时间序列分析中的平稳性与非平稳性

合集下载

统计学时间序列分析

统计学时间序列分析

统计学时间序列分析时间序列是经济学、金融学和其他社会科学领域中的一个重要分析对象。

通过对时间序列数据的分析,我们可以揭示数据之间的关系、趋势和周期性,从而为决策提供有力的支持和预测。

统计学时间序列分析是一种应用数学方法的工具,用于对时间序列数据进行建模和预测。

一、时间序列的基本概念时间序列是按时间顺序排列的一系列观测值的集合。

在时间序列分析中,我们关注数据之间的内在关系,而忽略其他因素的影响。

时间序列数据通常具有以下特征:1. 趋势性:时间序列数据的长期变化趋势。

2. 季节性:时间序列数据在一年内固定时间段内的重复模式。

3. 循环性:时间序列数据中存在的多重周期性波动。

4. 随机性:时间序列数据中的不规则、无法预测的波动。

二、时间序列分析的方法在进行时间序列分析时,我们可以采用以下方法来揭示数据的内在规律:1. 描述性统计分析:通过计算数据的均值、方差、相关系数等指标,对数据的整体特征进行描述。

2. 图表分析:通过绘制折线图、柱状图等图表,展示时间序列数据的变化趋势和周期性。

3. 分解模型:将时间序列数据分解为趋势项、季节性项和残差项,以揭示数据的内在结构。

4. 平滑法:通过移动平均法、指数平滑法等方法,消除时间序列数据的随机波动,从而揭示趋势和季节性成分。

5. 自回归移动平均模型(ARIMA):ARIMA模型是一种常用的时间序列分析方法,可以对数据进行预测和建模。

它综合考虑了自回归、移动平均和差分的影响因素。

三、时间序列分析的应用领域时间序列分析广泛应用于经济学、金融学、市场调研等领域,具体应用包括:1. 经济预测:通过对经济数据进行时间序列分析,可以预测未来的经济发展趋势,为政府决策提供参考。

2. 股票市场分析:时间序列分析可以帮助分析师预测股票市场的走势,制定投资策略。

3. 需求预测:通过对销售数据进行时间序列分析,可以预测产品的需求量,为企业的生产和供应链管理提供指导。

4. 天气预测:通过对气象数据进行时间序列分析,可以预测未来的天气状况,为农业、旅游等行业提供参考。

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第11章 OLS用于时间序列数据的其他问题【

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第11章 OLS用于时间序列数据的其他问题【

第11章OLS 用于时间序列数据的其他问题11.1复习笔记一、平稳和弱相关时间序列1.平稳和非平稳时间序列平稳时间序列过程,就是概率分布在如下意义上跨时期稳定的时间序列过程:如果从这个序列中任取一个随机变量集,并把这个序列向前移动h 个时期,那么其联合概率分布仍然保持不变。

(1)平稳随机过程对于随机过程{ 1 2 }t x t =:,,…,如果对于每一个时间指标集121m t t t ≤<<⋅⋅⋅<和任意整数h≥1,()12m t t t x x x ⋅⋅⋅,,,的联合分布都与()12 m t h t h t h x x x ++⋅⋅⋅+,,,的联合分布相同,那么这个随机过程就是平稳的。

这种平稳经常称为严平稳,它是从概率分布的角度去定义的。

其含义之一是(取m=1和t 1=1):对所有t=2,3,…,x 1与x t 都有相同的分布。

序列{ 1 2 }t x t =:,,…是同分布的。

不平稳的随机过程称为非平稳过程。

因为平稳性是潜在随机过程而非其某单个实现的性质,所以很难判断所搜集到的数据是否由一个平稳过程生成。

但是,要指出某些序列不是平稳的却很容易。

(2)协方差平稳过程(宽平稳,弱平稳)对于一个具有有限二阶矩()2t E x ⎡⎤∞⎣⎦<的随机过程{ 1 2 }t x t =:,,…,若:(i)E(x t )为常数;(ii)Var(x t )为常数;(iii)对任何t,h≥1,Cov(x t ,x t+h )仅取决于h,而不取决于t,那它就是协方差平稳的。

协方差平稳只考虑随机过程的前两阶矩:这个过程的均值和方差不随着时间而变化,而且,x t 和x t+h 的协方差只取决于这两项之间的距离h,与起始时期t 的位置无关。

由此立即可知x t 与x t+h 之间的相关性也只取决于h。

如果一个平稳过程具有有限二阶矩,那么它一定是协方差平稳的,但反过来未必正确。

由于严平稳的条件比较苛刻,在实际中从概率分布的角度去验证是无法实现的,所以在实际运用中所指的平稳都是指宽平稳,即协方差平稳。

时间序列数据的平稳性检验

时间序列数据的平稳性检验

(对全部t)
▪ 方差 var( yt ) E( yt )2 2(对全部t)
▪ 协方差 k E[( yt )( ytk )](对全部t)
▪ 其中 k 即滞后k旳协方差[或自(身)协方差],yt 是
和 ytk ,也就是相隔k期旳两值之间旳协方差。
6
▪ 三、伪回归现象 ▪ 将一种随机游走变量(即非平稳数据)对另一种
14
▪ I (1)过程在金融、经济时间序列数据中是最普遍 旳,而I (0)则表达平稳时间序列。
▪ 从理论与应用旳角度,DF检验旳检验模型有如下
旳三个:
Yt (1 )Yt1 ut 即 Yt Yt1 ut
(5.7)
Yt 1 (1 )Yt1 ut 即 Yt 1 Yt1 ut
(5.8)
随机游走变量进行回归可能造成荒唐旳成果,老 式旳明显性检验将告知我们变量之间旳关系是不 存在旳。 ▪ 有时候时间序列旳高度有关仅仅是因为两者同步 随时间有向上或向下变动旳趋势,并没有真正旳 联络。这种情况就称为“伪回归”(Spurious Regression)。
7
第二节 平稳性检验旳详细措施
一、单位根检验 ▪ (一)单位根检验旳基本原理 ▪ David Dickey和Wayne Fuller旳单位根检验
34
▪ Johansen协整检验有两个检验统计量:
▪ ①迹检验统计量trace :
g
▪ trace=-T ln(1-ˆi),其中r为假设旳协整关系旳 i=r+1 个数,ˆi 为 旳第i个特征值旳估计值(下同)。 相应旳零假设是:H0:协整关系个数不不小于等
于r;被择Байду номын сангаас设:H1:协整关系个数不小于r。
yt yt-k+1yt-1+2yt-2+...k-1yt-(k-1)+ut (5.12)

第八章、非平稳时间序列分析

第八章、非平稳时间序列分析

第八章、非平稳时间序列分析很多时间序列表现出非平稳的特性:随机变量的数学期望和方差随时间的变化而变化。

宏观经济数据形成的时间序列中有很多是非平稳时间序列。

非平稳时间序列与平稳时间序列具有截然不同的特征,研究的方法也很不一样。

因此,在对时间序列建立模型时,必须首先进行平稳性检验,对于平稳时间序列,可采用第七章的方法进行分析,对于非平稳时间序列,可以将采用差分方法得到平稳时间序列,然后采用平稳时间序列方法对差分数据进行研究,对于多个非平稳时间序列则可以采用协整方法对其关系进行研究。

8.1 随机游动和单位根8.1.1随机游动和单位根如果时间序列t y 满足模型t t t y y ε+=-1 (8.1)其中t ε为独立同分布的白噪声序列, ,2,1,)(2==t Var t σε,则称t y 为标准随机游动(standard random walk )。

随机游动表明,时间序列在t 处的值等于1-t 时的值加上一个新息。

如果将t y 看作一个质点在直线上的位置,当前位置为1-t y ,则下一个时刻质点将向那个方向运动、运动多少(t ε)是完全随机的,既与当前所处的位置无关(t ε与1-t y 不相关),也与以前的运动历史无关(t ε与 ,,32--t t y y 不相关),由质点的运动历史和当前位置不能得出下一步运动方向的任何信息。

这便是 “随机游动”的由来。

随机游动时间序列是典型的非平稳时间序列。

将(8.1)进行递归,可以得出010211y y y y t s s t t t t t t t +==++=+=∑-=----εεεε (8.2)。

如果初始值0y 已知,则可以计算出t y 的方差为2)(σt y Var t =。

由此看出随机游动在不同时点的方差与时间t 成正比,不是常数,因此随机游动是非平稳时间序列。

下图给出了随12机游动时间序列图:图8.1 随机游动时间序列图将随机游动(8.1)用滞后算子表示为t t y L ε=-)1( (8.3),滞后多项式为L L -=Φ1)(。

时间序列的平稳性及其检验

时间序列的平稳性及其检验
section data) ★时间序列数据是最常见,也是最常用到的数据。
⒉经典回归模型与数据的平稳性
❖ 经典回归分析暗含着一个重要假设:数据是平稳的。
❖ 数据非平稳,大样本下的统计推断基础——“一致 性”要求——被破怀。
❖ 经典回归分析的假设之一:解释变量X是非随机变 量
❖ 放宽该假设:X是随机变量,则需进一步要求: (1)X与随机扰动项 不相关∶Cov(X,)=0
表 9.1.1 一个纯随机序列与随机游走序列的检验
序号 Random1 自相关系数
Q LB
rk (k=0,1,…17)
Random2
rk
自相关系数
Q LB
(k=0,1,…17)
1 -0.031 K=0, 1.000 2 0.188 K=1, -0.051 3 0.108 K=2, -0.393 4 -0.455 K=3, -0.147 5 -0.426 K=4, 0.280 6 0.387 K=5, 0.187 7 -0.156 K=6, -0.363 8 0.204 K=7, -0.148 9 -0.340 K=8, 0.315 10 0.157 K=9, 0.194 11 0.228 K=10, -0.139 12 -0.315 K=11, -0.297 13 -0.377 K=12, 0.034 14 -0.056 K=13, 0.165 15 0.478 K=14, -0.105 16 0.244 K=15, -0.094 17 -0.215 K=16, 0.039 18 0.141 K=17, 0.027 19 0.236
0.059 3.679 4.216 6.300 7.297 11.332 12.058 15.646 17.153 18.010 22.414 22.481 24.288 25.162 26.036 26.240 26.381

平稳时间序列与非平稳时间序列的区别

平稳时间序列与非平稳时间序列的区别

平稳时间序列与非平稳时间序列的区别时间序列是统计学中一种重要的数据形式,用于研究随时间变化的现象。

在时间序列分析中,平稳性是一个关键概念。

平稳时间序列与非平稳时间序列在特征和性质上存在着显著的区别。

本文将讨论平稳时间序列与非平稳时间序列的定义、特征和分析方法。

一、平稳时间序列的定义及特征平稳时间序列是指其概率分布不随时间推移而发生改变的时间序列。

具体来说,对于平稳时间序列,它的均值、方差和自相关函数等统计特征在不同时刻保持不变。

平稳时间序列的特征可以总结为以下几点:1. 均值稳定性:平稳时间序列的均值在时间上保持不变。

2. 方差稳定性:平稳时间序列的方差在时间上保持不变。

3. 自相关性:平稳时间序列的自相关函数只依赖于时间的间隔,而不依赖于具体的时间点。

二、非平稳时间序列的定义及特征非平稳时间序列是指其概率分布随时间推移而发生改变的时间序列。

具体来说,非平稳时间序列的均值、方差和自相关函数等统计特征会随时间发生变化。

非平稳时间序列的特征可以总结为以下几点:1. 趋势性:非平稳时间序列存在明显的增长或下降趋势。

2. 季节性:非平稳时间序列可能会呈现出周期性的变动,如一年内的季节变化。

3. 自相关性的变化:非平稳时间序列的自相关函数不仅依赖于时间的间隔,还依赖于具体的时间点。

三、分析方法的区别针对平稳时间序列和非平稳时间序列,我们在分析方法上有不同的选择。

对于平稳时间序列,我们可以使用经典的时间序列分析方法,如自回归移动平均模型(ARMA)、自回归模型(AR)和移动平均模型(MA)等。

这些方法基于平稳性的假设,能够准确地对平稳时间序列进行建模和预测。

对于非平稳时间序列,由于其不具备平稳性,我们需要采取一些转换方法来处理。

常见的方法包括一阶差分、对数转换和季节性调整等。

此外,我们还可以使用更加复杂的模型,如自回归积分移动平均模型(ARIMA)、差分自回归移动平均模型(DARIMA)和趋势-季节性分解模型等。

时间序列分析知识点总结(1)

时间序列分析知识点总结(1)

一.时间序列分析的相关概念♦随机过程:若对于每一个特定的t ∈T ,X(t)是一个随机变量,则称这一族无穷多个随机变量{X(t),t ∈T}是一个随机过程。

♦纯随机过程:随机过程X(t)(t=1,2,…),如果是由一个不相关的随机变量序列构成的,即对于所有s ≠t ,随机变量X t 和X s 的协方差均为零,则称其为纯随机过程。

♦♦♦♦独立增量随机过程:任意两相邻时刻上的随机变量之差是相互独立的,则称其为独立增量随机过程。

二阶矩过程:若随机过程{X(t),t ∈T},对每个t ∈T ,X(t)的均值和方差存在,则称其为二阶矩过程。

正态过程:若{X(t)}的有限维分布都是正态分布,则称{X(t)}为正态随机过程。

平稳过程(严平稳):如果对于时间t 的任意n 个值t 1,t 2,…,t n 和任意实数 ,随机过程X(t)的n 维分布函数满足关系式F n (x 1,x 2,…,x n ; t 1,t 2,…,t n ) = F n (x 1,x 2,…,x n ; t 1+ε,t 2+ε,…,t n+ε),则称X(t)为平稳过程。

即是统计特性不随时间的平移而变化的过程。

♦宽平稳:若随机过程{X(t),t ∈T}的均值和协方差存在,且满足①EX t ∈a,∀t ∈T ;②E[X t+τ-a][X t -a]=R(τ),∀t,t+τ∈T ,则称{X(t),t ∈T}为宽平稳随机过程,R(τ)为X(t)的协方差函数。

♦非平稳随机过程:不具有平稳性的过程就是非平稳过程。

即序列均值或协方差与时间有关时,就可以认为是非平稳的。

♦♦自相关:指时间序列观察资料互相之间的依存关系。

动态性(记忆性):指系统现在的行为与其历史行为的相关性。

如果某输入对系统后继n 个时刻的行为都有影响,就说该系统具有n 阶动态性。

二.刻画时间序列统计特性的各种数字特征的定义、性质等♦均值函数其中,F t (x)为随机序列X t 的分布密度函数。

趋势图判断是否平稳的依据

趋势图判断是否平稳的依据

趋势图判断是否平稳的依据趋势图在统计分析中是一种常用的可视化工具,用于展示数据随时间的变化趋势。

对于观察一个时间序列是否平稳,趋势图是一种有用的分析方法。

判断一个时间序列是否平稳有以下几个依据:1. 趋势图的形态:通过观察趋势图的形态,可以初步判断时间序列是否具有明显的趋势。

对于平稳的时间序列,其趋势图呈现出围绕某个平均值上下波动的稳定形态,没有显著的上升或下降趋势。

2. 平均值的稳定性:在时间序列的趋势图中,可以关注其平均值的变化情况。

如果时间序列的平均值在不同时间段内呈现出相对稳定的水平,即没有出现明显的上升或下降趋势,可以初步认定该序列是平稳的。

3. 方差的稳定性:方差是衡量数据波动程度的指标,对于平稳的时间序列,其方差应该保持相对稳定的水平。

如果时间序列的方差随时间的变化出现明显的增长或减小趋势,可以认为该序列不是平稳的。

4. 自相关性:时间序列的自相关性反映了序列数据之间的相关程度,可以通过自相关图进行观察。

对于平稳的时间序列,自相关图中的相关系数应该在一个较小的范围内波动,不应该出现显著的上升或下降趋势。

5. 单位根检验:单位根检验是一种常用的统计方法,用于检测时间序列中是否存在单位根(非平稳性)。

通过单位根检验可以得到一个统计量,用于判断时间序列是否平稳。

常用的单位根检验包括DF检验、ADF检验等。

6. 季节性:对于具有明显季节性的时间序列,如果能够通过季节性调整方法将其转化为平稳序列,则可以认为该序列是平稳的。

例如,通过差分、季节性分解等方法可以消除时间序列中的季节性效应,得到一个平稳序列。

需要注意的是,以上的判断依据并不是绝对准确的,判断时间序列是否平稳是一个相对的过程,需要结合具体情况进行判断。

此外,平稳性并不是数据分析的唯一目标,有些时间序列在一定条件下具有一定的非平稳性并仍然有分析的价值。

因此,在实际应用中还需要结合具体分析目的来综合考虑。

时间序列的平稳非平稳协整格兰杰因果关系

时间序列的平稳非平稳协整格兰杰因果关系

时间序列的平稳、非平稳、协整、格兰杰因果关系步骤:先做单位根检验,看变量序列是否平稳序列,若平稳,可构造回归模型等经典计量经济学模型;若非平稳,进行差分,当进行到第i次差分时序列平稳,则服从i阶单整(注意趋势、截距不同情况选择,根据P值和原假设判定)。

若所有检验序列均服从同阶单整,可构造VAR模型,做协整检验(注意滞后期的选择),判断模型内部变量间是否存在协整关系,即是否存在长期均衡关系。

如果有,则可以构造VEC模型或者进行Granger因果检验,检验变量之间“谁引起谁变化”,即因果关系。

1.单位根检验是序列的平稳性检验,如果不检验序列的平稳性直接OLS容易导致伪回归。

常用的ADF检验包括三个模型方程。

在李子奈的《高级计量经济学》上有该方法的全部步骤,即从含趋势项、截距项的方程开始,若接受原假设,则对模型中的趋势项参数进行t 检验,若接受则进行对只含截距项的方程进行检验,若接受,则对一阶滞后项的系数参数进行t检验,若接受,则进行差分后再ADF检验;若拒绝,则序列为平稳序列。

2.当检验的数据是平稳的(即不存在单位根),要想进一步考察变量的因果联系,可以采用格兰杰因果检验,但要做格兰杰检验的前提是数据必须是平稳的,否则不能做。

3.当检验的数据是非平稳(即存在单位根),并且各个序列是同阶单整(协整检验的前提),想进一步确定变量之间是否存在协整关系,可以进行协整检验,协整检验主要有EG两步法和JJ检验:(1)EG两步法是基于回归残差的检验,可以通过建立OLS模型检验其残差平稳性;(2)JJ检验是基于回归系数的检验,前提是建立VAR模型(即模型符合ADL模式)。

4.当变量之间存在协整关系时,可以建立ECM进一步考察短期关系,Eviews这里还提供了一个Wald-Granger检验,但此时的格兰杰已经不是因果关系检验,而是变量外生性检验,请注意识别。

5.格兰杰检验只能用于平稳序列!这是格兰杰检验的前提,而其因果关系并非我们通常理解的因与果的关系,而是说x的前期变化能有效地解释y的变化,所以称其为“格兰杰原因”。

时序预测中常见的数据预处理方法(十)

时序预测中常见的数据预处理方法(十)

时序预测中常见的数据预处理方法一、数据采集与清洗在进行时序预测之前,首先需要进行数据的采集和清洗。

数据的采集可以通过传感器、数据库或者网络爬虫等方式获取。

采集到的数据可能存在缺失、异常值或者重复值等问题,因此需要进行数据清洗。

常见的数据清洗方法包括删除缺失值、填充缺失值、剔除异常值和去重等操作。

二、时间序列的平稳性处理时间序列数据常常会出现非平稳性,这会给预测模型的建立带来一定的困难。

因此,需要对时间序列数据进行平稳性处理。

常见的平稳性处理方法包括差分和对数变换。

差分可以将非平稳序列转化为平稳序列,对数变换可以消除数据的异方差性。

三、数据的标准化标准化是一种常见的数据预处理方法,它可以将不同维度的数据转化为相同的尺度,有利于模型的建立和训练。

常见的标准化方法包括Z-score标准化和Min-Max标准化。

Z-score标准化可以将数据转化为均值为0,标准差为1的分布,Min-Max标准化可以将数据缩放到指定的范围内。

四、数据的降维处理在进行时序预测时,数据往往具有高维特征,这会给模型的建立和训练带来一定的困难。

因此,需要对数据进行降维处理。

常见的降维方法包括主成分分析(PCA)和线性判别分析(LDA)。

PCA可以将高维数据转化为低维数据,LDA可以将数据投影到一个更适合分类的子空间。

五、滑动窗口法在进行时序预测时,常常需要将时间序列数据划分为训练集和测试集。

滑动窗口法是一种常见的数据预处理方法,它可以将时间序列数据按照固定的窗口大小进行划分。

这样可以保证训练集和测试集之间的时间连续性,有利于模型的建立和预测效果的评估。

六、序列化处理对于时间序列数据,常常需要进行序列化处理。

序列化可以将时间序列数据转化为适合模型输入的形式。

常见的序列化方法包括滑动窗口序列化和序列填充。

滑动窗口序列化可以将时间序列数据转化为固定长度的子序列,序列填充可以将不定长的序列填充为固定长度。

七、特征工程特征工程是时序预测中非常重要的一环,它可以通过特征提取、特征选择和特征变换等方式对原始数据进行加工。

单位根检验的原理

单位根检验的原理

单位根检验的原理单位根检验是时间序列分析中常用的一种方法,它主要用于检验一个序列是否是平稳的。

在实际应用中,我们经常需要对时间序列数据进行分析,以了解其规律性和特点。

而单位根检验就是其中的一种重要方法,下面我们将详细介绍单位根检验的原理及其应用。

首先,我们需要了解单位根的概念。

在时间序列分析中,如果一个序列存在单位根,那么它就是非平稳的。

而非平稳的序列在进行建模和预测时会带来很多问题,因此单位根检验就显得尤为重要。

接下来,我们来介绍单位根检验的原理。

单位根检验的原理是基于单位根过程的特性来进行的。

单位根过程是指一个时间序列的特性,它的平稳性与非平稳性之间存在某种联系。

单位根检验的原理是通过对序列进行单位根检验,来判断序列的平稳性。

在实际操作中,我们常用的单位根检验方法有ADF检验、PP检验等。

ADF检验是最常用的单位根检验方法之一。

它的原理是对原始序列进行单位根检验,如果序列存在单位根,则拒绝原假设,认为序列是非平稳的;反之,如果序列不存在单位根,则接受原假设,认为序列是平稳的。

PP检验也是一种常用的单位根检验方法,它与ADF检验类似,都是用来判断序列的平稳性。

在实际应用中,单位根检验通常是时间序列分析的第一步。

通过单位根检验,我们可以判断一个序列是否是平稳的,从而为后续的建模和预测提供依据。

另外,单位根检验还可以用于多变量时间序列的分析,例如协整关系的检验等。

总之,单位根检验是时间序列分析中非常重要的一部分,它主要用于判断一个序列是否是平稳的。

通过对序列进行单位根检验,我们可以更好地了解序列的特性,为后续的分析和应用提供依据。

因此,掌握单位根检验的原理及其应用是非常重要的。

希望本文能够对您有所帮助,谢谢阅读!。

时间序列分析实验平稳性

时间序列分析实验平稳性

时间序列数据(一)平稳性检验实验指导一、实验目的:理解经济时间序列存在的不平稳性,掌握对时间序列平稳性检验的步骤和各种方法,认识利用不平稳的序列进行建模所造成的影响。

二、基本概念:如果一个随机过程的均值和方差在时间过程上都是常数,并且在任何两时期的协方差值仅依赖于该两个时期间的间隔,而不依赖于计算这个协方差的实际时间,就称它是宽平稳的。

时序图ADF检验PP检验三、实验内容及要求:1、实验内容:用Eviews5.1来分析1964年到1999年中国纱产量的时间序列,主要内容:(1)、通过时序图看时间序列的平稳性,这个方法很直观,但比较粗糙;(2)、通过计算序列的自相关和偏自相关系数,根据平稳时间序列的性质观察其平稳性;(3)、进行纯随机性检验;(4)、平稳性的ADF检验;(5)、平稳性的pp检验。

2、实验要求:(1)理解不平稳的含义和影响;(2)熟悉对序列平稳化处理的各种方法;(2)对相应过程会熟练软件操作,对软件分析结果进行分析。

四、实验指导(1)、绘制时间序列图时序图可以大致看出序列的平稳性,平稳序列的时序图应该显示出序列始终围绕一个常数值波动,且波动的范围不大。

如果观察序列的时序图显示出该序列有明显的趋势或周期,那它通常不是平稳序列,现以1964-1999年中国纱年产量序列(单位:万吨)来说明。

在EVIEWS中建立工作文件,在“Workfile structure type”栏中选择“Dated-regular frequency”,在右边的“Datespecification”中输入起始年1964,终止年1999,点击ok则建立了工作文件。

找到中国纱年产量序列的excel文件并导入命名该序列为sha,见图1-2。

图1-1 建立工作文件图1-2创建新序列SHA,如图1-2。

点击主菜单Quick/Graph就可作图,见图1-3,分别是折线图(Line graph)、条形图(Bar graph)、散点图(Scatter)等,也可双击序列名,出现显示电子表格的序列观测值,然后点击工具栏的View/Graph。

时间序列的平稳、非平稳、协整、格兰杰因果关系

时间序列的平稳、非平稳、协整、格兰杰因果关系

时间序列的平稳、非平稳、协整、格兰杰因果关系步骤:先做单位根检验,看变量序列是否平稳序列,若平稳,可构造回归模型等经典计量经济学模型;若非平稳,进行差分,当进行到第i次差分时序列平稳,则服从i阶单整(注意趋势、截距不同情况选择,根据P值和原假设判定)。

若所有检验序列均服从同阶单整,可构造VAR模型,做协整检验(注意滞后期的选择),判断模型内部变量间是否存在协整关系,即是否存在长期均衡关系。

如果有,则可以构造VEC模型或者进行Granger因果检验,检验变量之间“谁引起谁变化”,即因果关系。

1.单位根检验是序列的平稳性检验,如果不检验序列的平稳性直接OLS容易导致伪回归。

常用的ADF检验包括三个模型方程。

在李子奈的《高级计量经济学》上有该方法的全部步骤,即从含趋势项、截距项的方程开始,若接受原假设,则对模型中的趋势项参数进行t 检验,若接受则进行对只含截距项的方程进行检验,若接受,则对一阶滞后项的系数参数进行t检验,若接受,则进行差分后再ADF检验;若拒绝,则序列为平稳序列。

2.当检验的数据是平稳的(即不存在单位根),要想进一步考察变量的因果联系,可以采用格兰杰因果检验,但要做格兰杰检验的前提是数据必须是平稳的,否则不能做。

3.当检验的数据是非平稳(即存在单位根),并且各个序列是同阶单整(协整检验的前提),想进一步确定变量之间是否存在协整关系,可以进行协整检验,协整检验主要有EG两步法和JJ检验:(1)EG两步法是基于回归残差的检验,可以通过建立OLS模型检验其残差平稳性;(2)JJ检验是基于回归系数的检验,前提是建立VAR模型(即模型符合ADL模式)。

4.当变量之间存在协整关系时,可以建立ECM进一步考察短期关系,Eviews这里还提供了一个Wald-Granger检验,但此时的格兰杰已经不是因果关系检验,而是变量外生性检验,请注意识别。

5.格兰杰检验只能用于平稳序列!这是格兰杰检验的前提,而其因果关系并非我们通常理解的因与果的关系,而是说x的前期变化能有效地解释y的变化,所以称其为“格兰杰原因”。

时间序列、动态计量与非平稳性

时间序列、动态计量与非平稳性

时间序列、动态计量与非平稳性时间序列分析是一种统计学方法,用于处理按时间顺序排列的数据。

时间序列数据通常包含某个特定经济指标、社会现象或其他变量在不同时间点上的观测值。

时间序列通常具有趋势、季节性和随机性等特征,因此需要通过时间序列分析方法来进行预测和解释。

动态计量是时间序列分析的一个重要分支,它主要关注变量之间的相互关系和变动。

动态计量方法通常使用回归模型或协整模型来分析变量之间的长期关系和短期关系。

回归模型可以用来预测一个变量的值,而协整模型则可以用来分析两个或更多变量之间的长期稳定关系。

非平稳性是时间序列分析中的一个重要概念,它指的是数据在时间上的变动趋势不稳定,并且呈现出明显的趋势或季节性等特征。

非平稳性数据在进行分析时,可能会出现错误的预测结果或误导性的统计推断。

因此,在进行时间序列分析之前,需要首先对数据进行平稳性检验和处理,以确保分析结果的准确性和有效性。

在时间序列分析中,常用的方法包括移动平均法、指数平滑法、ARIMA模型等。

移动平均法是一种通过计算一定时间段内观测值的平均值来平滑数据的方法,它可以减少随机因素对数据的影响,揭示数据的长期趋势。

指数平滑法是一种通过赋予不同权重来平滑数据的方法,它可以更好地反映近期观测值对数据的影响。

ARIMA模型是一种结合自回归(AR)和滑动平均(MA)的模型,它可以描述时间序列数据中的长期趋势、季节性和随机性。

在动态计量中,常用的方法包括向量自回归(VAR)模型和向量错误修正模型(VECM)。

VAR模型是一种多变量时间序列模型,它可以同时分析多个变量之间的长期关系和短期关系。

VECM模型是在VAR模型的基础上引入了协整关系,它可以分析不同变量之间的长期稳定关系。

最后,为了解决非平稳性问题,常用的方法包括差分法和单位根检验。

差分法是一种通过对数据进行差分来消除非平稳性的方法,它可以将非平稳序列转化为平稳序列。

单位根检验是一种用来判断数据是否具有单位根(非平稳性)的方法,常用的单位根检验方法包括ADF检验和PP检验。

平稳序列和非平稳序列

平稳序列和非平稳序列

平稳序列和非平稳序列
平稳序列和非平稳序列是时间序列分析中经常遇到的两种类型。

平稳序列指的是在时间轴上,变量的平均值和方差保持不变的序列,也就是说,序列的统计性质在时间上是不随时间变化而发生改变的。

而非平稳序列则是指在时间轴上,变量的平均值和方差发生明显的变化的序列,也就是说,序列的统计性质在时间上是随时间变化而发生改变的。

对于平稳序列,我们可以使用一些基于平稳假设的统计方法来进行分析和预测,例如自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)等等。

这些方法基于序列的平稳性假设,可以用来捕
捉序列中的周期性和趋势性信息。

而对于非平稳序列,我们需要进行一些处理,才能使用这些基于平稳假设的方法来进行分析和预测。

一种处理方法是对序列进行差分,即对序列每个时间点上的数值与前一个时间点上的数值做差,从而得到一个新的序列。

如果得到的新序列是平稳序列,则可以使用基于平稳假设的方法进行分析和预测。

另一种处理方法是使用基于非平稳假设的方法,例如趋势线性回归模型、季节性模型、指数平滑模型等等,来对序列进行分析和预测。

总之,在时间序列分析中,平稳序列和非平稳序列都是非常重要的,需要根据实际情况选择不同的处理方法。

- 1 -。

平稳性和非平稳时间序列分析

平稳性和非平稳时间序列分析
22
β1 + β 3 Xt 如果我们作下列变换 ecmt = Yt − 1− β2 α = β2 − 1 ,那么模型变为:

∆Yt = β 0 + β1∆X t + αecmt −1 + ε t
误差修正模型的自动调整机制类似于适应性预 期模型。如果误差修正项的系数 α 在统计上 是显著的,它将告诉我们 Y 在一个时期里的失 衡,有多大一个比例部分可在下一期得到纠正。 或者更应该说“失衡”对下一期 水平变化的 Y 影响的大小)。
6
1、基本的DF检验方法 (1)检验时间序列{ Yt }是否属于最基本的 单位根过程,也就是随机游走过程 Yt = Yt −1 + ε t ,其中 ε t 为白噪声过程。 (2)检验思路 首先 Yt 服从如下的自回归模型 Yt = δYt −1 + ε t
7
如果其中 δ = 1 ,或者变换成如下的回归 模型 ∆Yt = λYt −1 + ε t 中的 λ = 0 ,那么时间序列{ Yt }就是最基 本的单位根过程 Yt = Yt −1 + ε t ,肯定是非平 稳的。 对上述差分模型中的显著性检验,就是 检验时间序列是否存在上述单位根问题。
25
ˆ 3、把 ut −1 作为误差修正项,代入前述ECM 模型。因为 Yt 和 X t 有协整关系,ECM模 型各项都平稳,因此可直接用OLS法估计 参数。最后再进行相关检验和进行应用 分析等。
26
15
四、时间序列的协积性 (一)定义 如果一组时间序列都 X 1 ,L, X n 是同阶单积 的( I (d ) ),并且存在向量 ( β1 ,L, β n ) 使加权组合 β1 X 1 + L + β n X n 为平稳序列 (I (0)),则称这组时间序列为“协积的 协积的” 协积的 (Cointegrated),其中 ( β1 ,L, β n ) 称为 “协积向量”。

平稳性和非平稳时间序列分析

平稳性和非平稳时间序列分析

28
随机游走一直围绕最初出发点为中心前后左右移动,但随着游走 时间次数增加,围绕最初出发点的来回的距离(方差)越来越远。
29

随机游走模型。 它最早于1905年7月由卡尔〃皮尔逊(Karl Pearson)在 《自然》杂志上作为一个问题提出: 假如有一个醉汉醉得非常严重,完全丧失方向感,把他放 在荒郊野外,一段时间之后再去找他,在什么地方找到他 的概率最大呢?

奖级
中奖条件 红球 蓝球
说明
单注奖金
一等奖
●●● ●●●

当奖池资金低于 1亿元时,奖金 总额为当期高等 选6+1中6+1 奖奖金的70%与 奖池中累积的奖 金之和。
---------时间序列的动态特性 时间序列模型:时间序列各观测值之间的关系。
从系统的观点来看,某一时刻进入系统的输入 对系统后继行为的影响
与t无关,与 有关的有限值
60
ARMA(p,q)模型的平稳性条件

宽平稳时间序列(week stationary)—指序列的 统计性质只要保证序列的二阶矩平稳就能保证序 列的主要性质近似稳定。
5
时间序列的平稳性定义
如果在任取时间 t 、 s 和 k 时,时间序列 X t 满足如下三个条件:
EXt2
EX t
E( X t t )( X s s ) E( X k k )( X k st k st )
t 1 j t j

类似
阶数增加,越来越复杂!
53
一般情况?
cov( zt , zt ) E zt mt zt mt E zt zt
E (at 1at 1 j at j )(at 1at 1 j at j )

理解:时间序列的平稳性

理解:时间序列的平稳性

理解:时间序列的平稳性为什么要平稳?原因⼀:时间序列数据的数据结构与传统的统计数据结构不同。

最⼤的区别在于,传统随机变量可以得到多个观测值(⽐如骰⼦点数,可以反复掷得到多个观测值,忽略时间的差异)。

⽽时间序列数据中,每个随机变量只有⼀个观测值(⽐如设收盘价为研究的随机变量,每天只有⼀个收盘价,不同⽇⼦的价格服从的分布不同,即考虑时间的差异)。

这样⼀来,每个分布只能得到⼀个观测值,数⽬太少,⽆法研究分布的性质。

但是通过平稳性,从不同⽇期的分布之间发现内在关联,缓解了由于样本容量少导致的估计精度低的问题。

原因⼆:研究时间序列的最终⽬的是,预测未来。

但是未来是不可知的,我们拥有的数据都是历史,因此只能⽤历史数据来预测未来。

但是,如果过去的数据与未来的数据没有某种“相似度”,那这种预测就毫⽆道理了。

平稳性就是保证这种过去与未来的相似性,如果数据是平稳的,那么可以认为过去的数据表现出的某些性质,未来也会表现。

什么是严平稳?对于⼀个时间序列{X t},其中每个数据X都是随机变量,都有其的分布(如图)。

取其中连续的m个数据,X1到X m,则可以构成⼀个m维的随机向量,(X1,X2,...,X m)由于单独的每个随机变量X都有各⾃的分布,那么组合成⼀个m维随机向量后,这个多维向量整体就有⼀个“联合分布”。

严平稳的本质就是,这种联合分布不随着时间的推移⽽变化。

也就是说,取数据时,任意连续取出的m个数据(⽆论是从X1取到X m,还是从X t取到X t+m),他们组成的多维向量的联合分布都是相同的。

此时,再放宽⼀个条件,让这个m的取值也任意。

即⽆论这取数据的窗⼝设定为多宽,只要连续取相同数⽬个数据,他们构成的联合分布都是相同的。

⽐如,(X1,X2,X3)与(X6,X7,X8)有相同的3维联合分布,(X1,X2,X3,X4)与(X6,X7,X8,X9)有相同的4维联合分布。

综上,符合上述性质的时间序列,是严平稳的。

有了严平稳为什么还要有宽平稳?很多情况下,我们⽆从得知这些随机变量的分布到底是什么样⼦。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时间序列分析中的平稳性与非平稳性时间序列分析是一种用来研究时间数据的统计方法,它可以揭示出时间序列数据的模式和趋势,并预测未来的发展。

在进行时间序列分析时,我们经常会遇到平稳性和非平稳性的问题,本文将重点讨论这两个概念及其在时间序列分析中的重要性。

1. 什么是平稳性?
平稳性是指时间序列在统计特性上具有不变性,即其均值和方差不随时间的推移而发生改变。

具体而言,平稳时间序列的均值在时间维度上是稳定的,方差也不会随时间变化而增加或减小。

此外,平稳时间序列的自协方差只与时间间隔有关,而与特定时间点无关。

2. 平稳性的判断方法
为了判断一个时间序列是否具有平稳性,我们可以使用一些统计检验方法。

常见的方法有ADF检验(Augmented Dickey-Fuller test)、KPSS检验(Kwiatkowski-Phillips-Schmidt-Shin test)等。

ADF检验通常用于检验平稳性,其原假设是时间序列具有单位根(非平稳),如果检验结果拒绝了原假设,则可以得出时间序列是平稳的结论。

3. 非平稳性的表现形式
非平稳性的时间序列可能会呈现出明显的趋势、季节性或周期性变化。

趋势是时间序列长期的、持续的上升或下降,季节性是指时间序列在特定时间点上出现的周期性波动,周期性是指时间序列存在长期的、不规则的上升或下降。

4. 非平稳性的处理方法
如果时间序列是非平稳的,我们需要对其进行处理,以使其具备平稳性。

常见的处理方法有差分法、对数变换等。

差分法可以通过计算相邻时间点的差值来消除趋势和季节性,对数变换则可以通过对时间序列取对数来减少其波动性。

5. 平稳性的重要性
平稳性在时间序列分析中非常重要,具有以下几个方面的意义: - 简化模型:平稳时间序列的统计特性稳定,可以简化模型的建立和预测。

- 降低误差:平稳时间序列的随机误差具有恒定的方差,使得模型的预测更准确。

- 提高可靠性:基于平稳时间序列建立的模型具有更好的可靠性和稳定性,可以更好地应对未来的变化。

6. 平稳性与非平稳性的应用举例
在金融领域,平稳性与非平稳性的概念被广泛应用于股票价格、汇率波动等时间序列数据的分析和预测。

通过判断时间序列数据是否平稳,可以选择适当的模型和方法进行预测,从而帮助投资者做出更明智的决策。

总结:
时间序列分析中的平稳性与非平稳性是非常重要的概念。

平稳性意味着时间序列的均值和方差不随时间变化,非平稳性则可能呈现出明显的趋势、季节性或周期性变化。

通过合适的统计检验方法,我们可以判断时间序列是否具有平稳性,并针对非平稳性采取相应的处理方法。

平稳性在时间序列分析中具有简化模型、降低误差和提高可靠性等重要作用,对于准确预测和决策的实现具有重要意义。

在实际应用中,平稳性与非平稳性的概念被广泛应用于金融领域等许多领域的数据分析与预测中。

相关文档
最新文档