞赛时,均获得了一等奖,学校想请一位同学作为代表分享获奖心得.小冰和小雪都想分享,于是两人决定一起做游戏,谁获胜谁分享,游戏规则如下:甲口袋装有编号为1,2的两个球,乙口袋装有编号为1,2,3,4,5的五个球,两口袋中的球除编号外其他都相同.小冰先从甲口袋中随机摸出一个球,小雪再从乙口袋中随机摸出一个球.若两球编号之和为奇数,则小冰获胜;若两球编号之和为偶数,则小雪获胜.请用列表或画树状图的方法,说明这个游戏对双方是否公平.参考答案1.B 2.C 3.A 4.A 5.A 6.C 7.A 8.C 9.B10.1611.1412.5913.1414.(1)120 图略(2)90 (3)300人(4)11015.25 16.1617.2318.31019.(1)200 (2)B组的人数为60人,补全条形统计图略(3)估计前往青海湖景区的游客有6.65万人(4)1420.游戏对双方都公平。

2023中考数学概率的计算历年真题及答案

2023中考数学概率的计算历年真题及答案

2023中考数学概率的计算历年真题及答案提要:本文将为您汇总2023中考数学概率的计算历年真题及答案。

通过复习历年真题,可以帮助您更好地了解概率计算的方式与方法,增强对该知识点的掌握。

以下是一些典型的数学概率计算题目。

历年真题及答案:1. 某班学生中,有10人喜欢篮球,12人喜欢足球,5人既喜欢篮球又喜欢足球。

那么,至少喜欢篮球或足球的学生人数是多少?解: 根据题意,至少喜欢篮球或足球的学生人数为篮球人数加上足球人数再减去同时喜欢篮球和足球的人数,即10 + 12 - 5 = 17人。

2. 一个骰子抛掷一次,出现奇数的概率是多少?解: 一个骰子一共有6个面,其中奇数的面有3个,所以出现奇数的概率为3/6,即1/2。

3. 从1到6的数字中,随机抽取一个数,得到4的概率是多少?解: 从1到6的数字中,得到4的概率为1/6,因为只有一个数字是4。

4. 有10个红球,5个蓝球和3个绿球,从中随机取出一个球,求取到红球的概率。

解: 总共有10 + 5 + 3 = 18个球,取到红球的概率为10/18,即5/9。

5. 把课程表上的所有课程都按字母顺序排列,课程的顺序具有随机性。

已知英语课程在排列中排在数学课程的前面的概率是1/6,若英语课程在第4个位置,数学课程在第几个位置?解: 英语课程在排列中排在数学课程的前面的概率为1/6,即1/(n-1),其中n为课程总数。

若英语课程在第4个位置,则数学课程在第4+1=5个位置上。

6. 将6张牌(1、2、3、4、5、6)随机放入一个袋子中,从中不看放回地取牌,求先取到1,再取到2的概率。

解: 先取到1的概率为1/6,再取到2的概率也为1/6。

由于两次取牌是相互独立的事件,所以先取到1,再取到2的概率为(1/6) * (1/6) =1/36。

总结:通过复习上述典型的数学概率计算题目,我们可以更好地理解概率计算的方式与方法。

希望这些历年真题及答案对您的中考备考有所帮助。

中考数学概率复习题

中考数学概率复习题

中考数学概率复习题概率是数学中的一个重要概念,它用来描述事件发生的可能性大小。

在中考数学中,概率也是一个必考的知识点。

为了帮助同学们更好地复习概率,下面将介绍一些常见的中考数学概率复习题。

1. 抛硬币问题抛硬币是概率中最基础的问题之一。

假设我们有一枚公平的硬币,正反面出现的概率均为0.5。

那么,抛一次硬币出现正面的概率是多少呢?答案是0.5。

同样地,连续抛两次硬币,出现两次正面的概率是多少呢?答案是0.5乘以0.5,即0.25。

2. 色球问题色球问题是另一个常见的概率问题。

假设我们有一袋中装有红球、蓝球和黄球,比例分别为1:2:3。

现在从袋中随机取出一个球,问取出的球是红球的概率是多少?答案是红球的数量除以总球数,即1除以6,约等于0.167。

3. 生日问题生日问题是一个有趣且常见的概率问题。

假设有一个班级,有30个学生。

问至少有两个学生生日相同的概率是多少?这个问题需要用到排列组合的知识。

答案是1减去所有学生生日都不相同的概率。

假设一年有365天,那么第一个学生的生日可以是任意一天,第二个学生的生日就不能是和第一个学生相同的那一天,即364种可能性。

同样地,第三个学生的生日不能是前两个学生相同的那一天,即363种可能性。

依此类推,最后一个学生的生日只有335种可能性。

所以,至少有两个学生生日相同的概率为1减去所有学生生日都不相同的概率,即1-(365/365)*(364/365)*(363/365)*...*(335/365)。

4. 排队问题排队问题也是一个常见的概率问题。

假设有5个人排队,问他们的身高从矮到高排列的概率是多少?这个问题需要用到排列组合的知识。

假设这5个人的身高分别为A、B、C、D、E,那么他们的身高从矮到高排列的可能性只有一种,即ABCDE。

而他们的身高排列总共有5!种可能性。

所以,他们的身高从矮到高排列的概率为1/5!,即1/120。

通过以上几个常见的中考数学概率复习题,我们可以看到概率问题的复杂程度是不同的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学概率综合题一、浙教版2019中考数学复习专题之概率综合题解答题1. ( 2分) 在一个不透明的袋里装有分别标有数字1,2,3,4,5的5个小球,除所有数字不同外,小球没有其他分别,每次试验前先搅拌均匀.(1)若从中任取一球,球上的数字为奇数的概率为多少?(2)若从中任取一球不放回,再从中任取1球,请用画树状图或列表的方法求出两个球上的数字之和为偶数的概率.2. ( 3分) 某山区学校为开发学生特长,培养兴趣爱好,准备开设“第二课堂培训班”,每周进行一次.拟开设科目有:A.数学兴趣,B.古诗词欣赏;C.英语特长;D.艺术赏析;E.竞技体育等五类.学校对学生进行了抽样调查(每人只能选择一项),并将调查结果绘制成图1和图2所示的两个不完整统计图.根据以上信息,解答下列问题:(1)求x的值,并将图1补充完整;(2)在图2中,D科目所占扇形圆心角的度数为________°;(3)为提高学生对C、E科目的了解与关注,学校准备从选C、E科目的学生中随机选出2名出黑板报进行宣传,请你用列表法或树状图法求这2名同学选择不同科目的概率.3. ( 3分) 某中学为了解该校九年级学生对观看“中国诗词大会”节目喜爱程度,对该校九年级学生进行了随机抽样调查,(调查时,将喜爱程度分为四级:A级(非常喜欢),B级(喜欢),C级(一般),D级(不喜欢)).根据调查结果,绘制成如下两幅不完整的统计图.请你结合图中信息解答下列问题:(1)本次调查共抽取________名学生,在扇形图中,表示A级的扇形的圆心角为________°;(2)若该校九年级共有学生300人,请你估计不喜欢观看“中国诗词大会”节目的有多少人?并补全条形图;(3)已知在A级学生中有3名男生,现要从本次调查中的5名A级学生中,选出2名参加全市中学生诗词大会比赛,请用“列表”或“树形图”的方法,求选出的2名学生中至少有1名女生的概率.4. ( 2分) 2018年5月5日,央视《朗读者》第二季开播我省著名作家贾平凹先生带着他的第16部长篇小说《山本重登场,被点赞刷屏,又一次掀起了全民诵读经典的热潮.6月17日的父亲节就要到了,某校开展了“父爱如山•经典诵读”比赛活动.诵读材料有:艾青《我的父亲》,林海音《爸爸的花儿落了》,朱自清《背影》(分别用字母A、B、C依次表示这三个诵读材料),将A、B、C这三个字母分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上洗匀后放在桌面上,小明和小颖参加诵读比赛.比赛时,小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小颖从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.(1)小明诵读朱自清《背影》的概率是________;(2)请用列表法或树状图法,求小明和小颖诵读两个不同材料的概率.5. ( 2分) 在一个不透明的袋子中装有3个完全相同的小球,分别标有数字1,2,3.(1)如果从袋子中随机摸出两个小球,分别用小球上的数字作为十位上的数字和个位上的数字组成一个两位数,共能组成多少个不同的两位数?(2)如果先从袋子里随机摸出一个球,用小球上的数字作为十位上的数字;再将小球放回袋中,摇匀后再随机摸出一个球,并用小球上的数字作为个位上的数字,求组成的两位数是偶数的概率.6. ( 2分) 除夕晚上,珈裕一家人为了活跃新年气氛,珈裕的爸爸和妈妈用相同的红包装入不同数量的现金,让珈裕和爷爷奶奶拼手气爸爸在4个红包中分别装入10元、20元、30元、40元;妈妈也在其它4个同样的红包中分别装入5元、15元、25元,35元;珈裕和爷爷奶奶分别在珈裕的爸爸妈妈处各随机抽出一个红包(珈裕先抽),他们都抽过后,爸爸妈妈手里余下的红包归妈妈所有.(1)请用列表法或画树状图法列举出珈裕领取的两个红包现金和的所有情况;(2)求出珈裕领取的两个红包现金和为55元的概率.7. ( 1分) 某中学为了科学建设“学生健康成长工程”.随机抽取了部分学生家庭对其家长进行了主题为“周末孩子在家您关心吗?”的问卷调查,将回收的问卷进行分析整理,得到了如下的样本统计表和扇形统计图:(Ⅰ)求b,d的值;(Ⅱ)该校学生家庭总数为500,学校决定按比例在B,C,D类家庭中抽取家长组成培训班,其比例为B 类取20%,C,D类各取60%,请你估计该培训班的家庭数;(Ⅲ)若在D类家庭中只有一个城镇家庭,其余是农村家庭,请用列举法求出在D类中随机抽出2个家庭进行深度采访,其中有一个是城镇家庭的概率.8. ( 1分) 一个不透明的口袋中有三个完全相同的小球,把他们分别标号为1,2,3.随机摸取一个小球然后放回,再随机摸出一个小球.用列表或画树状图的方法,求两次取出的小球标号相同的概率.9. ( 2分) 某演讲比赛中,只有甲、乙、丙三位同学进入决赛,它们通过抽签来决定演讲顺序.用列表法(或画树状图)求:(1)甲第二个出场的概率;(2)丙在乙前面出场的概率.10. ( 2分) 小南发现操场中有一个不规则的封闭图形ABC.为了知道它的面积,他在封闭图形内画出了一个半径为1米的圆,在不远处向圈内掷石子,若石子落在图形ABC以外,则重掷.记录如下:根据以上的数据,小南得到了封闭图形ABC的面积.请根据以上信息,回答以下问题:(1)求石子落在阴影内的频率;(2)估计封闭图形ABC的面积.11. ( 2分) 在一次促销活动中,某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成16份),并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得50元、30元、20元的购物券,凭购物券可以在该商场继续购物.某顾客购买了125元的商品(1)求该顾客转动转盘获得购物券的概率;(2)求该顾客分别获得50元、20元的购物券的概率.12. ( 1分) 一个不透明的袋子里装有三个分别标有数字﹣1、1、2的小球,除所标有的数字不同外,其它方面均相同,现随机从中摸取一个小球,记录所摸取的小球上的数字后放回并搅匀,再随机摸取一个小球,记录小球上的数字,用列表法或树形图法求两次记录数字之和是正数的概率.13. ( 2分) 在三张完全相同且不透明的卡片正面分别写了﹣1,0,1三个数字,背面向上洗匀后随机抽取一张,将卡片上的数字记为a,然后放回,洗匀后再次随机取出一张,将卡片上的数字记为b,以(a,b)为平面直角坐标系中点M的坐标.(1)请用树状图或列表的方法,写出点M所有可能的坐标;(2)求点M在坐标轴上的概率.14. ( 2分) 2018年某市高中招生体育考试规定:九年级男生考试项目有A、B、C、D、E五类:其中A:1000米跑(必考项目);B:跳绳;C:引体向上;D:立定跳远;E:50米跑,再从B、C、D、E中各选两项进行考试.(1)若男生甲第一次选一项,直接写出男生甲选中项目E的概率.(2)若甲、乙两名九年级男生在选项的过程中,第一次都是选了项目E,那么他俩第二次同时选择跳绳或立定跳远的概率是多少?请用列表法或画树状图的方法加以说明并列出所有等可能的结果.15. ( 2分) 田忌赛马是一个为人熟知的故事.传说战国时期,齐王与田忌各有上、中、下三匹马,同等级的马中,齐王的马比田忌的马强.有一天,齐王要与田忌赛马,双方约定:比赛三局,每局各出﹣匹,每匹马赛一次,赢得两局者为胜.看样子田忌似乎没有什么胜的希望,但是田忌的谋士了解到主人的上、中等马分别比齐王的中、下等马要强.(1)如果齐王将马按下中上的顺序出阵比赛,那么田忌的马如何出阵才能获胜?(2)如果齐王将马按下中上的顺序出阵,而田忌的马随机出阵比赛,田忌获胜的概率是多少?(要求写出双方对阵的所有情况)16. ( 1分) 经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.17. ( 3分) 在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.请你根据所给的相关信息,解答下列问题:(1)本次共随机采访了________名教师,m=________;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.18. ( 1分) 一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.19. ( 1分) 剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)20. ( 3分) 6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:(1)这次随机抽取的献血者人数为________人,m=________;(2)补全上表中的数据;(3)若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?21. ( 3分) “品中华诗词,寻文化基因”.某校举办了第二届“中华诗词大赛”,将该校八年级参加竞赛的学生成绩统计后,绘制了如下不完整的频数分布统计表与频数分布直方图.频数分布统计表请观察图表,解答下列问题:(1)表中a=________,m=________;(2)补全频数分布直方图;(3)D组的4名学生中,有1名男生和3名女生.现从中随机抽取2名学生参加市级竞赛,则抽取的2名学生恰好是一名男生和一名女生的概率为________.22. ( 2分) 一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A的纵坐标.(1)用画树状图或列表等方法列出所有可能出现的结果;(2)求点A落在第四象限的概率.23. ( 3分) 今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A,B,C,D四个等级,并绘制了如下不完整的频数分布表和扇形统计图:根据以上信息,解答以下问题:(1)表中的x=________;(2)扇形统计图中m=________,n=________,C等级对应的扇形的圆心角为________度;(3)该校准备从上述获得A等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a1,a2表示)和两名女生(用b1,b2表示),请用列表或画树状图的方法求恰好选取的是a1和b1的概率.24. ( 2分) 为进一步深化基础教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A书法、B阅读,C足球,D器乐四门校本选修课程供学生选择,每门课程被选到的机会均等.(1)学生小红计划选修两门课程,请写出她所有可能的选法;(2)若学生小明和小刚各计划选修一门课程,则他们两人恰好选修同一门课程的概率为多少?25. ( 1分) 小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.26. ( 2分) 已知某初级中学九(1)班共有40名同学,其中有22名男生,18名女生.(1)若随机选一名同学,求选到男生的概率.(2)学校因组织考试,将小明、小林随机编入A、B、C三个考场,请你用画树状图法或列表法求两人编入同一个考场的概率.27. ( 3分) 文化艺术节上,小明参加学校组织的“一站到底”活动,答对最后两道单选题就通关:第一道单选题有A、B、C共3个选项,第二道单选题有A、B、C、D共4个选项,这两道题小明都不会,不过小明还有一次“求助”的机会没有用(使用“求助可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是________;(2)如果小明决定第一题不使用“求助”,第二题使用“求助”,请用树状图或者列表来分析小明通关的概率;(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)28. ( 2分) 今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是________事件,“小悦被抽中”是________事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为________;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.29. ( 3分) 为了解我县中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,根据成绩分成如下四个组:A:60≤x<70,B:70≤x<80,C:80≤x<90,D:90≤x≤100,并制作出如下的扇形统计图和直方图.请根据图表信息解答下列问题:(1)扇形统计图中的m=________,并在图中补全频数分布直方图;(2)小明的成绩是所有被抽查学生成绩的中位数,据此推断他的成绩在________组;(3)4个小组每组推荐1人,然后从4人中随机抽取2人参加颁奖典礼,恰好抽中A,C两组学生的概率是多少?请列表或画树状图说明.30. ( 2分) 4张相同的卡片分别写着数字﹣1、﹣3、4、6,将卡片的背面朝上,并洗匀.(1)从中任意抽取1张,抽到的数字是奇数的概率是________;(2)从中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的k;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的b.利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四象限的概率.31. ( 2分) 汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.(1)若前四局双方战成2:2,那么甲队最终获胜的概率是________;(2)现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?32. ( 2分) 某地进行中考体育测试,规定测试项目分为必选项目与自选项目,男生自选项目是50米跑(A)、立定跳远(B)、引体向上(C)、1分钟跳绳(D),每个男生要在四个项目抽选两项进行测试.测试前,每个学生先抽一个,确定一个,再在所剩三个项目中再抽一个.张强同学的这四个项目中,他自认为50米跑更擅长.(1)若张强先抽到立定跳远,然后再从剩下的项目中随机选择一项参加测试,则他刚好选中50米跑的概率是________;(2)若张强连续随机抽取两项,求其中抽中50米跑的概率.33. ( 2分) “赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:(1)①频数分布表中a的值为;②若测试成绩不低于80分为优秀,则本次测试的优秀率是;③将频数分布直方图补充完整;(2)第5组10名同学中,有4名男同学(用A,B,C,D表示),现将这4名同学分成两组(每组2人)进行对抗练习,求A与B两名男同学能分在同一组的概率.34. ( 3分) 中华文化,源远流长.在文学方面,《西游记》《三国演义》《水浒传》《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查.根据调查结果绘制成如所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)本次调查一共抽取了________名学生;扇形统计图中“1部”所在扇形的圆心角为________度;(2)若该中学有1000名学生,请估计至少阅读3部四大古典名著的学生有多少名?(3)没有读过四大名著的两名学生准备从四大古典名著中各自随机选择一部来阅读,则他们选中同一名著的概率为________.35. ( 3分) 小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉当前题的一个错误选项,然后选手在剩下选项中作答).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是________;(2)如果小明将“求助”留在第二题使用,请用树状图或者列表分析小明顺利通关的概率;(3)从概率的角度分析,你建议小明在第几题使用“求助”?并说明理由.36. ( 2分) 在一个不透明的袋子里装有四个小球,球上分别标有﹣2,﹣1,0,1四个数字,这些小球除数字外都相同.(1)如果从袋中任意摸出一个小球,那么小球上的数字标有“﹣2“的概率是________。

相关文档
最新文档