初中数学竞赛:数论的方法技巧(含例题练习及答案)
数学竞赛中的数论问题题型全
数学竞赛中的数论问题定理4 ,a b 是两个不同时为0的整数,若00ax by +是形如ax by +(,x y 是任意整数)的数中的最小正数,则(1)00ax by +|ax by +;(2)00ax by +(),a b =.证明 (1)由带余除法有()00ax by ax by q r +=++,000r ax by ≤<+, 得 ()()0000r a x qx x b y qy ax by =-+-<+,知r 也是形如ax by +的非负数,但00ax by +是形如ax by +的数中的最小正数,故0r =,即00ax by +|ax by +. (2)由(1)有00ax by +|10a b a +=,00ax by +|01a b b +=,得00ax by +是,a b 的公约数.另一方面,,a b 的每一个公约数都可以整除00ax by +,所以00ax by +是,a b 的最大公约数,00ax by +(),a b =.推论 若(),1a b =,则存在整数,s t ,使1as bt +=.(很有用)定理5 互素的简单性质: (1)()1,1a =.(2)(),11n n +=.(3)()21,211n n -+=. (4)若p 是一个素数,a 是任意一个整数,且a 不能被p 整除,则(),1a p =. 推论 若p 是一个素数,a 是任意一个整数,则(),1a p =或(),a p p =. (6)若()(),1,,1a b a c ==,则(),1a bc =.证明 由(),1a b =知存在整数,s t ,使1as bt +=.有 ()a cs bct c +=,得 ()(),,1a bc a c ==. (7)若(),1a b =,则(),1a b a ±=,(),1a b b ±=, (),1a b ab ±=.证明 ()()(),,,1a b a b a b a ±=±==,()(),,1a b b a b ±==,由(6)(),1a b ab ±=. (8)若(),1a b =,则(),1m n a b =,其中,m n 为正整数.证明 据(6),由(),1a b =可得(),1ma b =.同样,由(),1ma b =可得(),1m n a b =.定理7 素数有无穷多个,2是唯一的偶素数. 证明 假设素数只有有限多个,记为12,,,n p p p ,作一个新数 1211n p p p p =+>.若p 为素数,则与素数只有 n 个12,,,n p p p 矛盾.若p 为合数,则必有{}12,,,i n p p p p ∈,使|i p p ,从而|1i p ,又与1i p >矛盾.综上所述,素数不能只有有限多个,所以素数有无穷多个. 2是素数,而大于2的偶数都是合数,所以2是唯一的偶素数.注:这个证明中,包含着数学归纳法的早期因素:若假设有n 个素数,便有1n +个素数.(构造法、反证法)定理8(整除的性质)整数,,a b c 通常指非零整数 (1)1a ,1|a -;当0a ≠时,|a a ,|0a .(2)若b a ,0a ≠,则b a ≤;若b a ,b a >,则0a =;若0ab >,且,b a a b ,则a b =.证明 由b a ,0a ≠,有a bq =,得a b q b =≥.逆反命题成立“若b a ,b a >,则0a =”; 由b a ≤且b a ≥得a b =,又0ab >,得a b =. (7)若(),1a b =,且a bc ,则a c .证明 由(),1a b =知存在整数,s t ,使1as bt +=,有()()a cs bc t c +=, 因为a a ,a bc ,所以a 整除等式的左边,进而整除等式的右边,即a c .(8)若(),1a b =,且,a c b c ,则ab c .证明 由(),1a b =知存在整数,s t ,使1as bt +=,有acs bct c +=,又由,a c b c 有12,c aq c bq ==代入得()()21ab q s ab q t c +=,所以ab c .注意 不能由a c 且b c 得出ab c .如不能由630且10|30得出60|30. (9)若a 为素数,且a bc ,则a b 或a c .证明 若不然,则|a b /且|a c /,由a 为素数得()(),1,,1a b a c ==,由互素的性质(6)得(),1a bc =,再由a 为素数得|a bc /,与a bc 矛盾.定义6 对于整数,,a b c ,且0c ≠,若()c a b -,则称,a b 关于模c 同余,记作(mod )a b c ≡;若()|c a b -/,则称,a b 关于模c 不同余,记作a(mod )b c .定理9(同余的性质)设,,,,a b c d m 为整数,0,m >若(mod )a b m ≡且(mod )c d m ≡,则(mod )a c b d m +≡+且(mod )ac bd m ≡.证明 由(mod )a b m ≡且(mod )c d m ≡,有12,a b mq c d mq -=-=, ① 对①直接相加 ,有()()()12a c b d m q q +-+=+,得 (mod )a c b d m +≡+.对①分别乘以,c b 后相加,有()()()12ac bd ac bc bc bd m cq bq -=---=+,得 (mod )ac bd m ≡. (3)若(mod )a b m ≡,则对任意的正整数n 有(mod )nna b m =且(mod )an bn mn ≡.(4)若(mod )a b m ≡,且对非零整数k 有(,,)k a b m ,则mod a b m k k k ⎛⎫= ⎪⎝⎭. 证明 由(mod )a b m ≡、,有 a b mq =+,又(,,)k a b m ,有,,a b mk k k均为整数,且 a b mq k k k=+,得 mod a b m k k k ⎛⎫≡ ⎪⎝⎭.定理10 设,a b 为整数,n 为正整数, (1)若a b ≠,则()()nna b a b--.()()123221n n n n n n n a b a b a a b a b ab b ------=-+++++.(2)若a b ≠-,则()()2121n n a b ab --++.()()212122232422322n n n n n n n a b a b a a b a b ab b -------+=+-+--+.(3)若a b ≠-,则()()22nn a b ab +-.()()2221222322221n n n n n n n a b a b a a b a b ab b ------=+-+-+-.定义7 设n 为正整数,k 为大于2的正整数, 12,,,m a a a 是小于k 的非负整数,且10a >.若12121m m m m n a ka k a k a ---=++++,则称数12m a a a 为n 的k 进制表示.定理11 给定整数2k ≥,对任意的正整数n ,都有唯一的k 进制表示.如12121101010m m m m n a a a a ---=++++,109,0i a a ≤≤>(10进制) 12121222m m m m n a a a a ---=++++.101,0i a a ≤≤>(2进制)定理12 (算术基本定理)每个大于1的正整数都可分解为素数的乘积,而且不计因数的顺序时,这种表示是唯一的1212k k n p p p ααα=,其中12k p p p <<<为素数,12,,,k ααα为正整数. (分解唯一性) 定理13 若正整数n 的素数分解式为 1212k k n p p p ααα=则n 的正约数的个数为()()()()12111k d n a a a =+++,n 的一切正约数之和为 ()121111212111111k k k p p p S n p p p ααα+++---=⋅⋅⋅---. 证明 对于正整数1212k k n p p p ααα=,它的任意一个正约数可以表示为1212k k m p p p βββ=,0i i βα≤≤ , ①由于i β有0,1,2,,i α共1i α+种取值,据乘法原理得n 的约数的个数为()()()()12111k d n a a a =+++.考虑乘积()()()12010101111222k kk k p p p p p p pp p ααα+++++++++,展开式的每一项都是n 的某一个约数(参见①),反之,n 的每一个约数都是展开式的某一项,于是,n 的一切约数之和为()()()11101111kk kS n p p p pp p αα=++++++121111212111111k k k p p p p p p ααα+++---=⋅⋅⋅---. 注 构造法.定义8 (高斯函数)对任意实数x ,[]x 是不超过x 的最大整数.亦称[]x 为x 的整数部分,[][]1x x x ≤<+. 定理14 在正整数!n 的素因子分解式中,素数p 作为因子出现的次数是 23n n n p p p ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.证明 由于p 为素数,故在!n 中p 的次方数是1,2,,n 各数中p 的次方数的总和(注意,若p 不为素数,这句话不成立).在1,2,,n 中,有n p ⎡⎤⎢⎥⎣⎦个p 的倍数;在n p ⎡⎤⎢⎥⎣⎦个p 的倍数的因式中,有2n p ⎡⎤⎢⎥⎣⎦个2p 的倍数;在2n p ⎡⎤⎢⎥⎣⎦个2p 的倍数的因式中,有3n p ⎡⎤⎢⎥⎣⎦个3p 的倍数;…,如此下去,在正整数!n 的素因子分解式中,素数p 作为因子出现的次数就为23n n n p p p ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.注 省略号其实是有限项之和.定理15 (费玛小定理)如果素数p 不能整除整数a ,则()11p p a--.证明2 改证等价命题:如果素数p 不能整除整数a ,则()mod pa a p ≡. 只需对1,2,,1a p =-证明成立,用数学归纳法.(1)1a =,命题显然成立.(2)假设命题对()11a k k p =≤<-成立,则当1a k =+时,由于()|1,2,,1ip p C i p =-,故有()11111ppp p p p k k C kC k --+=++++ ()11mod p k k p ≡+≡+.(用了归纳假设) 这表明,命题对1a k =+是成立. 由数学归纳法得()mod pa a p ≡.又素数p 不能整除整数a ,有(),1a p =,得()11p p a--.定义9 (欧拉函数)用()n ϕ表示不大于n 且与n 互素的正整数个数. 定理16 设正整数1212k k n p p p ααα=,则 ()12111111k n n p p p ϕ⎛⎫⎛⎫⎛⎫=--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭.推论 对素数p 有()()11,p p p pp αααϕϕ-=-=-..第二讲 数论题的范例讲解(12)()()()()()()22220mod 4,211mod 4,211mod8n n n ≡-≡-≡. (13)任何整数都可以表示为()221m n k =-. 例1-1(1986,英国)设127,,,a a a 是整数,127,,,b b b 是它们的一个排列,证明()()()112277a b a b a b ---是偶数.(127,,,a a a 中奇数与偶数个数不等)例1-2 π的前24位数字为 3.14159265358979323846264π=,记1224,,,a a a 为该24个数字的任一排列,求证()()()12342324a a a a a a ---必为偶数.(暗藏3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,6,4中奇数与偶数个数不等) 例2 能否从1,2,,15中选出10个数填入图的圆圈中,使得每两个有线相连的圈中的数相减(大数减小数),所得的14个差恰好为1,2,,14?解 考虑14个差的和S ,一方面1214105S =+++=为奇数.另一方面,每两个数,a b 的差与其和有相同的奇偶性 (mod2)a b a b -≡+,因此,14个差的和S 的奇偶性与14个相应数之和的和/S 的奇偶性相同,由于图中的每一个数a 与2个或4个圈中的数相加,对/S 的贡献为2a 或4a ,从而/S 为偶数,这与S 为奇数矛盾,所以不能按要求给图中的圆圈填数.评析:用了计算两次的技巧.对同一数学对象,当用两种不同的方式将整体分为部分时,则按两种不同方式所求得的总和应是相等的,这叫计算两次原理成富比尼原理.计算两次可以建立左右两边关系不太明显的恒等式.在反证法中,计算两次又可用来构成矛盾.例3 有一大筐苹果和梨分成若干堆,如果你一定可以找到这样的两堆,其苹果数之和与梨数之和都是偶数,问最少要把这些苹果和梨分成几堆?解 (1)4堆是不能保证的.如4堆的奇偶性为:(反例) (奇奇),(偶偶),(奇偶),(偶奇).(2)5堆是可以保证. 因为苹果和梨数的奇偶性有且只有上述4种可能,当把这些苹果和梨分成5堆时,必有2堆属于同一奇偶性,其和苹果数与梨数都是偶数.例4 有n 个数121,,,,n n x x x x -,它们中的每一个要么是1,要么是1-.若1223110n nn x x x x x x x x -+++++=,求证4|n . 证明 由{}1,1i x ∈-,有{}11,1i i x x +∈-,再由1223110n n n x x x x x x x x -+++++=,知n 个1i i x x +中有一半是1,有一半是1-,n 必为偶数,设2n k =.现把n 个1i i x x +相乘,有2222122311121(1)(1)1k kn n n n n x x x x x x x x x x x x ---+===,可见,k 为偶数,设2k m =,有4n m =,得证4|n .例6 在数轴上给定两点1,在区间内任取n 个点,在此2n +个点中,每相邻两点连一线段,可得1n +条互不重叠的线段,证明在此1n +条线段中,以一个有理点和一个无理点为端点的线段恰有奇数条.证明 将2n +个点按从小到大的顺序记为122,,,n A A A +…,并在每一点赋予数值i a ,使1, 1,i i i A a A ⎧=⎨-⎩当为有理数点时, 当为无理数点时.与此同时,每条线段1i i A A +也可数字化为1i i a a +(乘法) 1111,, 1,,i i i i i i A A a a A A +++-⎧=⎨⎩ 当一为有理数点,另一为无理数时, 当同为有理数点或无理数点时,记11i i a a +=-的线段有k 条,一方面112233412()()()()(1)(1)(1)k n k k n n a a a a a a a a -+++=-+=-... 另一方面 12233412()()()()n n a a a a a a a a ++ (2)1231212()1n n n a a a a a a a -++===-…,得()11k-=-,故k 为奇数.评析 用了数字化、奇偶分析的技巧. 二、约数与倍数最大公约数与最小公倍数的求法. (1) 短除法.(2)分解质因数法.设1212,0,1,2,,k k i a p p p i k αααα=≥=,1212,0,1,2,,k k i b p p p i k ββββ=≥=.记 {}{}min ,,max ,i i i i i i γαβδαβ==,则 ()1212,k k a b p p p γγγ=,[]1212,k k a b p p p δδδ=.(3)辗转相除法 ()()()()()121,,,,,0n n n n a b b r r r r r r r -======.例7 (1)求()8381,1015,[]8381,1015; (2)()144,180,108,[]144,180,108.解(1)方法1 分解质因数法.由283811729,10155729,=⨯=⨯⨯得()8381,101529=,[]28381,1015571729293335=⨯⨯⨯=. 方法2 辗转相除法.或 ()()()()()8381,1015261,1015261,23229,23229,029=====.[]()83811015838110158381,10158381352933358381,101529⨯⨯===⨯=.(2)方法1 短除法.由()22144,180,1082336=⨯=,得2144 180 108272 90 54336 30 27312 10 9 4 5 3[]43144,180,1082352160=⨯⨯=.方法2 分解质因数法.由42222314423,180235,10823,=⨯=⨯⨯=⨯,得 ()22144,180,1082336=⨯=,[]43144,180,1082352160=⨯⨯=.例8 正整数n 分别除以2,3,4,5,6,7,8,9,10得到的余数依次为1,2,3,4,5,6,7,8,9,则n 的最小值为 . 解 依题意,对最小的n ,则1n +是2,3,4,5,6,7,8,9,10的公倍数3212357n +=⨯⨯⨯,得2519n =. 例9 有两个容器,一个容量为27升,一个容量为15升,如何利用它们从一桶油中倒出6升油来? 解 相当于求不定方程15276x y +=的整数解.由()15,273=知,存在整数,u v ,使15273u v +=,可得一个解2,1u v ==-,从而方程 ()1542726⨯+⨯-=.即往小容器里倒2次油,每次倒满之后就向大容器里倒,大容器倒满时,小容器里剩有3升油;再重复一次,可得6升.例10 对每一个2n ≥,求证存在n 个互不相同的正整数12,,,n a a a ,使i j i j a a a a -+,对任意的{},1,2,,,i j n i j ∈≠成立.证明 用数学归纳法.当2n =时,取121,2a a ==,命题显然成立. 假设n k =时,命题成立,即存在12,,,k a a a ,使 i j i j a a a a -+,对任意的{},1,2,,,i j k i j ∈≠成立.现取b 为12,,,k a a a 及它们每两个数之差的最小公倍数,则1k +个数12,,,,k b a b a b a b +++满足 ()()()()()(),,t t ij i j a b b a b b a b a b a b a b ⎧+-++⎪⎨+-++++⎪⎩即命题对1n k =+时成立.由数学归纳法知命题对2n ≥成立.例11 ()111959,IMO -证明对任意正整数n ,分数214143n n ++不可约.证明1 (反证法)假若214143n n ++可约,则存在1d >, ①使 ()214,143n n d ++=,从而存在(),,,1p q p q =,使214, 143, n dp n dq +=⎧⎨+=⎩②③消去n ,()()3322⨯-⨯,得 ()132d q p =-, ④的 1d =. ⑤由(1)、(5)矛盾,得1d =. 解题分析:(1)去掉反证法的假设与矛盾就是一个正面证法.(2)式④是实质性的进展,表明 ()()131432214n n =+-+,可见 ()214,1431n n ++=.由此获得2个解法. 证明2 设()214,143n n d ++=.存在(),,,1p q p q =,使214, 143, n dp n dq +=⎧⎨+=⎩①② 消去n ,②×3-①×2,得()132d q p =- ③ 得 1d =.证明3 由()()131432214n n =+-+ 得 ()214,1431n n ++=.证明4 ()214,143n n ++ ()71,143n n =++ ④()71,1n =+ ⑤ 1=. 解题分析:第④ 相当于 ①-②;第⑤ 相当于②-2(①-②)=②×3-①×2;所以③式与⑤式的效果是一样的.例12 不存在这样的多项式 ()1110mm m m f n a n a na n a --=++++,使得对任意的正整数n ,()f n 都是素数.证明 假设存在这样的多项式,对任意的正整数n ,()f n 都是素数,则取正整数n b =,有素数p 使 ()1110mm m m f b a b a ba b a p --=++++=,进而对任意的整数,k 有 ()()()()1110mm m m f b kp a b kp a b kp a b kp a --+=+++++++()1110m m m m a b a b a b a Mp --=+++++(二项式定理展开)()1P M =+,其中M 为整数,这表明()f b kp +为合数.这一矛盾说明,不存在这样的多项式,对任意的正整数n ,()f n 都是素数.三、平方数若a 是整数,则2a 就叫做a 的完全平方数,简称平方数. 1.平方数的简单性质(1)平方数的个位数只有6个:0,1,4,5.6.9.(2)平方数的末两位数只有22个:00,01,21,41,61,81,04,24,44,64,84,25,16,36,56,76,96,09,29,49,69,89.(3)()()()()2220mod 4,211mod 4n n ≡-≡.(4)()()2211mod 8n -≡.(6)凡是不能被3整除的数,平方后被3除余1.(7)在两个相邻整数的平方数之间,不能再有平方数. (8)非零平方数的约数有奇数个.(9)直角三角形的三边均为整数时,我们把满足222a b c +=的整数(),,a b c 叫做勾股数.勾股数的公式为2222,2,,a m n b mn c m n ⎧=-⎪=⎨⎪=+⎩其中,m n 为正整数,(),1m n =且,m n 一奇一偶.这个公式可给出全部素勾股数.2.平方数的证明方法(1)反证法.(2)恒等变形法.(3)分解法.设a 为平方数,且a bc =,(),1b c =,则,b c 均为平方数. (4)约数法.证明该数有奇数个约数. 3.非平方数的判别方法(1)若()221n x n <<+,则x 不是平方数.(2)约数有偶数个的数不是平方数.(3)个位数为2,3,7,8的数不是平方数.(4)同余法:满足下式的数n 都不是平方数.()2mod3n ≡, ()23mod4n ≡或, ()23mod5n ≡或, ()23567mod8n ≡或或或或,()2378mod10n ≡或或或.(5)末两位数不是:00,01,21,41,61,81,04,24,44,64,84,25,16,36,56,76,96,09,29,49,69,89.如个位数与十位数都是都是奇数的数, 个位数是6、而十位数是偶数的数.例13 有100盏电灯,排成一横行,从左到右,我们给电灯编上号码1,2,…,99,100.每盏灯由一个拉线开关控制着.最初,电灯全是关着的.另外有100个学生,第一个学生走过来,把凡是号码为1的倍数的电灯的开关拉了一下;接着第2个学生走过来,把凡是号码为2的倍数的电灯的开关拉了一下;第3个学生走过来,把凡是号码为3的倍数的电灯的开关拉了一下,如此等等,最后那个学生走过来,把编号能被100整除的电灯的开关拉了一下,这样过去之后,问哪些灯是亮的?讲解 (1)直接统计100次拉线记录,会眼花缭乱.(2)拉电灯的开关有什么规律:电灯编号包含的正约数(学生)才能拉、不是正约数(学生)不能拉,有几个正约数就被拉几次.(3)灯被拉的次数与亮不亮(开、关)有什么关系:灯被拉奇数次的亮!(4)哪些数有奇数个约数:平方数. (5)1~100中有哪些平方数:共10个:1,4,9,16,25,36,49,64,81,100.答案:编号为1,4,9,16,25,36,49,64,81,100共10个灯还亮.例14 已知直角三角形的两条直角边分别为正整数,a b ,斜边为正整数c ,若a 为素数,求证()21a b ++为平方数.证明 由勾股定理222c a b =+,有 ()()2c b c b a +-=,但a 为素数,必有 2,1,c b a c b ⎧+=⎨-=⎩解得 ()2112b a =-,从而 ()()()22212121a b a a a ++=+-+=+,为平方数.例15 求证,任意3个连续正整数的积不是平方数.证明 设存在3个连续正整数1,,1n n n -+(1n >)的积为平方数,即存在整数m ,使 ()()211n n n m -+=,即 ()221n n m -=,但()21,1n n -=,故21,n n -均为平方数,有2221,,,n a n b m ab ⎧-=⎪=⎨⎪=⎩得 ()222211211n a n n n =-≥--=->,(注意1n >)这一矛盾说明,3个连续正整数的积不是平方数.四.整除整除的判别方法主要有7大类.1.定义法.证b a a bq ⇔=,有三种方式.(1)假设a qb r =+,然后证明0r =.(定理4)(2)具体找出q ,满足a bq =.(3)论证q 的存在. 例18 任意一个正整数m 与它的十进制表示中的所有数码之差能被9整除.证明 设1110101010n n n n m a a a a --=⨯+⨯++⨯+,其中09,0i n a a ≤≤≠,则()()()()110111121111101101101911111111,n n nn n n n n n n m a a a a a a a a a a a ------++++=-+-++-⎛⎫=⨯-+⨯++⨯+ ⎪⎝⎭个个按定义 ()1109n n m a a a a --++++.2.数的整除判别法.(1)任何整数都能被1整除.(2)如果一个整数的末位能被2或5整除,那么这个数就能被2或5整除. (3)如果一个整数的末两位能被4或25整除,那么这个数就能被4或25整除. (4)如果一个整数的末三位能被8或125整除,那么这个数就能被8或125整除. (5)如果一个整数各数位上的数字之和能被3或9整除,那么这个数就能被3或9整除.证明 由()()101mod3,101mod9≡≡,有()1110110101010mod3n n n n n n a a a a a a a a ---⨯+⨯++⨯+≡++++,()1011010mod9n n a a a a a a -++⨯+≡++++如果一个整数的末三位数与末三位数以前的数字所组成的数的差能被7或11或1210a a a ()13132101001n n a a a a a a a -⨯--,()13210132101001n n a a a a a a a a a a --⇔⨯-,13,而7,11,13均为素数知,m 能被7或11或13()11101a a ++⨯++-3.分解法.主要用乘法公式.如()()123221n n n n n n n a b a b a a b a b ab b ------=-+++++.()()212122232422322n n n n n n n a b a b a a b a b ab b -------+=+-+--+.()()2221222322221n n n n n n n a b a b a a b a b ab b ------=+-+-+-.例19 试证()()555129129++++++.证明 改证()55545129+++.设555129S =+++,则()()()()()()()()()555555555512344123418273645918273645999,S m m m m m m m m =++++++++=++++++++=++++得9S .又 ()()()()555555555192837465S =++++++++()()()()()5123441234192837465522225,m m m m m m m m =++++++++=++++得5S .但()9,51=,得45S ,即()()555129129++++++.例20 ()2111979,IMO -设p 与q 为正整数,满足111112313181319p q =-+--+,求证p 可被1979整除(1979p ) 证明111112313181319p q =-+--+ 1111111122313181319241318⎛⎫⎛⎫=+++++-+-+ ⎪ ⎪⎝⎭⎝⎭111111111231318131923659⎛⎫⎛⎫=+++++-++-+⎪ ⎪⎝⎭⎝⎭111166066113181319=++++6601319661131898999066013196611318989990+++=+++⨯⨯⨯ 19796606611319659!19791319!MM=⨯⨯⨯⨯=⨯得1979整除1319!p ,但1979为素数,()1979,1319!1=,得p 可被1979整除.例20-1 2009年9月9日的年、月、日组成“长长久久、永不分离”的吉祥数字20090909,而它也恰好是一个不能再分解的素数.若规定含素因子20090909的数为吉祥数,请证明最简分数111220090908m n =+++的分子m 是吉祥数.证明:由111220090908m n =+++1111111200909082200909071004545410045455200909092009090920090909120090908220090907100454541004545520090909,122009090720090908p⎛⎫⎛⎫⎛⎫=++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=+++⨯⨯⨯=⨯⨯⨯⨯⨯ 其中p 为正整数,有 20090909122009090720090908n p m ⨯⨯=⨯⨯⨯⨯⨯,这表明,20090909整除1220090907200909m ⨯⨯⨯⨯⨯,但20090909为素数,不能整除12200909072009⨯⨯⨯⨯,所以20090909整除m ,得m 是吉祥数.4. 余数分类法.例21 试证()()3121n n n ++.证明1 任何整数n 被3除其余数分为3类 3,31,32,n k n k n k k Z ==+=+∈,(1)3n k =时,有 ()()()()12133161,n n n k k k ++=++⎡⎤⎣⎦有()()3121n n n ++.(2)31n k =+时,有()()()()()1213313221,n n n k k k ++=+++⎡⎤⎣⎦ 有()()3121n n n ++.(3)32n k =+()()()()()121332165,n n n k k k ++=+++⎡⎤⎣⎦ 有()()3121n n n ++.综上得,()()3121n n n ++.证明 2 ()()()()222211214n n n n n n ++++=,得 ()()322221n n n ++,又()3,41=,得()()3121n n n ++.5.数学归纳法.6.反证法.7.构造法. 例22 k 个连续整数中必有一个能被k 整除. 证明 设k 个连续整数为,1,2,,1a a a a k +++-,若这k 个数被k 除没有一个余数为0,则这k 个数的余数只能取1,2,,1k -,共1k -种情况,必存在两个数,,0a i a j i j k ++<-< ,使 1,a i kq r +=+2,a j kq r +=+ 其中12q q ≠,相减 ()12i j k q q -=-,有 12i j k q q k -=-≥, 即 i j k -≥与i j k -<矛盾.故k 个连续整数中必有一个能被k 整除.也可以由()12i j k q q -=-得 ()120i j k q q k <-=-<,推出1201q q <-<,与12q q -为整数矛盾.例23 k 个连续整数之积必能被!k 整除. 证明 设k 个连续整数为,1,2,,1n n n n k +++-,(1)若这k 个连续整数为正整数,则()()()()121!!!!n n n n k n k k n k +++-=+()k nC =只须证明,对任何一个素数p ,分子中所含p 的方次不低于分母中所含p 的方次,由高斯函数的性质[][][]x y x y +≥+,有()s s s s k n k n k n k p p p p +-⎡⎤⎡⎤⎡⎤⎡⎤-=≥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦∑∑∑∑ 得k nC为整数(证实了组合数的实际意义)(2)若这k 个连续整数中有0,则连乘积为0,必能被!k 整除.(3)若这k 个连续整数为负整数,则()()()()()()()()()121!1211!1,k kk nn n n n k k n n n n k k C-+++--------+=-=-由(1)知kn C -为整数,故()()()121!n n n n k k +++-为整数.例24 有男孩、女孩共n 个围坐在一个圆周上(3n ≥),若顺序相邻的3人中恰有一个男孩的有a 组,顺序相邻的3人中恰有一个女孩的有b 组,求证3a b -.证明 现将小孩记作(1,2,,)i a i n =…,且数字化1,1, i i i a a a ⎧=⎨-⎩ 表示男孩时表示女孩时则“3人组”数值化为12121212123,,,3,,,1,,,1,,,i i i i i i i i i i i i i i i i a a a a a a A a a a a a a a a a ++++++++++⎧⎪-⎪=++=⎨⎪⎪-⎩ 均为男孩 均为女孩 恰有一个女孩 恰有一个男孩其中n j j a a +=.又设取值为3的i A 有p 个,取值为3-的i A 有q 个,依题意,取值为1的i A 有b 个,取值为1-的i A 有a 个,得 1212323413()()()()n n a a a a a a a a a a a a +++=+++++++++…… 3(3)(1)3()()p q a b p q b a =+-+-+=-+-, 可见3a b -.例25 (1956,中国北京)证明3231122n n n ++-对任何正整数n 都是整数,并且用3除时余2. 分析 只需说明()23131222n n n n -+=为整数,但不便说明“用3除时余2”,应说明()()3212131222n n n n n n ++++=是3的倍数.作变形 ()()()32222213111,3,81228n n n n n n ++++-=-= , 命题可证.证明 已知即()()321213111222n n n n n n ++++-=-, ① 因为相邻2个整数(),1n n +必有偶数,所以3231122n n n ++-为整数.又①可变为 ()()32222213111228n n n n n n ++++-=-,因为相邻3个整数()()2,22,21n n n ++必有3的倍数,故()()22221n n n ++能被3整除;又()3,81=,所以()()222218n n n ++能被3整除;得3231122n n n ++-用3除时余2.五、同余根据定义,同余问题可以转化为整除问题来解决;同时,同余本身有很多性质,可以直接用来解题.例26 正方体的顶点标上1+或1-,面上标上一个数,它等于这个面四个顶点处的数的乘积,求证,这样得出的14个数之和不能为0.证明 记14个数的和为S ,易知,这14个数不是1+就是1-,若八个顶点都标上1+,则14S =,命题成立.对于顶点有1-的情况,我们改变1-为1+,则和S 中有4的数,,,a b c d 改变了符号,用/S 表示改变后的和,由()0mod2a b c d +++≡知 ()/20mod 4S S a b c d -=+++≡, 这表明,改变一个1-,和S 关于模4的余数不变,重复进行,直到把所有的1-都改变为1+,则()/111142mod4S S ≡≡+++≡≡,所以,0S ≠.例27 设多项式()n n n n a x a x a x a x f ++++=--1110 的系数都是整数,并且有一个奇数α及一个偶数β使得()αf 及()βf 都是奇数,求证方程()0=x f 没有整数根.证明 由已知有()()()0121mod21mod2n fa a a a α≡⇔++++≡, ①()()()1mod21mod2n f a β≡⇔≡, ②若方程()0=x f 存在整数根0x ,即()00f x =.当0x 为奇数时,有()()()00120mod20mod2n f x a a a a ≡⇔++++≡,与①矛盾.有0x 为偶数时,有()()()00mod20mod2n f x a ≡⇔≡,与②矛盾.所以方程()0=x f 没有整数根. 六、不定方程未知数的个数多于方程个数的整系数代数方程,称为不定方程.求不定方程的整数解,叫做解不定方程. 解不定方程通常要解决3个问题,方程是否有解?有解时,有几个解,解数是有限还是无穷?求出全部解.例28 解方程719213x y +=. 解法1 由()7,191=知方程有整数解. 观察特解,列表得一个特解0025,2,x y =⎧⎨=⎩从而通解为2519,27.x t y t =-⎧⎨=+⎩方法总结:第1步,验证(),a b c ,经常是(),1a b =.第2步,求特解(观察、列举、辗转相除等). 第3步,代入公式.方法总结:()mod ax by c ax c b +=⇔≡或()mod by c a ≡. 例29 求方程3222009x x y +=的整数解. 解 由2009的分解式,有 ()222212009741xx y +=⨯=⨯,有 21,1,1,1004,1005,22009,x x x y y x y ==-⎧=⎧⎧⇒⎨⎨⎨==+=⎩⎩⎩ 227,7,7,17,24.241,x x x y y x y ==-⎧=⎧⎧⇒⎨⎨⎨==+=⎩⎩⎩例30 甲乙两队各出7名队员按事先排好的顺序出场参加围棋擂台赛,双方先由1号队员比赛,负者被淘汰,胜者再与负方2号队员比赛,…直到有一方队员全被淘汰为止,另一方获得胜利,形成一种比赛过程,那么所有可能出现的比赛过程的种数为 .(1988,高中联赛)解法1 设甲、乙两队的队员按出场顺序分别为1234567,,,,,,A A A A A A A 和1234567,,,,,,B B B B B B B .如果甲方获胜,设i A 获胜的场数是i x ,则07,17i x i ≤≤≤≤而且1277x x x +++= , ①容易证明以下两点:在甲方获胜时(i )不同的比赛过程对应着方程①的不同非负整数解;(ii )方程①的不同非负整数解对应着不同的比赛过程,例如,解(2,0,0,1,3,1,0)对应的比赛过程为:1A 胜1B 和2B ;3B 胜1A 、和3A ;4A 胜3B 后负于4B ;5A 胜4B 、5B 和6B 但负于7B ;最后6A 胜7B 结束比赛.下面求方程①的非负整数解个数,设1i i y x =+,问题等价于方程123456714y y y y y y y ++++++=,正整数解的个数,将上式写成1111111111111114+++++++++++++=,从13个加号取6个的方法数613C 种.得甲方获胜的不同的比赛过程有613C 种.同理,乙方获胜的不同的比赛过程也有713C 种,合计61323432C =种比赛过程例31(1989,高中)如果从数1,2,…,14中按由小到大的顺序取出123,,a a a ,使同时满足 21323, 3a a a a -≥-≥,那么,所有符合上述要求的不同取法有多少种?解 由已知得121323 10,30 30, 140,a a a a a a -≥--≥--≥-≥4项均为非负数,相加得()()()()121323133 147a a a a a a -+--+--+-=,于是123,,a a a 的取法数就是不定方程 12347x x x x +++=的非负整数解的个数,作一一对应11i y x =+,问题又等价于不定方 123411y y y y +++= 的正整数解.由 11111+++=,得310C 个解,即符合要求的不同取法有310C 种. 七.数论函数主要是[]x 高斯函数,()n ϕ欧拉函数.例32 某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于..6.时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数[]y x =([]x 表示不大于x 的最大整数)可以表示为(A)10x y ⎡⎤=⎢⎥⎣⎦ (B)310x y +⎡⎤=⎢⎥⎣⎦ (C) 410x y +⎡⎤=⎢⎥⎣⎦ (D)510x y +⎡⎤=⎢⎥⎣⎦ (2010年全国高考数学陕西卷理科第10题)解法1 选(B ).(求解对照).规则是“六舍七入”,故加3即可进1. 选310x y +⎡⎤=⎢⎥⎣⎦. 解法2 选(B ).(特值否定).取56x =,按规定应选5人,可否定(C)、(D);再取57x =,按规定应选6人,可否定(A).注:主要错误选(C) ,误为“五舍六入”.例33 用[]x 表示不大于x 的最大整数,求122004366366366366⎡⎤⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦.讲解 题目的内层有2004个高斯记号,外层1个高斯记号.关键是弄清[]x 的含义,进而弄清加法谁与谁加、除法谁与谁除:(1)分子是那些数相加,求出和来;由36651830200421963666⨯=<<=⨯,知分子是0~5的整数相加,弄清加数各有几个(2)除法谁除以366,求出商的整数部分.原式()036536612345175366⨯+++++⨯⎡⎤=⎢⎥⎣⎦1036687536614310236612.⨯+⎡⎤=⎢⎥⎣⎦⎡⎤=++⎢⎥⎣⎦= 命题背景2004年有12个月、366天.例34 50!的标准分解式中2的指数.解 35678912450!23571113171923293137414347ααααααααα= 2的指数为2345505050505025126314722222⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤++++=++++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦. 图示(5条横线,25个偶数中2的方次,按横线求和)八、综合练习例35 整数勾股形中,证明(1)必有一条直角边长是3的倍数;(2)必有一条直角边长是4的倍数; (3)必有一条边长是5的倍数;(4)三角形的面积是6的倍数.证明 当整数勾股形的三边有公约数时,可以先约去,使三边长,,x y z 互素,且满足222x y z +=.这时,若,x y 两个均为偶数,则z 也为偶数,与,,x y z 互素矛盾;若,x y 两个均为奇数,有()()221mod4,1mod4x y ≡≡,得 ()2222mod4z x y ≡+≡, 这与平方数模4只能取0,1矛盾.所以,,x y 中有且只有一个为偶数,不妨设x 为偶数.(1)设,x y 中无一为3的倍数,则()()221mod3,1mod3x y ≡≡,得 ()2222mod3z x y ≡+≡,这与平方数模3只能取0,1矛盾,故,x y 中有一个为3的倍数. (2)由x 为偶数.,必有,y z 均为奇数,记2,21,21x m y p z q ==+=+有 ()()()22222222421214m x z y q p q q p p ==-=+-+=+--则 ()()211m q q p p =+-+右边是两个偶数的差,必为偶数,从而x 为4的倍数.(3)若,x y 中有5的倍数,命题已成立. 若,x y 均不是5的倍数,则若,x y 只能是形如51k ±或52k ±的正整数.若,x y 均为51k ±型,则()222112mod5z x y ≡+≡+≡这与平方数模5只能取0,1,4矛盾若,x y 均为52k ±型,则()222443mod5z x y ≡+≡+≡这与平方数模5只能取0,1,4矛盾.所以,,x y 只能分别取51k ±与52k ±型,有 ()222410mod5z x y ≡+≡+≡得25z ,但5是素数,得5z .(4)由上证(1)、(2)及()3,41=知,xy 是12的倍数,则12xy 是6的倍数,得三角形的面积是6的倍数. 例36 已知ABC 内有n 个点,连同,,A B C 共有3n +个点,以这些点为顶点,把ABC 分割为若干个互不重叠的小三角形,现把,,A B C 分别染上红色、蓝色、黄色,而其余n 个点,每点任意染上红、蓝、黄三色之一,证明三顶点都不同色的小三角形的总数必是奇数.(斯潘纳定理)证明1 给这些小三角形的边赋值:当边的两端点同色时,记为0;当边的两端点异色时,记为1;再用三边之和给小三角形赋值:当三角形的三顶点同色时,和值为0,记这样的小三角形有a 个;当三角形的三顶点中仅有两点同色时,和值为2,记这样的小三角形有b 个;当三角形的三顶点两两异色时,和值为3,记这样的小三角形有c 个.下面用两种方法计算所有三角形赋值的总和S ,一方面02323S a b c b c =⨯+⨯+⨯=+. ①另方面,,,AB BC CA 的赋值均为1,和为奇数;而ABC 内的每一条连线,在上述S 的计算中都被计算了两次,和为偶数;这两者之和得S 为奇数,记为21S k =+ ② 由①,②得 2123k b c +=+可见c 为奇数,即三顶点都不同色的小三角形的总数必是奇数.(证明:n 个连续整数的乘积一定能被n!整除设a 为任一整数,则式: (a+1)(a+2)...(a+n) =(a+n)!/a! =n!*[(a+n)!/(a!n!)]而式中[(a+n)!/(a!n!)]恰为C(a+n,a),也即是从a+n 中取出a 的组合数,当然为整数。
初中数学竞赛中的数论问题
初中数学竞赛中的数论问题近年来,初中数学竞赛的参赛人数增加,涌现出一批数学爱好者,数论问题成为竞赛中的重要内容。
本文介绍了初中数学竞赛中的数论问题,旨在提高初中学生数学竞赛的水平,提高他们解决数论问题的能力。
首先,数论问题是指分析、研究自然数、整数和实数之间的关系、规律以及与它们有关的运算方式及其性质。
它是数学中一个基本领域,也是数学竞赛中的一个重要内容。
数论问题涉及大整数分解、素数分解、欧拉函数等多种内容,涉及许多理论和方法,使得学习起来更具有挑战性和吸引力。
其次,解决数论问题需要学生掌握一定的数学知识,加强对数论理论的掌握,培养相应的解题思路,有利于培养学生的抽象思维能力、逻辑思维能力和自主学习能力。
针对初中生,可以通过实例讲解、习题训练等方式,结合学生的实际能力,引导学生学习,依次深入,循序渐进,从而提高学生解决数论问题的能力。
此外,在初中数学竞赛中,数论问题的教学也很重要,主要包括以下几个方面:(1)系统知识、方法和思维:学生必须掌握一些有关数论方面的知识,如欧拉函数、因子分解、素数因子分解等,以及有关的一些算法和思维;(2)解题思路:学生要逐步掌握把握数论问题的总体解题思路,明确问题的解法,刻画出问题的有效解法,从经典例题中总结出解题思路;(3)实践:学生要通过不断练习,培养准确实用的解题技巧,不断熟悉各种数论问题的特点,以及有效的应用两者的解决方案;(4)提高解题水平:学生要参加练习和竞赛,不断提高解决数论问题的能力,熟悉解题思路和技巧,增强解题的自信心和适应能力,实现竞赛的胜利。
最后,数论问题在初中数学竞赛中也扮演着至关重要的角色,是竞赛中必不可少的一部分,学习数论除了提高数学水平以外,也可以提高学生分析问题、解决问题的能力。
因此,在数学竞赛中,数论问题的教学应当重视,为初中学生提供更多的学习资源,为他们的数学知识学习、解决数论问题提供更多的支持。
数论竞赛题目
数论竞赛题目
1.某个正整数N的各位数字之和为S,如果将N加上S,得到的新数是M。
如果M的各位数字之和为T,那么N与T之和是多少?
2. 给定一个正整数N,求小于N的所有正整数中最大的幸运数。
幸运数是指将该数每位数字平方后求和,得到的新数如果为1,则该数为幸运数。
例如,7是幸运数,因为7^2=49,4^2+9^2=97,
9^2+7^2=130,1^2+3^2+0^2=10,1^2+0^2=1。
3. 给定两个正整数A和B,求A到B之间所有质数的和。
4. 给定一个正整数N,求小于N的所有正整数中最大的回文素数。
回文素数是指将该数反转后仍为素数的数。
例如,131是回文素数。
5. 给定一个正整数N,求小于N的所有正整数中最大的丑数。
丑数是指只含有2、3、5三个因数的正整数。
例如,6和25是丑数,而14不是丑数。
6. 给定一个正整数N,求小于N的所有正整数中最大的完全平方数。
完全平方数是指能够表示成某个整数的平方的数。
例如,16和25是完全平方数,而10和14不是完全平方数。
7. 给定一个正整数N,求小于N的所有正整数的因数个数之和。
例如,12的因数为1、2、3、4、6、12,共有6个因数,因数个数之和为1+2+2+3+2+1=11。
8. 给定一个正整数N,求小于N的所有正整数中最大的完全立方数。
完全立方数是指能够表示成某个整数的立方的数。
例如,8和
27是完全立方数,而6和14不是完全立方数。
初中数学竞赛:数论的方法技巧(含例题练习及答案)
初中数学竞赛:数论的方法技巧数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。
数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。
因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。
任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。
”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。
数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。
主要的结论有:1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r (0≤r<b),且q,r是唯一的。
特别地,如果r=0,那么a=bq。
这时,a被b整除,记作b|a,也称b是a 的约数,a是b的倍数。
2.若a|c,b|c,且a,b互质,则ab|c。
3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1<p2<…<pk为质数,a1,a2,…,ak为自然数,并且这种表示是唯一的。
(1)式称为n的质因数分解或标准分解。
4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d(n)=(a1+1)(a2+1)…(ak+1)。
5.整数集的离散性:n与n+1之间不再有其他整数。
因此,不等式x<y与x≤y-1是等价的。
下面,我们将按解数论题的方法技巧来分类讲解。
一、利用整数的各种表示法对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。
这些常用的形式有:1.十进制表示形式:n=an10n+an-110n-1+…+a0;2.带余形式:a=bq+r;4.2的乘方与奇数之积式:n=2m t,其中t为奇数。
例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。
初中数学竞赛中的数论问题
初中数学竞赛中的数论问题
数论是一门交叉学科,它结合了数学、计算机科学等学科的思想和方法,是一门旨在解决数学中涉及数学和计算机的问题的科学。
初中数学竞赛中的数论问题是一种非常有趣的问题,它不仅考验学生的数学知识,还要求学生充分利用数论的一些思想和方法来解决问题。
近年来,随着数论在初中数学竞赛中的应用越来越广泛,许多数论问题变得越来越复杂。
在初中数学竞赛中,判断一个数是否为完全平方数、寻找一个数的所有可能因子、判断是否为素数、计算某数列的最大公因子、计算两个数的最小公倍数等都属于数论问题。
虽然这些问题看似简单,但是要想正确无误地解出每一道题,同学们就必须要用到一些数论的方法。
在解数论问题时,学生要做好抽象和模型的建立。
抽象思维能够帮助学生把复杂的问题简单化,而建立模型则能让学生更好地分析问题,帮助数论问题的解决。
此外,学生还必须做到把握住关键,将复杂的数论问题拆分为一系列的简单的子问题,并从实例出发,把抽象的解法转化为更具体的解题步骤,从而达到对问题的有效解决。
数论的实践性也是学生解决数论问题的一个重要方面,在学习数论的过程中,学生要培养自己的实践技能,使自己能够更好地掌握数论中的一些基本思想和重要方法,学会灵活应用它们在实际问题中以解决初中数学竞赛中的数论问题。
在初中数学竞赛中,解数论问题不仅考验学生的数学素养,更考验学生的抽象思维能力和实践能力,同学们要充分利用自己的智慧,
把抽象的数论知识转化为具体的问题解答,在初中数学竞赛中取得良好的成绩。
数学竞赛中的数论问题
数学竞赛中的数论问题 罗增儒引言数论的认识:数论是关于数的学问,主要研究整数,重点对象是正整数,对中学生可以说,数论是研究正整数的一个数学分支.什么是正整数呢?人们借助于“集合”和“后继”关系给正整数(当时也即自然数)作过本质的描述,正整数1,2,3,…是这样一个集合N +:(1)有一个最小的数1.(2)每一个数a 的后面都有且只有一个后继数/a ;除1之外,每一个数的都是且只是一个数的后继数.这个结构很像数学归纳法,事实上,有这样的归纳公理:(3)对N +的子集M ,若1M ∈,且当a M ∈时,有后继数/a M ∈,则M N +=.就是这么一个简单的数集,里面却有无穷无尽的奥秘,有的奥秘甚至使得人们怀疑:人类的智慧还没有成熟到解决它的程度.比如,哥德巴赫猜想:1742年6月7日,普鲁士派往俄国的一位公使哥德巴赫写信给欧拉,提出“任何偶数,由4开始,都可以表示为两个素数和的形式,任何奇数,由7开始,都可以表示为三个素数的和.后者是前者的推论,也可独立证明(已解决).“表示为两个素数和的形式”就是著名的哥德巴赫猜想,简称1+1.欧拉认为这是对的,但证不出来.1900年希尔伯特将其归入23个问题中的第8个问题. 1966年陈景润证得:一个素数+素数⨯素数(1+2),至今仍无人超越. ●陈景润的数学教师沈元很重视利用名人、名言、名事去激励学生,他曾多次在开讲时,说过这样的话:“自然科学的皇后是数学,数学的皇冠是数论,哥德巴赫猜想则是皇冠上的明珠.……”陈景润就是由此而受到了启示和激励,展开了艰苦卓绝的终生奋斗和灿烂辉煌的奋斗终生,离摘取“皇冠上的明珠”仅一步之遥.●数论题涉及的知识不是很多,但用不多的知识来解决问题往往就需要较强的能力和精明多的技巧,有人说:用以发现数学人才,在初等数学中再也没有比数论教材更好的课程了.任何学生如能把当今一本数论教材中的练习做出,就应当受到鼓励,劝他(她)将来去从事数学方面的工作(U .Dudley 《数论基础》前言).下面,是一个有趣的故事.当代最高产的数学家厄尔多斯听说一个叫波萨(匈牙利,1948)的小男孩很聪明,就问了他一个问题加以考察(1959):如果你手头上有1n +个正整数,这些正整数小于或等于2n ,那么你一定有一对整数是互素的,你知道这是什么原因吗?不到12岁的波萨只用了1分半钟,就给出了问题的解答.他将1~2n 分成(1,2),(3,4),…,(21,2n n -)共n 个抽屉,手头的1n +个正整数一定有两个属于同一抽屉,这两个数是相邻的正整数,必定互素.通过这个问题,厄尔多斯认定波萨是个难得的英才,就精心加以培养,不到两年,14岁的波萨就发表了图论中“波萨定理”.●重视数学能力的数学竞赛,已经广泛采用数论题目,是数学竞赛四大支柱之一,四大支柱是:代数,几何,初等数论,组合初步(俗称代数题、几何题、算术题和智力题).高中竞赛加试四道题正好是四大模块各一题,分别是几何题、代数题、数论题、组合题,一试中也会有数论题.数论受到数学竞赛的青睐可能还有一个技术上的原因,就是它能方便地提供从小学到大学各个层面的、新鲜而有趣的题目.数论题的主要类型:在初中竞赛大纲中,数论的内容列有:十进制整数及表示方法;整除性,被2、3、4、5、8、9、11等数整除的判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;简单的一次不定方程.在高中竞赛大纲中,数论的内容列有:同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*.根据已出现的试题统计,中学数学竞赛中的数论问题的主要有8个重点类型:(1)奇数与偶数(奇偶分析法、01法);(2)约数与倍数、素数与合数;(3)平方数;(4)整除;(5)同余;(6)不定方程;ϕ欧拉函数;(7)数论函数、[]x高斯函数、()n(8)进位制(十进制、二进制).下面,我们首先介绍数论题的基本内容(10个定义、18条定理),然后,对数学竞赛中的数论问题作分类讲解.第一讲 数论题的基本内容中学数学竞赛中的数论问题涉及的数论内容主要有10个定义、18条定理. 首先约定,本文中的字母均表示整数.定义1 (带余除法)给定整数,,0,a b b ≠如果有整数(),0q r r b ≤<满足 a qb r =+,则q 和r 分别称为a 除以b 的商和余数.特别的,0r =时,则称a 被b 整除,记作b a ,或者说a 是b 的倍数,而b 是a 的约数.(,q r 的存在性由定理1证明)定义2 (最大公约数)设整数12,,,n a a a 中至少有一个不等于零,这n 个数的最大公约数是能整除其中每一个整数的最大正整数,记作()12,,,n a a a .()12,,,n a a a 中的i a 没有顺序,最大公约数也称最大公因数.简单性质:()()1212,,,,,,n n a a a a a a =.一个功能:可以把对整数的研究转化为对非负整数的研究. 定义3 (最小公倍数)非零整数12,,,n a a a 的最小公倍数是能被其中每一个()1i a i n ≤≤所整除的最小正整数,记作[]12,,,n a a a .简单性质:如果k 是正整数,a b 的公倍数,则存在正整数m 使[],k m a b =证明 若不然,有[],k m a b r =+([]0,r a b <<),由[],,k a b 都是,a b 的公倍数得r也是,a b 的公倍数,但[]0,r a b <<,与[],a b 的最小性矛盾.故[],k m a b =.定义4 如果整数,a b 满足(),1a b =,则称a 与b 是互素的(也称互质).定义5 大于1且除1及其自身外没有别的正整数因子的正整数,称为素数(也称质数).其余大于1的正整数称为合数;数1既不是素数也不是合数.定理1 若,a b 是两个整数,0b >,则存在两个实数,q r ,使()0a qb r r b =+≤<,并且,q r 是唯一性.证明1 先证存在性.作序列,3.2,,0,,2,3,b b b b b b ---则a 必在上述序列的某两项之间,从而存在一个整数q ,使()1qb a q b ≤<+,即 0a qb b ≤-<, 取 r a qb =-, 0r b ≤<, 得 a qb r =+,即存在两个实数,q r ,使()0a qb r r b =+≤<. 再证唯一性.假设不唯一,则同时存在11,q r 与12,q r ,使 ()1110a q b r r b =+≤<, ()2220a q b r r b =+≤<, 相减 ()1221q q b r r -=-, 1221q q b r r b -=-<, 1201q q ≤-<,但12q q -为整数,故120q q -=,得12q q =,从而12r r =.注:如果取消0r b ≤<,当0r <或r b >,不保证唯一.经典方法:紧扣定义,构造法证存在性,反证法证唯一性. 证明2 只证存在性,用高斯记号,由 01a a b b ⎡⎤≤-<⎢⎥⎣⎦, 有 0a a b b b⎡⎤≤-<⎢⎥⎣⎦,记a r a b b⎡⎤=-⎢⎥⎣⎦,故存在,,0a a q r a b r b b b ⎡⎤⎡⎤==-≤<⎢⎥⎢⎥⎣⎦⎣⎦使()0a qb r r b =+≤<.证明3 只证存在性,作集合{}|,0M a bx x Z a bx =-∈-≥这是一个有下界的非空整数集,其中必有最小的,设x q =时,有最小值r ()0r ≥ a qb r =+.再证r b <,若不然,r b ≥,记1r b r =+,有()()111a qb r qb b r b q r =+=++=++()11r a b q M =-+∈即M 有1r 比r 更小,这与r 为最小值矛盾. 故存在两个实数,q r ,使()0a qb r r b =+≤<.定理 2 设,,a b c 是三个不全为0的整数,满足a qb c =+,其中q 也为整数,则()(),,a b b c =.证明 设A ={,a b 的公约数}, B ={,b c 的公约数}.任取||||d a d c a bqd A d B A B d b d b=-⎧⎧∈⇒⇒⇒∈⇒⊆⎨⎨⎩⎩, 任取||||d b d bd B d A B A d c d a bq c ⎧⎧∈⇒⇒⇒∈⇒⊆⎨⎨=+⎩⎩,得 A B =.有A 中元素的最大值B =中元素的最大值,即()(),,a b b c =.注:这是辗转相除法求最大公约数的理论基础.经典方法:要证明A B =,只需证A B ⊆且B A ⊆. 定理3 对任意的正整数,a b ,有 ()[],,a b a b ab ⋅=.证明 因为ab 是,a b 的公倍数,所以,a b 的最小公倍数也是ab 的约数,存在q 使 [],ab q a b =,有[],a b a q b=且[],a b b为整数,故q 是a 的约数.同理q 是b 的约数,即q 是,a b 的公约数.下面证明,q 是,a b 的最大公约数.若不然,(),q a b <.有[]()[],,,ab q a b a b a b =<. ①设()(),,ab b k a a b a b ==,可见k 是a 的倍数,同样()(),,ab ak b a b a b ==,k 是b 的倍数,即k 是,a b 的公倍数,则存在正整数m 使[],k ma b =,有()[][],,,abm a b a b a b =≥, 得 []()[],,,ab q a b a b a b =≥与①矛盾,所以,(),q a b =,得证()[],,a b a b ab ⋅=.注 也可以由[]()(),1,,ab a b k q m ab a b a b q≤===,得(),q a b ≥,与(),q a b <矛盾.两步[](),,,ab q a b ab a b k ==可以交换吗?定理4 ,a b 是两个不同时为0的整数,若00ax by +是形如ax by +(,x y 是任意整数)的数中的最小正数,则(1)00ax by +|ax by +; (2)00ax by +(),a b =. 证明 (1)由带余除法有()00ax by ax by q r +=++,000r ax by ≤<+, 得 ()()0000r a x qx x b y qy ax by =-+-<+,知r 也是形如ax by +的非负数,但00ax by +是形如ax by +的数中的最小正数,故0r =,即00ax by +|ax by +.(2)由(1)有00ax by +|10a b a +=, 00ax by +|01a b b +=,得00ax by +是,a b 的公约数.另一方面,,a b 的每一个公约数都可以整除00ax by +,所以00ax by +是,a b 的最大公约数,00ax by +(),a b =.推论 若(),1a b =,则存在整数,s t ,使1as bt +=.(很有用) 定理5 互素的简单性质: (1)()1,1a =. (2)(),11n n +=. (3)()21,211n n -+=.(4)若p 是一个素数,a 是任意一个整数,且a 不能被p 整除,则(),1a p =. 证明 因为(),|a p p ,所以,素数p 的约数只有两种可能:()(),1,,a p a p p ==.但a 不能被p 整除,(),a p p ≠,得(),1a p =.推论 若p 是一个素数,a 是任意一个整数,则(),1a p =或(),a p p =. (5)若(),1a b =,则存在整数,s t ,使1as bt +=.(定理4推论) (6)若()(),1,,1a b a c ==,则(),1a bc =. 证明 由(),1a b =知存在整数,s t ,使1as bt +=. 有 ()a cs bct c +=, 得 ()(),,1a bc a c ==.(7)若(),1a b =,则(),1a b a ±=,(),1a b b ±=, (),1a b ab ±=. 证明 ()()(),,,1a b a b a b a ±=±==, ()(),,1a b b a b ±==, 由(6)(),1a b ab ±=.(8)若(),1a b =,则(),1m na b =,其中,m n 为正整数. 证明 据(6),由(),1a b =可得(),1ma b =.同样,由(),1m a b =可得(),1m na b =.定理6 设a 是大于1的整数,则a 的除1之外的最小的正约数q 必是素数,且当a 是合数时,q ≤证明 用反证法,假设q 不是素数,则存在正整数数1q ,11q q <<,使1|q q ,但|q a ,故有1|q a ,这与q 是a 的除1之外的最小正约数矛盾,故q 是素数.当a 是合数时,设1a a q =,则1a 也是a 的一个正约数,由q 的最小性得1q a ≤,从而21q a q a ≤=,开方得q ≤定理7 素数有无穷多个,2是唯一的偶素数. 证明 假设素数只有有限多个,记为12,,,n p p p ,作一个新数1211n p p p p =+>.若p 为素数,则与素数只有 n 个12,,,n p p p 矛盾.若p 为合数,则必有{}12,,,i n p p p p ∈,使|i p p ,从而|1i p ,又与1i p >矛盾.综上所述,素数不能只有有限多个,所以素数有无穷多个. 2是素数,而大于2的偶数都是合数,所以2是唯一的偶素数.注:这个证明中,包含着数学归纳法的早期因素:若假设有n 个素数,便有1n +个素数.(构造法、反证法)秒定理8(整除的性质)整数,,a b c 通常指非零整数 (1)1a ,1|a -;当0a ≠时,|a a ,|0a .(2)若b a ,0a ≠,则b a ≤;若b a ,b a >,则0a =;若0ab >,且,b a a b ,则a b =.证明 由b a ,0a ≠,有a bq =,得a b q b =≥. 逆反命题成立“若b a ,b a >,则0a =”; 由b a ≤且b a ≥得a b =,又0ab >,得a b =. (3)若a b c d +=+,且|,|,|e a e b e c ,则|e d . (4)若c b ,b a ,则c a . 证明 (定义法)由c b ,b a ,有 12,b q c a q b ==, 得 ()12a q q c =,即 c a .(5)若c a ,则bc ab .(6)若c a ,c b ,则对任意整数,m n ,有c ma nb +. 证明 (定义法)由c a ,c b ,有 12,a q c b q c ==, 得 ()12ma nb mq nq c +=+, 即 c ma nb +.(7)若(),1a b =,且a bc ,则a c .证明 由(),1a b =知存在整数,s t ,使1as bt +=,有()()a cs bc t c +=,因为a a ,a bc ,所以a 整除等式的左边,进而整除等式的右边,即a c .注意 不能由a bc 且|a b /得出a c .如649⨯,但6|4/且6|9/. (8)若(),1a b =,且,a c b c ,则ab c .证明 由(),1a b =知存在整数,s t ,使1as bt +=,有acs bct c +=,又由,a c b c 有12,c aq c bq ==代入得()()21ab q s ab q t c +=,所以ab c .注意 不能由a c 且b c 得出ab c .如不能由630且10|30得出60|30. (9)若a 为素数,且a bc ,则a b 或a c .证明 若不然,则|a b /且|a c /,由a 为素数得()(),1,,1a b a c ==,由互素的性质(6)得(),1a bc =,再由a 为素数得|a bc /,与a bc 矛盾.注意 没有a 为素数,不能由a bc 推出a b 或a c .如649⨯,但6|4/且6|9/.定义6 对于整数,,a b c ,且0c ≠,若()c a b -,则称,a b 关于模c 同余,记作(mod )a b c ≡;若()|c a b -/,则称,a b 关于模c 不同余,记作a(mod )b c .定理9(同余的性质)设,,,,a b c d m 为整数,0,m > (1)若(mod )a b m ≡且(mod )b c m ≡,则(mod )a c m ≡; 证明 由(mod )a b m ≡且(mod )b c m ≡,有 12,a b mq b c mq -=-=,()12a c m q q -=+,得(mod )a c m ≡.(2)若(mod )a b m ≡且(mod )c d m ≡,则(m o d )a c b d m +≡+且(mod )ac bd m ≡.证明 由(mod )a b m ≡且(mod )c d m ≡,有12,a b mq c d mq -=-=, ① 对①直接相加 ,有()()()12a c b d m q q +-+=+,得 (mod )a c b d m +≡+.对①分别乘以,c b 后相加,有()()()12ac bd ac bc bc bd m cq bq -=---=+,得 (mod )ac bd m ≡.(3)若(mod )a b m ≡,则对任意的正整数n 有(mod )nna b m =且(mod )an bn mn ≡. (4)若(mod )a b m ≡,且对非零整数k 有(,,)k a b m ,则mod a b m k k k ⎛⎫= ⎪⎝⎭. 证明 由(mod )a b m ≡、,有 a b mq =+, 又(,,)k a b m ,有,,a b mk k k均为整数,且a b mq k k k=+, 得mod a b m k k k ⎛⎫≡ ⎪⎝⎭. 定理10 设,a b 为整数,n 为正整数,(1)若a b ≠,则()()n na b a b --.()()123221n n n n n n n a b a b a a b a b ab b ------=-+++++.(2)若a b ≠-,则()()2121n n a b ab --++.()()212122232422322n n n n n n n a b a b a a b a b ab b -------+=+-+--+.(3)若a b ≠-,则()()22nn a b ab +-.()()2221222322221n n n n n n n a b a b a a b a b ab b ------=+-+-+-.定义7 设n 为正整数,k 为大于2的正整数, 12,,,m a a a 是小于k 的非负整数,且10a >.若12121m m m m n a k a k a k a ---=++++,则称数12m a a a 为n 的k 进制表示.定理11 给定整数2k ≥,对任意的正整数n ,都有唯一的k 进制表示.如12121101010m m m m n a a a a ---=++++,109,0i a a ≤≤>(10进制) 12121222m m m m n a a a a ---=++++.101,0i a a ≤≤>(2进制)定理12 (算术基本定理)每个大于1的正整数都可分解为素数的乘积,而且不计因数的顺序时,这种表示是唯一的1212k k n p p p ααα=,其中12k p p p <<<为素数,12,,,k ααα为正整数. (分解唯一性)证明1 先证明,正整数n 可分解为素数的乘积12m n p p p =. ①如果大于1的正整数n 为素数,命题已成立.当正整数n 为合数时,n 的正约数中必有一个最小的,记为1p ,则1p 为素数,有11n p a =,11a n <<.如果1a 为素数,命题已成立.当1a 为合数时,1a 的最小正约数2p 为必为素数,有11122n p a p p a ==,211a a n <<<.这个过程继续进行下去,由于n 为有限数,而每进行一步i a 就要变小一次,于是,经过有限次后,比如m 次,n 就变为素数的乘积12m n p p p =.下面证明分解式是唯一的.假设n 还有另一个分解式 12t n q q q =, ② 则有 1212m t p p p q q q =. ③因为等式的右边能被1q 整除,所以左边也能被1q 整除,于是1q 整除12,,,m p p p 中的某一个i p ,但i p 为素数,所以i p 与1q 相等,不妨设i p 为1p ,有11p q =.把等式③两边约去11p q =,得 2323m t p p p q q q =.再重复上述步骤,又可得22p q =,33p q =,…,直到等式某一边的因数被全部约完,这时,如果另一边的因数没有约完,比如右边没有被约完(m t <),则有121m m t q q q ++=. ④但12,,,m m t q q q ++均为素数,素数都大于1,有121m m t q q q ++>,这表明等式④不可能成立,两个分解式的因数必然被同时约完,即分解式是唯一的. 将分解式按i p 的递增排列,并将相同的i p 合并成指数形式,即得1212k k n p p p ααα=.其中12k p p p <<<为素数,12,,,k ααα为正整数.证明2 用第二数学归纳法证明12m n p p p =,12m p p p ≤≤≤.(1)当2n =,因为2为素数,命题成立.(2)假设命题对一切大于1而小于n 的正整数已成立. 这时,若n 为素数,命题成立;若n 不为素数,必存在,a b ,使 n ab =,1,1a n b n <<<<, 由归纳假设,小于n 的,a b 可分解为素数的乘积//////1212//////1212, ,, ,s s s s t s s ta p p p p p pb p pp pp p ++++=≤≤≤=≤≤≤得 //////1212s s s t n p p p q q q ++=,适当调整/i p 的顺序,可得命题对于正整数n 成立.由数学归纳法,命题对一切大于1的正整数n 成立.下面证明分解式是唯一的.假设n 的分解式不唯一,则至少有两个分解式12m n p p p =,12m p p p ≤≤≤, 12t n q q q =,12t q q q ≤≤≤,得 1212m t p p p q q q =.有 112|t p q q q 且112|m q p p p ,这就存在,i j q p ,使1|i p q 且1|j q p ,但11,,,i j p q q p 均为为素数,所以11,i j p q q p ==,又 111i j p q q p p =≥=≥, 所以 11p q =.把等式两边约去11p q =,得 2323m t p p p q q q =.再重复上述步骤,又可得22p q =,33p q =,…,直到等式某一边的因数被全部约完,这时,如果另一边的因数没有约完,比如右边没有被约完(m t <),则有121m m t q q q ++=.但12,,,m m t q q q ++均为素数,素数都大于1,有121m m t q q q ++>,这表明上述等式不可能成立,两个分解式的因数必然被同时约完,即分解式是唯一的. 将分解式按i p 的递增排列,并将相同的i p 合并成指数形式,即得1212k k n p p p ααα=.其中12k p p p <<<为素数,12,,,k ααα为正整数.定理13 若正整数n 的素数分解式为 1212k k n p p p ααα=则n 的正约数的个数为()()()()12111k d n a a a =+++,n 的一切正约数之和为()121111212111111k k k p p p S n p p p ααα+++---=⋅⋅⋅---. 证明 对于正整数1212k k n p p p ααα=,它的任意一个正约数可以表示为1212k k m p p p βββ=,0i i βα≤≤ , ①由于i β有0,1,2,,i α共1i α+种取值,据乘法原理得n 的约数的个数为()()()()12111k d n a a a =+++.考虑乘积()()()1201010*******k k k k p p p p p p pp p ααα+++++++++,展开式的每一项都是n 的某一个约数(参见①),反之,n 的每一个约数都是展开式的某一项,于是,n 的一切约数之和为()()()110101111k k k S n p p p pp p αα=++++++121111212111111k k k p p p p p p ααα+++---=⋅⋅⋅---. 注 构造法.定义8 (高斯函数)对任意实数x ,[]x 是不超过x 的最大整数.亦称[]x 为x 的整数部分,[][]1x x x ≤<+.定理14 在正整数!n 的素因子分解式中,素数p 作为因子出现的次数是23n n n p p p ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.证明 由于p 为素数,故在!n 中p 的次方数是1,2,,n 各数中p 的次方数的总和(注意,若p 不为素数,这句话不成立).在1,2,,n 中,有n p ⎡⎤⎢⎥⎣⎦个p 的倍数;在n p ⎡⎤⎢⎥⎣⎦个p 的倍数的因式中,有2n p ⎡⎤⎢⎥⎣⎦个2p 的倍数;在2n p ⎡⎤⎢⎥⎣⎦个2p 的倍数的因式中,有3n p ⎡⎤⎢⎥⎣⎦个3p 的倍数;…,如此下去,在正整数!n 的素因子分解式中,素数p 作为因子出现的次数就为23n n n p p p ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.注 省略号其实是有限项之和. 画线示意50!中2的指数.35678912450!23571113171923293137414347ααααααααα=定理15 (费玛小定理)如果素数p 不能整除整数a ,则()11p p a --.证明1 考察下面的1p -个等式: 11a pq r =+,10r p ≤<,222a pq r =+,20r p ≤<……()111p p p a pq r ---=+,10p r p -≤<由于素数p 不能整除整数a ,所以,p 不能整除每个等式的左边,得121,,,p r r r -均不为0,只能取1,2,,1p -.下面证明121,,,p r r r -各不相等.若不然,存在,,11t s t s p ≤<≤-,使,,,s s t t s t sa pq r ta pq r r r =+=+=相减 ()()s t s t a p q q -=-.应有素数p 整除()s t a -,但素数p 不能整除a ,所以素数p 整除()s t -,然而由11t s p ≤<≤-可得02s t p p <-≤-<, 要素数p 整除()s t -是不可能的,得121,,,p r r r -各不相等.有()()1211211!p rr r p p -=-=-.再把上述1p -个等式相乘,有 ()11211!p p p aMp rr r ---=+,即 ()()11!1!p p a Mp p --=+-,其中M 是一个整数.亦即 ()()11!1p p a Mp ---=.由于p 是素数,不能整除()1!p -,所以素数p 整除11p a --,得证()11p p a--证明2 改证等价命题:如果素数p 不能整除整数a ,则()mod pa a p ≡.只需对1,2,,1a p =-证明成立,用数学归纳法.(1)1a =,命题显然成立.(2)假设命题对()11a k k p =≤<-成立,则当1a k =+时,由于()|1,2,,1i p p C i p =-,故有()11111pp p p p p k k C k C k --+=++++()11mod pk k p ≡+≡+.(用了归纳假设)这表明,命题对1a k =+是成立. 由数学归纳法得()mod pa a p ≡.又素数p 不能整除整数a ,有(),1a p =,得()11p p a --.定义9 (欧拉函数)用()n ϕ表示不大于n 且与n 互素的正整数个数. 定理16 设正整数1212k k n p p p ααα=,则()12111111k n n p p p ϕ⎛⎫⎛⎫⎛⎫=--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭.证明 用容斥原理.设{}1,2,,S n =,记i A 为S 中能被i p 整除的数所组成的集合(1,2,i k =),用i A 表示i A 中元素的个数,有 i inA p =,1212,,i j k i jkn n A A A A A p p p p p ==.易知,{}1,2,,S n =中与n 互素的正整数个数为12k A A A ,由容斥原理得()12111211k i i ji ki j kkijm k i j m kA A A S A A A A A A A A A ≤≤≤<≤≤<<≤=-+-++-∑∑∑()()1111211112121111*********.ki ki j k i j m k i i j i j mk ki ki j k i j m k i i j i j mk k n n nn n p p p p p p p p p n p p p p p p p p p n p p p ≤≤≤<≤≤<<≤≤≤≤<≤≤<<≤=-+-++-⎡⎤=-+-++-⎢⎥⎢⎥⎣⎦⎛⎫⎛⎫⎛⎫=--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭∑∑∑∑∑∑ 注 示意3n =的容斥原理.推论 对素数p 有()()11,p p p p p αααϕϕ-=-=-.定理17 整系数不定方程ax by c +=(0ab ≠)存在整数解的充分必要条件是(),a b c .证明 记(),d a b =.(1)必要性(方程有解必须满足的条件).若方程存在整数解,记为00,,x x y y =⎧⎨=⎩,则00ax by c +=,由|,|d a d b , 有00|d ax by +,得证(),|a b c .(2)充分性(条件能使方程有解).若|d c ,可设c de =由于形如ax by +的数中有最小正数00ax by +满足00ax by +(),a b =.两边乘以e ,得()()00a ex b ey c +=这表明方程有解00,.x ex y ey =⎧⎨=⎩定理18 若0ab ≠,(),1a b =,且00,,x x y y =⎧⎨=⎩是整系数不定方程ax by c +=的一个整数解,则方程的一切整数解可以表示为00,,x x bt y y at =-⎧⎨=+⎩()t Z ∈. ①证明 直接代入知①是方程的整数解,下面证明任意一个整数解都有①的形式. 由()00,x y 是方程的一个解,有00ax by c +=,又方程的任意一个解(),x y 满足ax by c +=, ② 相减 ()()000a x x b y y -+-=. ③ 但(),1a b =,故有 ()0|a y y -, 有00,x x y y t t Z b a--==∈- 得方程的任意一个整数解可以表示为00,,x x bt y y at =-⎧⎨=+⎩()t Z ∈.定义10 (平面整点)在平面直角坐标系上,纵横坐标都是整数的点称为整点(也称格点).类似地可以定义空间整点.第二讲 数论题的范例讲解主要讲几个重要类型:奇数与偶数,约数与倍数(素数与合数),平方数,整除,同余,不定方程,数论函数等.重点是通过典型范例来分析解题思路、提炼解题方法和巩固基本内容.一、奇数与偶数整数按照能否被2整除可以分为两类,一类余数为0,称为偶数,一类余数为1,称为奇数.偶数可以表示为2n ,奇数可以表示为21n -或21n +.一般地,整数被正整数m 去除,按照余数可以分为m 类,称为模m 的剩余类(){}mod i C x x i m =≡,从每类中各取出一个元素i i a C ∈,可得模m 的完全剩余系(剩余类派出的一个代表团),0,1,2,,1m -称为模m 的非负最小完全剩余系.通过数字奇偶性质的分析而获得解题重大进展的技巧,常称作奇偶分析,这种技巧与分类、染色、数字化都有联系,在数学竞赛中有广泛的应用. 关于奇数和偶数,有下面的简单性质:(1)奇数≠偶数.(2)偶数的个位上是0、2、4、6、8;奇数的个位上是1、3、5、7、9. (3)奇数与偶数是相间排列的;两个连续整数中必是一个奇数一个偶数;. (4)奇数个奇数的和是奇数;偶数个奇数的和是偶数;偶数跟奇数的和是奇数;任意多个偶数的和是偶数.(5)除2外所有的正偶数均为合数;(6)相邻偶数的最大公约数为2,最小公倍数为它们乘积的一半. (7)偶数乘以任何整数的积为偶数.(8)两数和与两数差有相同的奇偶性,()mod 2a b a b +≡-. (9)乘积为奇数的充分必要条件是各个因数为奇数. (10)n 个偶数的积是2n的倍数.(11)()11k-=的充分必要条件是k 为偶数,()11k-=-的充分必要条件是k 为奇数.(12)()()()()()()22220mod 4,211mod 4,211mod8n n n ≡-≡-≡. (13)任何整数都可以表示为()221mn k =-.……例1 (1906,匈牙利)假设12,,,n a a a 是1,2,,n 的某种排列,证明:如果n 是奇数,则乘积()()()1212n a a a n ---是偶数.解法1 (反证法)假设()()()1212n a a a n ---为奇数,则i a i -均为奇数,奇数个奇数的和还是奇数奇数=()()()1212n a a a n -+-++-()()12120n a a a n =+++-+++=,这与“奇数≠偶数”矛盾. 所以()()()1212n a a a n ---是偶数.评析 这个解法说明()()()1212n a a a n ---不为偶数是不行的,但没有指出为偶数的真正原因.体现了整体处理的优点,但掩盖了“乘积”为偶数的实质.解法2 (反证法)假设()()()1212n a a a n ---为奇数,则i a i -均为奇数,i a 与i 的奇偶性相反,{}1,2,,n 中奇数与偶数一样多,n 为偶数.但已知条件n 为奇数,矛盾. 所以()()()1212n a a a n ---是偶数.评析 这个解法揭示了()()()1212n a a a n ---为偶数的原因是“n 为奇数”.那么为什么“n 为奇数”时“乘积”就为偶数呢?解法3 121,2,,,,,,n n a a a 中有1n +个奇数,放到n 个括号,必有两个奇数在同一个括号,这两个奇数的差为偶数,得()()()1212n a a a n ---为偶数.评析 这个解法揭示了()()()1212n a a a n ---为偶数的原因是“当n 为奇数时,1,2,,n 中奇数与偶数个数不等,奇数多,某个括号必是两个奇数的差,为偶数”. 类似题:例1-1(1986,英国)设127,,,a a a 是整数,127,,,b b b 是它们的一个排列,证明()()()112277a b a b a b ---是偶数.(127,,,a a a 中奇数与偶数个数不等)例1-2 π的前24位数字为 3.14159265358979323846264π=,记1224,,,a a a 为该24个数字的任一排列,求证()()()12342324a a a a a a ---必为偶数.(暗藏3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,6,4中奇数与偶数个数不等) 例2 能否从1,2,,15中选出10个数填入图的圆圈中,使得每两个有线相连的圈中的数相减(大数减小数),所得的14个差恰好为1,2,,14?解 考虑14个差的和S ,一方面1214105S =+++=为奇数.另一方面,每两个数,a b 的差与其和有相同的奇偶性 (mod2)a b a b -≡+,因此,14个差的和S 的奇偶性与14个相应数之和的和/S 的奇偶性相同,由于图中的每一个数a 与2个或4个圈中的数相加,对/S 的贡献为2a 或4a ,从而/S 为偶数,这与S 为奇数矛盾,所以不能按要求给图中的圆圈填数.评析:用了计算两次的技巧.对同一数学对象,当用两种不同的方式将整体分为部分时,则按两种不同方式所求得的总和应是相等的,这叫计算两次原理成富比尼原理.计算两次可以建立左右两边关系不太明显的恒等式.在反证法中,计算两次又可用来构成矛盾.例3 有一大筐苹果和梨分成若干堆,如果你一定可以找到这样的两堆,其苹果数之和与梨数之和都是偶数,问最少要把这些苹果和梨分成几堆?解 (1)4堆是不能保证的.如4堆的奇偶性为:(反例) (奇奇),(偶偶),(奇偶),(偶奇).(2)5堆是可以保证. 因为苹果和梨数的奇偶性有且只有上述4种可能,当把这些苹果和梨分成5堆时,必有2堆属于同一奇偶性,其和苹果数与梨数都是偶数.例4 有n 个数121,,,,n n x x x x -,它们中的每一个要么是1,要么是1-.若1223110n n n x x x x x x x x -+++++=,求证4|n . 证明 由{}1,1i x ∈-,有{}11,1i i x x +∈-,再由1223110n n n x x x x x x x x -+++++=,知n 个1i i x x +中有一半是1,有一半是1-,n 必为偶数,设2n k =.现把n 个1i i x x +相乘,有 2222122311121(1)(1)1k k n n n n n x x x x x x x x x x x x ---+===,可见,k 为偶数,设2k m =,有4n m =,得证4|n .例5 n 个整数121,,,,n n a a a a -,其积为n ,其和为0,试证4|n .证明 先证n 为偶数,若不然,由121n n a a a a n -=知,121,,,,n n a a a a -全为奇数,其和必为奇数,与其和为0(偶数),故n 必为偶数.(121,,,,n n a a a a -中至少有1个偶数)再证n 为4的倍数,若不然,由n 为偶数知,121,,,,n n a a a a -恰有一个为偶数,其余1n -个数全为奇数,奇数个奇数之和必为奇数,加上一个偶数,总和为奇数,与121,,,,n na a a a -之和为0矛盾,所以,n 为4的倍数,4|n .(121,,,,n n a a a a -中至少有2个偶数)评析 要证4|n ,只须证121,,,,n n a a a a -中至少有2个偶数,分两步,第一步证至少有1个偶数,第二步证至少有2个偶数.例6 在数轴上给定两点1内任取n 个点,在此2n +个点中,每相邻两点连一线段,可得1n +条互不重叠的线段,证明在此1n +条线段中,以一个有理点和一个无理点为端点的线段恰有奇数条.证明 将2n +个点按从小到大的顺序记为122,,,n A A A +…,并在每一点赋予数值i a ,使1, 1,i i i A a A ⎧=⎨-⎩当为有理数点时, 当为无理数点时. 与此同时,每条线段1i i A A +也可数字化为1i i a a +(乘法)1111,, 1,,i i i i i i A A a a A A +++-⎧=⎨⎩ 当一为有理数点,另一为无理数时, 当同为有理数点或无理数点时,记11i i a a +=-的线段有k 条,一方面112233412()()()()(1)(1)(1)k n k k n n a a a a a a a a -+++=-+=-…另一方面 12233412()()()()n n a a a a a a a a ++… 21231212()1n n n a a a a a a a -++===-…, 得()11k-=-,故k 为奇数. 评析 用了数字化、奇偶分析的技巧. 二、约数与倍数最大公约数与最小公倍数的求法. (1)短除法.(2)分解质因数法.设1212,0,1,2,,k k i a p p p i k αααα=≥=, 1212,0,1,2,,k k i b p p p i k ββββ=≥=.记 {}{}min ,,max ,i i i i i i γαβδαβ==, 则 ()1212,k k a b p p p γγγ=, []1212,k k a b p p p δδδ=.(3)辗转相除法()()()()()121,,,,,0n n n n a b b r r r r r r r -======.例7 (1)求()8381,1015,[]8381,1015; (2)()144,180,108,[]144,180,108. 解(1)方法1 分解质因数法.由283811729,10155729,=⨯=⨯⨯得 ()8381,101529=,[]28381,1015571729293335=⨯⨯⨯=.方法2 辗转相除法.883811015381207831261232823223229或 232142213138232261101583812322327838120029232261q q q q r r r r ========或 ()()()()()8381,1015261,1015261,23229,23229,029=====. []()83811015838110158381,10158381352933358381,101529⨯⨯===⨯=.(2)方法1 短除法.由2144 180 108272 90 54336 30 27312 10 9 4 5 3得 ()22144,180,1082336=⨯=,[]43144,180,1082352160=⨯⨯=.方法2 分解质因数法.由42222314423,180235,10823,=⨯=⨯⨯=⨯,得 ()22144,180,1082336=⨯=,[]43144,180,1082352160=⨯⨯=.例8 正整数n 分别除以2,3,4,5,6,7,8,9,10得到的余数依次为1,2,3,4,5,6,7,8,9,则n 的最小值为 .解 依题意,对最小的n ,则1n +是2,3,4,5,6,7,8,9,10的公倍数3212357n +=⨯⨯⨯,得2519n =.例9 有两个容器,一个容量为27升,一个容量为15升,如何利用它们从一桶油中倒出6升油来?解 相当于求不定方程15276x y +=的整数解. 由()15,273=知,存在整数,u v ,使15273u v +=,可得一个解2,1u v ==-,从而方程 ()1542726⨯+⨯-=.即往小容器里倒2次油,每次倒满之后就向大容器里倒,大容器倒满时,小容器里剩有3升油;再重复一次,可得6升.例10 对每一个2n ≥,求证存在n 个互不相同的正整数12,,,n a a a ,使i j i j a a a a -+,对任意的{},1,2,,,i j n i j ∈≠成立.证明 用数学归纳法.当2n =时,取121,2a a ==,命题显然成立. 假设n k =时,命题成立,即存在12,,,k a a a ,使 i j i j a a a a -+,对任意的{},1,2,,,i j k i j ∈≠成立.现取b 为12,,,k a a a 及它们每两个数之差的最小公倍数,则1k +个数12,,,,k b a b a b a b +++满足 ()()()()()(),,t t ij i j a b b a b b a b a b a b a b ⎧+-++⎪⎨+-++++⎪⎩即命题对1n k =+时成立.由数学归纳法知命题对2n ≥成立.例11 ()111959,IMO -证明对任意正整数n ,分数214143n n ++不可约.证明1 (反证法)假若214143n n ++可约,则存在1d >, ①使 ()214,143n n d ++=, 从而存在(),,,1p q p q =,使214, 143, n dp n dq +=⎧⎨+=⎩②③消去n ,()()3322⨯-⨯,得()132d q p =-, ④ 的 1d =. ⑤由(1)、(5)矛盾,得1d =. 解题分析:(1)去掉反证法的假设与矛盾就是一个正面证法.(2)式④是实质性的进展,表明()()131432214n n =+-+, 可见 ()214,1431n n ++=. 由此获得2个解法.证明2 设()214,143n n d ++=.存在(),,,1p q p q =,使214, 143, n dp n dq +=⎧⎨+=⎩①② 消去n ,②×3-①×2,得()132d q p =- ③ 得 1d =.证明3 由()()131432214n n =+-+ 得 ()214,1431n n ++=.证明4 ()214,143n n ++()71,143n n =++ ④ ()71,1n =+ ⑤1=.解题分析:第④ 相当于 ①-②;第⑤ 相当于②-2(①-②)=②×3-①×2;所以③式与⑤式的效果是一样的.例12 不存在这样的多项式()1110mm m m f n a n a na n a --=++++,使得对任意的正整数n ,()f n 都是素数.证明 假设存在这样的多项式,对任意的正整数n ,()f n 都是素数,则取正整数n b =,有素数p 使()1110mm m m f b a b a ba b a p --=++++=,进而对任意的整数,k 有()()()()1110mm m m f b kp a b kp a b kp a b kp a --+=+++++++()1110m m m m a b a b a b a Mp --=+++++(二项式定理展开)()1P M =+,其中M 为整数,这表明()f b kp +为合数.这一矛盾说明,不存在这样的多项式,对任意的正整数n ,()f n 都是素数. 三、平方数若a 是整数,则2a 就叫做a 的完全平方数,简称平方数. 1.平方数的简单性质(1)平方数的个位数只有6个:0,1,4,5.6.9.(2)平方数的末两位数只有22个:00,01,21,41,61,81,04,24,44,64,84,25,16,36,56,76,96,09,29,49,69,89.(3)()()()()2220mod 4,211mod 4n n ≡-≡. (4)()()2211mod 8n -≡.(6)凡是不能被3整除的数,平方后被3除余1.(7)在两个相邻整数的平方数之间,不能再有平方数. (8)非零平方数的约数有奇数个.。
初中数学奥林匹克竞赛解题方法大全(配PDF版)--二次方程与方程组
第八章 二次方程与方程组第一节 一元二次方程【赛题精选】§1、一元一次方程的解法主要有:直接开平方法、因式分解法、配方法、公式法。
例1、利用直接开平方法解下列关于x 的方程。
(1)0)1(9)2(22=+--x x (2))0(0)22()(22>=+-+a a x a x(3))21(2142222nx n x n x x ++=++例2、利用因式分解法解下列关于x 的方程。
(1)(5x+2)(x-1)=(2x+11)(x-1) (2)0452=+-x x(3)02_23()12(2=++-+x x (4)0)()(22222=-++-q p pq x q p x(5)x m x m x x m )1()1()1(2222-=--+-例3、用配方法解下列关于x 的方程。
(1))0(02≠=++a c bx ax (2)03)12()1(2=-+-+-m x m x m(3)01333223=-+++x x x§2、根的判别式、根与系数的关系韦达定理:若)0(02≠=++a c bx ax 的两个根为1x 、2x ,那么1x 、2x 与a 、b 、c的关系为:两根之和a b x x -=+21;两根之积ac x x =21。
例4、若首项系数不相等的两个二次方程02)2()1(222=+++--a a x a x a (1)、02)2()1(222=+++--b b b x b (2)(其中a 、b 均为正整数)有一个公共根。
求ab ab b a b a --++的值。
例5、已知方程02=++c bx x 与02=++b cx x 各有两个根1x 、2x 及'1x 、'2x ,且1x 2x >0,'1x '2x >0。
求证:(1)1x <0,2x <0,'1x <0,'2x <0;(2)b-1≤c ≤b+1;(3)求b 、c 所有可能的值。
初中数学竞赛常用解题方法代数
初中数学竞赛常用解题方法(代数)一、 配方法例1练习:若2()4()()0x z x y y z ----=,试求x+z 与y 的关系。
二、 非负数法例21()2x y z =++. 三、 构造法(1)构造多项式例3、三个整数a 、b 、c 的和是6 的倍数.,那么它们的立方和被6除,得到的余数是( )(A) 0 (B) 2 (C) 3 (D) 不确定的(2)构造有理化因式例4、 已知(2002x y ++=.则22346658x xy y x y ----+=___ ___。
(3)构造对偶式例5、 已知αβ、是方程210x x --= 的两根,则43αβ+的值是___ ___。
(4)构造递推式例6、 实数a 、b 、x 、y 满足3ax by +=,227ax by +=,3316ax by +=,4442ax by +=.求55ax by +的值___ ___。
(5)构造几何图形例7、(构造对称图形)已知a 、b 是正数,且a + b = 2. 求u =___ ___。
练习:(构造矩形)若a ,b 形的三条边的长,那么这个三角形的面积等于___________。
四、 合成法例8、若12345,,,x x x x x 和满足方程组123451234512345123451234520212224248296x x x x x x x x x x x x x x x x x x x x x x x x x ++++=++++=++++=++++=++++= 确定4532x x +的值。
五、 比较法(差值比较法、比值比较法、恒等比较法)例9、71427和19的积被7除,余数是几?练习:设0a b c >>>,求证:222a b c b c c a a b a b c a b c +++>.六、 因式分解法(提取公因式法、公式法、十字相乘法)1221()(...)n n n n n n a b a b a a b ab b -----=-++++1221()(...)n n n n n n a b a b a a b ab b ----+=+-+-+例10、设n 是整数,证明数323122M n n n =++为整数,且它是3的倍数。
初一数学数论的方法技巧(下)竞赛教程含例题练习及答案
初一数学竞赛讲座数论的方法技巧(下)四、反证法反证法即首先对命题的结论作出相反的假设,并从此假设出发,经过正确的推理,导出矛盾的结果,这就否定了作为推理出发点的假设,从而肯定了原结论是正确的。
反证法的过程可简述为以下三个步骤:1.反设:假设所要证明的结论不成立,而其反面成立;2.归谬:由“反设”出发,通过正确的推理,导出矛盾——与已知条件、公理、定义、定理、反设及明显的事实矛盾或自相矛盾;3.结论:因为推理正确,产生矛盾的原因在于“反设”的谬误,既然结论的反面不成立,从而肯定了结论成立。
运用反证法的关键在于导致矛盾。
在数论中,不少问题是通过奇偶分析或同余等方法引出矛盾的。
解:如果存在这样的三位数,那么就有100a+10b+c=(10a+b)+(10b+c)+(10a+c)。
上式可化简为 80a=b+c,而这显然是不可能的,因为a≥1,b≤9,c≤9。
这表明所找的数是不存在的。
说明:在证明不存在性的问题时,常用反证法:先假设存在,即至少有一个元素,它符合命题中所述的一切要求,然后从这个存在的元素出发,进行推理,直到产生矛盾。
例2 将某个17位数的数字的排列顺序颠倒,再将得到的数与原来的数相加。
试说明,得到的和中至少有一个数字是偶数。
解:假设得到的和中没有一个数字是偶数,即全是奇数。
在如下式所示的加法算式中,末一列数字的和d+a为奇数,从而第一列也是如此,因此第二列数字的和b+c≤9。
将已知数的前两位数字a,b与末两位数字c,d去掉,所得的13位数仍具有“将它的数字颠倒,得到的数与它相加,和的数字都是奇数”这一性质。
照此进行,每次去掉首末各两位数字,最后得到一位数,它与自身相加是偶数,矛盾。
故和的数字中必有偶数。
说明:显然结论对(4k+1)位数也成立。
但对其他位数的数不一定成立。
如12+21,506+605等。
例3 有一个魔术钱币机,当塞入1枚1分硬币时,退出1枚1角和1枚5分的硬币;当塞入1枚5分硬币时,退出4枚1角硬币;当塞入1枚1角硬币时,退出3枚1分硬币。
初中竞赛数学6.有理数的计算方法与技巧(含答案)
6.计算──工具与算法的变迁知识纵横研究数学、学习数学总离不开计算,随着时代的变迁,计算工具在不断在改变,•从中国古老的算盘、纸笔运算发展到利用计算器、计算机(computer)运算.初中代数中运算贯穿于始终,运算能力是运算技能与逻辑能力的结合,它体现在对算理算律的理解与使用,综合运算的能力及选择简捷合理的运算路径上,这要求我们要善于观察问题的结构特点,灵活选用算法和技巧,有理数的计算常用的方法与技巧有:1.巧用运算律;2.用字母代数;3.分解相约;4.裂项相消;5.利用公式等.例题求题【例1】现有四个有理数3,4,-6,10,将这4个数(每个数用且只用一次)进行加、减、乘、除四则运算,使其结果等于24,其三种本质不同的运算式有:(1)________________;(2)__________________;(3)____________________. (浙江省杭州市中考题)思路点拨从24最简单的不同表达式入手,逆推、拼凑.解:下列算式供参考:3×[4+10+(-6)],(10-4)-3×(-6),4-(-6)÷3×10.【例2】如果4个不同的正整数m、n、p、q满足(7-m)(7-n)(7-p)(7-q)=4,•那么m+n+p+q 等于( ).A.10B.21C.24D.26E.28(2001年新加坡数学竞赛题) 思路点拨解题的关键是把4表示成4个不同整数的形式.解:选E 提示:4=2×(-2)×1×(-1)【例3】计算:(1)1+112++1123+++…+1123100+++⋅⋅⋅+(“祖冲之杯”邀请赛试题)(2)19492-19502+19512-19522+…+19972-19982+19992; (北京市竞赛题)(3)5+52+53+ (52002)思路点拨对于(1),首先计算每个公分母值,则易掩盖问题的实质,不妨先从考察一般情形入手;(2)式使人易联想到平方差公式;对于(3),•由于相邻的后一项与前一项的比都是5,可从用字母表示和式着手.解:(1) 200101提示:1123n+++⋅⋅⋅+=1(1)2n n+=2(1)n n+=2(1n-11n+)(2)3897326;(3) 2003554- 提示:设s=5+52+53+...+52002,则5s=52+53+ (52003)【例4】(1)若按奇偶分类,则22004+32004+72004+92004是________数;(2)设a=355,b=444,c=533,则a 、b 、c 的大小关系是_______(用“>”号连接); (3)求证:32002+42002是5的倍数.思路点拨 乘方运算是一种特殊的乘法运算,•解与乘方运算有关问题常用到以下知识:①乘方意义;②乘方法则;③a 2n ≥0;④a n 与a 的奇偶性相同;⑤在n 4k+r 中(k,r 为非负整数,n ≠0,0≤r<4),当r=0时,n 4k+r 的个位数字与n 4的个位数字相同;当r ≠0时,n 4k+r •的个位数字与n r 的个位数字相同. 解:(1)奇;(2)a>b>c.(3)因为32002=34×500+2,42002=44×500+2,所以32002与42002的个位数字分别与32、42的个数数字相同,即9、6,•从而32002+42002的个位数字为5,因此,32002+42002是5的倍数.【例5】有人编了一个程序:从1开始,交替地做加法或乘法(第一次可以是加法,也可以是乘法),每次加法,将上次运算结果加2或加3;每次乘法,将上次运算结果乘2或乘3,例如,30可以这样得到:13+−−→42⨯−−→82+−−→103⨯−−→30. (1)证明:可以得到22;(2)证明:可以得到2100+297-2.思路点拨 要证明可以得到相应的数,只要编出符合要求的程序即可.解:(1)1 2⨯−−→ 2 2+−−→ 4 2⨯−−→ 8 2+−−→ 10 2⨯−−→ 20 2+−−→ 22; (2)1 2⨯−−→ 3×2-4 2+−−→ 3×2-2 2⨯−−→ 3×22-4 2+−−→ 3×22-2 2⨯−−→ 3×23-4 2+−−→ 3×23-2…(不断乘以2,再加2) 2⨯−−→3×296-43+−−→3×296-1 3⨯−−→ 299+296-3 2+−−→ 299+296-1 2⨯−−→ 2100+297-2.学力训练一、基础夯实1.(1)计算:211×(-455)+365×455-211×545+545×365=_________;(2)若a= -20042003,b=-20032002,c=-20022001,则a、b、c的大小关系是___________(用“〈”号连接〉.2.计算:(1)0.7×149+234×(-15)+0.7×59+14×(-15)=________;(第15届江苏省竞赛题)(2) 191919767676-76761919=________. (第12届“希望杯”邀请赛试题)(3)135⨯+157⨯+…+119971999⨯=________; (天津市竞赛题)(4)(13.672×125+136.72×12.25-1367.2×1.875)÷17.09=________.(第14届“五羊杯”竞赛题)3.在下式的每个方框内各填入一个四则运算符号(不再添加括号),•使得等式成立:6□3□2□12=24. (第17届江苏省竞赛题)4.1999加上它的12得到一个数,再加上所得的数的13又得到一个数,再加上这次得数的14又得到一个数,……,依此类推,一直加到上一次得数的11999,那么最后得到的数是_________.5.根据图所示的程序计算,若输入的x值为32,则输出的结果为( ).A.72B.94C.12D.92(2002年北京市海淀区中考题)y=-x+21<x≤2y=x2-1<x≤1y=x+2-2≤x≤-1输出y值输入x值6.已知a=-199919991999199819981998⨯-⨯+,b=-200020002000199919991999⨯-⨯+,c=-200120012001200020002000⨯-⨯+,则abc=( ).A.-1B.3C.-3D.1 (第11届“希望杯”邀请赛试题)7.如果有理数a 、b 、c 满足关系a<b<0<c,那么代数式23bc acab c 的值( ).A.必为正数B.必为负数C.可正可负D.可能为0 8.将322、414、910、810由大到小的排序是( ).A.322、910、810、414B.322、910、414、810C.910、810、414、322D.322、414、910、810 (美国犹他州竞赛题) 9.阅读下列一段话,并解决后面的问题:观察下面一列数:1,2,4,8,…,我们发现,这一列数从第2项起,•每一项与它前一项的比都等于2.一般地,如果一列数从第二项起,每一项与它前一项的比都等于同一个常数,•这一列数就叫做等比数列,这个常数叫做等比数列的公比. (1)等比数列5,-15,45,…的第4项是________;(2)如果一列数a 1,a 2,a 3,a 4,…是等比数列,且公比为q,那么根据上述的规定,有 •21a a =q, 32a a =q, 43aa =q,…, 所以a 2=a 1q,a 3=a 2q=(a 1q)q=a 1q 2,a 4=a 3q=a 1q 3,…,a n =_______(用a 1与q 的代数式表示). (3)一个等比数列的第2项是10,第3项是20,求它的第1项与第4项. (2003年广西省中考题)10.(1)已知a 、b 、c 都不等于零,且||a a +||b b +||c c +||abcabc 的最大值是m,最小值为n,求m n mn的值.(2)求证:5353-3333是10的倍数.二、能力拓展11.计算:(1) 2200340042003200240082003200422003300520032003200520053005-⨯+⨯-⨯-⨯-⨯+⨯=_________.(第15届“希望杯”邀请赛试题)(2)2-22-23-24-25-26-27-28-29+210=___________;(3) 123369510157142113539155152572135⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯=_______________.(4)98+998+9998+…+5099998⋅⋅⋅个=_________.(2003年“信利杯”竞赛题) 12.(1)32001×72002×132003所得积的末位数字是________;(第17届江苏省竞赛题) 13.若a 、b 、c 、d 是互不相等的整数(a<b<c<d),且abcd=121,则a c +b d =________. 14.你能比较20012002与20022001的大小吗?为了解决这个问题,我们先写出它的一般形式,即比较n n+1与(n+1)n 的大小(n 是自然数),然后,我们从分析n=1,n=2,n=3,……中发现规律,经归纳、猜想得出结论. (1)通过计算,比较下列各组中两数的大小(在空格中填写“)”、“=”、•“〈”号〉. ①12_____21; ②23______32; ③34______43; ④45______54; ⑤56_____65;…… (2)从第(1)题的结果经过归纳,可以猜想出n n+1和(n+1)n 的大小关系是_______.(3)根据上面归纳猜想得到的一般结论,试比较下列两个数的大小20012002___20022001. (江苏省常州市中考题) 15.如果11||t t +22||tt +33||t t =1,则123123||t t t t t t 的值为( ). A.-1 B.1 C.±1 D.不确定 (2003河北省竞赛题) 16.如果ac<0,那么下面的不等式ac<0,a c 2<0,a 2c<0,c 3a<0,ca 3<0中必定成立的有( • ). A.1个 B.2个 C.3个 D.4个17.设S=213⨯+2235⨯+3257⨯+...4929799⨯,T=13+25+227+ (48)299,则S-T=( ).A.49299B.1-49299C.49299-1D.49299+1 (第14届“五羊杯”竞赛题)18.10个互不相等的有理数,每9个的和都是“分母为22的既约真分数(分子与分母无公约数的真分数)”,则这10个有理数的和为( ). A.12 B. 1118 C. 76D. 59 (第11届江苏省竞赛题)19.图中显示的填数“魔方”只填了一部分,将下列9个数: 14,12,1,2,4,8,•16,•32,64填入方格中,使得所有行、列及对角线上各数相乘的积相等,求x的值. (上海市竞赛题)64x3220.设三个互不相等的有理数,既可分别表示为1,a+b,a的形式,又可分别表示为0, ab,b的形式,求a2002+b2001的值.三、综合创新21.(1)三个2,不用运算符号,写出尽可能大的数;(2)三个4,不用运算符号,写出尽可能大的数.(3)用相同的3个数字(1~9),不用运算符号,写出最大的数.22.如图,是一个计算装置示意图,J1、J2是数据输入口,C是计算输出口,计算过程是由J1、J2分别输入自然数m和n,经计算后得自然数K由C输出,此种计算装置完成的计算满足以下三个性质:(1)若J1、J=2分别输入1,则输出结果为1;(2)若J=1输入任何固定的自然数不变,J2输入自然数增大1,则输出结果比原来增大2;(3)若J2输入1,J1输入自然数增大1,则输出结果为原来的2倍.试问:(1)若J1输入1,J2输入自然数n,输出结果为多少?(2)若J2输入1,J1输入自然数m,输出结果为多少?(3)若J1输入自然数m,J2输入自然数n,输出的结果为多少?(2002年扬州中学招生试题)C nmj2 j1答案:1.(1)154000,(2)a>b>c.2.(1)-43.6;(2)-334;(3) 9985997; (4)•48,•注意13672=•8•×1709. 3.略 4.1999000 提示:原式=1999×(1+12)(1+13)×…×(1+11999)5.C6.A7.B8.A9.(1)-135;(2)a n =a 1q n-1;(3)a 1=5,a 4=40. 10.(1)-16 提示:||xx =±1,m=4,n=-4;(2)5353与3333的个位数字相同. 11.(1)667668;(2)6 提示:2n+1-2n =2n ;(3)25; (4) 111000491⋅⋅⋅ 个 12.(1)9;(2)115200 13.-1214.(1)略;(2)当n<3时,n n+1<(n+1)n ;当n ≥3时,n n+1>(n+1)n ;(3)>. 15.A 16.C 17.B 提示:1111()(2)22n n n n =-++ 18.A 19.这9个数的积为14×12×1×2×4×8×16×32×64=643, 所以,每行、每列、每条对角线上三个数字积为64, 得ac=1,ef=1,ax=2,a,c,e,f 分别为14,12, 2,4中的某个数,推得x=8. fed c b a 64x 3220.2 提示:这两个三数组在适当的顺序下对应相等,于是可以断定,a+b 与a•中有一个为0,ba与b 中有一个为1,再讨论得a=-1,b=1. 21.(1)222;(2)444=4256>444;(3)设所用数字为a,可得下面4种写法:①当a=1时,111最大;②当a=2时,222最大;③当a=3时,333最大;④当a ≥4时,a 最大. 22.由题意设输出数,设C(m,n)为k,则C(1,1)=1,C(m,n)=c(m,n-1)+2,C(m,•1)•=2C(m-1,1).(1)C(1,n)=C(1,n-1)+2=C(1,n-2)+2×2=…= C(1,1)+2(n-1)=1+2(n-1)=2n-1 (2)C(m,1)=2C(m-1,1)=22·C(m-2,1)=…=2m-1C(1,1)=2m-1.(3)C(m,n)=C(m,n-1)+2=C(m,n-2)+2×2=…=C(m-1)+2(n-1)=22C(m-2,1)+2(n-1)=…=2m-1C(1,1)+2n-2=2m-1+2n-2.。
初中数学竞赛中的数论问题
初中数学竞赛中的数论问题近几年,初中数学竞赛日益受到关注。
这场竞赛中,出现了一种特殊的题型数论问题。
它们具备独特的特性,使得参赛者承受了前所未有的挑战,取得了惊人的成绩。
本文将详细介绍数论在数学竞赛中的应用,以及参赛者在竞赛中取得高分的策略。
首先,数论作为一种数学学科,利用组合数学、概率论、数论与分析的知识,来求解和研究解题的技巧。
数论问题在初中竞赛中具有多种不同的形式,如常见的数论排列和组合问题、模运算问题、费马小定理问题等。
此外,数论中还有寻找素数、计算连续整数的和以及求解梯形乘积和等问题。
其次,数论问题的解法通常是多种多样的,这也是参赛者最感兴趣的地方。
很多数论问题涉及到一些数学工具,如组合数学、概率论、统计学、几何学等,这就需要学生能充分利用这些数学工具来解决数论问题。
此外,参赛者还要熟悉常见的数论结论,以便于能够更快更准确地解决问题。
最后,在竞赛中取得高分的重要前提就是要学会分析问题。
这个过程是非常重要的,因为只有仔细分析问题,才能准确地了解其中所包含的几何性质,从而找到解决问题的最佳方案。
另外,学会时间管理也很重要,因为在竞赛中,时间紧迫,有时候参赛者可能会出现拖延的情况,这样就会影响最终的结果。
有时,参赛者可能会发现某一题很难,此时,最好的办法就是跳过此题,充分利用时间解决其他的题目。
综上所述,数论在数学竞赛中有着重要的地位,它能够帮助参赛者取得较好的成绩。
参赛者在竞赛中取得高分的要素在于能够充分利用数学工具、熟悉数论结论、仔细分析问题以及做好时间管理。
只有广泛学习各种数学知识,不断提升自己的水平,才能为竞赛备足充分的准备,取得更好的成绩。
初中数学竞赛数学方法选讲(下)(含答案)
数学方法选讲(下)四、从反面考虑解数学题,需要正确的思路。
对于很多数学问题,通常采用正面求解的思路,即从条件出发,求得结论。
但是,如果直接从正面不易找到解题思路时,则可改变思维的方向,即从结论入手或从条件及结论的反面进行思考,从而使问题得到解决。
例1 某次数学测验一共出了10道题,评分方法如下:每答对一题得4分,不答题得0分,答错一题倒扣1分,每个考生预先给10分作为基础分。
问:此次测验至多有多少种不同的分数?分析:最高的得分为50分,最低的得分为0分。
但并不是从0分到50分都能得到。
从正面考虑计算量较大,故我们从反面考虑,先计算有多少种分数达不到,然后排除达不到的分数就可以了。
解:最高的得分为50分,最低的得分为0分。
在从0分到50分这51个分数中,有49,48,47,44,43,39这6种分数是不能达到的,故此次测验不同的分数至多有51-6=45(种)。
例2 一支队伍的人数是5的倍数,且超过1000人。
若按每排4人编队,则最后差3人;若按每排3人编队,则最后差2人;若按每排2人编队,则最后差1人。
问:这支队伍至少有多少人?分析:从条件“若按每排4人编队,则最后差3人”的反面来考虑,可理解为“若按每排4人编队,则最后多1人”。
同理,按3人、2人排队都可理解为多1人。
即总人数被12除余1。
这样一来,原题就化为:一个5的倍数大于1000,且它被12除余1。
问:这个数最小是多少?解:是5的倍数且除以12余1的最小自然数是25。
因为人数超过1000,[3,4,5]=60,所以最少有25+60×17=1045(人)。
例3 在八边形的8个顶点上是否可以分别记上数1,2,…,8,使得任意三个相邻的顶点上的数的和大于13?解:将八边形的8个顶点上的数依次记为a1,a2,a3,…,a8,则有S=a1+a2+a3+…+a8=1+2+3+…+8=36。
假设任意3个相邻顶点上的数都大于13,因为顶点上的数都是整数,所以a1+a2+a3≥14;a2+a3+a4≥14;……a7+a8+a1≥14;a8+a1+a2≥14。
奥赛经典
奥赛经典——初中数学竞赛中的数论问题第一章 整数的封闭性运算【典型例题与基本方法】例1 (1995年全国联赛题)方程组⎩⎨⎧=+=+2363yz xz yz xy 的正整数解的组数是( ). A.1 B.2 C.3 D.4 例2 (2007年天津市竞赛题)八年级二班的同学参加社区公益活动——收集废旧电池,其中甲组同学平均每人收集17个,乙组同学平均每人收集20个,丙组同学平均每人收集21个.若这三个小组共收集了233个废旧电池,则这三个小组共有学生( )人.A.12B.13C.14D.15例3 (2002年“我爱数学”初中生夏令营竞赛题)如果一个正整数等于它的各位数字之和的4倍,那么,我们就把这个正整数叫做四合数.所有四合数的总和等于 .【解题思维策略分析】1.注意整数乘积或幂中的特殊因数例5 (2008年青少年数学国际城市邀请赛题)已知n 为正整数,使得()()()k n n n n n n 2621211=--+-++(k 是正整数).求所有可能的n 值的总和. 2.注意整数运算的封闭性例6 (2007年“新知杯”上海市竞赛题)求满足下列条件的正整数n 的所有可能值:对这样的n ,能找到实数a ,b ,使得函数()b ax x n x f ++=21对任意整数x ,()x f 都是整数. 3.注意在分数不等式中取整数的条件例7 已知n ,k 均为正整数,且满足不等式4396371<+-<k n k n .若对于某一给定的正整数n ,只有唯一的一个正整数k 使不等式成立.求所有符合要求的正整数n 中的最大值和最小值.【模拟实战】A 组1.若满足不等式137158<+<k n n 的整数k 只有一个,则正整数n 的最大值为( ). A.100 B.112 C.120 D.1502.若12032+m 是整数,则所有满足条件的正整数m 的和为( ).A.401B.800C.601D.12033.若直角三角形的一条直角边长为12,另两条边长均整数,则符合这样条件的直角三角形共有( )个.A.1B.6C.4D.无数多4.2009是一个具有如下性质的年号:它的各位数码之和为11.那么,自古至今,这种四位数的年号共出现过______次.5.(2005年全国联赛题)不超过100的自然数中,将凡是3或5的倍数的数相加,其和为_____.B 组1.(2008年四川省竞赛题)已知正整数a 、b 、c 满足c b a <<,且abc ca bc ab =++.求所有符合条件的a 、b 、c .2.(2009年南昌市竞赛题)已知n 是大于1的整数.求证:3n 可以写成两个正整数的平方差.3.(第4届中国趣味数学决赛题)有20堆石子,每堆都有2006粒石子.从任意19堆中各取一粒放入另一堆,称为一次操作.经过不足20次操作后,某一堆中有1990粒石子,另一堆石子数在2080到2100之间,这一堆石子有______粒.4.(1995年全国联赛(民族卷)题)已知正整数a 、b 、c 满足下列条件:c b a >>,()()()72=---c a c b b a ,且100<abc ,求a ,b ,c .5.(2006年全国联赛题)2006个都不等于119的正整数200621,,a a a Λ排成一行,其中任意连续若干项之和都不等于119,求200621a a a +++Λ的最小值.6.(第13届日本奥数决赛题)平太给大介出了一道计算题(A ,B 各代表两位数中各位上的数字,相同的字母代表相同的数字):=⨯BA AB .大介:“得数是2872.”平太:“不对”.大介:“个位的数字对吗?”平太:“对”.大介:“其它位的数字有对的吗?”平在:“这是保密的.但你调换一下四位数2872中4个数字的位置,就能得出正确答案.” 请求出正确答案.第二章 正整数的多项式表示及应用【典型例题与基本方法】例1 将()102010化为下列进位制的数:⑴二进位制的数;⑵八进位制的数.例2 试证:形如abcabc 的六位数总含有7,11,13的因数.例3 一个三位数xyz (其中x ,y ,z 互不相等),将其各个数位的数字重新排列,分别得到的最大数和最小数仍是三位数.若所得到的最大三位数与最小三位数之差是原来的三位数,求这个三位数.例4 设两个三位数xyz ,zyx 的乘积为一个五位数xzyyx (其中x ,y ,z 互不相等),求x ,y ,z.【解题思维策略分析】1.善于运用正整数的十进位制的多项式表示解题例5 若一个首位数字是1的六位数abcde 1乘以3所得的积是一个末位数字为1的六位数1abcde ,求原来的六位数.例6 有一个若干位的正整数,它的前两位数字相同,且它与它的反序数(011a a a a n n Λ-与n n a a a a 110-Λ互为反序数,其中00≠a ,0≠n a )之和为10879,求原数.2.会利用非十进位制多项式表示解题例7 设在三进位置中,数N 的表示是20位数:12112211122211112222.求N 在九进位制中表示最左边的一位数字.例8 设1987可以在b 进位制中写成三位数xyz ,且7891+++=++z y x ,试确定出所有可能的x ,y ,z 和b .【模拟实战】A 组1.M 表示一个两位数,N 表示一个三位数,如果把M 放在N 的左边,组成一个五位数,那么这个五位数是( ).A. M+NB. MNC. 10000M+ND. 1000M+N2.一个两位数,它是本身数字和的k 倍,将个位数字与十位数字交换位置后,组成一个新数,则新数为其数字和的( ).A.()1-k 倍B.()k -11倍C.()k -10倍D.()k -9倍3.在大于10、小于100的正整数中,数字变换位置后所得的数比原数增加9的数的个数为_____.4.一个两位数,它的各位数字和的3倍与这个数加起来所得的和恰好是原数的两个数字交换了位置所得的两位数,这样的两位数有____个.5.已知ab 为两位数,且满足bbb ab b a =⋅⋅,求这个两位数.6.求一个最小的正整数n ,它的个位数字为6,将6移到首位,所得的新数是原数的4倍.B 组1.已知一个四位数的各位数字的和与这个四位数相加等于2010,试求这个四位数.2.有一种室内游戏,魔术师要求某参赛者想好一个三位数abc ,然后,魔术师再要求他记下五个数acb 、bac 、bca 、cab 、cba ,并把这五个数加起来求出和N ,只要讲出N 的大小,魔术师就能说出原数abc 是什么.如果3194=N ,请你确定abc .3.两位数ab (个位数字与十位数字不同)的平方等于三位数xyz ;而这两位数ba 的平方恰好等于三位数zyx ,求上述两位属于三位数.4.(2008年全国联赛(江西卷)题)一本书共有61页,顺次编号1,2,...,61.某人在将这个数相加时,有两个两位数页码都错把个位数与十位数弄反了(形如ab 的两位数被当成了两位数ba ),结果得到的总和是2008.那么,书上这两个两位数页码之和的最大值是多少?5.(1998年“中小学数学杯”竞赛题)把()21101001.0化为十进制小数.6.(1998年长春市竞赛题)证明:1218-能被7整除.7.(江西省第4届“八一杯”竞赛题)求证:12222222101112131415-++-+-+-Λ能被5整除.8.(第5届沈阳市竞赛题)若m ,n 是两个自然数,且2>n ,那么12+m 不能被12-n 整除,试说明理由.9.(江西省第2届探索与应用能力竞赛题)将十进制数2002化成二进制数.10.(1997年广州市竞赛题)化()1084375.53为二进制小数.11.有一个写成7进制的三位数,如果把各位数码按相反顺序写出,并把它看成是九进制的三位数,且这两数相等,求这个数.12.在哪种进位制中,16324是125的平方?13.N 是整数,它的b 进制表示是777.求最小的正整数b ,使得N 是十进制整数的4次方.14.在哪种进制中,100134=⋅?15.(2007年“卡西欧杯”武汉市竞赛题)军训基地购买苹果慰问学员.已知苹果总数用八进位制表示为abc ,七进位制表示为cba .那么,苹果的总数用十进位制表示为_____.16.(1998年“中小学数学杯”竞赛题)化()81325为二进制数.17.(1995年“祖冲之”邀请赛决赛题)求证:对于任意进位制的数,10201都是合数.18.(第2届华杯赛决赛题)下面是两个1989位整数相乘:321Λ321Λ119891198911111111个个⨯. 问:乘积的数字和是多少?19.(第10届《中小学生数学报》邀请赛题)计算:⑴()()22101101111011010+;⑵()()2210101101101101-;⑶()()()222101101100111000000--.。
初一数学竞赛专讲第⑵讲含例题及答案:数论的方法技巧(下)
初一数学竞赛讲座第2讲数论的方法技巧(下)四、反证法 反证法即首先对命题的结论作出相反的假设,并从此假设出发,经过正确的推理,导出矛盾的结果,这就否定了作为推理出发点的假设,从而肯定了原结论是正确的。
反证法的过程可简述为以下三个步骤: 1.反设:假设所要证明的结论不成立,而其反面成立; 2.归谬:由“反设”出发,通过正确的推理,导出矛盾——与已知条件、公理、定义、定理、反设及明显的事实矛盾或自相矛盾; 3.结论:因为推理正确,产生矛盾的原因在于“反设”的谬误,既然结论的反面不成立,从而肯定了结论成立。
运用反证法的关键在于导致矛盾。
在数论中,不少问题是通过奇偶分析或同余等方法引出矛盾的。
解:如果存在这样的三位数,那么就有 100a+10b+c=(10a+b)+(10b+c)+(10a+c)。
上式可化简为80a=b+c,而这显然是不可能的,因为a≥1,b≤9,c≤9。
这表明所找的数是不存在的。
说明:在证明不存在性的问题时,常用反证法:先假设存在,即至少有一个元素,它符合命题中所述的一切要求,然后从这个存在的元素出发,进行推理,直到产生矛盾。
例2 将某个17位数的数字的排列顺序颠倒,再将得到的数与原来的数相加。
试说明,得到的和中至少有一个数字是偶数。
解:假设得到的和中没有一个数字是偶数,即全是奇数。
在如下式所示的加法算式中,末一列数字的和d+a为奇数,从而第一列也是如此,因此第二列数字的和b+c≤9。
将已知数的前两位数字a,b与末两位数字c,d去掉,所得的13位数仍具有“将它的数字颠倒,得到的数与它相加,和的数字都是奇数”这一性质。
照此进行,每次去掉首末各两位数字,最后得到一位数,它与自身相加是偶数,矛盾。
故和的数字中必有偶数。
说明:显然结论对(4k+1)位数也成立。
但对其他位数的数不一定成立。
如12+21,506+605等。
例3 有一个魔术钱币机,当塞入1枚1分硬币时,退出1枚1角和1枚5分的硬币;当塞入1枚5分硬币时,退出4枚1角硬币;当塞入1枚1角硬币时,退出3枚1分硬币。
初中数学奥林匹克竞赛解题方法大全-第02章-有理数及其运算
初中数学奥林匹克竞赛解题方法大全-第02章-有理数及其运算1.整数和分数的大小比较:-方法一:通分。
将整数转换为分数,然后通分进行比较。
-方法二:化为相同的分数形式。
将分数化为相同的分母,然后比较分子的大小。
-方法三:换算成小数进行比较。
将分数转换为小数形式,然后比较大小。
2.有理数的加法和减法运算:-方法一:同分母相加(减)。
-方法二:通分后相加(减)。
3.有理数的乘法运算:-方法一:分子乘分子,分母乘分母。
-方法二:化为最简形式。
-方法三:化为小数进行计算。
4.有理数的除法运算:-方法一:分子乘除分子,分母乘除分母。
-方法二:化为最简形式。
-方法三:化为小数进行计算。
5.有理数的混合运算:-方法一:先按运算顺序完成个别运算,然后进行总体运算。
-方法二:化为分数形式进行运算。
6.有理数的平方运算:-方法一:整数的平方是整数,分数的平方是分数。
-方法二:先化为最简形式,再进行平方运算。
7.有理数的相反数和绝对值:-方法一:相反数是原数的负数。
-方法二:绝对值是原数的去掉符号的值。
8.有理数的乘方运算:-方法一:整数次幂,底数不变,指数相乘。
-方法二:0的正整数次幂为0。
-方法三:0的非正整数次幂无意义。
-方法四:1的任何整数次幂都为1-方法五:负数的奇数次幂为负数,偶数次幂为正数。
-方法六:分数的乘方运算,将底数与指数分别进行乘方运算。
9.有理数的开方运算:-方法一:将开方式化为最简形式。
-方法二:将开方数化为分数形式。
-方法三:化为小数进行计算。
10.展示解题过程和解题思路。
解答有理数的运算问题时,尽量展示解题过程和解题思路,不仅仅写出答案,可以加深对有理数运算规则的理解,并且能体现出解题的逻辑性和连贯性。
11.理解运算规则。
熟练掌握有理数的运算规则,不仅能快速解答题目,还能够在解题过程中发现和运用运算规则,更好地理解数学概念和思维方法。
初中数学竞赛数论题
数论题练习(一)1. 求满足22282p p m m ++=-的所有素数p 和正整数m .2. 对于i =2,3,…,k ,正整数n 除以i 所得的余数为i -1.若n 的最小值0n 满足020003000n <<,则正整数k 的最小值为 .3.满足方程222()x y x y xy +=++的所有正整数解有( ).(A)一组 (B)二组 (C)三组 (D)四组4.正整数n 分别除以2,3,4,5,6,7,8,9,10得到的余数依次为1,2,3,4,5,6,7,8,9,则n 的最小值为 .5.n 是一个三位数,b 是一个一位数,且22,1a a b b ab ++都是整数,求a b +的最大值与最小值.6.已知12345a a a a a ,,,,是满足条件123459a a a a a ++++=的五个不同的整数,若b 是关于x 的方程()()()()()123452009x a x a x a x a x a -----=的整数根,则b 的值为 .7.试求出所有这样的正整数a 使得关于x 的二次方程22(21)4(3)0ax a x a +-+-=至少有一个整数根.8.是否存在质数p ,q ,使得关于x 的一元二次方程20px qx p -+=有有理数根?9.已知m、n均为正整数,且m>n,2006m2+m=2 007n2+n.问m-n是否为完全平方数?并证明你的结论.10.已知k为常数,关于x的一元二次方程(k2-2k)x2+(4-6k)x+8=0的解都是整数.求k的值. 11.已知n为自然数,9n2-10n+2 009能表示为两个连续自然数之积.则n的最大值为.12.设a是3的正整数次幂,b是2的正整数次幂,试确定所有这样的,a b,使得二次方程20-+=的根是整数.x ax b13.是否存在这样的正整数n ,使得2371n n +-能整除321n n n +++?请说明理由。
数学竞赛中的数论问题(习题部分)
数学竞赛中的数论问题第二部分 数论题的范例讲解主要讲几个重要类型:奇数与偶数,约数与倍数(素数与合数),平方数,整除,同余,不定方程,数论函数等.重点是通过典型范例来分析解题思路、提炼解题方法和巩固基本内容.一、奇数与偶数整数按照能否被2整除可以分为两类,一类余数为0,称为偶数,一类余数为1,称为奇数.偶数可以表示为2n ,奇数可以表示为21n -或21n +.一般地,整数被正整数m 去除,按照余数可以分为m 类,称为模m 的剩余类(){}mod i C x x i m =≡,从每类中各取出一个元素i i a C ∈,可得模m 的完全剩余系(剩余类派出的一个代表团),0,1,2,,1m -称为模m 的非负最小完全剩余系.通过数字奇偶性质的分析而获得解题重大进展的技巧,常称作奇偶分析,这种技巧与分类、染色、数字化都有联系,在数学竞赛中有广泛的应用. 关于奇数和偶数,有下面的简单性质:(1)奇数≠偶数.(2)偶数的个位上是0、2、4、6、8;奇数的个位上是1、3、5、7、9. (3)奇数与偶数是相间排列的;两个连续整数中必是一个奇数一个偶数;. (4)奇数个奇数的和是奇数;偶数个奇数的和是偶数;偶数跟奇数的和是奇数;任意多个偶数的和是偶数.(5)除2外所有的正偶数均为合数;(6)相邻偶数的最大公约数为2,最小公倍数为它们乘积的一半. (7)偶数乘以任何整数的积为偶数.(8)两数和与两数差有相同的奇偶性,()mod2a b a b +≡-. (9)乘积为奇数的充分必要条件是各个因数为奇数. (10)n 个偶数的积是2n的倍数.(11)()11k-=的充分必要条件是k 为偶数,()11k-=-的充分必要条件是k 为奇数.(12)()()()()()()22220mod 4,211mod 4,211mod8n n n ≡-≡-≡. (13)任何整数都可以表示为()221mn k =-.……例1 (1906,匈牙利)假设12,,,n a a a 是1,2,,n 的某种排列,证明:如果n 是奇数,则乘积()()()1212n a a a n ---是偶数.类似题:例1-1(1986,英国)设127,,,a a a 是整数,127,,,b b b 是它们的一个排列,证明()()()112277a b a b a b ---是偶数.(127,,,a a a 中奇数与偶数个数不等)例1-2 π的前24位数字为 3.14159265358979323846264π=,记1224,,,a a a 为该24个数字的任一排列,求证()()()12342324a a a a a a ---必为偶数.(暗藏3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,6,4中奇数与偶数个数不等)例2 能否从1,2,,15中选出10个数填入图的圆圈中,使得每两个有线相连的圈中的数相减(大数减小数),所得的14个差恰好为1,2,,14?例3 有一大筐苹果和梨分成若干堆,如果你一定可以找到这样的两堆,其苹果数之和与梨数之和都是偶数,问最少要把这些苹果和梨分成几堆?例4 有n 个数121,,,,n n x x x x -,它们中的每一个要么是1,要么是1-.若1223110n n n x x x x x x x x -+++++=,求证4|n .例5 n 个整数121,,,,n n a a a a -,其积为n ,其和为0,试证4|n .例6 在数轴上给定两点1内任取n 个点,在此2n +个点中,每相邻两点连一线段,可得1n +条互不重叠的线段,证明在此1n +条线段中,以一个有理点和一个无理点为端点的线段恰有奇数条.二、约数与倍数最大公约数与最小公倍数的求法. (1)短除法.(2)分解质因数法.设1212,0,1,2,,k k i a p p p i k αααα=≥=, 1212,0,1,2,,k k i b p p p i k ββββ=≥=.记 {}{}min ,,max ,i i i i i i γαβδαβ==, 则 ()1212,k k a b p p p γγγ=, []1212,k k a b p p p δδδ=.(3)辗转相除法()()()()()121,,,,,0n n n n a b b r r r r r r r -======.例7 (1)求()8381,1015,[]8381,1015; (2)()144,180,108,[]144,180,108.例8 正整数n 分别除以2,3,4,5,6,7,8,9,10得到的余数依次为1,2,3,4,5,6,7,8,9,则n 的最小值为 ..例9 有两个容器,一个容量为27升,一个容量为15升,如何利用它们从一桶油中倒出6升油来?例10 对每一个2n ≥,求证存在n 个互不相同的正整数12,,,n a a a ,使i j i j a a a a -+,对任意的{},1,2,,,i j n i j ∈≠成立.例11 ()111959,IMO -证明对任意正整数n ,分数214143n n ++不可约.例12 不存在这样的多项式 ()1110mm m m f n a n a na n a --=++++,使得对任意的正整数n ,()f n 都是素数. .三、平方数若a 是整数,则2a 就叫做a 的完全平方数,简称平方数. 1.平方数的简单性质(1)平方数的个位数只有6个:0,1,4,5.6.9.(2)平方数的末两位数只有22个:00,01,21,41,61,81,04,24,44,64,84,25,16,36,56,76,96,09,29,49,69,89.(3)()()()()2220mod 4,211mod 4n n ≡-≡. (4)()()2211mod8n -≡.(6)凡是不能被3整除的数,平方后被3除余1.(7)在两个相邻整数的平方数之间,不能再有平方数. (8)非零平方数的约数有奇数个.(9)直角三角形的三边均为整数时,我们把满足222a b c +=的整数(),,a b c 叫做勾股数.勾股数的公式为2222,2,,a m n b mn c m n ⎧=-⎪=⎨⎪=+⎩其中,m n 为正整数,(),1m n =且,m n 一奇一偶.这个公式可给出全部素勾股数.2.平方数的证明方法 (1)反证法. (2)恒等变形法.(3)分解法.设a 为平方数,且a bc =,(),1b c =,则,b c 均为平方数. (4)约数法.证明该数有奇数个约数. 3.非平方数的判别方法(1)若()221n x n <<+,则x 不是平方数.(2)约数有偶数个的数不是平方数.(3)个位数为2,3,7,8的数不是平方数. (4)同余法:满足下式的数n 都不是平方数.()2mod3n ≡, ()23mod4n ≡或, ()23mod5n ≡或,()23567mod8n ≡或或或或,()2378mod10n ≡或或或.(5)末两位数不是:00,01,21,41,61,81,04,24,44,64,84,25,16,36,56,76,96,09,29,49,69,89.如个位数与十位数都是都是奇数的数, 个位数是6、而十位数是偶数的数.例13 有100盏电灯,排成一横行,从左到右,我们给电灯编上号码1,2,…,99,100.每盏灯由一个拉线开关控制着.最初,电灯全是关着的.另外有100个学生,第一个学生走过来,把凡是号码为1的倍数的电灯的开关拉了一下;接着第2个学生走过来,把凡是号码为2的倍数的电灯的开关拉了一下;第3个学生走过来,把凡是号码为3的倍数的电灯的开关拉了一下,如此等等,最后那个学生走过来,把编号能被100整除的电灯的开关拉了一下,这样过去之后,问哪些灯是亮的?例14 已知直角三角形的两条直角边分别为正整数,a b ,斜边为正整数c ,若a 为素数,求证()21a b ++为平方数.例15 求证,任意3个连续正整数的积不是平方数.例16 ()2311986,IMO -设d 是异于2,5,13的任一整数.求证在集合{}2,5,13,d 中可以找到两个不同元素,a b ,使得1ab -不是完全平方数.例17 (296IMO -)设,a b 为正整数,1ab +整除22a b +.证明221a b ab ++是完全平方数.四.整除整除的判别方法主要有7大类.1.定义法.证b a a bq ⇔=,有三种方式. (1)假设a qb r =+,然后证明0r =.(定理4) (2)具体找出q ,满足a bq =. (3)论证q 的存在.例18 任意一个正整数m 与它的十进制表示中的所有数码之差能被9整除.2.数的整除判别法. ()1011010mod3n n a a a a a a -++⨯+≡++++, ()1011010mod9n n a a a a a a -++⨯+≡++++如果一个整数的末三位数与末三位数以前的数字所组成的数的差能被7或11或或13整除. 1210a a a()13132101001n n a a a a a a a -⨯--,()13210132101001n n n a a a a a a a a a a a --⇔⨯-,1113⨯,而7,11,13均为素数知,m 能被7或11或13)如果一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被)mod11,有()()()()11101110101010111mod11.n n n n nn n n a a a a a a a a ----⨯+⨯++⨯+≡-+-++-+3.分解法.主要用乘法公式.如()()123221n n n n n n n a b a b a a b a b ab b ------=-+++++.()()212122232422322n n n n n n n a b a b a a b a b ab b -------+=+-+--+.()()2221222322221n n n n n n n a b a b a a b a b ab b ------=+-+-+-.例19 试证()()555129129++++++.例20 ()2111979,IMO -设p 与q 为正整数,满足111112313181319p q =-+--+, 求证p 可被1979整除(1979p )例20-1 2009年9月9日的年、月、日组成“长长久久、永不分离”的吉祥数字20090909,而它也恰好是一个不能再分解的素数.若规定含素因子20090909的数为吉祥数,请证明最简分数111220090908m n =+++的分子m 是吉祥数.4. 余数分类法.例21 试证()()3121n n n ++.例22 k个连续整数中必有一个能被k整除.例23 k个连续整数之积必能被!k整除.n≥),若顺序相邻的3人中恰有一例24 有男孩、女孩共n个围坐在一个圆周上(3-.个男孩的有a组,顺序相邻的3人中恰有一个女孩的有b组,求证3a b例25 (1956,中国北京)证明3231122n n n ++-对任何正整数n 都是整数,并且用3除时余2.五、同余根据定义,同余问题可以转化为整除问题来解决;同时,同余本身有很多性质,可以直接用来解题.例26 正方体的顶点标上1+或1-,面上标上一个数,它等于这个面四个顶点处的数的乘积,求证,这样得出的14个数之和不能为0..例27 设多项式()n n n na x a xa x a x f ++++=--1110 的系数都是整数,并且有一个奇数α及一个偶数β使得()αf 及()βf 都是奇数,求证方程()0=x f 没有整数根.六、不定方程未知数的个数多于方程个数的整系数代数方程,称为不定方程.求不定方程的整数解,叫做解不定方程. 解不定方程通常要解决3个问题,方程是否有解?有解时,有几个解,解数是有限还是无穷?求出全部解.例28 解方程719213x y +=.例29 求方程3222009x x y +=的整数解.例30 甲乙两队各出7名队员按事先排好的顺序出场参加围棋擂台赛,双方先由1号队员比赛,负者被淘汰,胜者再与负方2号队员比赛,…直到有一方队员全被淘汰为止,另一方获得胜利,形成一种比赛过程,那么所有可能出现的比赛过程的种数为 .(1988,高中联赛)例31(1989,高中)如果从数1,2,…,14中按由小到大的顺序取出123,,a a a ,使同时满足21323, 3a a a a -≥-≥, 那么,所有符合上述要求的不同取法有多少种?七.数论函数主要是[]x 高斯函数,()n ϕ欧拉函数.例32 某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于..6.时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数[]y x =([]x 表示不大于x 的最大整数)可以表示为(A)10x y ⎡⎤=⎢⎥⎣⎦ (B)310x y +⎡⎤=⎢⎥⎣⎦ (C) 410x y +⎡⎤=⎢⎥⎣⎦ (D)510x y +⎡⎤=⎢⎥⎣⎦ (2010年全国高考数学陕西卷理科第10题)例33 用[]x 表示不大于x 的最大整数,求122004366366366366⎡⎤⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦.例34 50!的标准分解式中2的指数.八、综合练习例35 整数勾股形中,证明(1)必有一条直角边长是3的倍数; (2)必有一条直角边长是4的倍数; (3)必有一条边长是5的倍数; (4)三角形的面积是6的倍数.例36 已知ABC 内有n 个点,连同,,A B C 共有3n +个点,以这些点为顶点,把ABC 分割为若干个互不重叠的小三角形,现把,,A B C 分别染上红色、蓝色、黄色,而其余n 个点,每点任意染上红、蓝、黄三色之一,证明三顶点都不同色的小三角形的总数必是奇数.(斯潘纳定理)例37 对整点25边形的顶点作三染色,求证,存在一个三顶点同色的三角形,它的重心也是整点.高中数学竞赛训练讲义一、选择题1、,,a b c 为互不相等的正数,222a c bc +=,则下列关系中可能成立的是( ).A 、a b c >>;B 、 b c a >>;C 、b a c >>;D 、a c b >>;2、设 ()11x f x x+=-,又记()()()()()11,,1,2,,k k f x f x f x f f x k +===则()2007f x =( ). A 、11x x +-; B 、 11x x -+; C 、x ; D 、1x-; 3、设α为锐角,xy 2sin cos sin cos z αααα=+,则,,x y z 的大小顺序为( ). A 、x y z ≥≥; B 、 x z y ≥≥; C 、z x y ≥≥; D 、z y x ≥≥;4、用红、黄、蓝、绿四种颜色给图中的A 、B 、C 、D 四个小方格涂色(允许只用其中几种),使邻区(有公共边的小格)不同色,则不同的涂色方式种数为( ).A 、24;B 、36;C 、72;D 、84.52,则其侧面与底面的夹角为( ).A 、3π; B 、4π; C 、6π; D 、12π.6、正整数集合k A 的最小元素为1,最大元素为2007,并且各元素可以从小到大排成一个公差为k 的等差数列,则并集1759A A 中的元素个数为( ). A 、119 B 、120; C 、151; D 、154.二、填空题 7、若实数,x y 满足:1031031031031,125263536x y x y+=+=++++,则x y += . 8、抛物线顶点为O ,焦点为F ,M 是抛物线上的动点,则MO MF的最大值为 . 9、计算01sin10= . 10、过直线l :9y x =+上的一点P 作一个长轴最短的椭圆,使其焦点为()()123,0,3,0F F -,则椭圆的方程为 .11、把一个长方体切割成k 个四面体,则k 的最小值是 .12、将各位数码不大于3的全体正整数m 按自小到大的顺序排成一个数列{}n a ,则2007a = .三、解答题13、数列{}n a 满足:()()111,211nn n na a a n na +==++;令12,k k x a a a =+++12111,1,2,k ky k a a a =+++=;求1nk kk x y=∑.A B CD15、若四位数n abcd =的各位数码,,,a b c d 中,任三个数码皆可构成一个三角形的三条边长,则称n 为四位三角形数,试求所有四位三角形数的个数.答案一、选择题(本题满分36分,每小题6分)1、,,a b c 为互不相等的正数,222a c bc +=,则下列关系中可能成立的是( )A 、a b c >>;B 、 b c a >>;C 、b a c >>;D 、a c b >>;答案:C ;解:若a b >,则22222a c b c bc +>+≥,不合条件,排除,A D ,又由()222a c c b c -=-,故a c -与b c -同号,排除B ;且当b a c >>时,222a c bc +=有可能成立,例如取()(),,3,5,1a b c =,故选C . 2、设 ()11xf x x+=-,又记()()()()()11,,1,2,,k k f x f x f x f f x k +===则()2007f x =( )A 、11x x +-; B 、 11x x -+; C 、x ; D 、1x-; 答案:B ;解:()()1121111,11f x f x f x x f x++===---, ()()323423111,111f f x f x f x x f x f ++-====-+-,据此,()()414211,1n n x f x f x x x +++==--,()()4341,1n n x f x f x x x +-==+,因2007为43n +型,故选B . 3、设α为锐角,x =y =2sin cos sin cos z αααα=+, 则,,x y z 的大小顺序为( )A 、x y z ≥≥;B 、 x z y ≥≥;C 、z x y ≥≥;D 、z y x ≥≥;答案:A;解:sin cos 1sin cos x y αααα+=≥=+,2sin cos sin cos z y αααα=≤==+,故x y z ≥≥.4、用红、黄、蓝、绿四种颜色给图中的A 、B 、C 、D 四个小方格涂色(允许只用其中几种),使邻区(有公共边的小格)不同色,则不同的涂色方式种数为( ).A 、24;B 、36;C 、72;D 、84.答案:D ;解:选两色有24C 种,一色选择对角有2种选法,共计24212C =种;选三色有34C 种,其中一色重复有13C 种选法,该色选择对角有2种选法,另两色选位有2种,共计432248⨯⨯⨯=种;四色全用有4!24=种(因,,,A B C D 为固定位置),合计84种.52,则A B CD其侧面与底面的夹角为( ).A 、3π; B 、4π; C 、6π; D 、12π .答案:A ;解:设底面正方形边长为1,棱锥的高为h ,侧面三角形的高为l ,则AC,2l =,则sin 2h PMH l ∠==,3PMH π∠=. 6、正整数集合k A 的最小元素为1,最大元素为2007,并且各元素可以从小到大排成一个公差为k 的等差数列,则并集1759A A 中的元素个数为( ). A 、119 B 、120; C 、151; D 、154.答案:C ;解:用k A 表示集k A 的元素个数,设1k A n =+,由20071nk =+,得2006n k=,于是172006111917A =+=,59200613559A =+=,175910032006131759A A A ==+=⨯;从而175917591003119353151A A A A A =+-=+-=.二、填空题(本题满分54分,每小题9分)7、若实数,x y 满足:1031031031031,125263536x y x y+=+=++++,则x y += .答案:1010332356+++; 解:据条件,10102,3是关于t 的方程33156x y t t +=++的两个根,即()233560t x y t -+--+=的两个根,所以1010332356x y +=+--;1010332356x y +=+++.8、抛物线顶点为O ,焦点为F ,M 是抛物线上的动点,则MOMF的最大值为 . 22y px =,则顶点及焦点坐标为()0,0,,02p O F ⎛⎫ ⎪⎝⎭,若设点M 坐标为(),M x y ,则22222222242MO x y x px p MF p x px x y ++⎛⎫== ⎪⎝⎭⎛⎫++-+ ⎪⎝⎭()222222224313234444x px x px px x px x p xpx ++=≤=+++++,故MO MF ≤(当()(),,M x y p p =或()(),,M x y p p =时取等号)9、计算001sin10cos10-= . 答案:4.解:01sin10=()000000012cos102sin 3010241sin10cos10sin 202⎛⎫ ⎪-⎝⎭==. 10、过直线l :9y x =+上的一点P 作一个长轴最短的椭圆,使其焦点为()()123,0,3,0F F -,则椭圆的方程为 . 答案:2214536x y+=;解:设直线l 上的点为(),9P t t +,取()13,0F -关于直线l 的对称点()9,6Q -,据椭圆定义,12222a PF PF PQ PF QF =+=+≥= ,当且仅当2,,Q P F 共线,即22PF QF K K =,也即96312t t +=--时,上述不等式取等号,此时5t =-, 点P 坐标为()5,4P -,据3,c a ==得,2245,36a b ==,椭圆的方程为2214536x y +=. 11、把一个长方体切割成k 个四面体,则k 的最小值是 .答案:5;解:据等价性,只须考虑单位正方体的切割情况,先说明4个不够,若为4个,因四面体的面皆为三角形,且互不平行,则正方体的上底至少要切割成两个三角形,下底也至少要切割成两个三角形,每个三角形的面积12≤,且这四个三角形要属于四个不同的四面体,以这种三角形为底的四面体,其高1≤,故四个不同的四面体的体积之和112411323⎛⎫≤⨯⨯⨯=< ⎪⎝⎭,不合; 所以5k ≥,另一方面,可将单位正方体切割成5个四面体; 例如从正方体1111ABCD A BC D -中间挖出一个四面体11A BC D ,剩下四个角上的四面体,合计5个四面体.12、将各位数码不大于3的全体正整数m 按自小到大的顺序排成一个数列{}n a ,则2007a = .答案:133113; 解:简称这种数为“好数”,则一位好数有3个;两位好数有3412⨯=个;三1A位好数有23448⨯=个;…,k 位好数有134k -⨯个;1,2,k =,记1134n k n k S -==∑,因562007S S <<,52007984S -=,即第2007个好数为第984个六位好数;而六位好数中,首位为1的共有541024=个,前两位为10,11,12,13的各有44256=个,因此第2007个好数的前两位数为13,且是前两位数为13的第9843256216-⨯=个数;而前三位为130,131,132,133的各64个,则2007a 的前三位为133,且是前三位数为133的第21636424-⨯=个数; 而前四位为1330,1331,1332,1333的各16个,则2007a 的前四位为1331,且是前四位数为1331的第24168-=个数;则2007a 的前五位为13311,且是前五位数为13311的第844-=个数,则2007133113a =.三、解答题(本题满分60分,每小题20分)13、数列{}n a 满足:()()111,211n n n na a a n na +==++;令12,k k x a a a =+++ 12111,1,2,k k y k a a a =+++=;求 1n k k k x y =∑解:改写条件式为()11111n nn a na +-=+,则 ()()()112211111111111122n n n n n na na n a n a n a a a a ---⎛⎫⎛⎫⎛⎫=-+-++-+ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭()121n n =-+=+,所以()11n a n n =+,111111111k k k i i i k x a ii k k ==⎛⎫==-=-= ⎪+++⎝⎭∑∑; ()2111111kk k k k i i i i i y i i i i a ======+=+=∑∑∑∑()()()()()121112623k k k k k k k k ++++++=; ()()()()22111121112233236n n k k k k n n n n n x y k k ==+++⎛⎫=+=+⋅ ⎪⎝⎭∑∑()()21311436n n n n +++=.15、若四位数n abcd =的各位数码,,,a b c d 中,任三个数码皆可构成一个三角形的三条边长,则称n 为四位三角形数,试求所有四位三角形数的个数.解:称(),,,a b c d 为n 的数码组,则{},,,1,2,,9a b c d M ∈=; 一、当数码组只含一个值,为(),,,,1,2,,9a a a a a =,共得9个n 值;二、当数码组恰含二个值,a b ,()a b >. ()1、数码组为(),,,a a a b 型,则任取三个数码皆可构成三角形,对于每个{}2,,9a ∈,b 可取1a -个值,则数码组个数为()92136a a =-=∑,对于每组(),,,a a a b ,b 有4种占位方式,于是这种n 有364144⨯=个.()2、数码组为(),,,a b b b 型,()a b >,据构成三角形条件,有2b a b <<, M 中a 的个数共得16个数码组,对于每组(),,,a b b b ,a 有4种占位方式,于是这种n 有16464⨯=个.()3、数码组为(),,,a a b b 型,()a b >,据构成三角形条件,有2b a b <<,同上得16个数码组,对于每组(),,,a a b b ,两个a 有246C =种占位方式,于是这种n 有16696⨯=个.以上共计1446496304++=个.三、当数码组恰含三个值,,a b c ,()a b c >>.()1、数码组为(),,,a b c c 型,据构成三角形条件,则有2c b a c <<<,这种(),,,a b c c 有14组,每组中,a b 有2412A =种占位方式,于是这种n 有1412168⨯=个.()2、数码组为(),,,a b b c 型,c b a b c <<<+,此条件等价于{}1,2,,9M =中取三个不同的数构成三角形的方法数,有34组,每组中,a b 有2412A =种占位方式,于是这种n 有3412408⨯=个.()3、数码组为(),,,a a b c 型,c b a b c <<<+,同情况()2,有2434408A =个n 值. 以上共计168408408984++=个n 值.四、,,,a b c d 互不相同,则有d c b a c d <<<<+,这种,,,a b c d 有16组,每组有4!个排⨯=个n值.法,共得164!384+++=个.综上,全部四位三角形数n的个数为93049843841681。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学竞赛:数论的方法技巧数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。
数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。
因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。
任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。
”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。
数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。
主要的结论有:1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r (0≤r<b),且q,r是唯一的。
特别地,如果r=0,那么a=bq。
这时,a被b整除,记作b|a,也称b是a 的约数,a是b的倍数。
2.若a|c,b|c,且a,b互质,则ab|c。
3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1<p2<…<pk为质数,a1,a2,…,ak为自然数,并且这种表示是唯一的。
(1)式称为n的质因数分解或标准分解。
4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d(n)=(a1+1)(a2+1)…(ak+1)。
5.整数集的离散性:n与n+1之间不再有其他整数。
因此,不等式x<y与x≤y-1是等价的。
下面,我们将按解数论题的方法技巧来分类讲解。
一、利用整数的各种表示法对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。
这些常用的形式有:1.十进制表示形式:n=an10n+an-110n-1+…+a0;2.带余形式:a=bq+r;4.2的乘方与奇数之积式:n=2m t,其中t为奇数。
例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。
结果小明发现,无论白色卡片上是什么数字,计算结果都是1998。
问:红、黄、蓝3张卡片上各是什么数字?解:设红、黄、白、蓝色卡片上的数字分别是a3,a2,a1,a,则这个四位数可以写成:1000a3+100a2+10a1+a,它的各位数字之和的10倍是10(a3+a2+a1+a)=10a3+10a2+10a1+10a,这个四位数与它的各位数字之和的10倍的差是:990a3+90a2-9a=1998,110a3+10a2-a=222。
比较上式等号两边个位、十位和百位,可得a0=8,a2=1,a3=2。
所以红色卡片上是2,黄色卡片上是1,蓝色卡片上是8。
例2在一种室内游戏中,魔术师请一个人随意想一个三位数abc(a,b,c依次是这个数的百位、十位、个位数字),并请这个人算出5个数cabbcabacacb,,,与cba的和N,把N告诉魔术师,于是魔术师就可以说出这个人所想的数abc。
现在设N=3194,请你当魔术师,求出数abc来。
解:依题意,得a+b+c>14,说明:求解本题所用的基本知识是,正整数的十进制表示法和最简单的不定方程。
例3 从自然数1,2,3,…,1000中,最多可取出多少个数使得所取出的数中任意三个数之和能被18整除?解:设a ,b ,c ,d 是所取出的数中的任意4个数,则a+b+c=18m ,a+b+d=18n ,其中m ,n 是自然数。
于是c-d=18(m-n )。
上式说明所取出的数中任意2个数之差是18的倍数,即所取出的每个数除以18所得的余数均相同。
设这个余数为r ,则a=18a1+r ,b=18b1+r ,c=18c1+r , 其中a1,b1,c1是整数。
于是a+b+c=18(a1+b1+c1)+3r 。
因为18|(a+b+c ),所以18|3r ,即6|r ,推知r=0,6,12。
因为1000=55×18+10,所以,从1,2,…,1000中可取6,24,42,…,996共56个数,它们中的任意3个数之和能被18整除。
例4 求自然数N ,使得它能被5和49整除,并且包括1和N 在内,它共有10个约数。
解:把数N 写成质因数乘积的形式:N=n an a a a a P ⨯⨯⨯⨯⨯ 43217532由于N 能被5和72=49整除,故a3≥1,a4≥2,其余的指数ak 为自然数或零。
依题意,有(a1+1)(a2+1)…(an+1)=10。
由于a3+1≥2,a4+1≥3,且10=2×5,故a1+1=a2+1=a5+1=…=an+1=1, 即a1=a2=a5=…an=0,N 只能有2个不同的质因数5和7,因为a4+1≥3>2,故由(a3+1)(a4+1)=10知,a3+1=5,a4+1=2是不可能的。
因而a3+1=2,a4+1=5,即N=52-1×75-1=5×74=12005。
例5 如果N 是1,2,3,…,1998,1999,2000的最小公倍数,那么N 等于多少个2与1个奇数的积?解:因为210=1024,211=2048>2000,每一个不大于2000的自然数表示为质因数相乘,其中2的个数不多于10个,而1024=210,所以,N 等于10个2与某个奇数的积。
说明:上述5例都是根据题目的自身特点,从选择恰当的整数表示形式入手,使问题迎刃而解。
二、枚举法枚举法(也称为穷举法)是把讨论的对象分成若干种情况(分类),然后对各种情况逐一讨论,最终解决整个问题。
运用枚举法有时要进行恰当的分类,分类的原则是不重不漏。
正确的分类有助于暴露问题的本质,降低问题的难度。
数论中最常用的分类方法有按模的余数分类,按奇偶性分类及按数值的大小分类等。
例6 求这样的三位数,它除以11所得的余数等于它的三个数字的平方和。
分析与解:三位数只有900个,可用枚举法解决,枚举时可先估计有关量的范围,以缩小讨论范围,减少计算量。
设这个三位数的百位、十位、个位的数字分别为x,y,z。
由于任何数除以11所得余数都不大于10,所以x2+y2+z2≤10,从而1≤x≤3,0≤y≤3,0≤z≤3。
所求三位数必在以下数中:100,101,102,103,110,111,112,120,121,122,130,200,201,202,211,212,220,221,300,301,310。
不难验证只有100,101两个数符合要求。
例7 将自然数N接写在任意一个自然数的右面(例如,将2接写在35的右面得352),如果得到的新数都能被N整除,那么N称为魔术数。
问:小于2000的自然数中有多少个魔术数?解:设P为任意一个自然数,将魔术数N(N<2000=接后得PN,下面对N 为一位数、两位数、三位数、四位数分别讨论。
⑴当N为一位数时,PN=10P+N,依题意N︱PN,则N︱10P,由于需对任意数P成立,故N︱10,所以N=1,2,5;⑵当N为两位数时,PN=100P+N,依题意N︱PN,则N︱100P,故N|100,所以N=10,20,25,50;⑶当N为三位数时,PN=1000P+N,依题意N︱PN,则N︱1000P,故N|1000,所以N=100,125,200,250,500;⑷当N为四位数时,同理可得N=1000,1250,2000,2500,5000。
符合条件的有1000,1250。
综上所述,魔术数的个数为14个。
说明:(1)我们可以证明:k位魔术数一定是10k的约数,反之亦然。
(2)这里将问题分成几种情况去讨论,对每一种情况都增加了一个前提条件,从而降低了问题的难度,使问题容易解决。
例8 有3张扑克牌,牌面数字都在10以内。
把这3张牌洗好后,分别发给小明、小亮、小光3人。
每个人把自己牌的数字记下后,再重新洗牌、发牌、记数,这样反复几次后,3人各自记录的数字的和顺次为13,15,23。
问:这3张牌的数字分别是多少?解:13+15+23=51,51=3×17。
因为17>13,摸17次是不可能的,所以摸了 3次, 3张扑克牌数字之和是17,可能的情况有下面15种:①1,6,10 ②1,7,9 ③1,8,8 ④2,5,10 ⑤2,6,9⑥2,7,8 ⑦3,4,10 ⑧3,5,9 ⑨3,6,8 ⑩3,7,7(11)4,4,9 (12)4,5,8 (13)4,6,7 (14)5,5,7 (15)5,6,6只有第⑧种情况可以满足题目要求,即3+5+5=13;3+3+9=15;5+9+9=23。
这3张牌的数字分别是3,5和9。
例9 写出12个都是合数的连续自然数。
分析一:在寻找质数的过程中,我们可以看出100以内最多可以写出7个连续的合数:90,91,92,93,94,95,96。
我们把筛选法继续运用下去,把考查的范围扩大一些就行了。
解法1:用筛选法可以求得在113与127之间共有12个都是合数的连续自然数:114,115,116,117,118,119,120,121,122,123,124,125,126。
分析二:如果12个连续自然数中,第1个是2的倍数,第2个是3的倍数,第3个是4的倍数……第12个是13的倍数,那么这12个数就都是合数。
又m+2,m+3,…,m+13是12个连续整数,故只要m是2,3,…,13的公倍数,这12个连续整数就一定都是合数。
解法2:设m为2,3,4,…,13这12个数的最小公倍数。
m+2,m+3,m+4,…,m+13分别是2的倍数,3的倍数,4的倍数……13的倍数,因此12个数都是合数。
说明:我们还可以写出13!+2,13!+3,…,13!+13(其中n!=1×2×3×…×n)这12个连续合数来。
同样,(m+1)!+2,(m+1)!+3,…,(m+1)!+m+1是m个连续的合数。
三、归纳法当我们要解决一个问题的时候,可以先分析这个问题的几种简单的、特殊的情况,从中发现并归纳出一般规律或作出某种猜想,从而找到解决问题的途径。
这种从特殊到一般的思维方法称为归纳法。
例10 将100以内的质数从小到大排成一个数字串,依次完成以下5项工作叫做一次操作:(1)将左边第一个数码移到数字串的最右边;(2)从左到右两位一节组成若干个两位数;(3)划去这些两位数中的合数;(4)所剩的两位质数中有相同者,保留左边的一个,其余划去;(5)所余的两位质数保持数码次序又组成一个新的数字串。
问:经过1999次操作,所得的数字串是什么?解:第1次操作得数字串711131131737;第2次操作得数字串11133173;第3次操作得数字串111731;第4次操作得数字串1173;第5次操作得数字串1731;第6次操作得数字串7311;第7次操作得数字串3117;第8次操作得数字串1173。