公务员行测数量关系知识总结

合集下载

行测数量关系总结

行测数量关系总结

行测数量关系总结引言在行政能力测验(行测)中,数量关系是一个非常重要的考点。

掌握数量关系的基本概念和解题方法,对于顺利完成行测至关重要。

本文将对数量关系的相关知识进行总结,并提供一些解题技巧和例题,帮助考生更好地备考行测。

基本概念1. 数字与数字关系在数量关系中,数字与数字之间常常存在一定的关系,如等差数列、等比数列等等。

了解这些数列的性质对于解题非常有帮助。

同时还需熟悉常见的数字规律,如数字之和、数字之差等等。

2. 图形与数字关系图形与数字之间的关系也是数量关系考察的一大重点。

常见的图形与数字关系有正方形、长方形、平行四边形、圆等等。

通过研究图形的边长、面积、周长等特征,可以得到有关数字的信息。

3. 符号与数字关系在数量关系中,符号与数字之间的关系也是需要考虑的。

例如,加减乘除符号与数字的关系,大小关系符号与数字的关系等。

正确理解并运用这些关系,对于解题至关重要。

解题技巧1. 善于列式计算对于涉及多个变量的数量关系题目,可以通过列式计算的方法来解决。

将问题中提到的所有变量罗列出来,并找出它们之间的关系,建立数学模型。

通过列式计算,可以更清晰地理解问题,并得到解题的思路。

2. 灵活运用代入法代入法是解决数量关系题目的一种常见方法。

当问题中给出了一些具体数值时,可以尝试将这些数值代入问题中,验证是否符合题意。

通过代入法,可以快速进行解答,并排除一些错误答案。

3. 注意单位的转换在数量关系中,有时会涉及到不同的单位之间的转换。

例如,将米转换为千米、将时速转换为米每秒等等。

在解题过程中,需要注意单位的转换,保持一致性,避免出现计算错误。

示例题目下面是一些典型的数量关系题目,供考生练习。

例题1:甲、乙、丙三人合作来完成一项工作,甲单独完成所需时间为6天,乙单独完成所需时间为8天,丙单独完成所需时间为12天。

如果三人一起合作完成该项工作,他们需要多少天?解答:甲、乙、丙三人一起合作的效率为:1/6 + 1/8 + 1/12 = 11/24。

2023公务员行测复习数量关系知识点公式

2023公务员行测复习数量关系知识点公式

2023公务员行测复习数量关系知识点公式公务员行测复习数量关系知识点公式一、五大方法1.代入法:代入法时行测第一大法,优先考虑。

2.赋值法:对于有些问题,若能根据其具体情况,合理巧妙地对某些元素赋值,特别是赋予确定的特殊值,往往能使问题获得简捷有效的解决。

题干中有分数,比例,或者倍数关系时一般采用赋值法简化计算,赋值法经常应用在如工程问题,行程问题,费用问题等题目中。

3.倍数比例法:若a : b=m : n(m、n互质),则说明: a占m份,是m的倍数;b占n份,是n的倍数;a+b占m+n份,是m+n的倍数;a-b占m-n份,是m-n的倍数。

4.奇偶特性法:两个奇数之和/差为偶数,两个偶数之和/差为偶数,一奇一偶之和/差为奇数;两个数的和/差为奇数,则它们奇偶相反,两个数的和/差为偶数,则它们奇偶相同;两个数的和为奇数,则其差也为奇数,两个数的和为偶数,则其差也为偶数 5.方程法:很多数学运算题目都可以采用列方程进行求解。

方程法注意事项:未知数要便于列方程;未知数可以用字母表示,也可以用“份数”,还可以用汉字进行替代。

二、六大题型1.工程问题:工作量=工作效率×工作时间工程问题一般采用赋值法解题。

赋值法有2种应用情况,第一种是题干中已知每个人完成工作的时间,这时我们假设工作量为工作时间的最小公倍数,进而得到每个人的工作效率,从而快速求解;第二种是题干中已知的是每个人工作效率的等量关系,这时我们通过直接赋效率为具体值进行快速求解。

2.行程问题:路程=速度×时间行程问题一般要通过数形结合进行快速求解,常见的解法包括列方程,比例法等。

常考的题型包括相遇问题和追及问题。

相遇问题:路程和=速度和×时间追及问题:路程差=速度差×时间3.溶液问题:浓度=溶质÷溶液溶液问题常见的有两种,一种是溶液的混合,这种问题用公式解决;另外一种是单一溶液的蒸发或稀释,这种题目一般用比例法解决,即利用溶质不变进行求解。

公考行测数量关系考点总结

公考行测数量关系考点总结

数量关系一、核心方法 (1)1.代入排除法 (1)2.数字特性法 (1)3.方程法 (1)4.赋值法 (2)5.线段法 (2)二、高频考点 (3)1.工程问题 (3)2.行程问题 (3)3.经济利润问题 (4)4.溶液问题 (5)5.排列组合与概率 (5)6.容斥原理问题 (7)7.最值问题 (7)8.几何问题 (8)三、专项考点 (9)1.时间问题 (9)2.统筹规划问题 (11)3.计数杂题 (12)一、核心方法1.代入排除法特征:题目有几个量,选项就有几个量与之对应,剩二代一必得答案。

方法:先排除,再代入。

先用奇偶、尾数、倍数等特性排除。

先代入简单好算的。

问最多从最多开始代入,问最少则从最少开始代入。

2.数字特性法2.1奇偶特性基础知识:加减法:同奇同偶才为偶,一奇一偶则为奇。

乘法:一个为偶则为偶,全部为奇才为奇。

2.2倍数特性适用范围:题目中含有“分数、百分数、倍数、比例、分组”等。

基础知识:1.常见形式:AB =mn, A:B=m:n ,A占B的mn等。

结论:A是m的倍数,B是n的倍数,(A±B)是(m±n)的倍数。

2.常见形式:y=ax+b(x为正整数)。

结论:(y-b)能被a整除。

3.方程法3.1普通方程设小不设大、设中间量、问谁设谁。

3.2不定方程第一类:未知数必须是整数的ax+by=M1.方法:分析奇偶、尾数、倍数等数字特性,尝试代入排除。

奇偶:a、b恰好一奇一偶尾数:a或b的尾数是5或0倍数:a或b与M有公因子。

2.不定方程组先消元转化为不定方程,再按不定方程求解。

第二类:未知数可以不是整数的多项式整体代换或赋零法:1)未知数的个数多于方程个数,且未知数可以不是整数。

2)答案是一个算式的值,而非单一未知数的值。

操作:赋其中1个未知数为零,从而快速计算出其他未知数。

尽量选取两式都有的量赋为0。

4.赋值法适用范围:题干中没有出现具体的值,条件都是以倍数、分数、百分数、比例等。

公务员考试 行测 数量关系 必备知识

公务员考试 行测 数量关系 必备知识

公务员考试行测数量关系必备知识数字推理数字推理题是公务员考试行政测试中一直以来的固定题型。

所谓数字推理,就是给应试者一个数列,但其中至少缺少一项,要求应试者仔细观察数列的排列规律,然后从四个选项中选出你认为最为合理的一项来填补空白项。

解答数字推理题时,应试者的反应不仅要快,而且要掌握恰当的方法和技巧,数字排列规律主要有六种:等差数列、等比数列、和数列、积数列、幂数列及其他特殊数列。

一、解题前的准备1.熟记各种数字的运算关系。

如各种数字的平方、立方以及它们的邻居,做到看到某个数字就有感觉。

这是迅速准确解好数字推理题材的前提。

常见的需记住的数字关系如下:(1)平方关系:1²=1 2²=4 3²=9 4²=16 5²=25 6²=36 7²=498²=64 9²=81 10²=100 11²=121 12²=144 13²=169 14²=196 15²=22516²=256 17²=289 18²=324 19²=361 20²=400 21²=441 25²=625(2)立方关系: 1³=1 2³=8 3³=27 4³=64 5³=125 6³=216 7³=343 8³=512 9³=729 10³=1000 11³=13315,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97......(5)开方关系:4-2,9-3,16-4......以上四种,特别是前两种关系,每次考试必有。

所以,对这些平方立方后的数字,及这些数字的邻居(如,64,63,65等)要有足够的敏感。

公务员中行测知识点总结

公务员中行测知识点总结

公务员中行测知识点总结一、数量关系题数量关系题是行测中的一种常见题型,主要考查考生的逻辑推理和数学运算能力。

在数量关系题中,常见的题目类型包括比较大小、求百分比、计算比值等。

1. 比较大小:在这类题目中,需要考生比较两个或多个数量的大小,并给出正确的顺序或大小关系。

常见的比较大小题目包括年龄比较、数字大小比较等。

2. 求百分比:求百分比题目需要考生根据给定的数量计算出对应的百分比,或根据百分比推算出相应的数量。

这类题目考查考生的基本数学运算能力。

3. 计算比值:计算比值题目主要考察考生在考察给定的数量情况下,计算出两个或多个数量的比值。

这类题目通常需要考生根据题目的提示进行逻辑推理和数学计算。

二、判断推理题判断推理题主要考查考生的逻辑思维和推理能力,包括假设推理、逻辑演绎、概括归纳等。

在判断推理题中,常见的题目类型包括假设推理、逻辑关系、概括结论等。

1. 假设推理:假设推理题目需要考生根据给定的条件,进行逻辑推理,得出对应的结论。

这类题目考查考生的逻辑推理和思维能力。

2. 逻辑关系:逻辑关系题目主要考查考生的逻辑推理能力,根据给定的条件进行逻辑分析,得出相应的结论。

3. 概括结论:概括结论题目需要考生根据给定的条件,进行归纳总结,得出对应的结论。

这类题目考查考生的归纳总结能力和逻辑思维能力。

三、言语理解和表达题言语理解和表达题主要考查考生对语言文字的理解和表达能力,包括词语理解、语句理解、修辞手法等。

在言语理解和表达题中,常见的题目类型包括词语解释、语句理解、修辞手法等。

1. 词语解释:词语解释题目需要考生根据提供的语境和含义,解释给定的词语或短语。

这类题目考查考生的词语理解和表达能力。

2. 语句理解:语句理解题目主要考查考生对语篇的理解能力,根据给定的语境进行分析,得出对应的理解。

这类题目通常需要考生对语言文字进行分析和理解。

3. 修辞手法:修辞手法题目需要考生根据提供的句子,进行修辞手法的判断和解释。

行测数量关系知识点汇总2024

行测数量关系知识点汇总2024

行测数量关系知识点汇总2024一、数字推理。

1. 等差数列。

- 定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

- 通项公式:a_n=a_1+(n - 1)d,其中a_n是第n项的值,a_1是首项,n是项数。

- 求和公式:S_n=frac{n(a_1+a_n)}{2}=na_1+(n(n - 1))/(2)d。

- 示例:数列1,3,5,7,9·s是一个首项a_1=1,公差d = 2的等差数列。

2. 等比数列。

- 定义:如果一个数列从第二项起,每一项与它的前一项的比值等于同一个常数,这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用字母q表示(q≠0)。

- 通项公式:a_n=a_1q^n - 1。

- 求和公式:当q≠1时,S_n=frac{a_1(1 - q^n)}{1 - q};当q = 1时,S_n=na_1。

- 示例:数列2,4,8,16,32·s是一个首项a_1=2,公比q = 2的等比数列。

3. 和数列。

- 定义:通过相邻项相加得到下一项的数列。

- 类型:- 两项和数列:如1,2,3,5,8,13·s,其中a_n=a_n - 1+a_n - 2(n≥3)。

- 三项和数列:例如1,1,2,4,7,13,24·s,a_n=a_n - 1+a_n - 2+a_n - 3(n≥4)。

4. 积数列。

- 定义:通过相邻项相乘得到下一项的数列。

- 类型:- 两项积数列:如2,3,6,18,108·s,其中a_n=a_n - 1× a_n - 2(n≥3)。

- 三项积数列:例如1,2,3,6,36,648·s,a_n=a_n - 1× a_n - 2× a_n - 3(n≥4)。

5. 多次方数列。

- 类型:- 平方数列:1,4,9,16,25·s,通项公式为a_n=n^2。

公务员行测数量关系速算公式归纳

公务员行测数量关系速算公式归纳

公务员行测数量关系速算公式归纳在公务员行测考试中,数量关系部分往往是让众多考生感到头疼的模块。

然而,掌握一些实用的速算公式,能够帮助我们在考场上快速解题,提高答题效率和准确率。

接下来,就为大家归纳一下常见的公务员行测数量关系速算公式。

一、行程问题1、相遇问题路程和=速度和 ×相遇时间相遇时间=路程和 ÷速度和速度和=路程和 ÷相遇时间例如:甲、乙两人分别从 A、B 两地同时出发相向而行,甲的速度为 5 米/秒,乙的速度为 3 米/秒,经过 10 秒相遇,那么 A、B 两地的距离就是(5 + 3)× 10 = 80 米。

2、追及问题路程差=速度差 ×追及时间追及时间=路程差 ÷速度差速度差=路程差 ÷追及时间比如:甲在乙后面 20 米,甲的速度为 7 米/秒,乙的速度为 5 米/秒,那么甲追上乙所需的时间就是 20 ÷(7 5)= 10 秒。

3、流水行船问题顺水速度=船速+水速逆水速度=船速水速船速=(顺水速度+逆水速度)÷ 2水速=(顺水速度逆水速度)÷ 2假设一艘船在静水中的速度为 15 千米/小时,水流速度为 3 千米/小时,那么顺水速度就是 15 + 3 = 18 千米/小时,逆水速度就是 15 3 =12 千米/小时。

二、工程问题工作总量=工作效率 ×工作时间工作效率=工作总量 ÷工作时间工作时间=工作总量 ÷工作效率例如:一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成,那么两人合作完成这项工程需要的时间就是 1 ÷(1/10 + 1/15)=6 天。

三、利润问题利润=售价成本利润率=利润 ÷成本 × 100%售价=成本 ×(1 +利润率)成本=售价 ÷(1 +利润率)比如:一件商品的成本是 80 元,售价是 100 元,那么利润就是 10080 = 20 元,利润率就是 20 ÷ 80 × 100% = 25%。

(完整版)行测数量关系知识点汇总

(完整版)行测数量关系知识点汇总

行测常用数学公式一、工程问题工作量=工作效率×工作时间;工作效率=工作量÷工作时间;工作时间=工作量÷工作效率;总工作量=各分工作量之和;注:在解决实质问题时,常设总工作量为 1 或最小公倍数二、几何边端问题( 1)方阵问题:1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷ 4+1)2=N2最外层人数=(最外层每边人数- 1)× 42.空心方阵:方阵总人数=(最外层每边人数)2- (最外层每边人数 - 2×层数)2=(最外层每边人数 - 层数)×层数× 4=中空方阵的人数。

★不论是方阵仍是长方阵:相邻两圈的人数都知足:外圈比内圈多8 人。

3.N 边行每边有 a 人,则一共有 N(a-1) 人。

4.实心长方阵:总人数 =M×N 外圈人数 =2M+2N-45.方阵:总人数 =N2N 排 N 列外圈人数 =4N-4例:有一个 3 层的中空方阵,最外层有 10 人,问全阵有多少人?解:(10 -3 )×3 ×4 =84(人)(2)排队型:假定队伍有 N 人, A 排在第 M位;则其前方有( M-1)人,后边有( N-M)人(3) 爬楼型:从地面爬到第 N 层楼要爬( N-1)楼,从第 N 层爬到第 M层要爬 M N 层。

三、植树问题线型棵数 =总长 / 间隔 +1环型棵数=总长/间隔楼间棵数=总长/间隔-1(1)单边线形植树:棵数=总长间隔+1;总长=(棵数-1)×间隔(2)单边环形植树:棵数=总长间隔;总长=棵数×间隔(3)单边楼间植树:棵数=总长间隔-1;总长=(棵数+1)×间隔(4)双边植树:相应单边植树问题所需棵数的 2 倍。

N(5)剪绳问题:对折 N次,从中剪 M刀,则被剪成了( 2×M+1)段四、行程问题⑴ 行程=速度×时间;均匀速度=总行程÷总时间均匀速度型:均匀速度=2v1v2v1 v2(2)相遇追及型:相遇问题:相遇距离 =(大速度 +小速度)×相遇时间追及问题:追击距离 =(大速度—小速度)×追实时间背叛问题:背叛距离 =(大速度 +小速度)×背叛时间(3)流水行船型:顺流速度=船速+水速;逆水速度=船速-水速。

公务员行测数量关系知识点整理

公务员行测数量关系知识点整理

公务员行测数量关系知识点整理公务员考试中,行测的数量关系部分一直是众多考生的难点和重点。

数量关系涉及的知识点繁多,题型复杂,需要我们系统地学习和掌握。

下面就为大家整理一下常见的数量关系知识点。

一、数学运算1、整数特性整数特性是数量关系中的基础知识点。

包括整除特性、奇偶性、质数与合数等。

整除特性:若整数 a 除以非零整数 b,商为整数,且余数为零,我们就说 a 能被 b 整除。

比如,能被 2 整除的数的特征是个位是偶数;能被 3 整除的数,其各位数字之和能被 3 整除。

奇偶性:奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数。

质数与合数:质数是指在大于 1 的自然数中,除了 1 和它本身以外不再有其他因数的自然数。

合数是指自然数中除了能被 1 和本身整除外,还能被其他数(0 除外)整除的数。

2、方程与不等式方程是解决数量关系问题的常用工具。

通过设未知数,根据题目中的等量关系列出方程,然后求解。

一元一次方程:形如 ax + b = 0(a≠0)的方程。

二元一次方程组:由两个未知数,且未知数的次数都是 1 的方程组成。

不等式:用不等号(大于>、小于<、大于等于≥、小于等于≤)连接两个代数式的式子。

3、比例问题比例是指两个比相等的式子。

常见的有工程问题中的效率比、行程问题中的速度比等。

若 a:b = c:d,则 ad = bc。

4、行程问题行程问题是数量关系中的重点和难点。

基本公式:路程=速度×时间。

相遇问题:路程和=速度和×相遇时间。

追及问题:路程差=速度差×追及时间。

5、工程问题工程问题的核心是工作总量=工作效率×工作时间。

经常通过设工作总量为 1 或工作总量的最小公倍数来解题。

6、利润问题涉及成本、售价、利润、利润率等概念。

利润=售价成本,利润率=利润÷成本×100% 。

7、几何问题包括平面几何和立体几何。

国考行测数量关系知识点汇总

国考行测数量关系知识点汇总

国考行测数量关系知识点汇总一不要轻言放弃在公务员考试中行测卷是必不可少的测查卷之一,甚至现在很多的国有企业以及知名企业在招人时也会经常用行测卷来考试测查删选人才。

但是行测卷题量大时间短,大多数考生都来不及做完,尤其数量关系被公认为难度最大的一块,很多考生都是直接放弃的。

虽然这部分题难度有点大,但是全部放弃显然是不明智的,正确率会很低很低,这样成功上岸的难度系数就会加大。

所以对于数量关系这个专项,我们建议从中挑选几道题目来做,再结合一些做题技巧和方法,这样其实也能很快的找到正确选项,大大提升正确率。

1. 利用整除性来判定结果例1. 农民张三为专心养鸡,将自己养的猪交于李四合养,已知张三、李四共养猪260头,其中张三养的猪有13%是黑毛猪,李四养的猪有12.5%是黑毛猪,问李四养了多少头非黑毛猪?A. 125B. 130C. 140D. 150【解析】问李四养了多少非黑毛猪的数量,已知题干给的信息条件李四养了12.5%的黑毛猪,可知李四养的非黑毛猪为87.5%即7/8,那么非黑毛猪的数量为7的整数倍,即能被7整除,所以结合选项选C。

2. 利用奇偶性判定结果例2. 小刚和小木同学进行篮球投篮比赛,规定每局赢球方得2分,输球方得1分,两人打平局时都不得分。

半天下来两人共进行了50局比赛,小木共得70分。

问小木这次投篮比赛中,赢球的局数与输球和平局局数之和相差多少?A. 9B. 10C. 11D. 13【解析】问小木赢球的局数与输球和平局局数之和相差多少,结合材料可以知道小木总共比赛50场,所以赢得场数+输的场数与平局场数和=50,50即为偶数,根据两数之和与两数之差同奇偶性,所以赢得场数-输的场数与平局场数和=偶数,结合选项,正确答案为B。

3.结合选项差距找答案例3. 某工厂去年有车工和钳工共830人,今年车工人数比去年减少6%,钳工人数比去年增加5%,车工和钳工的总数比去年多了3人。

那么今年该工厂有()名车工。

公务员行测复习知识点大全

公务员行测复习知识点大全

公务员行测复习知识点大全一、数量关系1. 算术平均值:一组数据的总和除以数据的个数。

2. 加权平均值:不同数据之间的比重不同,根据各数据的重要性给予不同的权重,计算平均值。

3. 比例:两个数值之间的关系,常用百分数表示。

4. 平方根:数的平方根是该数的一个非负根,乘以自身等于该数。

5. 平方和:数的平方的和。

6. 百分数与小数的转化:将百分数除以100,转化为小数;将小数乘以100,转化为百分数。

二、判断推理1. 推理判断:根据已知条件和常识判断出整体结论。

2. 逻辑判断:根据逻辑规则和已知条件判断出具体结论。

3. 相对关系:根据比较两个事物的特点,判断它们的关系。

(如大小、质量等)4. 绝对关系:根据一个整体和其中的部分的关系,推断该部分与整体的关系。

5. 逻辑选择:根据题目中的条件进行逻辑的思考,选择出正确的选项。

三、判断推理1. 公共知识:指一些常见的或者基本的知识点,通常是每个人都应该知道的。

2. 原因分析:根据已知条件推断出可能的原因或后果。

3. 条件判断:根据已知条件进行条件判断。

4. 综合判断:根据多个条件进行综合分析和判断。

5. 推理判断:根据条件进行推测和判断。

四、言语理解与表达1. 扩句:从句与主句间的关系要保持逻辑一致,不改变原意。

2. 隐逻辑:在没有明确提到的前提或条件下,推理出逻辑推导的结论。

3. 反义词:两个词具有相反的意义。

4. 近义词:两个词语意思相近或含义接近。

5. 标点符号:标点符号的使用一般要顺应语句意思,有选择地使用。

五、资料分析1. 图表分析:对图表中的数据进行分析和总结。

2. 表格计算:根据信息表中的数据进行计算。

3. 表述与判断:根据表中的数据进行描述和判断。

4. 文章理解:阅读文章中的信息,了解文章内容并回答问题。

5. 材料分析:分析提供的材料,进行判断和推理。

六、常识判断1. 时事新闻:了解当前的国内外时事新闻和热点问题。

2. 社会常识:了解社会的基本规律和常识,包括历史、地理、政治等方面的知识。

公务员考试行测数量关系整理全集

公务员考试行测数量关系整理全集

第1讲计算问题主要题型:①尾数法、估算法、公式法、②乘方尾数问题、裂项相消、重复项计算、③新定义符号运算、符号运算、数学概念例1:破:①底数留个位;②指数除以4,恰好整除取4。

例2:破:用(最小数的分之一减最大数的分之一)乘以原来的分子/两数之差例3:破:把目标算式转化成已经给定的算式、特殊值带入第2讲多位数问题主要方法:带入排除,多步推理题型:①多位数求值、②多位数构造、③多位数个数统计、④多位数判定位置、⑤多位数乘法拆分、⑥多位数加法拆分、⑦复杂多位数问题例1:破:按给定条件一步步推理例2:破:多位数个数统计--位数固定:按数位来考虑,此时第一位可以是0。

破:多位数个数统计—位数不固定:按位数划分,如果是一位数,两位数,三位数。

首位不能是0。

例3:破:多位数加法拆分问题,分5步,①求总和;②确定问题对其他影响;③写下确定的情况;④剩下的总和求平均,对应中位数,写下这种情况;⑤对此情况调整修正。

第3讲平均数问题题型:①总和与平均数、②轮换平均数、③混合平均数、④不规则平均数、⑤分析性平均数、⑥调和平均数:三个数,它们的倒数成等差数列,则这三个数构成调和平均数。

例1:破:轮换平均数,写出各自表达式最后求和例2:破:混合平均数:已知各自平均数,又知混合后平均数,用十字交叉法求人数比例,再带入。

例3:破:不规则平均数:混合的不均匀,有两两求平均,有三三求平均。

设未知数带入求解。

例4:破:调和平均数题型的突破口是每次的增量成等差(最常见是相等),知道是调和平均数,直接带入求解。

第4讲工程问题总量不变,效率和时间成反比。

可赋值总量为一常数。

题型:①基本工程问题(等式列方程);②分阶段工程问题(按阶段解题);③两项工程型问题;④合作问题;⑤时效转化问题。

例1:破:典型的分阶段工程问题,赋值总量,然后按步骤写出。

效率与时间成反比。

第5讲浓度问题浓度问题的破题之道就是要在变化的过程中抓住不变量。

题型:①重复稀释:多次加溶剂稀释,加的过程有变化,有时是不等量、有时先倒出再加。

公务员行测——数量关系考点总结

公务员行测——数量关系考点总结
4.溶液问题
4.1 混合溶液
基础知识:溶质质量=溶液质量×浓度
题型特征:题干给出溶液或溶质的实际量,经过混合,溶液量和溶质量都发生变化。
解题思路:公式法、方程法、线段法。
十字交叉法公式:������1������1 + ������2������2 = (������1 + ������2)������
3.1 普通方程 设小不设大、设中间量、问谁设谁。
3.2 不定方程 第一类:未知数必须是整数的 ax+by=M 1.方法:分析奇偶、尾数、倍数等数字特性,尝试代入排除。
1
内容均为个人备考积累
奇偶:a、b 恰好一奇一偶 尾数:a 或 b 的尾数是 5 或 0 倍数:a 或 b 与 M 有公因子。 2.不定方程组 先消元转化为不定方程,再按不定方程求解。 第二类:未知数可以不是整数的 赋零法: 1)未知数的个数多于方程个数,且未知数可以不是整数。 2)答案是一个算式的值,而非单一未知数的值。 操作:赋其中 1 个未知数为零,从而快速计算出其他未知数。
3
内容均为个人备考积累
给相遇次数,问路程或时间,根据相遇次数推路程,根据路程算时间。 给相遇时间,问相遇次数,根据时间算路程,根据路程算相遇次数。 注意:若从同一端出发,第 n 次相遇,共走 2n 个全程。 2)环形相遇:同一出发点,不同方向。
① S相遇 = (������1 + ������2) × ������
题干所给标准以内是一个单价,超出标准是另一个单价,分段计算标准内和超 标准,最后根据题干中的关系计算即可。 注意:合并付费时,单价高的商品不论是单独购买还是合并购买,享受的优惠相同。 所以在计算时,通常只考虑单价低的商品。
3.3 统筹经济

公务员行测数量关系十大知识要点

公务员行测数量关系十大知识要点

数量关系十大知识要点一、行程问题1.核心公式:S二V x T,路程二速度x时间2.平均速度二总路程一总时间3.若物体前一半时间以速度VI运动,后一半时间以速度V2V1+V2运动,则全程平均速度为一^4•若物体前一半路程以VI运动,后一半路程以V2运动,则全程平均速度为2V1V2V1+V25.相遇时间二相遇路程一速度和6.追及时间二追及路程一速度差7.直线多次相遇问题:从两地同时出发的直线多次相遇问题中,第n次相遇时,每个人走的路程等于他第一次所走的路程的(2n-l)倍8.环形相遇问题:环形相遇问题中每次相遇所走的路程之和是一圈。

如果最初从同一点出发,那么第n次相遇时,每个人所走的总路程等于第一次相遇时他所走路程的n倍9.流水问题:顺水速度=船速+水速;逆水速度=船速-水速船速二(顺水速度+逆水速度)一2;水速二(顺水速度-逆水速度)一210•火车过桥问题:火车速度X时间二车长+桥长完全在桥上时间二(桥长-车长)一火车速度二、几何问题札占扌absir<-yj:<ir9-l-EcMn上正方廉-1□-S-a5[C"2(i*£■!L翠行OHA需AZ7S"BH©知irF・+=(f番方体GI S=^(»*bc44c}V-a&cIE方体0V-a15»4IT P1ff]讯糧捧&5Jnf*2zrfti廿・Sh*r+(S列戛戟[£%?A(S炖卫独為1.极限理论平面图形:周长一定,趋近于圆,面积越大面积一定,趋近于圆,周长越小立体图形:表面积一定,越趋近于球,体积越大体积一定,越趋近于球,表面积越小2.三角形常见考点两边之和大于第三边,两边之差小于第三边较小的角对应的边也较小3.内角和:N边形的内角和为(N-2)180°4.几何图形的缩放:对于常见的几何图形,若将其边长变为原来的n倍,则其周长变为原来的n倍,面积变为原来的汩倍,体积变为原来的用倍三、十字交叉Aa+Bb={A+B)x匚整理变形后可得" (a>c>b)A c-i用图示可简单表示为其中c为平均值十字交叉法使用时要注意几点:1.用来解决两者之间的比例关系问题2.得出的比例关系是基数的比例关系3.总均值放中央,对角线上,大数减小数,结果放对角线上四、利润问题进价:商品进货的价格定价:商家根据进价定出的商品出售价格售价:商品实际的出售价格利润:售价与进价的差利润率:利润与进价的百分比折扣:售价与定价之比五、方阵问题1.方阵每层总人数=每边人数*4-42.方阵相邻两层人数相差8,实心方阵最外层每边人数为奇数时,从内到外每层人数依次是1,8,16,24……3.在方阵中,若去掉一行一列,去掉的人数=原来每行人数*2-1若去掉两行两列,去掉的人数=原来每行人数*4-2*24.实心方阵总人数二最外层每边人数N的平方5.空心方阵总人数=最外层每边人数的平方-(最内层每边人数-2)的平方或者利用等差数列求和公式,首项为最外层总人数,公差为-8的等差数列六、浓度问题溶液=溶质+溶剂浓度二溶质三溶液高浓度溶液A 与低浓度溶液B 混合,得到溶液C,那么C 的浓度介于 A 和B 之间。

公考行测——数量关系——知识点整理

公考行测——数量关系——知识点整理

公考行测——数量关系——知识点整理1. 数量关系题型介绍
- 数量关系题是公务员考试行测中的一种常见题型。

- 主要考查数量大小、比例关系、代数运算等方面的能力。

2. 数量大小比较
- 直接数量比较
- 利用已知条件推理数量大小关系
3. 比例与占比
- 比例概念及计算
- 百分比、千分比等占比问题
- 利率计算
4. 代数运算
- 四则运算
- 方程式求解
- 函数运算
5. 数列规律
- 等差数列
- 等比数列
- 找规律推理
6. 几何计算
- 平面图形面积、周长计算
- 立体图形表面积、体积计算
7. 逻辑推理
- 利用已知条件进行逻辑推理
- 排除无关选项
- 验证选项正确性
8. 题型技巧
- 注意题干中的限制条件
- 关注数据单位及换算
- 利用选项互斥性进行排除
- 审题细致,避免粗心错误
以上是公考行测数量关系部分的主要知识点整理,建议多加练习,熟练掌握解题思路和方法。

【最全】公务员考试行测数量关系常用公式大汇总

【最全】公务员考试行测数量关系常用公式大汇总

2)(1n a a n ⨯+21d a a n 1-q q a n -11 ·1)-(a ac b b 242-+-一、基础代数公式1. 平方差公式:(a +b )×(a -b )=a 2-b 22. 完全平方公式:(a ±b )2=a 2±2ab +b 2完全立方公式:(a ±b )3=(a ±b )(a 2 ab+b 2)3. 同底数幂相乘:a m ×a n =a m +n (m 、n 为正整数,a ≠0)同底数幂相除:a m ÷a n =a m -n (m 、n 为正整数,a ≠0)a 0=1(a ≠0)a -p =(a ≠0,p 为正整数)4. 等差数列:(1)s n == na 1+n(n-1)d ;(2)a n =a 1+(n -1)d ;(3)n =+1;(4)若a,A,b 成等差数列,则:2A =a+b ;(5)若m+n=k+i ,则:a m +a n =a k +a i ;(其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和)5. 等比数列:(1)a n =a 1q -1;(2)s n =(q ≠1)(3)若a,G,b 成等比数列,则:G 2=ab ;(4)若m+n=k+i ,则:a m ·a n =a k ·a i ;(5)a m -a n =(m-n)d(6)=q (m-n)(7)(其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和)6. 一元二次方程求根公式:ax 2+bx+c=a(x-x 1)(x-x 2)p a 1n m a aaac b b 242---a b a c 212高(上底+下底)⨯ 其中:x 1=;x 2=(b 2-4ac ≥0)根与系数的关系:x 1+x 2=-,x 1·x 2=二、基础几何公式1. 三角形:不在同一直线上的三点可以构成一个三角形;三角形内角和等于180°;三角形中任两边之和大于第三边、任两边之差小于第三边;(1)角平分线:三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角的平分线。

国考数量关系知识点汇总

国考数量关系知识点汇总

国考数量关系知识点汇总一、知识概述《国考数量关系知识点汇总》①基本定义:国考数量关系就是在国家公务员考试中考察大家数学方面的一些能力,包括数字运算、数据关系理解等,就像是一场数学能力的较量,看看你能不能在规定时间内搞定那些数学题。

②重要程度:这部分在国考行测里很重要,就像盖房子的砖头一样基础。

如果数量关系做得好,行测的分数肯定差不了,它能拉开你和其他考生的差距呢。

③前置知识:你得基本掌握小学数学的运算知识,像加减乘除、四则运算,还有一些简单的几何概念,比如三角形、正方形的面积计算之类的。

就好比建高楼得先打好地基,这些基础的知识就是地基。

④应用价值:在实际生活中,数量关系的思维可以帮我们处理很多事情,像购物时算折扣、工程规划上算工期等。

在工作中呢,分析数据之类的工作也会用到这种逻辑能力。

二、知识体系①知识图谱:数量关系在国考行测这个学科体系里算是比较独立但又很关键的一块。

它和其他模块如言语理解等是并行的关系,但数学对整体思维能力的提升会潜在影响其他模块的作答。

②关联知识:它和资料分析有联系,都涉及到数据处理;和逻辑判断也有点关系,有些题目逻辑解题思路类似。

就像一家人,各自有分工,但基因上多少有点联系。

③重难点分析:- 掌握难度:说实话,难度可不小。

不仅要有好的数学基础,还要能快速解题。

题目类型很多变,有些概念很绕。

像排列组合这个知识点,很容易让人懵圈。

- 关键点:关键在于理解题目类型、掌握对应的解题思路和公式,并且要通过大量练习提高计算速度。

④考点分析:- 在考试中的重要性:挺重要的,能够直接影响行测总分。

- 考查方式:会直接出题考查数字运算,像通过工程问题、行程问题等设置情景进行计算。

三、详细讲解【理论概念类】①概念辨析:- 例如整除,就是一个数能被另一个数除尽,没有余数。

就像10能被5整除,就好比10个苹果分给5个人,能刚好分完。

②特征分析:- 比如说质数,它只有1和本身两个因数。

像2、3、5这些数,很“单纯”,只能分解成1和它自己相乘。

2024必备行测数量关系技巧全总结

2024必备行测数量关系技巧全总结

2024必备行测数量关系技巧全总结数量关系是公务员考试中的常见题型之一,需要考生对数字、比例、图表等进行分析和计算。

以下是2024年必备行测数量关系技巧的详细总结。

一、基础技巧:1.记忆数字:在数量关系题中,需熟悉常用的数字、比例关系、容量单位等,减少计算过程中的出错概率。

2.快速计算:掌握常见的计算技巧,如快速乘除法、平方根的近似值等,以提高解题速度。

3.数据转换:根据题目给出的条件,将不同的数据形式互相转换,以便进行比较和计算。

4.精确度估算:在计算过程中,对数据的精确度有一定的估计,以便预估计算结果的大小。

二、问题解决技巧:1.比较大小:对于给定的数量关系,通过比较大小来确定答案。

可将各个选项转换成相同的单位,进行大小的比较。

2.算术平均数:在一组数据中,若知道其中一个数据的平均值和总数,可通过计算得出其他数据的和,并据此计算其他数据。

3.比例关系:根据给定的比例,计算未知数量的值。

可通过相似三角形的性质来计算角度和边长的比值。

4.百分比:将百分数转换成小数,并通过乘法或除法计算出具体数值。

5.单位换算:根据不同的单位进行换算,例如时间、长度、面积、体积等。

三、逻辑推理技巧:1.逆向思维:根据问题的答案,倒推出可能的条件和前提。

通过排除已知条件和选项之间的矛盾关系,来确定正确选项。

2.解方程:用未知数代表问题中的数据,将问题转换成方程组,再通过求解方程组得出结果。

3.统计分析:对给定的数据进行统计和分析,找到问题中的规律和特点,以便解决问题。

4.图表分析:根据图表中的信息,通过计算和比较来解决问题。

注意理解图表中的数据和单位,不要误解题意。

四、实际应用技巧:1.代入法:将给定的数值代入到问题中进行计算,以便得到正确的结果。

2.对称关系:利用对称图形和对称线的关系,计算未知数据的值。

3.最大最小值:通过求解问题中的最大值和最小值,来确定答案的范围。

4.统一单位:将不同单位的数据换算成相同单位,以便进行比较和计算。

公考数量关系资料分析必背公式30条

公考数量关系资料分析必背公式30条

数量关系必背公式 一、增长量和增长率 1、已知现期量和基期量,求增长量和增长率 2、已知基期量和增长量,求增长率和现期量 3、已知基期量和增长率,求增长量和现期量 4、已知现期量和增长量,求基期量和增长率 5、已知现期量和增长率,求基期量和增长量 6、已知增长率和增长量,求基期量和现期量 二、间隔增长率 三、混合增长率 六、平均数 二、行程问题 1、流水行船 3、混合浓度=混合前溶质的和/混合前溶液的和=(溶质1+溶质2)/(溶液1+溶液2) 4、巧用“十字交叉法”解决混合溶液问题 六、经济利润问题 1、收入=成本+利润 2、利润率=利润/成本 *100%【备注:数学运算中,除非题干特意说明,否则利润率均等于利润/成本。

但经济学方面、资料分析中未必如此,注意注意!】 3、收入=成本(1+利润率) 七、钟表问题 1.一个指针走完一圈3600,一个表盘3600;总共分为12个大格和60个小格;1个大格等于300,1个小格等于60; 2.时针每分钟走0.50,分针每分钟走60,速度差为5.50/分,速度之比为12:1; 3.时针与分针每小时出现2次直角,1次重合,一次180度;时针与分针每昼夜出现44次直角,22次重合,22次180度。

八、牛吃草问题 基础公式:y=(N-x)×t,其中y代表原草量,N代表牛的头数,x代表草生长的速度,t 代表牛吃完这片草所用的时间。

九、植树问题 1.单边线形植树公式(两端都植): 棵数=总长÷间隔+1 2.单边楼间植树公式(两端都不植): 棵数=总长÷间隔-1 3.环形植树公式: 棵数=总长÷间隔 十、方阵问题 1、n排n列的实心方阵:人数为n2。

2、n排n列的方阵:最外层有(4n-4)人。

3、无论是方阵还是矩形方阵,相邻两圈的人数都满足外圈比内圈多8人。

十一、过河爬楼问题 1、从地面爬到第n楼,需要爬n层。

2、从第m层爬到第n层,需要爬(n-m)层。

公务员行测数量关系知识点详解

公务员行测数量关系知识点详解

公务员行测数量关系知识点详解在公务员行测考试中,数量关系一直是让众多考生感到头疼的一个模块。

但其实,只要掌握了相关的知识点和解题技巧,数量关系并非难以攻克。

接下来,就让我们详细地了解一下公务员行测数量关系中的常见知识点。

一、等差数列等差数列是数量关系中比较基础且常见的知识点。

如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。

通项公式:\(a_n = a_1 +(n 1)d\),其中\(a_n\)表示第\(n\)项的值,\(a_1\)表示首项,\(n\)表示项数,\(d\)表示公差。

求和公式:\(S_n =\frac{n(a_1 + a_n)}{2}\)。

在解题时,关键是要找出首项、公差和项数。

例如:已知一个等差数列的首项是\(3\),公差是\(2\),第\(10\)项是多少?我们就可以用通项公式求出\(a_{10} = 3 +(10 1)×2 = 21\)。

二、等比数列等比数列是指从第二项起,每一项与它前一项的比值等于同一个常数的数列。

通项公式:\(a_n = a_1 × q^{n 1}\),其中\(q\)为公比。

求和公式:当\(q ≠ 1\)时,\(S_n =\frac{a_1(1 q^n)}{1 q}\);当\(q = 1\)时,\(S_n = na_1\)。

比如:一个等比数列的首项是\(2\),公比是\(3\),求第\(5\)项。

则\(a_{5} = 2×3^{5 1} = 162\)。

三、行程问题行程问题在数量关系中出现的频率较高。

主要包括相遇问题、追及问题和流水行船问题等。

相遇问题:路程和=速度和×相遇时间。

追及问题:路程差=速度差×追及时间。

流水行船问题:顺水速度=船速+水速;逆水速度=船速水速。

例如:甲乙两人分别从 A、B 两地同时出发相向而行,甲的速度是\(5\)千米/小时,乙的速度是\(3\)千米/小时,\(2\)小时后相遇,那么 A、B 两地的距离就是\((5 + 3)×2 = 16\)千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整除基本法则
其末一位的两倍,与剩下的数之差,或其末三位与剩下的数之差为7的倍数,则这个数就为7的倍数。

奇数位与偶数做差,为11的倍数,则这个数为11的倍数,或末三位与剩下的数之差为11的倍数则这个数为11的倍数。

末三位与剩下的数之差为13的倍数,则这个数为13的倍数。

末两位能被4和25整除,则这个数能被4和25整除。

末三位能被8和125整除,则这个数能被8和125整除。

有N 颗相同的糖,每天至少吃一颗,可以有2N-1种吃法。

因式分解公式
平方差公式:. a 2-b 2=(a +b)(a -b)
完全平方公式: a 2±2ab +b 2=(a±b)2
立方和公式:a 3+b 3= (a+b)(a 2-ab+b 2).
立方差公式:a 3-b 3= (a-b)(a 2+ab+b 2).
完全立方公式: a 3±3a 2b +3ab 2±b 3=(a±b)3
两位尾数法
指利用计算过程当中,每个数的末两位来进行运算 ,求得的最后两位,过程和结果当中如果是负数,可以反复加100补成0-100之间的数。

裂项相加法则
和=(小1—大1)×差
分子 小=分母种最小的数,大=分母中最大的数 乘方公式
底数留个位,指数末两位除以4(余数为0看做4)尾数为1、5、6的尾数乘方不变。

循环数核心公式
例题:198198198=198*1001001
200720072007=2007*1001
三位数页码
页码=3
数字 +36 同余问题
余同取余,和同加和,差同减差,公倍数做周期
1、余同:一个数除以4余1,除以5余1,除以6余1则取1 60n+1
2、同和:一个数除以4余3,除以5余2,除以6余1则取7 60n+7
3、差同:一个数除以4余1,除以5余2,除以6余3则取-3 60n-3
周期问题
一串数以T 为周期,且N
A =N …a 那么A 项等同于第a 项 等差数列(如几层木头,相连的奇偶数等)
和=2
(项数末项)首项⨯+=平均数×项数=中位数×项数 项数公式:项数=1+-公差
首项末项 级差公式:第N 项-第M 项=(N-M )×公差
调和平均数 b
a a
b 2+ 十字交叉法
例题重量分别为A 与B 的溶液,其浓度分别为a 与b ,混合后浓度为r
r
a b r b A --= 浓度相关问题
溶液=溶质+溶剂 浓度=溶质÷溶液 溶质=溶液×浓度 溶液=溶质÷浓度
多次混合问题核心公式
1、设盐水瓶中盐水的质量为M ,每次操作中先倒出M 0克盐水,再倒入M 0克清水
Cn=C 0×(M M M 0
-)n (C 0 为原浓度,Cn 为新浓度,n 为共几次 )
2、设盐水瓶中盐水的质量为M ,每次操作中先倒入M 0克清水,再倒出M 0克盐水
Cn=C 0×n 0
)(M M M + (C 0 为原浓度,Cn 为新浓度,n 为共几次) 行程问题
距离=速度×时间 火车过桥洞时间=(火车长度+桥洞长度)÷火车速度
相对速度
1、相遇追及问题
相遇距离=(大速度+小速度)×相遇时间
追及距离=(大速度-小速度)×追击时间
2、环形运动问题
环形周长=(大速度+小速度)×反向运动的两人两次相遇时间间隔
环形周长=(大速度-小速度)×同向运动的两人两次相遇时间间隔
3、队伍行进问题
队伍长度=(人速+队伍速度)×从队头到队尾所需时间
队伍长度=(人速-队伍速度)×从队尾到队头所需时间
4、流水行船、风中飞行问题
顺流时间=顺流速度×顺流时间=(船速+水速)×顺流时间
逆流时间=逆流速度×逆流时间=(船速-水速)×逆流时间
1、等距平均速度问题核心公式
往返平均速度=2
1212u u u u + 2、沿途数车问题核心公式
沿途时间间隔=21212t t t t + 车速=人速=1
212t t t t -+ 3、漂流瓶问题核心公式
漂流所需时间=顺
逆顺逆t t t t +2 4、两次相遇核心公式
单岸型 S=2
321s s + 两岸型 S=3S 1-S 2 S 表示两岸的距离 5、电梯运动问题 能看到的电梯级数=(人速+电梯速度)×沿电梯运动方向运动所需时间
能看到的电梯级数=(人速-电梯速度)×沿电梯运动所需时间
几何基本公式
圆周长C 圆=2πr 圆面积 S 圆=πr 2 S 三角=21ah S 梯=2
1(a+b )h N 边形内角和=(N-2)×180° 几何特性:若一个几何图形其尺度为原来的M 倍则
面积M 2倍 体积M 3倍
平面图形周长一定,越接近圆,面积越大
平面图形面积一定,越接近圆,周长越小
立体图形,表面积一定,越接近球体积越大
立体图形,体积一定,越接近球体,表面积越小
两集合标准核心公式
满足条件Ⅰ的个数+满足条件Ⅱ的个数-两者都满足的个数=总个数-两者都不满足的个数
三集合标准核心公式
均如何=甲+乙+丙-(甲和乙)-(甲和丙)-(乙和丙)+都如何
三集合整体重复型核心公式
在三集合的题型中,假设满足三个条件的元素数量分别为A 、B 、C ,而至少满足三个条件之一的元素总量为W ,满足一个条件的元素数量为X ,满足两个条件的数量为Y ,满足三个条件的元素数量为Z ,则
W=X+Y+Z A+B+C=X ×1+Y ×2+Z ×3
排列组合
取其一 ①加法原理:分类用加法(要么…要么)排列与顺序有关
②乘法原理:分步用乘法(首先…然后)组合与顺序无关
排列 A 38=8×7×6
组合 C 410=1
23478910⨯⨯⨯⨯⨯⨯ 错位排列:有几个信封,且每个信封都不能装自己的信
D 1=0 D 2=1 D 3=2 D 4=9 D 5=44 D 6=265
传球问题核心公式
M 个人传N 次球即 X=M
M N
)1(-则X 最接近的整数为传给“非自己的某人”的方法,与X 第二接近的正整数便是传给自己的方法数
比赛问题:N 为人数
淘汰赛 ①仅需决出冠亚军 比赛场次=N-1
②需要决出1、2、3、4名 比赛场次=N
循环赛 ①单循环(任意两个打一场)比赛场次=C 2N
②双循环(任意两个打两场)比赛场次=A 2N
概率问题
1、单独条件概率=总的情况数
满足条件的情况数
2、某条件成立概率=1-不成立的概率
3、总体条件概率=满足条件的各种情况概率之和
4、分步概率=满足条件的各种情况概率之积
5、条件概率=“A 成立”是B 成立的概率=A 、B 同时成立的概率
植树问题
1、单边线型植树公式:棵树=总长÷间隔+1;总长=(棵树-1)×间隔
2、单边环型植树公式:棵树=总长÷间隔;总长=棵树×间隔
3、单边楼间植树公式:棵树=总长÷间隔-1;总长=(棵树+1)×间隔
裂增计数
如果一个量每个周期后变为原来的A 倍,那么,N 个周期后就是原来的AN 倍
例:10分钟分裂一次(1个分裂为2个),经过90分钟,可有1分裂为几个
周期数为90÷10=9 公式=29 =512
剪绳问题
一根绳子连续对折N 次,从中剪M 刀,则被剪成了2N ×M+1段
方阵问题
1、N 排N 列的实心方阵人数为N 2人
2、M 排N 列的实心方阵人数为M ×N
3、N 排N 列的方阵,最外层有4N-4人
4、在方阵或者长方阵中相邻两圈人数,外圈比内圈多8人
5、空心正M 边形阵中,若每边有N 个人,则共有MN-M 个人
6、方阵中:方阵人数=(最外层人数÷4+1)2
过河问题
M 个人过河,船上能载N 个人,1人划船故需1
1--N M 次,最后一次不用回来 牛吃草问题
草场原有草量=(牛数-每天长草量)×天数
出现M 头牛吃W 亩草时,牛数用MW 代入,此时代表单位面积上牛的数量,如果计算为负数说明存量不增加而消之
时钟问题
钟面上每两格之间相差30°
T=T 0+11
1 T 为追及时间和时针要“达到条件要求”的真实时间,T 0为静态时间,即假设时针不动,分针和时针“达到条件要求”的时间
经济利润相关问题
利润率=利润÷成本=(售价-成本)÷成本=售价÷成本-1
售价=成本×(1+利润率)
成本=售价÷(1+利润率)
两位数乘法:
一个数乘以5可以看成乘以10除以2
例:42×48=2016
等于后两位数相乘,前两位数也相乘在加上十位上相同的数。

相同且互补(和为10)中间两边互补除外。

相关文档
最新文档